
Trusted Computing
for Fault-Prone Wireless Networks

Seth Gilbert1 and Dariusz R. Kowalski2

1 National University of Singapore, Singapore
gilbert@comp.nus.edu.sg

2 University of Liverpool, United Kingdom
D.Kowalski@liverpool.ac.uk

Abstract. We consider a fault-prone wireless network in which commu-
nication may be subject to wireless interference. There are many possible
causes for such interference: other applications may be sharing the same
bandwidth; malfunctioning devices may be creating spurious noise; or
malicious devices may be actively jamming communication. In all such
cases, communication may be rendered impossible.

In other areas of networking, the paradigm of “trusted computing” has
proved an effective tool for reducing the power of unexpected attacks.
In this paper, we ask the question: can some form of trusted computing
enable devices to communicate reliably? In answering this question, we
propose a simple “wireless trusted platform module” that limits the man-
ner in which a process can access the airwaves by enabling and disabling
the radio according to a pre-determined schedule. Unlike prior attempts
to limit disruption via scheduling, the proposed “wireless trusted plat-
form module” is general-purpose: it is independent of the application
being executed and the topology of the network.

In the context of such a “wireless trusted platform module,” we de-
velop a communication protocol that will allow any subset of devices
in a region to communicate, despite the presence of other disruptive
(possibly malicious) devices: up to k processes can exchange information
in the presence of t malicious attackers in O(max(t3, k2) log2 n) time.
We also show a lower bound: when t < k, any such protocol requires
Ω(min(k2, n) logk n) rounds; in general, at least Ω(min(t3, n2)) rounds
are needed, when k ≥ 2.

1 Introduction

Wireless networks are everywhere, enabling devices to communicate and ex-
change information without the need for physical infrastructure. Wireless net-
works rely on the open airwaves for communication, and the open airwaves are

? This publication was prepared while the first author was at EPFL, Switzerland. The
work of the second author was supported by the Engineering and Physical Sciences
Research Council [grant numbers EP/G023018/1, EP/H018816/1].

publicly accessible by anyone and everyone. This openness has advantages, al-
lowing universal participation and creating a lower barrier to entry; it also has
disadvantages: any user can join the network and cause disruption. Disruption
may be caused intentionally, by malicious parties, or unintentionally, by other
applications sharing the same bandwidth.

Trusted Computing. Recently, the paradigm of Trusted Computing has come
to be seen as a powerful technique for reducing vulnerability to attack. (See,
e.g., [29, 33].) The basic idea underlying trusted computing is that each com-
puter (or networked device) will contain a tamper-proof component (often a
special-purpose chip) known as a trusted platform module (TPM) that provides
certain reliable guarantees. For example, the TPM may contain cryptographic
authentication keys that securely identify the computer. The TPM may also con-
tain a mechanism that protects data stored on a computer, or that may provide
certain guarantees as to the software running on that computer. Elements of the
trusted computing architecture are implemented today in Windows Vista, for
example, in BitLocker Drive Encryption.

In this paper, we examine the application of trusted computing techniques to
wireless networking, in particular to the problem of interference and disruption
(either benign or malicious) on the wireless airwaves. Imagine that every wireless
device has a “wireless” TPM (wTPM) that controls access to the radio3. (See
Figure 1 for a simplified schematic representation.) When the radio is enabled
by the wTPM, the software running on the wireless device can send and receive
messages; conversely, when the radio is disabled by the wTPM, the software
running on the wireless device cannot access the radio. Thus, even when a mali-
cious attacker hacks or takes control of a wireless devices, (s)he can only create
interference when the radio is enabled4.

An important design criterion for a wTPM is that it be simple, and that
it be as computation-agnostic as possible. The wTPM should not be aware of
the computation running on the wireless device, nor should it monitor the com-
munication sent and received over the radio. Ideally, it should simply connect
and disconnect the radio, irregardless of what the device is doing or whether
the device is sending or receiving a message. The fundamental open question is
whether it is possible to design such a simple, computation-agnostic wTPM that
will still allow wireless devices to perform the communication and computation
that they desire, without sacrificing efficiency.

Overview of Results. In this paper, we make some progress toward answering
these questions. We focus on the basic problem of reliably exchanging infor-
mation: there are at most k wireless devices—from some larger universe of n

3 Note that use of the radio frequencies is already heavily regulated in most countries,
and hence it might be feasible to require all legal devices to be equipped with such a
wTPM; of course the “trusted computing” approach will be ineffective for a concerted
attacker with access to illegal hardware.

4 While “trusted computing” is sometimes criticized for its privacy implications, these
problems are less severe in the wireless case where the wTPM only affects when the
radio is enabled, while revealing no personal information.

TCM

Fig. 1. Simple schematic of sensor device with a wireless “trusted computing mod-
ule”(e.g., a wTPM) controlling power to the antenna.

devices—that want to exchange information with each other. (We assume that
k is fixed; however, we discuss in Sections 5.3 how to adapt to varying num-
bers of participants.) At the same time, there are at most t malicious devices
that disrupt communication. These devices may broadcast corrupt messages, or
they may “jam” the airwaves—when their radios are enabled by the wTPM—
preventing any information form being exchanged.

Each device contains two pieces of software: (1) the wTPM, which is tamper-
proof, and (2) the communication protocol, which may be corrupt on malicious
devices. (1) wTPM : The wTPM consists of a fixed binary sequence indicating
whether the radio is enabled or disabled at any given time. When the radio is
enabled, the device can communicate; when the radio is disabled, it can neither
send nor receive. The behavior or the wTPM is fixed in advance, and is not
affected by anything that occurs during an execution. (2) Communication pro-
tocol : The communication protocol determines whether the device broadcasts
or receives in any given round, if the radio is enabled. We focus on oblivious
protocols where the broadcast/receive schedule is also fixed in advance.

Our main result consists of the wTPM design, along with an efficient com-
munication protocol that is compatible with the wTPM. Our protocol runs in
Θ(max(t3, k2) log2 n) rounds; surprisingly, this is almost as efficient as the best
(oblivious) protocols for exchanging information, even when all the devices are
honest: every such protocol requires Ω(min(k2, n) logk n) rounds [6,11]. We pro-
vide a complementary lower bound, showing that exchanging information re-
quires at least Ω(min(t3, n2)) rounds, for k ≥ 2. (Note: there is a trivial O(n2)
solution that selectively enables each pair of processes.) Together, these lower
bounds indicate that our proposed protocol is near optimal in most cases.

Both the wTPM and the protocol are generated by a random process which is
designed to activate only (approximately) k/t radios in each round. Even though
communication among the honest devices is (effectively) limited to one-to-one
communication, we still exchange information nearly as efficiently as protocols

that rely on one-to-many communication, e.g., have each sender transmit his
information while all the other processes listen. Of note, the resulting protocols
are relatively simple to implement when provided with a good source of (pseudo)-
random bits (or data structures for generating such bits, e.g., extractors).

Our approach to security also has a secondary benefit: it can significantly
reduce the power usage of wireless protocols. Powering the radio is one of the
most energy-consuming operations for a small wireless device. If the wTPM
disables the radio sufficiently often, then it forces every protocol running on
the device to be much more energy efficient than might otherwise be the case.
When t = Θ(k), the wTPM enforces a high-level of energy efficiency, enabling
only O(1) devices in each round. By contrast, prior protocols for information
exchange activate Θ(k) processes per round.

Finally, in order to enable more general applications, we also briefly consider
the continuous version of information exchange, where there are an unknown
number of processes that occasionally have information to distribute. A natural
generalization of our protocol ensures that every message injected in some round
r will be delivered by round r + O(max(t3, `2) log3 n), as long as there are at
most ` ≤ n active messages during that interval.

Other Approaches to Tolerating Malicious Devices in a Radio Network. The
idea of enforcing a fixed broadcast schedule for a wireless radio, in order to
avoid malicious interference, has been previously proposed on several occasions.
Koo [20], in one of the first papers studying the problem of reliable broadcast
in a wireless network subject to Byzantine failures, suggested that devices be
forced to follow a “round-robin” schedule, preventing malicious devices from
broadcasting out of turn. Later papers (e.g., [4,5]) followed this approach as well.
In general, such an approach either assumes that only one device is enabled at a
time—leading to Ω(n) or Ω(n2) running times—or it relies on some geographic
property to determine whether a device can broadcast, for example, enabling
devices in specific regions to broadcast in a given round. By contrast, in this
paper, we attempt to develop a generic wTPM that is computation-agnostic,
geographically ignorant, and yet still achieves efficient performance.

An alternate approach for dealing with malicious disruption is to posit some
limit on the amount of disruption (see, e.g., [1, 16, 21]), or on the rate at which
the devices can cause disruption [2]. Such limits might arise from practical con-
siderations, e.g., the size of the battery on a malicious device, or from hardware
constraints, e.g., a device might not be allowed to broadcast at above some spec-
ified rate. The latter approach, in particular, has significant promise for a wTPM
solution, as a wTPM might enforce a bounded rate of broadcast.

A third approach for coping with malicious disruption is to leverage the avail-
ability of more than one communication channel: while malicious devices may
disrupt some subset of the available channels, reliable communication can pro-
ceed on the other channels. This has proved a popular approach, as it requires
minimal limitations on the power or scope of the malicious devices. (See, for ex-
ample, [12–15,17,26,28,31,32].) One open question is whether such multichannel
solutions could be even more efficient if a wTPM were available.

Other Related Work. The problem of resolving contention among a set of
(honest, fault-free) devices on a multiple-access channel has been extensively
studied (see, e.g., [3, 19, 22, 34], among many others). Wireless networks with
crash failures (but not Byzantine failures) have also been studied extensively
(e.g., [8–10, 24]). In essence, the challenge in this paper is to solve the prob-
lem of contention among honest processes, while simultaneously preventing the
malicious processes from jamming.

Recently, there has been much interest in other models of interference, such
as the SINR model [18, 27], and the dual-graph model [25]. These models cap-
ture interference in a somewhat more sophisticated manner, and hence it is an
interesting open question how to cope with malicious interference in such models.

2 A Model for Wireless Trusted Computing

Model. Let Π be a set of n processes. Each process knows n and the set Π. Each
process is either active or passive. An active process can send/receive messages
and perform computations; a passive process cannot act in any way. At most
k honest processes are activated. At most t dishonest (or Byzantine) processes
may also be activated; such processes may act in an arbitrarily malicious fashion.

Processes communicate with a radio over a collision-prone wireless channel.
In each round, each process (whether honest or dishonest) can either broadcast
or listen. When exactly one process broadcasts, every other process receives the
message; when more than one process broadcasts, no process receives anything.

Trusted Computing. Each device is equipped with a tamper-proof wireless
trusted-platform module (wTPM). The wTPM at each process is initialized with
a binary string that indicates, for each round, whether the radio is enabled or
disabled. When the radio is disabled, the process can neither send nor receive.
The Byzantine devices cannot corrupt the wTPM, meaning that they cannot
broadcast when the radio is disabled by the wTPM.

We define an algorithm 〈T,B〉 to be two binary (n,m)-matrices. We refer
to matrix T as the radio-enable matrix and matrix B as the broadcast-listen
matrix. Rows of each matrix correspond to processes, and columns corresponds
to rounds. That is, row p of matrix T is the initialization string for the wTPM at
process p: the radio at process p is enabled in round r if and only if T [p, r] = 1.
Similarly, row p of matrix B indicates whether process p broadcasts or listens
in each round: process p broadcasts in round r if B[p, r] = 1; otherwise it listens.
We assume, for simplicity, that whenever a process is enabled and scheduled to
broadcast, it transmits all available information. (There is no required relation
between T and B.)

By definition, algorithms are oblivious: the behavior of each process is fixed;
they do not adapt to adversarial behavior. Oblivious protocols have several ad-
vantages: they are often more robust, as they do not depend on accurately ob-
serving ongoing events. In the case of a wTPM, an oblivious wTPM would ap-
pear more plausible, as it can be constructed in a generic protocol-independent
manner (as compared to attempting to adapt to circumstances).

Exchanging Information. We consider the problem of (k, t)-information ex-
change. Define P ⊆ Π to be the set of at most k active honest processes. (Note
that activations are local; a process knows only whether it is in set P or not.)
Each process in P is initialized with a rumor. At the end of the execution, every
active, honest process should transmit its rumor to every other active, honest
process, as long as there are at most t active dishonest processes.5

The primary metric is time complexity, i.e., the number of rounds that the
protocol executes. In Section 5.3 we consider a continuous variant where we count
from a rumor’s injection until the rumor is received by all other honest processes.
Another complexity measure of interest is energy consumption, defined as the
sum, over all rounds, of the number of radio-enabled processes.

3 Lower bound

Theorem 1. For the problem of (k, t)-information exchange:(i) if k ≥ t, then
Ω(min(k2, n) logk n) rounds are required; (ii) if k ≥ 2, then Ω(min(t3, n2))
rounds are required.

Proof. When k ≥ t, the lower bound of Ω(min(k2, n) logk n) follows from bounds
on superimposed codes [6, 11], which holds even when all processes are honest.

Now assume k ≥ 2. We show that there are two honest processes that fail to
exchange rumors in the first t2(t− 2)/32 rounds. It is sufficient to consider the
case when t2(t− 2)/32 < n(n− 1)/4.

For 0 ≤ i ≤ n, define Ri to be the set of rounds such that Ar = {p : T [p, r] =
1} is of size i. We omit rounds in set R0 ∪ R1 from the analysis, as at most
one radio-enabled process cannot send a message to any other process. We focus
on sets R2 and R≥3 =

⋃
i≥3Ri. Let S2 be the set of all pairs that are radio-

enabled in rounds in R2, i.e., S2 = {{p, q} : ∃r∈R2
T [p, r] = T [q, r] = 1}. We

have |S2| ≤ |R2| ≤ t2(t− 2)/32 < n(n− 1)/4.
Let F2 be a set of t/2 processes such that the number of pairs of elements

from F2 that are in S2 is smaller than
(
t/2
2

)
/2. Such a set exists by a probabilistic

argument: the expected number of pairs from S2 included in the random set of
t/2 processes is smaller than:

|S2| ·

(
n−2
t/2−2

)(
n
t/2

) = |S2| ·
(t/2− 1)(t/2)

(n− 1)n
< n(n− 1)/4 · (t/2− 1)(t/2)

(n− 1)n
=

1

2
·
(
t/2

2

)
,

and therefore a set with this property exists.
Consider processes in F2 and rounds in R≥3. Let R be the subset of R≥3

containing rounds r ∈ R≥3 such that |{p ∈ F2 : T [p, r] = 1}| = 2; let S be the
set {{p, q} : p, q ∈ F2}\S2. Since each round in R is associated with at most one

pair in S, and there are at least
(
t/2
2

)
−
(
t/2
2

)
/2 =

(
t/2
2

)
/2 pairs in S, there is a

pair {p∗, q∗} in S associated with at most |R||S| ≤
t2(t−2)/32

1
2 ·(

t/2
2)

≤ t/2 rounds in R≥3.

5 Malicious processes may create their own rumors, which cannot be distinguished
from honest rumors; it is unavoidable that processes may deliver such rumors.

Let R∗≥3 = {r ∈ R≥3 : T [p∗, r] = T [q∗, r] = 1}. By the choice of p∗, q∗,
we have |R∗≥3| ≤ t/2. Since R∗≥3 ⊆ R≥3, for every r ∈ R∗≥3 there is a process
p(r) different from p∗, q∗ such that T [p(r), r] = 1. Let F3 be the set of processes
{p(r) : r ∈ R∗≥3}. An estimate |F3| ≤ |R∗≥3| ≤ t/2 holds. We define F as
(F2 \ {p∗, q∗}) ∪ F3. It follows that |F | ≤ |F2| − 2 + |F3| < t.

Let {p∗, q∗} be the set of honest processes, and F be the set of Byzantine
processes. The adversary’s strategy is as follows: whenever a Byzantine process is
radio-enabled according to T , it transmits. It is easy to check that in each round
where processes p∗, q∗ are radio-enabled by T , there is also another process in F
which is radio-enabled by T , and thus it interrupts any attempted transmission
between p∗ and q∗. Indeed, they cannot both be active in round r ∈ R2, since
{p∗, q∗} in set S, and set S does not contain—by definition—any pair in set S2,
i.e., any pair that is active alone in some round in R2. Therefore no communica-
tion can occur between p∗ and q∗ during rounds in R2. (Recall that this is also
impossible in rounds in R0 and R1, by definition.) Consider a round r ∈ R≥3. If
p, q are both active in round r, then, by definition of R≥3, there must be at least
one more process active in this round. Hence, round r satisfies the condition in
the definition of set F3, which means that at least one process p ∈ F3 is such that
T [p, r] = T [p∗, r] = T [q∗, r] = 1, and thus p jams the communication between
p∗, q∗ in round r. Therefore, rumors between p∗, q∗ are not exchanged. Finally,
note that set F of Byzantine processes is of size |F2|− 2 + |F3| < t and there are
only two honest processes p∗, q∗.

4 Implementing Information Exchange

We now present an algorithm that performs (k, t)-information exchange in time
Θ(max(t3, k2) log2 n). Each process knows that there are at most k honest pro-
cesses active, and at most t Byzantine processes active. We define 〈T,B〉 (i.e.,
the algorithm) using a random process, and argue that the resulting algorithm
achieves the desired results with high probability. This both shows that there
exists an efficient deterministic solution to the problem of (k, t)-information-
exchange, via the probabilistic method, and shows how to find it efficiently.

We construct the algorithm out of sub-pieces. As we do not know how many
honest processes are active, we define algorithm A(`, `/2) which assumes that
there are more than `/2 but at most ` honest processes active, and which runs
in time Θ(max(t3/`, `2) log2 n) rounds. The final protocol consists of concate-
nating the algorithms A(·, ·) for exponentially decreasing ranges, i.e., Ak =
A(k, k/2) & A(k/2, k/4) & . . . & A(2, 1), where & represents concatenation.
Summing the costs as ` decreases, the final running time is Θ(max(t3, k2) log2 n).

4.1 Defining Algorithm A(`, `/2)

We now define A(`, `/2) = 〈T,B〉, for any 2 ≤ ` ≤ k, where ` is a power
of 2. We divide A(`, `/2) into three “sub-algorithms”, 〈T1, B1〉, 〈T2, B2〉, 〈T3, B3〉,
which when concatenated, form A(`, `/2). Let m = c ·max(t3/`, `2) log n, for a

sufficiently large constant c, to be derived in the analysis. (The function of each
of these stages is described in more detail in Section 4.2.)

– Stage 1: 〈T1, B1〉 We define T1 to be a binary (n×m)-matrix where, for
every p, r, each bit T1[p, r] = 1 with probability min(1/t, 1/`); otherwise
T1[p, r] = 0. We define B1 to be a binary (n×m)-matrix where, for every
p, r, each bit B1[p, r] = 1 with probability 1/2; otherwise B1[p, r] = 0.

– Stage 2: 〈T2, B2〉 Define the (n× 2m)-matrix T ′ as follows, for all p : For each
odd column r = 1, 3, 5, . . ., define T ′[p, r] = 1 with probability min(1/t, 1/`);
otherwise T ′[p, r] = 0. For each even column r = 2, 4, 6, . . ., define T ′[p, r] to
be identical to the preceding column, i.e., T ′[p, r] = T ′[p, r− 1]. Define T2 as
2 log n repetitions of T ′; T2 is a (n× (4m log n))-matrix.
Define B′ as follows, for all p: For each odd column r = 1, 3, 5, . . ., we define
B′[p, r] = 1 with probability 1/2; otherwise B′[p, r] = 0. For each even
column r = 2, 4, 6, . . ., we define B′[p, r] to be the inverse of the preceding
column, i.e., we define B′[p, r] = (1 − B′[p, r − 1]). Define B2 as 2 log n
repetitions of B′. Note that B2 is a (n× (4m log n))-matrix.

– Stage 3: 〈T3, B3〉 We define T3 to be identical to T1, i.e., T3 = T1. We define
B3 to be the inverse of B1, i.e., for all p, r: B3[p, r] = (1−B1[p, r]).

Thus, A(`, `/2) is defined by the matrices T1 & T2 & T3 and B1 & B2 & B3. It
follows that the length of algorithm A(`, `/2) is O(max(t3/`, `2) log2 n).

4.2 Overview of the Analysis

We now analyze the protocol and show that it is correct and efficient. We consider
A(`, `/2), where 2 ≤ ` ≤ k. As we have already bounded the running time, we
focus on showing that every honest process succeeds in transmitting its rumor to
every other honest process. Fix ` such that there are more than `/2 and at most
` honest, active processes. Recall that P is the set of honest, active processes.
We examine each of the three “sub-algorithms” separately.

– Stage 1: guarantees each rumor is delivered to > (|P |−`/8) honest processes.

When this stage completes, each rumor is known to a large number of honest
processes. However, there may be no one honest process that knows all the
rumors. While it is relatively cheap to distribute each rumor to a large fraction
of the participants, it is more expensive to deliver each rumor to every other
active participant. In the first stage, rumors are delivered directly, in a pairwise
fashion: each participant directly sends its rumor to a large fraction of the other
participants. In order to deliver every rumor directly in a pairwise fashion to
every process would require approximately Θ(k2t) rounds. The second stage
avoids this by exchanging rumors indirectly.

– Stage 2: guarantees that there is a subset P ∗ ⊆ P of size `/8 where every
process in P ∗ has received all the rumors.

The second stage relies on a more careful examination of the communication
graph defined by the protocol. Unlike in Stage 1, we do not rely on direct edges
between pairs of processes, but instead expect rumors to be passed indirectly
over multiple “hops” in the induced communication graph. We show that the
communication graph, when appropriately defined, has good expansion (see Def-
inition 1), which immediately implies that the communication graph has a large
component with small diameter (see Corollary 1). We can then conclude that
every process in the large component learns every rumor.

– Stage 3: guarantees that each honest process receives at least one message
from a process in P ∗.

Processes in P ∗ cooperate to ensure that every process in P is notified of all the
rumors. Notably, it turns out that Stage 3 is the symmetric opposite of Stage
1: whereas Stage 1 involved disseminating rumors, Stage 3 involves collecting
them. We now proceed to analyze the three parts in more detail.

4.3 Stage 1: Spreading

The goal of the first stage, intuitively, is to distribute each rumor to more than
|P |−`/8 honest participants. We show that the sub-protocol 〈T1, B1〉 guarantees
the following property: For every P ∗ ⊆ P , where |P ∗| = `/8, and for every rumor
ρ, there exists some process q ∈ P ∗ such that q receives ρ during Part 1 of the
protocol. This implies that we can choose any subset of P of size `/8 and be sure
that every rumor is known by at least one member of that subset.

For the purpose of the next lemma, fix some set P of size bigger than `/2
and at most `, some subset P ∗ ⊆ P of size `/8, and some process p ∈ P \ P ∗.
(When p ∈ P ∗, the property follows trivially.) Also, fix some set F of at most t
Byzantine processes. We calculate the probability that the rumor from process
p reaches some process in P ∗ without being disrupted by a process in F :

Lemma 1. For given sets P, P ∗, F and process p ∈ P \P ∗: there is some round
r and some process q ∈ P ∗ such that p successfully transmits its rumor to q
in round r (i.e., p is the only process radio-enabled that transmits and q is
the only process radio-enabled that listens in round r) with probability at least
1− e−(c/128)·max(t,`) logn.

Proof (sketch). For any given round r, the probability that p is radio-enabled
and set to broadcast, while exactly one process in P ∗ is radio-enabled and set
to listen, while every other process in P and F is radio-disabled is at least
min(`/(16t), 1/16). Thus, the probability that p fails to broadcast to q in all
c ·max(t3/`, `2) log n rounds is as desired, with high probability.

By counting the number of possible configurations of subsets, we conclude, by a
union bound, that the desired property is achieved by the end of the first stage:

Lemma 2. The following event holds w.h.p., for sufficiently large constant c:
For every set P of active processes where `/2 < |P | ≤ `, for every subset P ∗ ⊆ P
of size `/8, for every set F of at most t Byzantine processes, every rumor in P
is received by some process in P ∗ by the end of sub-algorithm 〈T1, B1〉.

4.4 Stage 2: Exchanging

We now show that there is some subset of honest processes of size `/8 where
every process in the set has received every rumor by the end of the second stage.

Recall that 〈T2, B2〉 consists of 2 log n repetitions of two matrices T ′ and B′,
respectively. Given a set of honest processes P and a set of Byzantine processes
F , we define an undirected graph G(P, F, T ′, B′) based on T ′ and B′. Each
vertex in G represents a process, i.e., there are n vertices. For each odd column
r = 1, 3, 5, . . . we add an edge (p, q) to graph G if the following hold: (1) For
every process p′ ∈ F , T ′[p′, r] = 0, i.e., every Byzantine process is radio-disabled.
(2) For every process q′ ∈ P \ {p, q}, T ′[q′, r] = 0, i.e., every other process is
radio-disabled. (3) For processes p and q, T ′[p, r] = T ′[q, r] = 1, i.e., processes p
and q are radio-enabled. (4) For process p, B′[p, r] = 1; for process q, B′[q, r] = 0.

This implies that process p succeeds in sending a message to process q in the
round based on column r. Since column r+1 is defined in terms of column r, we
conclude that q succeeds in sending a message to process p in the round based
on column r + 1. Thus, we consider the graph G to be undirected.

We argue that for all sets P and F , the graph G(P, F, T ′, B′) has a large
subgraph with small diameter. We show this by examining the expansion of G.
Following the definition from [30], we say that a graph G is an α-expander if it
follows the following property:

Definition 1. A graph G = (V,E) is an α-expander if for every pair of subsets
W1 ⊆ V and W2 ⊆ V , where |W1| ≥ α and |W2| ≥ α, there is some p ∈W1 and
some q ∈W2 such that (p, q) ∈ E.

We will argue that, with high probability, for every set P and set F , graph
G(P, F, T ′, B′) is an `/8-expander:

Lemma 3. With high probability, for sufficiently large c, for every P and F ,
graph G(P, F, T ′, B′) is an `/8-expander.

Proof. Fix a set P of size `/2 < |P | ≤ ` and a set F of size at most t. (We may
assume, without loss of generality, that F is of size exactly t, as otherwise the
adversary could add “silent” Byzantine processes without otherwise changing the
execution.) We calculate the probability that G(P, F, T ′, B′) is a `/8-expander
(after which we take a union bound over all possible sets P and F).

Fix arbitrary sets W1 and W2 of size at least `/8. We calculate the proba-
bility that there is some edge between W1 and W2 in G(P, F, T ′, B′). (We then
take a union bound over all possible sets W1 and W2.) Specifically, for a given
column of T ′ and B′: (1) Every process in F is radio-disabled: with probability
≥ (1−min(1/t, 1/`))|F | ≥ (1−1/t)t ≥ 1/4. (2) Exactly one process inW1 is radio-
enabled: with probability at least (`/8) ·min(1/t, 1/`) ·(1−min(1/t, 1/`))`/8−1 ≥
(1/32) ·min(`/t, 1). (3) Exactly one process in W2 is radio-enabled: with proba-
bility at least (`/8) ·min(1/t, 1/`) · (1−min(1/t, 1/`))`/8−1 ≥ (1/32) ·min(`/t, 1).
(4) The conditional event, under the assumption that one radio-enabled element
in W1 is chosen and one radio-enabled element in W2 is chosen, that either the
radio-enabled process in W1 is set to broadcast and the radio-enabled process in

W2 is set to receive, or the radio-enabled process in W1 is set to receive and the
radio-enabled process in W2 is set to broadcast: with probability at least 1/2.

Thus, for a given column, there is an edge between W1 and W2 with proba-

bility at least 1
8 ·
(

min(`/t,1)
32

)2
. Thus over c ·max(t3/`, `2) log n odd columns (and

their even counterparts corresponding to the edge in the reverse direction), the
probability that there is no edge between W1 and W2 is bounded by:(

1− 1

8
·
(

min(`/t, 1)

32

)2
)c·max(t3/`,`2) logn

≤
(

1

e

)min(`2/t2,1)

8·322
·c·max(t3/`,`2) logn

= e−
c

8·322
max(t`,`2) logn .

We now count the total number of sets W1 and W2, and also the total number
of sets P and F . There are at most n` sets P with more than `/2 and at most
` elements. There are at most nt sets F with (at most) t elements. There are
at most 2` sets W1, and similarly at most 2` sets W2. In total, we can bound
the number of sets P , F , W1, and W2 by: n` · nt · 2` · 2` = 22`+(`+t) logn ≤
23max(t,`) logn. By a union bound over all possible sets, the probability that
there exists any sets P and F such that G(P, F, T ′, B′) is not an `/8-expander is

no greater than: 23max(t,`) logn · e−
c

8·322
max(t`,`2) logn ≤ e−(c

8·322
−3)·max(t`,`2) logn.

Thus, for sufficiently large c, w.h.p., graph G(P, F, T ′, B′) is a (`/8)-expander
for every P and F .

We now apply the following, proven in [7], to conclude that there is some subset
of P with small diameter:

Theorem 2. Let G be an α-expander. For every set Q of at least 4α nodes,
there is a subset Q∗ ⊆ Q of at least α nodes such that the subgraph of G induced
by set Q∗ has diameter of at most 2 log n.

Corollary 1. For every set P containing more than `/2 and at most ` processes,
for every set F of size at most t, there is a subset P ∗ ⊆ P containing `/8
processes such that P ∗ has diameter at most 2 log n in G(P, F, T ′, B′)

We thus conclude that after executing 〈T2, B2〉, there is some subset P ∗ of size
`/8 such that every process in P ∗ knows every rumor:

Lemma 4. The following event holds w.h.p., for sufficiently large constant c:
For every set P with more than `/2 and at most ` processes, for every set F
of at most t processes: after executing 〈T1, B1〉 & 〈T2, B2〉, there is some subset
P ∗ ⊆ P containing `/8 honest processes such that every rumor has been received
by every process in P ∗.

Proof. Define P ∗ as per Corollary 1. Recall that P ∗ has diameter at most 2 log n.
At the end of 〈T1, B1〉, i.e., at the end of Stage 1, every rumor is known to some
process in P ∗, by Lemma 2. In every iteration of 〈T ′, B′〉 during Stage 2, rumors
are propagated one hop through graph G(P, F, T ′, B′). Thus, during Stage 2,
over 2 log n iterations of 〈T ′, B′〉, every rumor stored in P ∗ at the end of Stage 1
is propagated to every other process in P ∗.

4.5 Stage 3: Dissemination

In the third stage, the identified subset P ∗ distributes the rumors gathered
during Stage 2 to the remaining processes in P . We have already shown that in
Stage 1, each process in P \ P ∗ successfully sends a message to some process in
P ∗. As T3 = T1 and B3 is the entry-by-entry binary inverse of B1, each successful
sender in Stage 1 becomes a successful receiver in Stage 3 and vice versa, in every
round. (Note: in the analysis of Stage 1, we considered only events/rounds in
which there was only one sender and one receiver.) Thus, each process in P \P ∗
receives a message from some process in P ∗. Thus we conclude:

Lemma 5. The following event holds w.h.p., for sufficiently large constant c:
For every set P with more than `/2 and at most ` of honest processes, and for
every set F of at most t processes, after executing 〈T1, B1〉 & 〈T2, B2〉 & 〈T3, B3〉,
each process in P has received all rumors of other processes in P .

Combining the log k instances for exponentially decreasing `, and applying the
probabilistic argument to Lemma 5 for each instance A(`, `/2), we conclude:

Theorem 3. There exists a (k, t)-information exchange algorithm with running
time O(max(t3, k2) log2 n).

5 Extensions

5.1 Energy Usage

An advantage of the wTPM is that it enforces energy efficiency: in each around
of A(`, `/2), only a min(1/t, 1/`) fraction of honest processes are radio-enabled;
the remainder cannot access their radios, saving power. Thus, we can show:

Lemma 6. There exists a (k, t)-information exchange protocol with running
time O(max(t3, k2) log2 n), where there are an average of O(dk/te) processes
radio-enabled in each round.

Proof. In protocol A(`, `/2), in expectation, there are ≤ min((k + t)/t, (k +
t)/`) ≤ 2dk/te processes radio-enabled in every round. Thus, w.h.p., there are
O(max(t3, k2) log2 n · dk/te) processes radio-enabled throughout the execution.
Combining this with time complexity result of Lemma 5, which holds with high
probability, and using the probabilistic argument, we obtain the claimed result.

For t = Θ(k) the per round energy usage is O(1), on average, which is optimal.

5.2 Self-Verifying Rumors

We can somewhat improve the previous results when rumors are self-verifying,
that is, when a process can distinguish a rumor that was initiated at an honest
process from a rumor initiated at a malicious process (for example, via public
keys or MACs). If a process can stop early, i.e., can cease executing the protocol
when it believes it has received all available rumors, then we can obtain the
following result:

Lemma 7. There exists a (k, t)-information exchange protocol with running
time O(max(t3/k′, k2) log2 n) where an average of O(1) honest processes are
radio-enabled in each round, and k′ is the actual number of active honest pro-
cesses.

Proof. Consider the protocol as before: A(k, k/2) & · · · & A(2, 1). A process
terminates when it completes protocol A(`, `/2), having already received at least
`/2 rumors: there are clearly at least `/2 honest processes, and there is no need
to continue executing the protocol for smaller `. Since the running time for each
A(`, `/2) is O(min(t3/`, k2) log2 n), the claimed running time follows.

For energy: assume that k′ ≤ k honest process are activated. On average,
there are min((k′ + t)/t, (k′ + t)/`) processes enabled in each round. Since the
protocol terminates no later than where ` > k′/2, we conclude that on average
there are no more than O(1) processes radio-enabled in each round, by using the
similar argument as in the proof of Lemma 6.

We conjecture that by carefully ordering the A(·, ·) instances, and by detecting
when to stop, it may be possible to adapt to |P |, independent from k and n.

5.3 Continuous Communication

To this point, we have assumed that honest processes are all enabled in the same
round, and that they each have exactly one rumor to distribute. In some situa-
tions, processes may be activated—and rumors injected—in any round. Consider,
then, the following straightforward strategy: instead of executing each instance of
A(`, `/2) sequentially, interleave the executions. That is, divide time into blocks
of log n rounds, and in a round r where r mod log n = k, execute one round
of A(2k+1, 2k). When a rumor is injected at a process p, it begins participating
for a given A(`, `/2) each time a new instance is started. (Here, a global clock
or additional synchronization mechanism must be used). From this we conclude
that there exists a continuous information exchange protocol where if there are
k ≤ n rumors active in some round r, for an unknown value k, then all such
rumors will be delivered no later than time r +O(max(t3, k2) log3 n).

6 Conclusions

We have shown that it is possible to design a wTPM that, by selectively enabling
and disabling the radio, facilitates reliable communication. Surprisingly, as long
as t < k2/3, the resulting protocol is nearly as efficient, in time complexity, as
optimal oblivious information exchange protocols for networks with no malicious
devices. We have also shown a new lower bound indicating that when k ≤

√
n

or when t ≥ k2/3, the resulting bound is near optimal. The new protocol also
provides improved energy efficiency, as existing oblivious solutions (in the model
without malicious devices) need O(k ·min(k2, n) logk n) energy [6, 11].

An interesting open question is the performance of protocols such as the
one in this paper in multi-hop networks. When there are no malicious devices,

the time complexity of all-to-all communication is Θ(nmin(D,
√
n)) [23]. When

there are Byzantine processes, the situation is more complex, as we need to
guarantee that honest processes form a connected component. Another question
is whether, by relaxing the restrictions on the wTPM, allowing randomization
or some adaptivity, we may be able to achieve even better performance.

References

1. Alistarh, D., Gilbert, S., Guerraoui, R., Milosevic, Z., Newport, C.: Securing your
every bit: Reliable broadcast in byzantine wireless networks. In: Proceedings of the
Symp. on Parallel Algorithms and Architectures (SPAA). pp. 50–59 (2010)

2. Awerbuch, B., Richa, A.W., Scheideler, C.: A jamming-resistant mac protocol for
single-hop wireless networks. In: Proceedings of the Symp. on Principles of Dis-
tributed Computing (PODC). pp. 45–54 (2008)

3. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. J. of Computer and System Sciences 45(1), 104–126 (1992)

4. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: Proceed-
ings of the Symp. on Principles of Distributed Computing (PODC). pp. 138–147
(2005)

5. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network: A simplified
characterization. Tech. rep., U. of Illinois at Urbana-Champaign (2005)

6. Bonis, A.D., Gasieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group
testing problems. SIAM J. on Computing 34(5), 1253–1270 (2005)

7. Chlebus, B., Kowalski, D.R., Shvartsman, A.A.: Collective asynchronous reading
with polylogarithmic worst-case overhead. In: Proceedings of the Symp. on Theory
of Computing (STOC). pp. 321–330 (2004)

8. Chlebus, B.S., Kowalski, D.R., Lingas, A.: The do-all problem in broadcast net-
works. In: Proceedings of the Symp. on Principles of Distributed Computing
(PODC). pp. 117–127 (2001)

9. Clementi, A., Monti, A., Silvestri, R.: Optimal f-reliable protocols for the do-
all problem on single-hop wireless networks. In: Proceedings of the International
Symp. on Algorithms and Computation (ISAAC). pp. 320–331 (2002)

10. Clementi, A., Monti, A., Silvestri, R.: Round robin is optimal for fault-tolerant
broadcasting on wireless networks. JPDC 64(1), 89–96 (2004)

11. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: Proceedings of the twelfth annual
ACM-SIAM Symp. on Discrete algorithms. pp. 709–718 (2001)

12. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a multi-channel
radio network: An oblivious approach to coping with malicious interference. In:
Proceedings of the Symp. on Distributed Computing (DISC). pp. 208–222 (2007)

13. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Secure communication over radio
channels. In: Proceedings of the Symp. on Principles of Distributed Computing
(PODC). pp. 105–114 (2008)

14. Dolev, S., Gilbert, S., Guerraoui, R., Kowalski, D.R., Newport, C., Kuhn, F.,
Lynch, N.: Reliable Distributed Computing on Unreliable Radio Channels. In:
MobiHoc S3 Workshop (2009)

15. Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F., Newport, C.: The Wireless Syn-
chronization Problem. In: Proceedings of the Symp. on Principles of Distributed
Computing (PODC). pp. 190–199 (2009)

16. Gilbert, S., Guerraoui, R., Newport, C.: Of malicious motes and suspicious sensors:
On the efficiency of malicious interference in wireless networks. In: Proceedings
of the Conference on Principles of Distributed Systems (OPODIS). pp. 215–229
(2006)

17. Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C.: Interference-Resilient Infor-
mation Exchange. In: INFOCOM. pp. 2249–2257 (2009)

18. Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local broadcasting in the phys-
ical interference model. In: DIALM-POMC. pp. 35–44 (2008)

19. Komlos, J., Greenberg, A.: An asymptotically fast non-adaptive algorithm for con-
flict resolution in multiple access channels. IEEE Trans. on Information Theory pp.
302–306 (1985)

20. Koo, C.Y.: Broadcast in radio networks tolerating byzantine adversarial behavior.
In: Proceedings of the Symp. on Principles of Distributed Computing (PODC).
pp. 275–282 (2004)

21. Koo, C.Y., Bhandari, V., Katz, J., Vaidya, N.H.: Reliable broadcast in radio net-
works: The bounded collision case. In: Proceedings of the Symp. on Principles of
Distributed Computing (PODC). pp. 258–264 (2006)

22. Kowalski, D.R.: On selection problem in radio networks. In: Proceedings of the
Symp. on Principles of Distributed Computing (PODC). pp. 158–166 (2005)

23. Kowalski, D.R., Pelc, A.: Time complexity of radio broadcasting: adaptiveness vs.
obliviousness and randomization vs. determinism. Theoretical Computer Science
333(3), 355–371 (2005)

24. Kranakis, E., Krizanc, D., Pelc, A.: Fault-tolerant broadcasting in radio networks.
J. of Algorithms 39(1), 47–67 (2001)

25. Kuhn, F., Lynch, N., Newport, C., Oshman, R., Richa, A.: Broadcasting in radio
networks with unreliable communication. In: Proceedings of the Symp. on Princi-
ples of Distributed Computing (PODC) (2010)

26. Meier, D., Pignolet, Y.A., Schmid, S., Wattenhofer, R.: Speed Dating Despite Jam-
mers. In: Proceedings of the International Conference on Distributed Computing
in Sensor Systems (DCOSS). pp. 1–14 (2009)

27. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless net-
works. In: INFOCOM (2006)

28. Newport, C.: Distributed Computation on Unreliable Radio Channels. Ph.D. the-
sis, MIT (2009)

29. Pearson, S., Balacheff, B.: Trusted computing platforms: TCPA technology in con-
text. Prentice Hall (2002)

30. Pippenger, N.: Sorting and selecting in rounds. SIAM J. of Computing 16, 1032–
1038 (1987)

31. Strasser, M., Pöpper, C., Capkun, S.: Efficient Uncoordinated FHSS Anti-jamming
Communication. In: Proceedings International Symp. on Mobile Ad Hoc Network-
ing and Computing (MOBIHOC). pp. 207–218 (2009)

32. Strasser, M., Pöpper, C., Capkun, S., Cagalj, M.: Jamming-resistant Key Estab-
lishment using Uncoordinated Frequency Hopping. In: Proceedings of the Symp.
on Security and Privacy. pp. 64–78 (2008)

33. Trusted Computing Group: Trusted platform module (tpm) specifications,
http://www.trustedcomputinggroup.org/resources/tpm main specification

34. Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access
channel. SIAM J. of Computing 15(2), 468–477 (1986)

