
Self-Stabilizing Mobile Robot Formations

with Virtual Nodes

Seth Gilbert1, Nancy Lynch2, Sayan Mitra3?, and Tina Nolte2

1 Ecole Polytechnique Fédérale, Lausanne
2 Massachusetts Institute of Technology

3 University of Illinois at Urbana-Champaign

Abstract. In this paper, we describe how virtual infrastructure can be
used to coordinate the motion of mobile robots in a 2-dimensional plane
in the presence of dynamic changes in the underlying mobile ad hoc net-
work, i.e., nodes joining, leaving, or failing. The mobile robots cooperate
to implement a VSA Layer, in which a virtual stationary automaton
(VSA) is associated with each region of the plane. The VSAs coordi-
nate among themselves to distribute the robots as needed throughout
the plane. The resulting motion coordination protocol is self-stabilizing,
in that each robot can begin the execution in any arbitrary state and at
any arbitrary location in the plane. In addition, self-stabilization ensures
that the robots can adapt to changes in the desired formation.

1 Introduction

We study the problem of coordinating autonomous mobile devices. Consider, for
example, firefighting robots deployed in forests and other fire-prone wilderness
areas. Significant levels of coordination are required in order to combat the fire:
the fire should be surrounded, “firebreaks” should be created, and it should be
doused with water; in additiona, the firefighters may need to direct the actions
of (potentially autonomous) helicopters carrying water. Similar scenarios arise in
a variety of contexts, including search and rescue, emergency disaster response,
remote surveillance, and military engagement, among many others. In fact, au-
tonomous coordination has long been a central problem in mobile robotics.

We focus on a generic coordination problem that captures many of the com-
plexities associated with these real-world scenarios. We assume that the mobile
robots are deployed in a large two-dimensional plane, and that they can coor-
dinate via local communication using wireless radios. The robots must arrange
themselves to form a particular pattern, specifically, they must spread them-
selves evenly along a continuous curve drawn in the plane. In the firefighting
example described above, this curve might form the perimeter of the fire.

These types of coordination problems can be quite challenging due to the
dynamic and unpredictable environment that is inherent to wireless ad hoc net-
works. Robots may be continuously joining and leaving the system, and they
? Supported by NSF CSR program (Embedded & Hybrid systems area) under grant

NSF CNS-0614993.

may fail. In addition, wireless communication is notoriously unreliable due to
collisions, contention, and various wireless interference.

Virtual infrastructure has been proposed as a new tool for building reliable
and robust applications in unreliable wireless ad hoc networks (e.g., [1,2,3,4]).
The basic principle motivating virtual infrastructure is that many of the chal-
lenges in a dynamic networks could be avoided if there were real network in-
frastructure available. Unfortunately, in many contexts, such infrastructure is
unavailable. Thus, the virtual infrastructure abstraction emulates real infrastruc-
ture in ad hoc networks. It has already been observed that virtual infrastructure
simplifies several important problems, including distributed shared memory [2],
tracking mobile devices [5], and geographic routing [1].

In this paper, we rely on a virtual infrastructure known as the Virtual Sta-
tionary Automata Layer (VSA Layer) [6,7]. Each robot is modelled as a client
which interacts with virtual stationary automata (VSAs) via a (virtual) com-
munication service. VSAs are distributed throughout the world, each assigned
permanently to its own region. An advantage of VSAs is that they are less likely
to fail than an individual mobile robot. Notice that the VSAs do not actually
exist in the real world; they are emulated by the underlying mobile robots.

The VSA Layer is modeled in the Timed Input/Output Automata (TIOA) [8]
framework. In TIOA parlance, an emulation is an implementation relationship
between two sets of TIOAs: those that specify the VSA Layer and those that
implement it. The emulation transforms an algorithm designed for the VSA
Layer into an algorithm that runs directly on the mobile robots. An execution
resulting from this transformation looks as if the original program is running
on the VSA Layer; formally, the traces of the transformed system, restricted to
non-broadcast actions at the client nodes, are traces of the VSA Layer. In [6,7],
we show how to emulate the VSA Layer in a wireless network of mobile robots.

Here, we show how to use the VSA Layer to implement a reliable and ro-
bust protocol for coordinating mobile robots. The protocol relies on the VSAs
to peform the coordination. Each VSA decides based on its local information
which robots to keep in its own region and which to assign to neighboring re-
gions. For each robot that remains, the VSA determines where the robot should
go. In order that the robot coordination be robust, our coordination protocol
is self-stabilizing, meaning that each robot can begin in an arbitrary state, in
an arbitrary location in the network, and yet the distribution of the robots will
converge to the specified curve. When combined with a self-stabilizing imple-
mentation of the VSA Layer, as is presented in [6,7], we end up with an entirely
self-stabilizing solution for the problem of autonomous robot coordination.

Self-stabilization provides many advantages. Given the unreliable nature of
wireless networks, occasionally (due to aberrant interference) messages may be
lost, disrupting the protocol; a self-stabilizing algorithm can readily recover from
this. In addition, a self-stabilizing algorithm can cope with more dynamic co-
ordination problems when the desired formation of robots may change. In the
firefighting example above the formation of firefighting robots must adapt as the
fire evolves. A self-stabilizing algorithm can easily adapt to these changes.

The remainder of this paper is organized as follows. First, in Section 2, we
discuss some of the related work. Next, in Section 3, we discuss the VSA Layer
model. In Section 4 we describe the motion coordination problem, and describe
our algorithm that solves it. In Section 5, we show that the algorithm is correct,
and in Section 6, we show that the algorithm is self-stabilizing.

2 Related Work

The problem of motion coordination has been studied in a variety of contexts,
including: flocking [9]; rendezvous [10,11,12]; aggregation [13]; deployment and
regional coverage [14]; and pattern formation [15]. Control theory literature
contains several algorithms for achieving spatial patterns [16,17,18,19]. These
assume that agents process information and communicate reliably and syn-
chronously.

Asynchronous vision-based model have also been investigated in [15,20,21,22]
and [23]. In this model, agents are asynchronous, oblivious, and anonymous. Each
agent repeatedly performs look, compute, and move actions to compute its next
target position based on the current position of other visible agents. The class of
patterns that can be formed depends on the common knowledge of the agents,
such as common compass and common coordinates [15,23].

We have previously presented a protocol for coordinating mobile devices using
virtual infrastructure in [24]. This earlier protocol relies on a more powerful class
of virtual infrastructure (see [6,7]), and hence, our new protocol is somewhat
simpler (and more elegant). Moreover, the new protocol is self-stabilizing, which
allows both for better fault-tolerance, and also the ability to tolerate dynamic
changes in the desired pattern of motion. Virtual infrastructure has also been
considered in [25] in the context of coordinating airplane flight.

3 Virtual Stationary Automata

The Virtual Stationary Automata (VSA) infrastructure has been presented ear-
lier in [6,7]. The architecture of this abstraction layer is shown in Figure 1. In
this section, we informally describe these components.

Network tiling. We fix R to be a closed, bounded and connected subset of R2, and
U,P to be two totally ordered index sets. R models the physical space in which
the robots reside; we call it the deployment space. U and P serve as the index
sets for regions in R and for the participating robots, respectively. A network
tiling divides R into a set of regions {Ru}u∈U , such that: (i) for each u ∈ U , Ru
is a closed, connected subset of R, and (ii) for any u, v ∈ U , Ru and Rv may
overlap only at their boundaries. For any u, v ∈ U , the corresponding regions are
said to be neighbors if Ru ∩ Rv 6= ∅. This neighborhood relation, nbrs, induces
a graph on the set of regions. We assume that the resulting graph is connected.
Throughout this paper, we assume that each region has at most four neighbors;
generalizing to an arbitrary number of neighbors is straightforward. We define

V Bcast

VNu

VNv

CNp

CN q

VWRW

VBDelayu

V BDelayv

V BDelayp

V BDelayq

GPSupdatep
GPSupdateq

vcastp vcast′p

vrcvp

vcastq vcast′q

vrcvq

failp, restartp

failq, restartq

failv, restartv, timev

failu, restartu, timeu

vcastvvcast′v

vrcvv

vcastuvcast′u

vrcvu

Fig. 1. Virtual Stationary Automata layer.

the distance between regions u and v, denoted regDist(u, v), as the minimum
number of hops between u and v in the graph. The diameter of the graph, i.e., the
distance between the farthest regions, is denoted by D, and the largest Euclidean
distance between any two points in any region is denoted by r.

Real World (RW) Automaton. RW is an external source of occasional but reli-
able time and location information for participating robots. The RW automaton
is parameterized by: (a) vmax > 0, a maximum speed, and (b) εsample > 0, a max-
imum time gap between successive updates for each robot. The RW automaton
maintains three key variables: (a) a continuous variable now representing true
system time; now increases monotonically at the same rate as real-time start-
ing from 0. (b) An array vel[P → R ∪ {⊥}]; for p ∈ P , vel(p) represents the
current velocity of robot p. Initially vel(p) is set to ⊥, and it is updated by the
robots when their velocity changes. (c) an array loc[P → R]; for p ∈ P , loc(p)
represents the current location of robot p. Over any interval of time, robot p
may move arbitrarily in R provided its path is continuous and its maximum
speed is bounded by vmax. Automaton RW performs the GPSupdate(l, t)p ac-
tion, l ∈ R, t ∈ R≥0, p ∈ P , to inform robot p about its current location and
time. For each p, some GPSupdate(,)p action must occur every εsample time.

Virtual World (VW) Automaton. VW is an external source of occasional but re-
liable time information for VSAs. Similar to RW ’s GPSupdate action for clients,
VW performs time(t)u output actions notifying VSAs of the current time. One
such action occurs at time 0, and they are repeated at least every εsample time
thereafter. Also, VW nondeterministically issues failu and restartu outputs for
each u ∈ U , modelling the fact that VSAs may fail and restart.

Mobile client nodes. For each p ∈ P , the mobile client node CN p is a TIOA
modeling the client-side program executed by the robot with identifier p. CN p

has a local clock variable, clock that progresses at the rate of real-time, and is
initially ⊥. CN p may have arbitrary local non-failed variables. Its external in-
terface at least includes the GPSupdate inputs, vcast(m)p outputs, and vrcv(m)p
inputs. CN p may have additional arbitrary non-fail and non-restart actions.

Virtual Stationary Automata (VSAs). A VSA is a deterministic clock-equipped
abstract virtual machine. For each u ∈ U , there is a corresponding VSA VN u

which is associated with the geographic region Ru. VN u has a local clock
variable clock which progresses at the rate of real-time. (It is initially ⊥ be-
fore the first time input.) VN u has the following external interface: (a) Input
time(t)u, t ∈ R≥0, models an update at time t; it sets node VN u’s clock to t.
(b) Output vcast(m)u,m ∈Msg, models VN u broadcasting message m. (c) In-
put vrcv(m)u,m ∈ Msg, models VN u receiving a message m. VN u may have
additional non-failed variables and non-fail and non-restart internal actions.

VBDelay Automata. Each client and VSA node is associated with a VBDelay
buffer that delays messages when they are broadcast for up to e time. This buffer
takes as input a vcast(m) from the node and relays the message to the VBcast
service after some delay of at most e. In the case of VSA nodes, there is no delay.

VBcast Automaton. Each client and virtual node has access to the virtual broad-
cast communication service VBcast. The service is parameterized by a constant
d > 0 which bounds message delays. VBcast takes each vcast′(m, f)i input (from
the delay buffers) and delivers the message m via vrcv(m) at each client or vir-
tual node that is in the same region as the initial sender, when the message was
first sent, along with those in neighboring regions. The VBcast service guaran-
tees that in each execution of VBcast there is a correspondence between vrcv(m)
actions and vcast′(m, f)i actions such that: (i) each vrcv occurs after and within
d time of the corresponding vcast′, (ii) at most one vrcv at a process is mapped
to each vcast′. (iii) a message originating from some region u must be received
by all robots that are in Ru or its neighbors throughout the transmission period.

A VSA layer algorithm is an assignment of a TIOA program to each client
and VSA. We denote the set of all V-algorithms is as V Algs. We now define a
VLayer, i.e., a VSA layer with failure-prone clients and VSAs.

Definition 1. Let alg be an element of V algs. V LNodes[alg], the fail-transformed
nodes of the VSA layer parameterized by alg, is the composition of each alg(i),
modified so as to fail by crashing, with a VBDelay buffer, for all i ∈ P ∪
U . V Layer[alg], the VSA layer parameterized by alg, is the composition of
V LNodes[alg] with RW‖VW‖V Bcast.

4 Motion Coordination using Virtual Nodes

In this paper we fix Γ : A→ R to be a simple, differentiable curve on R that is
parameterized by arc length. The domain set A of parameter values is an interval

in the real line. We also fix a particular network tiling given by the collection
of regions {Ru}u∈U such that each point in Γ is also in some region Ru. Let
Au

∆= {p ∈ A : region(Γ (p)) = u} be the domain of Γ in region u. We assume
that Au is convex for every region u; it may be empty for some u. The local
part of the curve Γ in region u is the restriction Γu : Au → Ru. We write |Au|
for the length of the curve Γu. We define the quantization of a real number x
with quantization constant σ > 0 as qσ(x) = d xσ eσ. We fix σ, and write qu as an
abbreviation for qσ(|Au|), qmin for the minimum nonzero qu, and qmax for the
maximum qu.

Our goal is to design an algorithm for mobile robots such that, once the
failures and recoveries cease, within finite time all the robots are located on Γ
and as time progresses they eventually become equally spaced on Γ . Formally,
if no fail and restart actions occur after time t0, then:

(1) there exists a constant T , such that for each u ∈ U , within time to + T
the set of robots located in Ru becomes fixed and its cardinality is roughly
proportional to qu; moreover, if qu 6= 0 then the robots in Ru are located
on4 Γu, and

(2) as time goes to infinity, all robots in Ru are evenly spaced5 on Γu.

4.1 Solution Using Virtual Node Layer

The VSA Layer is used as a means to coordinate the movement of client nodes,
i.e., robots. A VSA controls the motion of the clients in its region by setting and
broadcasting target waypoints for the clients: VSA VN u, u ∈ U , periodically
receives information from clients in its region, exchanges information with its
neighbors, and sends out a message containing a calculated target point for each
client node “assigned” to region u. VN u performs two tasks when setting the
target points: (1) it re-assigns some of the clients that are assigned to itself to
neighboring VSAs, and (2) it sends a target position on Γ to each client that
is assigned to itself. The objective of (1) is to prevent neighboring VSAs from
getting depleted of robots and to achieve a distribution of robots over the regions
that is proportional to the length of Γ in each region. The objective of (2) is to
space the nodes evenly on Γ within each region. The client algorithm, in turn,
receives its current position information from RW and computes a velocity
vector for reaching its latest received target point from a VSA.

Each virtual node VN u uses only information about the portions of the target
curve Γ in region u and neighboring regions. We assume that all client nodes
know the complete curve Γ ; however, we could model the client nodes in u as
receiving external information about the nature of the curve in region u and
neighboring regions only.
4 For a given point x ∈ R, if there exists p ∈ A such that Γ (p) = x, then we say that

the point x is on the curve Γ ; abusing the notation, we write this as x ∈ Γ .
5 A sequence x1, . . . ,xn of points in R is said to be evenly spaced on a curve Γ if

there exists a sequence of parameter values p1 < p2 . . . < pn, such that for each i,
1 ≤ i ≤ n, Γ (pi) = xi, and for each i, 1 < i < n, pi − pi−1 = pi+1 − pi.

1 Signature:

2 Input time(t)u, t ∈ R≥0

3 Input vrcv(m)u, m ∈ ({cn-update} ×P ×R) ∪ ({vn-update} ×U ×N)
4 Output vcast(m)u, m ∈ ({vn-update} ×{u} ×N) ∪ ({target-update} ×(P → R))
5

6 State:

7 analog clock: R≥0∪ {⊥}, initially ⊥.
8 M:P→R, initially ∅.
9 V : U → N, initially ∅.

10

11 Trajectories:
12 evolve if clock 6= t then d(clock) = 1 else d(clock) = 0
13 stop when Any precondition is satisfied.
14

15 Transitions:
16 Input time(t)u
17 Effect: if clock 6= t ∨ t mod δ /∈ (0, e + 2d + 2ε] then M, V ← ∅; clock ← t
18

19 Input: vrcv(〈cn-update, id, loc〉)u
20 Effect: if u = region(loc) and clock mod δ ∈ (0, d] then M(id) ← loc; V ← ∅
21

22 Output: vcast(〈vn-update, u, n〉)u
23 Precondition: (clock mod δ) = d+ε and n= |M|6= 0 and V6= {〈u, n〉}
24 Effect: V ← {〈u, n〉}
25

26 Input vrcv(〈vn-update, id, n〉)u
27 Effect: if id ∈ nbrs(u) then V(id) ← n
28

29 Output vcast(〈target-update, target〉)u
30 Precondition: (clock mod δ) = e + 2d + 2ε and M 6= ∅
31 target = calctarget(assign(id(M), V), M)
32 Effect: M, V ← ∅

Fig. 2. TIOA VN (k, ρ1, ρ2)u with parameters: safety k; damping ρ1, ρ2.

4.2 Client Node Algorithm (CN)

The algorithm for the client node CN (δ)p, p ∈ P follows a round structure, where
rounds begin at times that are multiples of δ. At the beginning of each round,
a CN stops moving and sends a cn-update message to its local VSA (that is, the
VSA in whose region the CN currently resides). The cn-update message tells the
local VSA the CN ’s id and its current location in R. The local VN then sends a
response to the client, i.e., a target-update message. Each such message describes
the new target location x∗p for CN p, and possibly an assignment to a different
region. CN p computes its velocity vector vp, based on its current position xp and
its target position x∗p, as vp = (xp − x∗p)/||xp − x∗p|| and communicates vmaxvp
to RW , moving it with maximum velocity towards the target.

4.3 Virtual Stationary Node Algorithm (VN)

The algorithm for virtual node VN (k, ρ1, ρ2)u, u ∈ U , appears in Figure 2, where
k ∈ Z+ and ρ1, ρ2 ∈ (0, 1) are parameters of the TIOA. VN u collects cn-update
messages sent at the beginning of the round from CN ’s located in region Ru, and
aggregates the location and round information in a table, M . When d + ε time

1 function assign(assignedM: 2P , y: nbrs+(u) → N) =
2 assign: P → U , initially {〈i, u〉} for each i ∈ assignedM
3 n: N, initially y(u); ra: N, initially 0
4 if y(u) > k then
5 if qu 6= 0 then

6 let lower = {g ∈ nbrs(u):
qg
qu
y(u) > y(g)}

7 for each g ∈ lower

8 ra ← min(bρ2 · [
qg
qu
y(u)− y(g)]/2(|lower|+1)c, n− k)

9 update assign by reassigning ra nodes from u to g
10 n ← n− ra
11 else if {v ∈ nbrs(u): qv 6= 0} = ∅ then
12 let lower = {g ∈ nbrs(u) : y(u) > y(g)}
13 for each g ∈ lower
14 ra ← min(bρ2 · [y(u)− y(g)]/2(|lower|+1)c, n− k)
15 update assign by reassigning ra nodes from u to g
16 n ← n− ra
17 else ra ← b (y(u) -k)/ |{v ∈ nbrs(u): qv 6= 0}| c
18 for each g ∈ {v ∈ nbrs(u): qv 6= 0}
19 update assign by reassigning ra nodes from u to g
20 return assign
21

22 function calctarget(assign: P → U , locM: P → R) =
23 seq: indexed list of pairs in A× P , sorted by the index A and then , P , initially the list:

24 〈p, i〉, ∀i ∈ P : (assign(i)= u) and (locM(i) ∈ Γu) and p= Γ−1
u (locM(i))

25 for each i ∈ P : assign(i) 6= null
26 if assign(i) = g 6= u then locM(i) ← og
27 else if locM(i) /∈ Γu then locM(i) ← choose {minx∈Γu{dist(x, locM(i))}}
28 else let p = Γ−1

u (locM(i)), seq(k) = 〈p, i〉
29 if k = first(seq) then locM(i) ← Γu(inf(Au))
30 else if k = last(seq) then locM(i) ← Γu(sup(Au))
31 else let seq(k − 1) = 〈pk−1, ik−1〉
32 seq(k + 1) = 〈pk+1, ik+1〉
33 locM(i) ← Γu(p + ρ1 · (

pk−1+pk+1
2 − p))

34 return locM

Fig. 3. Functions assign and calctarget for the case where VN (k, ρ1, ρ2)u
has at most 4 neighbors.

passes from the beginning of the round, VN u computes from M the number of
client nodes assigned to it that it has heard from in the round, and sends this
information in a vn-update message to all of its neighbors.

When VN u receives a vn-update message from a neighboring VN , it stores
the CN population information in a table, V . When e + d + ε time from the
sending of its own vn-update passes, VN u uses the information in its tables M
and V about the number of CN s in its and its neighbors’ regions to calculate
how many CN s assigned to itself should be reassigned and to which neighbor.
This is done through the assign function, and these assignments are then used
to calculate new target points for local CN s through the calctarget function
(see Figure 3).

If the number of CN s assigned to VN u exceeds the minimum safe num-
ber k, then assign reassigns some CN s to neighbors. Let Inu denote the set
of neighboring VN s of VN u that are on the curve Γ and yu(g), denote the
number num(Vu(g)) of CN s assigned to VN g, where g is either u or a neigh-

bor of u. If qu 6= 0, meaning VN u is on the curve then we let loweru de-
note the subset of nbrs(u) that are on the curve and have fewer assigned CN s
than VN u has after normalizing with qg

qu
. For each g ∈ loweru, VN u reas-

signs the smaller of the following two quantities of CN s to VN g: (1) ra =
ρ2 · [qgqu yu(u)− yu(g)]/2(|loweru|+ 1), where ρ2 < 1 is a damping factor , and (2)
the remaining number of CN s over k still assigned to VN u.

If qu = 0, meaning VN u is not on the curve, and VN u has no neighbors on
the curve (lines 11–15), then we let loweru denote the subset of nbrs(u) with
fewer assigned CN s than VN u. For each g ∈ loweru, VN u reassigns the smaller
of the following two quantities of CN s: (1) ra = ρ2 ·[yu(u)−yu(g)]/2(|loweru|+1)
and (2) the remaining number of CN s over k still assigned to VN u. VN u is on a
boundary if qu = 0, but there is a g ∈ nbrs(u) with qg 6= 0. In this case, yu(u)−k
of VN u’s CN s are assigned equally to neighbors in Inu (lines 17–19).

The calctarget function assigns to every CN p in the region of VN u a target
point locMu(p), either in region u or one of u’s neighbors. The target point
locMu(p) is computed as follows: If CN p is assigned to VN g, g 6= u, then its
target is set to the center og of region g (lines 26–26); if CN p is assigned to VN u

but is not located on the curve Γu then its target is set to the nearest point on
the curve, nondeterministically choosing one (lines 27–27); if CN p is either the
first or last client node on Γu then its target is set to the corresponding endpoint
of Γu (lines 29–30); if CN p is on the curve but is not the first or last client node
then its target is moved to the mid-point of the locations of the preceding and
succeeding CN s on the curve (line 33). For the last two computations a sequence
seq of nodes on the curve sorted by curve location is used (line 24). Lastly, VN u

broadcasts new waypoints via a target-update message to its clients.

Round length. Let r be the maximum Euclidean distance between points in
neighboring regions. It can take r

vmax
time for a client to reach its target. After

the client arrives, the VN may have failed. Let dr be the time it takes a VN
to restart. During each round: a client sends a cn-update, the VN s exchange
information, clients receive target-updates, clients move to their new target and
restart any VNs. This requires that δ satisfy δ > 2e+ 3d+ 2ε+ r/vmax + dr.

5 Correctness of Algorithm

In this section we describe the steps in proving Theorem 1; the complete proofs
will appear in the full version of the paper. We define round t as the interval of
time [δ(t − 1), δ · t). That is, round t begins at time δ(t − 1) and is completed
by time δ · t. We say CN p, p ∈ P , is active in round t if node p is not failed
throughout round t. A VN u, u ∈ U , is active in round t if there is some active
CN p such that region(xp) = u for the duration of rounds t− 1 and t. Thus, by
definition, none of the VN s is active in the first round.

Let In(t) ⊆ VN denote the identifiers u ∈ U such that VN u is active in
round t and qu 6= 0. The set Out(t) ⊆ VN denote the identifiers u ∈ U such that
VN u is active in round t and qu = 0. The set C(t) is the subset of active CN s

at round t, and Cin(t) and Cout(t) are the sets of active CN s located in regions
with ids in In(t) and Out(t), respectively, at the beginning of round t.

For every pair of regions u,w and for every round t, we define y(w, t)u to
be the value of V (w)u (i.e., the number of clients u believes are available in
region w) immediately prior to VN u performing a vcastu in round t. If there
are no new client failures or recoveries in round t, then for every pair of regions
u,w ∈ nbrs+(v), we can conclude that y(v, t)u = y(v, t)w, which we denote
simply as y(v, t). We define ρ3

∆= q2max
(1−ρ2)σ .

For the rest of this section we fix a particular round number t0 and assume
that ∀p ∈ P , no failp or recoverp events occur at or after round t0. First we
establish that in every round t ≥ t0: (1) If y(u, t) ≥ k for some u ∈ U , then
y(u, t + 1) ≥ k; (2) In(t) ⊆ In(t + 1); (3) Out(t) ⊆ Out(t + 1). Next, we
identify a round t1 ≥ t0 after which the set of regions In(t) and Out(t) remain
fixed. That is, we show that there exists a round t1 ≥ t0 such that for every
round t ∈ [t1, t1 + (1 + ρ3)m2n2]: (1) In(t) = In(t1); (2) Out(t) = Out(t1);
(3) Cin(t) ⊆ Cin(t + 1); and (4) Cout(t + 1) ⊆ Cout(t). We fix t1 such that it
satisfies the above conditions. The next lemma states that eventually, regions
bordering on the curve stop assigning clients to regions that are on the curve.

Lemma 1. There exists some round t2 ∈ [t1, t1 + (1 + ρ3)m2n2] such that for
every round t ∈ [t2, t2 + (1 + ρ3)m2n]: if u ∈ Out(t) and v ∈ In(t) and if u and
v are neighboring regions, then u does not assign any clients to v in round t.

Fix t2 for the rest of this section such that it satisfies Lemma 1. From the above
discussion, it follows that in every round t ≥ t1, In(t) = In(t1) and Out(t)
= Out(t1); we denote these simply as In and Out . The next lemma states a key
property of the assign function after round t1. For a round t ≥ t1, consider some
VN u, u ∈ Out(t), and assume that VNw is the neighbor of VN u assigned the
most clients in round t. Then we can conclude that VN u is assigned no more
clients in round t + 1 than VNw is assigned in round t. A similar claim holds
for regions in In(t), but in this case with respect to the density of clients with
respect to the quantized length of the curve. The next lemma states that there
exists a round Tout such that in every round t ≥ Tout, the set of CN s assigned
to region u ∈ Out(t) does not change.

Lemma 2. There exists a round Tout ∈ [t2, t2 + m2n such that in any round
t ≥ Tout, the set of CN s assigned to VN u, u ∈ Out(t), is unchanged.

For the rest of the section we fix Tout to be the first round after t0, at which the
property stated by Lemma 2 holds. This implies that in every round t ≥ Tout,
CIn(t) = CIn(t1) and COut(t) = COut(t1); we denote these simply as CIn and
COut . The next lemma states a property similar to that of Lemma 2 for VN u,
u ∈ In, and the argument is similar to the proof of Lemma 2.

Lemma 3. There exists a round Tstab ∈ [Tout, Tout + ρ3m
2n] such that in every

round t ≥ Tstab, the set of CN s assigned to VN u, u ∈ In, is unchanged.

We prove that the number of clients located in regions with ids in Out is upper-
bounded by O(m3). Next, fixing Tstab to be the first round after Tout at which
the property stated by Lemma 3 holds, we are able to prove that the number
of clients assigned to each VN u, u ∈ In, in the stable assignment after Tstab is
proportional to qu within a constant additive term. From line 27 of Figure 3, it
follows that by the beginning of round Tstab + 2, all CN s in Cin are located on
the curve Γ , satisfying our first goal. The next lemma states that the locations of
the CN s in each region u ∈ In, are evenly spaced on Γu in the limit; it is proved
by analyzing the behavior of calctarget as a discrete time dynamical system.

Lemma 4. Consider a sequence of rounds t1 = Tstab, . . . , tn. As n → ∞, the
locations of CN s in u, u ∈ In, are evenly spaced on Γu.

Thus we conclude by summarizing the results in this section:

Theorem 1. If there are no fail or restart actions for robots at or after some
round t0, then within a finite number of rounds after t0:

1. The set of CN s assigned to each VN u, u ∈ U , becomes fixed, and the size
of the set is proportional to the quantized length qu, within an a constant
additive term 10(2m−1)

qminρ2
.

2. All client nodes in a region u ∈ U for which qu 6= 0 are located on Γu and
evenly spaced on Γu in the limit.

6 Self-stabilization

In this section we show that the VSA-based motion coordination scheme is self-
stabilizing. Specifically, we show that when the VSA and client components in
the VSA layer start out in some arbitrary state (owing to failures and restarts),
they eventually return to a reachable state. Thus, the visible behavior, or traces,
of V Layer[MC] running with some reachable state of V bcast‖RW‖VW , even-
tually, becomes indistinguishable from a reachable trace of V Layer[MC].

We first show that our motion coordination algorithm V Nodes[MC] is self-
stabilizing to some set of legal states LMC . Then, we show that these legal
states correspond to reachable states of V Layer[MC]; hence, the traces of our
motion coordination algorithm, where clients and VSAs start in an arbitrary
state, eventually look like reachable traces of the correct motion coordination
algorithm. Here MC is the motion coordination algorithm of Section 4.

6.1 Definitions and general results

We begin with some basic claims. Through out this section A,A1, A2, etc., are
sets of actions and V is a set of variables. An (A, V)-sequence is a (possibly
infinite) alternating sequence of actions in A and trajectories of V . Given (A, V)-
sequences α, α′ and t ≥ 0, α′ is a t-suffix of α if there exists a closed (A, V)-
sequence α′′ of duration t such that α = α′′α′. α′ is a state-matched t-suffix of
α if it is a t-suffix of α, and the first state of α′ equals the last state of α′′.

Given a set of (A1, V)-sequences S1, a set of (A2, V)-sequences S2, and t ≥ 0,
S1 is said to stabilizes in time t to S2 if each state-matched t-suffix α of each
sequence in S1 is in S2. This stabilizes to relation is transitive as per the following:

Lemma 5. Let Si be a set of (Ai, V)-sequences, for i ∈ {1, 2, 3}. If S1 stabilizes
to S2 in time t1, and S2 stabilizes to S3 in time t2, then S1 stabilizes to S3 in
time t1 + t2.

Let A be any TIOA with set of states QA, and L be a nonempty subset of QA.
L is said to be a legal set for A if it is closed under the transitions and closed
trajectories of A. For any L ⊆ QA, Start(A, L) is defined to be the TIOA that
is identical to A except with starting states L. We define U(A) ∆= Start(A, QA)
and R(A) ∆= Start(A,ReachA), where ReachA is the set of reachable states of A.

Definition 2. Let B and A be compatible TIOAs, and L be a legal set for the
composed TIOA A‖B. A self-stabilizes in time t to L relative to B if the set of
executions of U(A)‖B stabilizes in time t to executions of Start(A‖B, L).

As per the theory of stabilizing emulations, assume we have a stabilizing
VSA layer emulation such that each algorithm alg ∈ V Algs stabilizes in some
tV stab time to traces of U(V LNodes[alg])‖R(RW‖VW‖V bcast) that satisfy the
additional property that for any u ∈ U , if there exists a client that has been in
region u and alive for dr time and no alive clients in the region failed or left in
that time, then VSA Vu is not failed. In the context of this work, this means
that if VSA layer algorithm MC is such that V LNodes[MC] self-stabilizes in
some time t to LMC relative to R(RW‖VW‖V bcast), then we can conclude
that physical node traces of the emulation algorithm on MC stabilize in time
tV stab+ t to client traces of executions of the VSA layer started in legal set LMC

and that satisfy the above failure-related properties.

6.2 Self-stabilization of our algorithm

We now describe two legal sets for V Layer[MC], the second a subset of the first.
The first is a set of states that results after the first GPSupdate at each client
and the first time at each virtual node. It is easy to verify that this is a legal set.

Definition 3. We define L1
MC to be the set of states x ∈ XV Layer[MC] such that

the following hold:

1. xdXV bcast‖RW‖VW ∈ ReachV bcast‖RW‖VW .
2. ∀u ∈ U : ¬failedu : clocku ∈ {RW.now,⊥} ∧ (Mu 6= ∅ ⇒ clocku mod δ ∈

(0, e+ 2d+ 2ε]).
3. ∀p ∈ P : ¬failedp ⇒ vp ∈ {RW.vel(p)/vmax,⊥}.
4. ∀p ∈ P : ¬failedp ∧ xp 6= ⊥:

(a) xp = RW.loc(p) ∧ clockp = RW.now.
(b) x∗p ∈ {xp,⊥} ∨ ||x∗p − xp|| < vmax(δdclockp/δe − clockp − dr).

(c) V bcast.reg(p) = region(xp)∨clock mod δ ∈ (e+2d+2ε, δ−dr+εsample).

Part 1 means that x restricted to the state of V bcast‖RW‖VW is a reachable
state of V bcast‖RW‖VW . Part 2 means that the nonfailed VSAs have clocks
that are either equal to real-time or ⊥, and have nonempty M only after the
beginning of a round and up to e + 2d + 2ε time into a round. Part 3 requires
that nonfailed clients have velocity vectors that are equal either to ⊥ or equal
to the client’s velocity vector in RW , scaled down by vmax. Part 4 has three
sub-parts and they assert that nonfailed clients with non-⊥ positions have (a)
positions equal to their actual location and local clocks equal to the real-time,
(b) targets equal to ⊥ or the current location or a point reachable from the
current location before a certain time (dr), and (c) V bcast last region updates
that match the current region or the time is within a certain time window in a
round. The following stabilization result is also easy to verify.

Lemma 6. V LNodes[MC] is self-stabilizing to L1
MC in time t > εsample rela-

tive to the automaton R(V bcast‖RW‖VW).

The main legal set LMC for our algorithm is described as the set of reachable
states from a set of reset states.

Definition 4. Define ResetMC to be the set of states x ∈ XV Layer[MC] such
that the following properties hold:

1. x ∈ L1
MC .

2. ∀p ∈ P : ¬failedp ⇒ [tosnd−p = tosnd+
p = λ∧ (xp = ⊥∨ [x∗p 6= ⊥∧vp = 0])].

3. ∀u ∈ U : ¬failedu ⇒ to sendu = λ.
4. ∀〈m,u, t, P ′〉 ∈ vbcastq : P ′ = ∅.
5. RW.now mod δ = 0 ∧ ∀p ∈ P : ∀〈l, t〉 ∈ RW.updates(p) : t < RW.now.

LMC is the set of reachable states of Start(V Layer[MC], ResetMC).

Part 2 states that each nonfailed client has empty queues in its V BDelay and
either has a position variable equal to ⊥ or else has both a non-⊥ target and
0 velocity. Part 3 requires that each nonfailed VSA has an empty queue in its
V BDelay. By Part 4 there are no pending messages in V bcast, and Part 5
means that the time is the starting time for a round and that no GPSupdates
have yet occurred at this time. It is easy to see that that LMC is a legal set for
VLayer[MC]. We show that starting from a state in L1

MC , we reach a reset state
which implies that eventually we arrive at a state in LMC .

Lemma 7. Executions of V Layer[MC] started in states in L1
MC stabilize in

time δ + d+ e to executions started in states in LMC .

Now we can combine our stabilization results to conclude that V LNodes[MC]
started in an arbitrary state and run with R(V bcast‖RW‖VW) stabilizes to
LMC in time δ + d + e + εsample. From transitivity of stabilization and 7, the
next result follows.

Theorem 2. V LNodes[MC] is self-stabilizing to LMC in time δ+d+e+εsample
relative to R(V bcast‖RW‖VW).

6.3 Relationship between LMC and reachable states

We just showed that V LNodes[MC] is self-stabilizing to LMC relative to the
automaton R(V bcast‖RW‖VW). However, in order to conclude anything about
the traces of V Layer[MC] after stabilization, we need to show that traces of
V Layer[MC] starting in a state in LMC are reachable traces of V Layer[MC].
We do this by first defining a simulation relation between states of V Layer[MC]
and then showing that for each state x in LMC there is a reachable state y of
V Layer[MC] such that x is related to y under the simulation relation. This
implies that the trace of any execution fragment starting with x is the trace of an
execution fragment starting with y, which is a reachable trace of V Layer[MC].

In order to show that each state in LMC is related to some reachable state
of V Layer[MC], it is enough to show that each state in ResetMC is related to a
reachable state of V Layer[MC]. The proof proceeds by providing a construction
of an execution of V Layer[MC] for each state in LMC .

Lemma 8. For each state x ∈ ResetMC , there exists a reachable state y of
V Layer[MC] such that xRMCy.

From these results it follows that the set of trace fragments of V Layer[MC]
starting from ResetMC is contained in the set of traces of R(V Layer[MC]).
Bringing our results together we arrive at the main theorem:

Theorem 3. The traces of V LNodes[MC], starting in an arbitrary state and
executed with automaton R(V bcast‖RW‖VW), stabilize in time δ+d+e+εsample
to reachable traces of R(V Layer[MC]).

Thus, despite starting from an arbitrary configuration of the VSA and client
components in the VSA layer, if there are no failures or restart of client nodes
at or after some round t0, then within a finite number of rounds after t0, the
clients are located on the curve and equally spaced in the limiting sense.

References

1. Dolev, S., Gilbert, S., Lahiani, L., Lynch, N.A., Nolte, T.A.: Virtual stationary
automata for mobile networks. Technical Report MIT-LCS-TR-979 (2005)

2. Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Welch, J.: Geoquorums: Imple-
menting atomic memory in ad hoc networks. In: DISC 2003, Vol. 2848 of LNCS.
(Oct 2003) 306–320

3. Dolev, S., Gilbert, S., Lynch, N.A., Shvartsman, A.A., Welch, J.: Geoquorums:
Implementing atomic memory in mobile ad hoc networks. Distributed Computing
(2005)

4. Chockler, G., Gilbert, S., Lynch, N.: Virtual infrastructure for collision-prone
wireless networks. In: Proceedings of PODC. (2008) To appear.

5. Nolte, T., Lynch, N.A.: A virtual node-based tracking algorithm for mobile net-
works. In: ICDCS. (2007)

6. Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., Nolte, T.: Virtual stationary au-
tomata for mobile networks. In: OPODIS. (2005)

7. Nolte, T., Lynch, N.A.: Self-stabilization and virtual node layer emulations. In:
SSS. (2007) 394–408

8. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O
Automata. Synthesis Lectures on Computer Science. Morgan Claypool (2005).

9. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Trans. on Automatic Control 48(6)
(2003) 988–1001

10. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Trans. on
Robotics and Automation 15(5) (1999) 818–828

11. Lin, J., Morse, A., Anderson., B.: Multi-agent rendezvous problem. In: IEEE CDC
03. (2003)

12. Martinez, S., Cortes, J., Bullo, F.: On robust rendezvous for mobile autonomous
agents. In: IFAC World Congress, (2005).

13. Gazi, V., Passino, K.M.: Stability analysis of swarms. IEEE Trans. on Automatic
Control 48(4) (2003) 692–697

14. Cortes, J., , Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile
sensing networks. IEEE Trans. on Robotics & Automation 20(2) (2004) 243–255

15. Suzuki, I., Yamashita, M.: Distributed autonomous mobile robots: Formation of
geometric patterns. SIAM Journal of computing 28(4) (1999) 1347–1363

16. Fax, J., Murray, R.: Information flow and cooperative control of vehicle formations.
IEEE Trans. on Automatic Control 49 (2004) 1465–1476

17. Clavaski, S., Chaves, M., Day, R., Nag, P., Williams, A., Zhang, W.: Vehicle
networks: achieving regular formation. In: ACC. (2003)

18. Blondel, V., Hendrickx, J., Olshevsky, A., Tsitsiklis, J.: Convergence in multiagent
coordination consensus and flocking. In: IEEE CDC-ECC 05. (2005) 2996–3000

19. Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked
multi-agent systems. In: Proceedings of the IEEE 95(1) (January 2007) 215–233

20. Prencipe, G.: Corda: Distributed coordination of a set of autonomous mobile
robots. In: ERSADS. (May 2001 2001) 185–190

21. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Pattern formation by
autonomous robots without chirality. In: SIROCCO. (June 2001) 147–162

22. Efrima, A., Peleg, D.: Distributed models and algorithms for mobile robot systems.
In: SOFSEM (1). LNCS 4362, Springer (January 2007) 70–87

23. Prencipe, G.: Achievable patterns by an even number of autonomous mobile robots.
Technical Report TR-00-11 (2000)

24. Lynch, N., Mitra, S., Nolte, T.: Motion coordination using virtual nodes. In IEEE
CDC05, (December 2005)

25. Brown, M.D.: Air traffic control using virtual stationary automata. Master’s thesis,
MIT (September 2007)

	Self-Stabilizing Mobile Robot Formations
	Seth Gilbert cl@@auth, Nancy Lynch cl@@auth, Sayan Mitra cl@@auth, Tina Nolte

