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Abstract. Most people believe that renaming is easy: simply choose a name at
random; if more than one process selects the same name, then try again. We
highlight the issues that occur when trying to implement such a scheme and
shed new light on the read-write complexity of randomized renaming in an asyn-
chronous environment. At the heart of our new perspective stands an adaptive
implementation of a randomized test-and-set object, that has poly-logarithmic
step complexity per operation, with high probability. Interestingly, our imple-
mentation is anonymous, as it does not require process identifiers. Based on this
implementation, we present two new randomized renaming algorithms. The first
ensures a tight namespace of n names using O(n log4 n) total steps, with high
probability. This improves on the best previously known algorithm by almost a
quadratic factor. The second algorithm achieves a namespace of size k(1 + ε)
using O(k log4 k/ log2(1 + ε)) total steps, both with high probability, where k
is the total contention in the execution. It is the first adaptive randomized renam-
ing algorithm, and it improves on existing deterministic solutions by providing a
smaller namespace, and by significantly lowering complexity.

1 Introduction

Names, or identifiers, are instrumental for efficiently solving a variety of problems that
arise in distributed systems. And yet, in many cases, names are not available. Partici-
pants may be anonymous, or may wish to hide their true identity for reasons of privacy.
Alternatively, participants may have names, but they may be taken from a very large
namespace. For example, nearly every networked device has an ethernet address, and
yet the namespace is so large as to reduce the usefulness of such names. Thus, a sig-
nificant amount of research (e.g., [4, 13, 20, 24, 25]) has analyzed the feasibility and
complexity of the renaming problem in a crash-prone distributed system.

Unfortunately, renaming in a fault-prone system can be expensive, if not impossible.
For example, wait-free tight renaming—where the namespace exactly matches the set of
n participants—is impossible for deterministic algorithms that tolerate crash failures [6,
13, 20]. Even loose renaming, where the namespace is of size (2n − 1), can be quite
expensive, as the best known solutions require at least Θ(n3) total steps [2, 24].

Yet in practice, most people believe that renaming is relatively easy: simply choose
a name at random; if more than one process selects the same name, then try again.
Several subtle problems occur when trying to implement such a scheme:

– From how big a namespace should the name be chosen? If the namespace is large,
say Θ(n2), where n is the number of participants, then such schemes are trivial.



However, when the namespace is smaller—e.g., (1+ ε)n, for some 0 < ε < 1—the
efficiency is less clear. And when the namespace is tight, i.e., of size precisely n,
then some participants may have to retry repeatedly in order to find a free name.

– How does a participant claim a name? How does a participant determine whether
its chosen name is unique? Effectively, when more than one participant selects
the same name, participants must agree on which participant wins the name. Such
agreement must be fault-tolerant, i.e., succeed even if processes fail; and it must be
irrevocable, meaning that once a participant is assigned a name, it cannot later be
forced to abandon it. The simple solution would be to run a distributed consensus
algorithm to agree on which process owns each name. However, asynchronous,
wait-free deterministic consensus is impossible [16], and the randomized version is
inherently expensive, requiring Ω(n2) total steps [7].

– How are processes scheduled? If the processes are scheduled in a synchronous
fashion, then resolving contention among processes may not be difficult. However,
in an asynchronous system, processes can be scheduled in any order. Worse, for a
strong (adaptive) adversarial scheduler, the choice of a schedule may depend on the
random choices being made by the processes. Thus the random choices made by
the processes are not entirely independent in the usual sense.

In this paper, we present two efficient randomized renaming algorithms for an asyn-
chronous, fault-prone system subject to a strong, adaptive adversary.

The key building block for both algorithms is a new efficient implementation of
a randomized test-and-set object. This algorithm answers the question of how a pro-
cess can claim a name: a test-and-set object allows multiple processes to compete (for
example, for a name), ensuring that there will be exactly one winner. The algorithm,
which we call RatRace, is more efficient than consensus [7]: if there are k competitors,
the total step complexity for a test-and-set is O(k log2 k) read/write operations, with
high probability. Of note, the RatRace algorithm is adaptive: the step complexity de-
pends on k, the actual number of competitors (not on n, the total number of possible
competitors). The algorithm efficiently combines the idea of a randomized splitter tree,
first used in [9], with the tournament tree algorithm by Afek et al. [1]. Our renaming
algorithms rely on both the adaptivity and anonymity properties of this implementation.
Given the power of test-and-set to simplify coordination in a distributed system, and the
efficiency of our solution, we expect that the RatRace algorithm may well be useful in
other settings as well.

Tight Renaming. Our first renaming algorithm, called ReShuffle, produces unique names
from a tight namespace of n names, using O(n log4 n) total steps (reads and writes),
with high probability. The algorithm uses a simple random process to compete for
names: each process repeatedly chooses a name at random, and attempts to claim it
via a randomized test-and-set, stopping when it wins a name.

While the scheme is surprisingly simple, its analysis is rendered non-trivial by the
fact that the scheduling and the failure pattern are controlled by the strong, adaptive
adversary. For example, the adversary may look at a process’s random choices prior
to deciding whether it should be scheduled to perform a read or write operation. So
the adversary might attempt to delay each process that chooses an unclaimed name



until there are several other processes competing for the same name; since only one
process can win, the adversary can, in this way, create a significant number of wasted
steps. Since the schedule depends on the random choices, we cannot treat the processes’
random steps as being uncorrelated, as needed for a standard analysis. We overcome this
difficulty by carefully assessing the number of extra steps that the algorithm has to take
because of adversarial scheduling or crashes.

Our algorithm improves significantly on the total step complexity of previous ran-
domized or deterministic namespace-optimal implementations [2, 15], which have at
least Θ(n3) total step complexity. It guarantees unique names in a range from 1 to n in
every execution, and terminates with probability 1.

Adaptive Renaming. Our second renaming algorithm, called AdaptiveSearch, is the
first randomized adaptive renaming solution. That is, the algorithm’s namespace and
complexity depend on k, the number of processes competing, rather than n, the total
number of possible participants. Given any constant ε > 0, the AdaptiveSearch al-
gorithm ensures unique names from a namespace of size k(1 + ε), where k is the total
contention in the current execution, usingO(k log4 k/ log2(1+ε)) total steps, both with
high probability. The main idea behind the algorithm is that processes try to acquire a
name in intervals of increasing size; we prove that contention in intervals towards the
edge of the namespace is low enough so that each process is successful with high prob-
ability. The algorithm improves on the adaptive deterministic solutions known so far
by providing a smaller namespace than is otherwise feasible, and by improving the to-
tal step complexity. (The most efficient adaptive algorithm to date [14] has total step
complexity O(k2), and renames in (8k − log k − 1) names.)

Discussion. Both algorithms are within logarithmic factors from the immediate lower
bound of Ω(n) (or Ω(k)) on the total step complexity of renaming. They also have the
interesting property that they do not require unique process identifiers at the beginning
of the execution—as such, the algorithms are anonymous.

Also of note, the ReShuffle algorithm is the first randomized algorithm to attain
tight renaming with total step complexity less than Θ(n2). Since Ω(n2) is known to
be the (tight) lower bound for the step complexity of randomized consensus [7], our
algorithm yields the first clear separation in terms of complexity between randomized
tight renaming and randomized consensus in asynchronous shared-memory.

The impossibility of wait-free renaming in a namespace smaller than (2n− 1) [13,
20] is circumvented by the use of randomization. There exist infinite length executions
of infinitesimal probability weight, in which the algorithms do not terminate. Also,
note that our test-and-set implementation cannot solve consensus for more than two
processes, which is why it is not affected by the Ω(n2) lower bound shown in [7].

Roadmap. In Section 2, we present the model and the problem statement, while Sec-
tion 3 presents a detailed account of related work. Section 4 presents the implemen-
tation of adaptive test-and-set. Based on this, we introduce the ReShuffle algorithm in
Section 5, and analyze its complexity. Section 6 presents the adaptive renaming imple-
mentation. We conclude in Section 7, stating some limitations of our approach, together



with a host of open problems. Due to space constraints, some of the proofs have been
deferred to the full version of this paper.

2 Model and Problem Statement

We assume an asynchronous shared memory model with n processes, t < n of which
may fail by crashing. Let M be the size of the space of initial identifiers that processes
in the system may have3. For the adaptive algorithm, we consider k to denote total
contention, i.e. the total number of processes that take steps during a certain execu-
tion. We assume that processes know n, but do not know k. Processes communicate
through multiple-writer-multiple-reader atomic registers. Our algorithms are random-
ized, in that the processes’ actions may depend on random local coin flips. We assume
that the process failures and the scheduling are controlled by a strong adaptive adver-
sary. In particular, the adversary knows the results of the random coin flips that the
processes make and can adjust the schedule and the failure pattern accordingly.

In this context, the renaming problem requires that each correct process should
eventually return a name, and the names returned should be unique. The size of the
resulting namespace should only depend on n and on t. Note that, in our algorithms,
we relax the assumption of unique initial identifiers, made in the original problem state-
ment [6]. We assume t ≤ n − 1, hence our solutions are wait-free. The complexity of
our solutions is measured in terms of total steps (reads and writes, including random
coin flips).

In the following, we say that an event happens “with high probability” (whp) if it
occurs with probability ≥ 1 − 1/nc, with c ≥ 1 constant. In the case of the adaptive
algorithms, the probability bound is at least≥ 1−1/kc, with c ≥ 1. Note that the failure
probability in the adaptive case may be tuned to depend on n, at the cost of increased
complexity (i.e., a log n factor).

3 Related Work

Our test-and-set implementation re-uses ideas from the efficient randomized collect
algorithm of Attiya et al. [9] and from the wait-free implementation of randomized
test-and-set by Afek et al. [1]. We make use of the splitter object, originally introduced
in [24], and its randomized version introduced in [9]. Overall, the structure of RatRace
is similar to the adaptive algorithm for mutual exclusion by Anderson et al. [3], although
the problem and the fault model we analyze are different. We use the two-process ran-
domized test-and-set algorithm by Tromp and Vitànyi [28] as a building block.

The renaming problem has been introduced by Attiya et al. [6]. In the original pa-
per, the authors present a wait-free solution using (2n − 1) names in an asynchronous

3 Note that some earlier work (e.g., [15]), uses n to denote the total number of identifiers that
processes may have, which may also be seen as the maximum total number of processes in the
system. They use k for the maximum number of processes that may participate in an execution
(which we denote by n).



message-passing system, and show that at least (n+ 1) names are required in the wait-
free case. The lower bound was improved to (2n − 2) in a landmark paper by Herlihy
and Shavit [20]. Recent work by Rajsbaum and Castañeda [13] shows that deterministic
wait-free renaming may be possible for≤ (2n−2) names for specific parameter values.

The complexity of deterministic shared-memory renaming implementations has
been an active research topic. Burns and Peterson [12], Borowski and Gafni [10], An-
derson and Moir [24], Moir and Garay [25] were among the first to propose wait-free
deterministic renaming algorithms into a namespace of size (2n − 1). These solutions
have very high total step complexity; for some, the total step complexity is exponential
(e.g. [12,25]). Anderson and Moir [4] propose a variant of renaming that attains a tight
namespace of n names using stronger set-first-zero objects. Note that their algorithm
could be rephrased using our one-shot test-and-set implementation, although it would
have at least total Θ(n3) total step complexity.

Later work analyzed adaptive renaming algorithms, in which the step complexity
and the size of the namespace depend only on total contention k, not on the maximum
number of participating processes n. The first adaptive algorithm was introduced by
Attiya and Fouren [8]. They achieve a namespace of (6k − 1) names, with a total com-
plexity of O(k2 log k). Afek and Merritt [2] build on the previous algorithm in order to
achieve adaptive wait-free (2k − 1)-renaming with total step complexity O(k3).

In a recent paper, Chlebus and Kowalski [14] improve the complexity bounds for de-
terministic renaming by providing a non-adaptive implementation with local step com-
plexity roughly O(log n logM), renaming into a namespace of size O(n). The local
step complexity of their algorithm is better than that of ReShuffle, although we achieve
a tight namespace of n names, and comparable total step complexity. They also in-
troduce an adaptive implementation with O(k) local step complexity, which achieves
renaming in 8k − log k − 1 names, and show the first non-trivial deterministic lower
bound on step complexity, of (1 + min (k − 2, log2r

M
2T )), where r is the number of

shared registers used by the algorithm, and T is the size of the target namespace to re-
name into. One of the advantages of the algorithms from this reference is that they use
little total memory O(n log(M/n)). In comparison, our algorithms pre-allocate O(n2)
memory, and use O(n polylog n) total memory, without assuming any bound M on the
initial namespace.

Recent work by Ellen et al. [11] analyzes the complexity of long-lived adaptive
renaming (i.e., processes may release their names) in shared-memory, under various
synchrony assumptions. Their asynchronous algorithm ensures Θ(k) overhead for ac-
quiring a new name, although assumes that stronger LL/SC primitives are available;
hence their results are not directly comparable with ours. This reference also contains
an excellent overview of prior work on renaming.

The feasibility of randomized renaming in an asynchronous system has been first
considered by Panconesi et al. [27]. They present a wait-free solution that ensures a
namespace of size n(1+ε) for ε > 0, with expectedO(M log2 n) total step complexity,
using only single-writer multiple-reader registers. Their strategy is similar to that of
this paper: they introduce a one-shot test-and-set implementation, and processes obtain
names based on which test-and-set they manage to acquire. Note that their test-and-set
implementation is not adaptive, which is why the complexity of the solution depends



onM . Moreover, the namespace they obtain is not tight. Interestingly, a strategy similar
to that of ReShuffle is mentioned in this reference (Section 4.1), but is considered “too
hard to analyze.” Note that our adaptive algorithm uses a different strategy than that of
this reference, although the bounds on the namespace size look similar.

The second paper to analyze randomized renaming is by Eberly et al. [15]. The
authors obtain a tight non-adaptive renaming algorithm based on the randomized wait-
free implementation of test-and-set by Afek et al. [1]. Their algorithm is long-lived, and
is shown to have amortized step complexity of O(n log n) per process, under a given
cost measure. However, a simple analysis shows that their algorithm has average-case
total step complexity of at least Θ(n3), even if processes do not release their names.

4 An Adaptive Test-and-Set Implementation

We start by presenting an adaptive one-shot implementation of a randomized adaptive
test-and-set object. The object exports a single Test-and-Set operation, whose sequen-
tial specification is provided in Figure 2.

Note that one-shot test-and-set cannot be implemented deterministically wait-free in
asynchronous shared memory, since it has consensus number 2 (see [19] for details). We
present an efficient randomized implementation that guarantees the desired properties
with probability 1, and is linearizable, following the definition in [21]. Our implemen-
tation is adaptive, in that the complexity of an operation depends on the contention k at
the object, and not on n, the total number of processes.

4.1 The RatRace Algorithm

The RatRace implements the one-shot test-and-set object as defined above. Any oper-
ation on the object has step complexity O(log2 k) per process with high probability,
where k denotes the total contention at the object. The algorithm pre-allocates O(n3)
memory, and uses O(k) memory with high probability. A sketch of the algorithm’s
structure can be found in Figure 1.

Algorithm Structure. We begin from a binary tree of randomized splitters (as previously
defined in [9]), of height 3 log n, which we call the primary tree. Each process starts the
algorithm at the root splitter in the primary tree; if it does not manage to acquire the
current splitter, it goes either left or right, each with probability 1/2, until it manages
to acquire a splitter. If a process reaches a leaf of the primary tree without having ac-
quired a splitter, it accesses a backup grid, which we describe in the next paragraph.
To simplify the exposition, assume that, in this execution, all processes either obtained
randomized splitters in the first tree, or crashed.

Once it managed to obtain a splitter, the process tries to work its way up back to
the root, through a series of three-process “tournaments,” one at each splitter node.
Each splitter in the primary tree has associated with it a three-player “tournament,”
which is played between the owner of the splitter and the winners of the three-player
test-and-sets corresponding to the two child nodes of the splitter. A three-player test-
and-set is decided as follows: the two child nodes play each other, and the owner of the



current splitter plays the winner of the first match. Each two-player match is decided
using the randomized two-process test-and-set algorithm of Tromp and Vitànyi [28].
(Alternatively, we could use a randomized consensus algorithm with n = 2, e.g. [5],
although the properties stay the same.) Note that the matches are decided in a wait-free
manner, since a process wins automatically if the opponent does not show up.

The Backup Grid. The backup grid is an n× n grid of deterministic splitters, identical
to that of Anderson and Moir [4], where the two children of a splitter are the splitter
to its right, and the one below. Each process starts the backup algorithm at the top
left splitter. As such, the structure guarantees that any correct process that accesses it
eventually acquires a deterministic splitter. Just as in the previous case, once a process
acquires a splitter, it tries to backtrack to the entry point through a series of three-player
test-and-sets. The winner of the test-and-set at the entry splitter is also the winner of the
backup grid.

Decision. The winner of the three-player test-and-set at the root of the primary tree
plays the winner of the entry splitter in the backup grid. The winner of this last match
returns winner. Every process that loses in a three-player test-and-set returns loser.

Linearization. In order to maintain the linearization guarantees of the test-and-set ob-
ject, a process that loses a three-player test-and-set writes true to a multi-writer-multi-
reader Resolved register associated with the root of the primary tree, before returning
loser. Processes read the register as the first step in their Test-and-Set invocation: if
they read true, they automatically return loser.

4.2 Analysis of the RatRace Algorithm

It is relatively straightforward to check that the RatRace algorithm guarantees the cor-
rectness properties of the test-and-set object as stated in Section 4, therefore we omit
the proof from this extended abstract. Termination with probability 1 is ensured since
we use wait-free elements and the two-process test-and-set algorithm of [28], which
terminates with probability 1. We next focus on the linearizability of the implementa-
tion, and on its performance in terms of total step complexity. Our first result shows that
our implementation is linearizable, in the sense of Herlihy and Wing [21]. The proof
is based on the observation that, before a loser indication is returned by RatRace, a
potential winner has to take at least one step in the algorithm.

Lemma 1 (Linearization). The RatRace algorithm is linearizable: for every execution
of RatRace, there exists a total order over all the complete Test-and-Set operations to-
gether with a subset of the incomplete Test-and-Set operations such that every opera-
tion is immediately (atomically) followed by a response, and the sequence of operations
given by that total order is consistent with a sequential execution of a test-and-set ob-
ject, i.e. the order respects the real-time order of non-overlapping operations.

We now analyze the performance of RatRace. Let k denote the number of processes
that enter the RatRace in an execution E , i.e. the total contention. The next result states
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Fig. 1. Structure of the RatRace protocol. A process first checks the Resolved register, and then
walks down the randomized splitter tree trying to acquire a splitter. In this figure, the process
followed the solid path and acquired a splitter. Next, the process works its way back up the tree,
participating in three-player tournaments at each node (the dotted path). If it loses along this path,
then it marks the Resolved register and returns loser. Otherwise, if it wins the root tournament,
it plays the winner from the backup grid (not shown here). The winner of this last match returns
winner.

that, with high probability, every process acquires a splitter in the primary tree. As
a consequence of this fact, for the rest of the performance analysis, we will assume
that all processes acquire nodes in the primary tree, since the backup case is extremely
unlikely. We provide the intuition for why this holds; an exact proof follows from the
analysis in [9], Lemma 8.

Lemma 2. The probability that there exists a process p that does not acquire a ran-
domized splitter in the primary tree of the RatRace object is at most 1/n.

Proof (Sketch). Let q be a process that does not manage to acquire any splitter in the
primary tree. Hence, q did not manage to acquire the leaf splitter it reached. Since
a process always acquires a splitter if it accesses it alone, this implies that another
process q′ accessed the same leaf splitter. However, the leaf splitter is accessed by q as
a consequence of 3 log n random choices of bits. Hence process q′ must have performed
the exact same random choices. Since the choices are independent, the probability that
this occurs is (1/2)3 logn = 1/n3. Hence the probability that there exists a process that
performs exactly the same random choices as q is at most 1/n2. By the union bound, it
follows that the probability that there exists a process p that “falls off” the primary tree
is at most 1/n. ut

Let the active primary tree denote the minimum subtree of the primary tree containing
all splitters that are acquired in the execution. The second result bounds the number of
nodes in the active primary tree, and shows that the tree is well balanced, with high
probability. The proof is similar to that of Lemma 2. For a complete argument, please



see reference [9], Lemma 11. Note that this lemma also bounds the space complexity
the primary tree.

Lemma 3. The number of nodes in the active primary tree is at most 7k, and its height
is at most 3 log k, both with high probability.

Next, we look at the read-write complexity of the two-process test-and-set algorithm
of Tromp and Vitànyi [28] that we use to decide the two-process games. The following
bounds follow from an analysis of the algorithm.

Lemma 4. The randomized two-process test-and-set algorithm of [28] has expected
constant read-write complexity, and performs less than α log k reads and writes with
high probability, for a constant α > 1.

Proof (Sketch). Please recall that the algorithm of [28] is composed of asynchronous
“rounds” of computation, and performs a constant number, say β, of reads and writes
per round. In every round, the probability of success is 1/2. Thus, the expected step
complexity is constant. The probability that the algorithm performs at least 2β log k
total steps is at most 1/k2β , from which the claim follows. ut

The next result analyzes the total step complexity of RatRace.

Lemma 5. The RatRace algorithm uses O(log2 k) steps per process, with high proba-
bility. Hence, the total step complexity is O(k log2 k), with high probability.

Proof. Without loss of generality, we analyze the number of steps performed by a win-
ning process. First note that, by Lemma 2, it is enough to bound the complexity in
the case where the process only accesses the primary tree. By Lemma 3, a process
performs O(log k) steps, with high probability, when going down the tree in order to
acquire a randomized splitter, since each splitter has constant step complexity. When
climbing back up, the process may play up to O(log k) three-player test-and set games.
By Lemma 4, we obtain that the process performs up to O(log2 k) steps, with high
probability. ut

5 A Randomized Algorithm for Tight Renaming

In this section, we present ReShuffle, a randomized algorithm which ensures tight re-
naming using O(n log4 n) total steps, with high probability. The pseudocode of the
algorithm can be found in Figure 3.

5.1 The ReShuffle Algorithm

The n processes share n test-and-set objects, each implemented using the RatRace
algorithm. These shared objects are numbered from 1 to n. Computation proceeds in
local phases. In each phase, the process chooses uniformly at random a test-and-set
from 1 to n that it has not chosen previously, and competes in it. If the process wins the
test-and-set (i.e., the chosen RatRace instance returns winner), then it takes the number
associated with the test-and-set as a name and returns. Otherwise, if it lost the test-
and-set, the process marks the current test-and-set as lost, and tries again in the next
phase.



Variable:1
Value , a binary MWMR atomic register,2
initially ⊥
procedure Test-and-Set()3

if Value = ⊥ then4
Value ← 15
return winner6

else7
return loser8

Fig. 2. Sequential specification of a one-shot
test-and-set object.

Shared:1
TS[], a vector of n RatRace objects2
procedure rename( n )3

List ← {1, 2, . . . , n}4
while true do5

try ← element uniformly at6
random from List
res ← TS[try ].test-and-set()7
if res ← winner then return try8
else List ← List \ {try}9

Fig. 3. The ReShuffle algorithm.

5.2 Analysis of ReShuffle

In this section, we analyze the correctness of the algorithm and its performance guar-
antees. First, note that name uniqueness is satisfied trivially, since a process stops after
it has won its first test-and-set, and no two processes may win the same test-and-set ob-
ject. We first show termination with probability 1. The proof is based on the observation
that if a process accesses all n test-and-set objects, it will certainly win one of them,
and hence terminate. The latter claim is based on the linearizability of our test-and-set
implementation.

Lemma 6 (Termination). With probability 1, each correct process eventually returns
from ReShuffle.

The next Theorem provides precise bounds for the total step complexity of ReShuffle.
This is the main technical result of this paper. Due to space restrictions, we only provide
a detailed sketch of the proof in this extended abstract.

Theorem 1 (Complexity). The total step complexity of ReShuffle is O(n log4 n) with
high probability.

Proof (Sketch). The first idea in the proof is to consider the total number of Test-and-Set
calls (or accesses) that the processes perform as part of ReShuffle. We will consider all
the accesses in their linearization order over all n test-and-set objects. Note that such an
order exists, and is coherent at each object, because each test-and-set object is lineariz-
able (by Lemma 1), and thus the objects are composable (or local [21]). We will show
that the algorithm performsO(n log2 n) total accesses in any execution, with high prob-
ability. To simplify the exposition, we modify the algorithm so that processes always
pick the next test-and-set to access uniformly at random, without discarding test-and-
set objects that have been accessed previously. We can see ReShuffle as a slightly more
efficient version of this simplified scheme, in which a process receives immediately a
loser indication if its random choice indicates a test-and-set object that it has accessed
before.



Fix a constant α > 4. We show that if the algorithm performs more than αn log2 n
total Test-and-Set accesses during an execution, then, with high probability, each test-
and-set object is accessed at least once.

A tempting, yet unsuccessful approach to bound the total number of calls before
each test-and-set is accessed once would be to use the well-known coupon collector
process [23, 26], which guarantees that n distinct coupons will be discovered using
O(n log n) independent random trials. Note, however, that the strong adversary controls
the scheduling of the trials, which causes this simple version of the analysis to fail. Our
analysis takes this factor into account, and proves that, even though the adversary may
re-order calls using its knowledge of the processes’ random choices, all the objects are
accessed after O(n log2 n) random calls.

Let U to be the number of test-and-set objects that have not been accessed by any
process, at a certain point in the execution. We split the execution into phases. For 1 ≤
i ≤ log n, we define phase i as the time interval in which n/2i−1 ≥ U > n/2i. (Recall
that we consider the linearized execution.) We prove that, by performing αn log n total
test-and-set accesses, the algorithm progresses for at least one phase, with high proba-
bility. Also, the number of processes that take steps in phase i or later is at most n/2i,
with high probability.

We proceed by induction. In this sketch of proof, we only consider the induction
step (the base case is similar). Assume that the claim holds at all phases ≤ i, and
we prove that it also holds at phase i + 1. First note that, if the adversary schedules
at most αn log n processes to access test-and-set objects during phase i + 1, then the
processes will make at most n/2i + αn log n total random choices during this phase.
This is because, by the induction step, there are at most n/2i processes that have not
terminated up to phase i + 1, and each of them might make a random choice in this
phase prior to accessing a test-and-set object. Also, for every access of a test-and-set
that the adversary schedules, at most one more choice is made.

We will show that, since these choices are uniformly random, it is extremely im-
probable that the adversary finds αn log n random choices made in this phase, which
it can schedule without allowing the algorithm to move to the next phase. Let Di be
the set of test-and-set objects accessed prior to the beginning of phase i + 1. Notice
that the algorithm stays in phase i + 1 after αn log n total accesses if there exist 1) a
set C of αn log n random choices made during this phase, and 2) a set S of less than
n/2i+1 test-and-set objects not in Di, such that all the choices in C are made on test-
and-set objects from S, or on the n(1 − 2i) test-and-set objects in Di. (Note that this
formulation slightly increases the power of the adversary by allowing it to “see” all
the (n/2i + αn log n) random choices made in the phase when choosing the sched-
ule.) To bound the probability that the algorithm fails to move to phase i + 2, we first
fix a selection C of αn log n random choices from this phase, and a set S of less than
n/2i+1 objects not inDi. The probability that all the choices in C fall in S or inDi is at
most

(
1− 1/2i+1

)αn logn
. Using the Bernoulli inequality, we obtain an upper bound of

(1/n)
αn/2i+1

on this probability. On the other hand, there are at most 2n/2
i+1

possible
choices for the set S. Also, there are at most

(
n/2i+αn logn

αn logn

)
ways in which to select the

set C. Using the union bound, after some calculation, we obtain that the probability that
the algorithm stays in phase i+ 1 after αn log n accesses is at most (1/n)(α−4)n/2

i+1

.



Since we analyze only the first log n phases, we obtain that the algorithm moves to
phase i + 2 with high probability for 1 ≤ i ≤ log n. This concludes the induction step
for the first part of the claim.

For the second part, let T1, T2, . . . , Tn/2i+1 be n/2i+1 test-and-set objects newly
accessed by the algorithm in this phase, which were just shown to exist with high proba-
bility. From the properties of test-and-set, it follows that, for every Tj , 1 ≤ j ≤ n/2i+1,
there exists a process qj that accesses Tj , but never returns loser from it, i.e. either wins
Tj or crashes in Tj . All qj’s must be distinct: a process stops taking steps after winning
a test-and-set, and cannot crash in two test-and-sets. Since we consider the accesses in
the linearization order, i.e. the winners are the first processes to return from the object,
it follows that, with high probability, the processes qj never take steps in the next phase,
as required by the second part of the claim.

To conclude, notice that the second part of the claim proves that all processes re-
turn or crash by the end of phase log n. This implies that the algorithm performs a total
of O(n log2 n) test-and-set accesses, with high probability, before each process termi-
nates. A test-and-set access costs at most O(log2 n) steps per process, since repeated
accesses by the same process do not add to the complexity of the object. We obtain that
the total step complexity isO(n log4 n), with high probability. This concludes the proof
of Theorem 1. ut

6 A Randomized Adaptive Algorithm

In this section, we present a new adaptive randomized renaming algorithm, which we
call AdaptiveSearch. Given a constant ε > 0, the algorithm guarantees unique names, a
namespace of size min(k(1+ε), n) with high probability, and hasO(k log4 k/ log2(1+
ε)) total step complexity, with high probability.

6.1 The AdaptiveSearch Algorithm

As in the previous algorithm, each process p attempts to choose a name from a vec-
tor of n test-and-set objects. We assume that processes share n adaptive test-and-set
objects, implemented through the RatRace algorithm, which are numbered from left
to right. Since the contention is not known, each process starts with an estimate kest
of contention, initially 1, which is increased as needed. Computation proceeds in local
phases. In a phase, process p tries to win a randomly chosen test-and-set between 1 and
kest for 3 log kest/ log(1+ ε/4) times. If it does not succeed by the end of a phase, then
the process multiplies kest by a constant factor (1 + ε/4) > 1, and tries again in the
next iteration. Once it succeeds in winning a test-and-set, the process takes the name
associated with that test-and-set and returns. We enforce the name returned to be within
a namespace of 1 to n as follows: once a process detects that kest is larger than n, it
starts to run the ReShuffle algorithm on the n test-and-set instances.

6.2 Analysis of AdaptiveSearch.

In this section, we prove the correctness of AdaptiveSearch and its performance guar-
antees. Note that name uniqueness is ensured since no two processes may win the same



test-and-set object. Also, AdaptiveSearch ensures termination with probability 1, since
we run ReShuffle as a backup. Let k be the contention in the current execution. In this
analysis, we assume that the namespace parameter ε is less than two (a similar argument
holds for ε ≥ 2).
The first lemma provides an upper bound on the generated namespace with high prob-
ability.

Lemma 7 (Namespace). AdaptiveSearch solves renaming in a namespace from 1 to
k(1 + ε), with high probability. The maximum size of the namespace is n.

Proof (Sketch). We consider a process p that obtains a name larger than k(1 + ε), and
show that the probability that this occurs is very low. First, note that p’s estimate of
contention kest when it obtained the name must have been at least k(1 + ε). Let k` be
the last estimate on contention that process p tried which had the property that k` < k.
By definition, it follows that k/(1+ε/4) ≤ k` < k. Since ε < 2, we obtain that process
p tried to obtain a random name in a namespace of size at least 1, 2, . . . , k(1 + ε/4) for
at least 3 log k(1 + ε/4)/ log(1 + ε/4) times, and did not succeed.

Next, we notice that, since at most k processes participate in the algorithm, there are
at least kε/4 test-and-set objects that are not accessed throughout the entire execution.
This follows since, for any test-and-set object that is accessed, there exists at least one
process that either wins it or crashes while executing the object, and a process stops
taking steps once it acquired a test-and-set. Therefore, irrespective of the adversarial
schedule, each process has probability at least (ε/4)/(1 + ε/4) to access a test-and-
set that is not accessed by another process in the current execution. Also, in this case,
the process stops accessing new test-and-set objects. We bound the probability that
process p fails to acquire a name within a namespace of size at least kε/4 + 1 after
3 log(k(1 + ε/4))/ log(1 + ε/4) independent trials. After some calculation, we obtain
that this probability is at most (1/k)3 . Therefore, with high probability, every process
chooses a name between 1 and k(1 + ε). ut

The next result provides an upper bound on the total step complexity of the algorithm.

Lemma 8 (Complexity). The AdaptiveSearch algorithm takes O(k log4 k/ log2(1 +
ε/4)) total steps with high probability.

Proof. We analyze the total number of steps performed by a process p. By Lemma 7,
every process runs for at most log1+ε/4 k(1 + ε) local phases, with high probability.
In each of these phases, the process performs at most O(log k(1 + ε)/ log(1 + ε/4))
test-and-set accesses. In turn, each test-and-set is accessed by at most O(k) distinct
processes, which implies that one test-and-set access, implemented using the RatRace
algorithm, will cost O(log2 k) steps per process, with high probability. We thus obtain
that the total step complexity is bounded by O(k log4 k/ log2(1 + ε/4)). ut

7 Future work

Our algorithms outline a new approach for solving renaming efficiently in an asyn-
chronous system. One direction for future work is to improve the local (per-process)



step complexity of our algorithms, which may be super-linear in some executions of
the ReShuffle algorithm (AdaptiveSearch has poly-logarithmic local step complexity,
with high probability). This, together with a multiple-use version of RatRace, would
allow our algorithms to be turned into efficient long-lived renaming algorithms. An-
other direction would be to study the lower bounds on the complexity of randomized
renaming—we suspect that the lower bound threshold for total step complexity is super-
linear. A third direction would be to study whether tight adaptive renaming can be
achieved efficiently using randomization. It could also be interesting to study whether
our approach may be applied to obtain efficient solutions to the well-known Do-All and
Write-All (e.g., [17, 18, 22]) problems.
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