
Leveraging Channel Diversity to Gain
Efficiency and Robustness for Wireless Broadcast

Shlomi Dolev1, Seth Gilbert2, Majid Khabbazian3, and Calvin Newport4 ?

1 Ben-Gurion University, Beersheba, Israel
2 National University of Singapore, Singapore
3 University of Winnipeg, Winnipeg, Canada

4 MIT CSAIL, Cambridge, USA

Abstract. This paper addresses two primary questions: (i) How much faster can
we disseminate information in a large wireless network if we have multiple com-
munication channels available (as compared to relying on only a single commu-
nication channel)? (ii) Can we still disseminate information reliably, even if some
subset of the channels are disrupted? In answer to the first question, we reduce
the cost of broadcast to O(log log n) rounds/hop, approximately, for sufficiently
many channels. We answer the second question in the affirmative, presenting two
different algorithms, while at the same time proving a lower bound showing that
disrupted channels have unavoidable costs.

1 Introduction

This paper addresses two primary questions: (i) How much faster can we disseminate
information in a large wireless network if we have multiple communication channels
available (as compared to relying on only a single communication channel)? (ii) Can
we still disseminate information reliably, even if some subset of the channels are dis-
rupted? In answer to the first question, we reduce the cost of broadcast to O(log log n)
rounds/hop, approximately, for sufficiently many channels. We answer the second ques-
tion in the affirmative, presenting two different algorithms, while at the same time prov-
ing a lower bound showing that disrupted channels have unavoidable costs.
Multi-channel Networks. In more detail, we study the multihop broadcast problem
in the t-disrupted radio network model [11–14, 17, 26, 30, 31]. This model describes
a synchronous multihop radio network, and assumes that in each round, each process
chooses 1 out of C available communication channels to participate on. Simultaneously,
an adversary selects, at each process, up to t < C channels to locally disrupt, preventing
communication. In this study, we also equip processes with receiver collision detectors,
but assume that disruption is indistinguishable from collisions.

As detailed in [11, 26], the adversary in the t-disrupted model does not represent a
literal adversarial device; it cannot spoof messages or reactively jam a broadcast (i.e.,
? Research supported in part by the ICT Programme of the European Union under contract

number FP7-215270 (FRONTS), Microsoft, Deutsche Telekom, VeriSign .Com grant, Israeli
Defense Secretary (MFAT), US Air-Force and Rita Altura Trust Chair in Computer Sciences,
NUS (FRC) R-252-000-443-133, and Natural Sciences and Engineering Research Council of
Canada.

2 Shlomi Dolev, Seth Gilbert, Majid Khabbazian, and Calvin Newport

scan the channels to discover a broadcast in progress, then jam the remainder of trans-
mission). The adversary instead incarnates the unpredictable message loss that plagues
real radio network deployments. This message loss has many (non-malicious) causes,
including: unrelated protocols using the same unlicensed spectrum band, time-varying
multipath effects, and electromagnetic interference from non-radio devices, such as mi-
crowaves. The goal of the t-disrupted model is two-fold: (1) to improve efficiency: most
real radio network protocols have access to multiple communication channels,5 and
therefore theoretical algorithms should enjoy this same advantage; and (2) to improve
robustness: a protocol proved correct in a model with unpredictable message loss is a
protocol more likely to remain correct in a real deployment, where such loss is often
unavoidable.
Results: No Disruption. We start by showing that adding communication channels
makes broadcast more efficient, yielding O(log log n) rounds/hop in a network of di-
ameter D > log n with Θ(log n) channels. In more detail, in the setting with no dis-
ruption (t = 0), we present a randomized algorithm that solves broadcast in O((D +
log n)(log C + logn

C)) rounds, w.h.p. Notice, for a single channel (C = 1), our algo-
rithm has the same running time as the canonical Bar-Yehuda et. al algorithm [3], but as
the number of channels increases so does our algorithm’s performance advantage. This
comparison however, is not exact, as unlike [3], we assume collision detection. With
this in mind, we prove a lower bound Ω(D+ log2n

C) rounds for broadcast algorithms in
our collision detector-equipped model. It follows that for C = Ω(log n): our algorithm
is within a factor of O(log log n) of optimal, and for sufficiently small D, it is strictly
more efficient than the best possible single-channel algorithm.

The key insight of this algorithm is the following: At a high-level, standard single-
channel broadcast algorithms, such as [3], require processes to sequentially test log n
broadcast probabilities, exponentially distributed between 1/n and 1/2. The idea is that
for every process with transmitting neighbors, one of these probabilities will match
what is required for the message to be received. Our algorithm, by contrast, leverages
multiple communication channels to test multiple probabilities in parallel, allowing
processes to hone in on the correct probabilities more efficiently.

While it may not be surprising that some speed-up is possible using multiple chan-
nels, it is non-trivial to determine exactly what is feasible for two reasons. First, the
multiple communication channels can only speed up one part of the algorithm (i.e., the
contention resolution); it cannot speed-up the time to relay the message over long dis-
tances. Second, the multiple channels cannot all be used in parallel by any one proces-
sor, as each has only one transceiver. Thus, the “obvious” solutions, e.g., multiplexing
the single-channel protocol over multiple channels, are not applicable. If log n channels
could be used in parallel, we could readily achieve a rounds-per-hop cost of O(1); that
we can still achieve O(log log n) rounds-per-hop with only one transceiver, is, perhaps,
surprising.
Results: t-Disruption. Having showing that additional communication channels im-
proves efficiency, we next turn our attention to showing that they also improve robust-
ness. We now assume disruption (i.e., t > 0) and that processes have access to a com-

5 The 802.11 b/g network protocols [1], for example, divide the shared 2.4 Ghz band into 13
channels, while Bluetooth [4] divides the same band into 79 channels.

Leveraging Channel Diversity for Wireless Broadcast 3

mon source of random bits. We argue that this latter assumption is often justified in
practice, as most radio network deployments require devices to be configured with a
common network id, and a hash of this id can provide a seed for a pseudo-random bit
generator.6

In this setting, we present a randomized algorithm that solves broadcast in O((D +
log n)(C log C log log C

C−t + logn
C−t)) rounds, w.h.p., where t is the upper bound on disrupted

channels. Notice, for t up to a constant factor of C, this algorithm performs only a
factor of O(log log C) slower than the no disruption case. In other words, even with
lots of disruption, our multi-channel algorithm still outperforms the best possible single
channel solution in many cases, and is more efficient than the canonical single chan-
nel algorithm of [3]. The key insight of this algorithm is that we replace the broadcast
and receive primitives used in the no disruption case with simulated versions. These
simulated broadcasts and receives use the common randomness to generate coordinated
random frequency hopping patterns. These patterns are used to evade adversarial dis-
ruption with sufficient probability for the original no disruption arguments to still apply.

Lastly, we consider the case with disruption and no common randomness. We de-
scribe a randomized algorithm that solves broadcast in this setting inO((D+log n) CtC−t ·
log (nt)) rounds, w.h.p. Notice, for large t, this algorithm now performs slightly worse
than [3], but this is arguably still a reasonable price to pay for the added robustness. We
conclude by showing this price to be not just reasonable, but also be necessary. In more
detail, we prove a lower bound of Ω((D+ log n) CtC−t) rounds to solve broadcast in this
setting.
Related Work. We use the terminology multihop broadcast to describe the problem
addressed in this paper, as we want to clearly separate it from the local broadcast prob-
lem we solve as a subroutine. Previous work on this problem, however, has used both
reliable broadcast (e.g., [19]) and broadcast (e.g., [3]) to refer to the same problem. All
terms describe the same goal of disseminating a message from a single distinguished
source to every process in a radio network.

Theoretical concern with broadcasting in radio networks began with the investiga-
tion of centralized solutions. Chlamtac and Kutten [5] opened the topic by proving the
calculation of optimal broadcast schedules to be NP-hard, Chlamtac and Weinstein [6]
followed with a polynomial-time algorithm that guaranteed schedule lengths of size
O(D log2 n), and Alon et al. proved the existence of constant diameter graphs that re-
quire Ω(log2 n) rounds [2]. An oft-cited paper by Bar Yehuda et al. [3] introduced the
first distributed solution to broadcast, launching a long series of papers investigating
distributed solutions under different model assumptions; c.f., [7–10,22]. The algorithm
in [3] assumes no topology knowledge or collision detection, and solves broadcast in
O((D + log n) log (n)) rounds, w.h.p. In later work [10, 21], this bound was improved
toO((D+log n) log (n/D)), which performs better in graphs with large diameters. For
the assumption of no topology knowledge, these broadcast bounds can be considered
the best known. In centralized setting, the optimal result Θ(D + log2 n) in undirected
multi-hop networks is given in [16] and [23].

6 Note, if the adversary in the t-disrupted model represented an actual adversarial device, we
would have to worry about keeping such information secure. But as explained previously, this
adversary is an abstraction of the diverse, and hard to predict interference sources that plague
real networks, and does not represent behavior with malicious intent.

4 Shlomi Dolev, Seth Gilbert, Majid Khabbazian, and Calvin Newport

Our algorithm for the no disruption setting matches the Bar-Yehuda algorithm for
the case where C = 1, and performs increasingly better as we increase the number of
channels. Its comparability with the bound of [10, 21] depends on the diameter. Our
model, however, unlike the model in [3,10,21], assumes receiver collision detection, so
these comparisons are not exact. (The O(D log n)-time broadcast algorithm of [29], by
contrast, does assume collision detection, but a direct comparison is foiled in this case
because the model of [29] constrains the communication graph to be growth-bounded,
whereas our model, as in the canonical results referenced above, works for arbitrary
graphs.) This motivates the Ω(D+ log2 n

C) lower bound we prove in Section 6 for solv-
ing broadcast in our model. Notice, this implies that the best possible single-channel
broadcast algorithm in our model requires Ω(D + log2 n) rounds. For C = Ω(log n),
and sufficiently small D, our no disruption algorithm is strictly more efficient. In Sec-
tion 4, we show that even if we introduce significant disruption, if we assume a common
source of randomness we still outperform the best possible single channel solution in
many cases.

Koo [19] considered broadcast in a model that assumed a single channel and Byzan-
tine failures, which, due to their ability to spoof messages, are arguably more chal-
lenging than the disruption faults considered in our work. The corrupt processes in this
model, however, could not disrupt communication. In later work, Koo, now collaborat-
ing with Bhandari, Katz, and Vaidya [20], extended the model to allow for a bounded
number of collisions. Their focus was on feasibility (i.e., for what amount of corrup-
tions is broadcast still solvable) not time complexity. Drabkin et al. [15] and Pelc and
Peleg [27] both studied broadcast in radio network models that assume a single channel
and probabilistic message corruption. Finally, in recent work, Richa et al. [28] con-
sidered efficient MAC protocols in a single channel, multihop radio network, with an
adversary that can cause a bounded amount of communication disruption.

2 Model

We model a synchronous multihop radio network with multiple communication chan-
nels, symmetric communication links, receiver collision detection, and adversarial dis-
ruption. In the following, for integer x > 1, let [x] = {1, ..., x}, and assume log denotes
the base-2 logarithm. Fix an undirected graph G = (V,E), with diameter D, where the
vertexes in V correspond to the n > 1 processes in the network, which we uniquely
label from [n]. We assume processes know n. To simplify notation we also assume that
n is a power of 2. In this paper, when we denote a property holds with high probability
(w.h.p.), we assume a probability of at least 1 − 1

nx , for some sufficiently large posi-
tive integer x. Fix a set [C] of communication channels for some integer C ≥ 1, and
a known upper bound on disruption, t, 0 ≤ t ≤ C. Executions in our model proceeds
in synchronous rounds labeled 1, 2, Because we study broadcast problems, we as-
sume processes can receive a message from and output a message to the environment,
during each round. All processes start in round 1, but following the standard assumption
made in the study of multihop broadcast (e.g., [3]), we assume no process can broadcast
before it receives a message, either from another process or the environment.

To model disruption, we use the t-disrupted model, which was introduced in [13],
and has since been extensively studied in the context of both single hop and multihop

Leveraging Channel Diversity for Wireless Broadcast 5

radio networks [11–14, 17, 26, 30, 31]. (See [11] for a good overview of this model
and results.7) In the t-disrupted model, in each round r, an adversary chooses, for each
process i, a set disp(i, r) of up to t channels to disrupt. The adversary can use the
history of the execution through round r − 1, as well as the process definitions, in de-
ciding disp(i, r). It does not, however, have advance knowledge of the random choices
made in r. We consider two cases for the random choices: (i) common randomness,
where processes can access a common source of random bits in each round, and (ii) no
common randomness, case where the bits are independent at each process. Next, each
process i chooses a channel c ∈ [C] on which to participate, and decides whether to
broadcast or receive. If i broadcasts it receives nothing. If i receives, three behaviors
are possible: (1) if no neighbor of i in G broadcasts on c in r and c /∈ disp(i, r), i
detects silence, indicated by ⊥; (2) if exactly one neighbor j of i in G broadcasts on c
in r, and c /∈ disp(i, r), i receives j’s message; (3) if two or more neighbors of i in G
broadcast on c in r, or c ∈ disp(i, r), i detects a collision, indicated by ±. (That is, re-
ceiving on a disrupted channel is indistinguishable from detecting a collision.) Notice,
i learns nothing about the activities of processes on other channels during this round.
The Multihop Broadcast Problem. Our goal in this paper is to define bounds for the
multihop broadcast problem, which is defined as follows: At the beginning of round 1, a
single source process is provided a messagem by the environment. We say an algorithm
solves the multihop broadcast problem in r rounds if and only if every process outputs
m by round r, w.h.p.
The Local Broadcast Problem. In this paper, following the approach of [18], we de-
compose multihop broadcast into first solving local broadcast, and then using the con-
struction presented in [18] to transform this local solution into a global one.

In more detail, the TA-local broadcast problem, for positive integer TA, assumes that
the environment injects a message m at arbitrary processes at arbitrary times, and that
every process that receives the message from the environment must eventually output
ack. We say an algorithm solves the TA-local broadcast problem if and only if the
following hold: (a) If some process i receives the message from the environment in
round r and outputs ack in round r′ ≥ r, then all neighbors of i output the message
by round r′, w.h.p. (b) We say a process is active in a given round r if it received the
message from the environment in some round r′ ≤ r, and it has not yet output ack by
the beginning of r. Given any interval of TA rounds, if process i has a neighbor that
is active in every round of the interval, then i outputs the message by the end of the
interval, with constant probability.
Transforming Local Broadcast to Multihop Broadcast. The following theorem, which
follows from Theorem 7.8 of [18], reduces the problem of multihop broadcast to local
broadcast: 8

7 This model has been called many different names. Originally [13] it was unnamed; later works
[11,14] called it the disrupted radio network model; it was only in more recent work [26] that
the more descriptive name of t-disrupted was introduced.

8 Formally, the local broadcast problem described above is a simplified presentation of the Ab-
stract MAC Layer formalism first introduced in [24]. The result cited from [18] provides an
implementation of multihop broadcast that uses a probabilistic Abstract MAC Layer imple-
mentation. Our definition of local broadcast simplifies the Abstract MAC Layer definition
down to only the properties needed to apply the transformation in [18]. In more detail, receiv-

6 Shlomi Dolev, Seth Gilbert, Majid Khabbazian, and Calvin Newport

Theorem 1 (Theorem 7.8 of [18]). Given an algorithm that solves the TA-local broad-
cast problem, we can construct an algorithm that solves the multihop broadcast problem
in O((D + log n)TA) rounds.

3 Upper Bound for No Disruption

We begin with an algorithm for the case with no disruption (i.e., t = 0), that solves
multihop broadcast in O((D + log n)(log C + logn

C)) rounds. For C = 1, this running
time matches the canonical broadcast algorithm of Bar-Yehuda et al. [3], but as the
number of channels increases so does our performance advantage. In Section 6, we will
prove that for sufficiently large C, this is within a O(log log n) factor of optimal.

As described in Section 2, our approach is to first solve the local broadcast problem,
then apply Theorem 1 to generate our global solution. Our algorithm only makes use of
up to log n channels, so in this section we assume, w.l.o.g., C ≤ log n.
Intuition. The key insight of our protocol is to trade channel diversity for time complex-
ity. Most existing broadcast algorithms (e.g., [3]) described at a high level, have pro-
cesses sequentially test log n different broadcast probabilities exponentially distributed
between 1/n and 1/2. For each process waiting to receive a message from transmit-
ting neighbors, one of these probabilities should sufficiently reduce the contention and
hence match what is needed to ensure that the message is delivered. Our algorithm, by
contrast, leverages multiple channels to test multiple probabilities in parallel, gaining
efficiency.

Our local broadcast algorithm consists of two subroutines: SEARCH and LISTEN.
During, SEARCH, processes assign an exponential distribution of probabilities to the
channels (captured by schan in our algorithm description). A receiving process can
then do a binary search over the channels (with silence indicating the probability is too
low, and a collision indicating too high), to find the probability that best matches the
number of transmitting neighbors. (This search is what necessitates receiver collision
detection in our model.) If C ≤ log n, however, then this SEARCH subroutine identifies
only a rough range of log n/C probabilities, in which is included the right probability
for actually receiving a message. During the LISTEN subroutine, transmitting processes
cycle through the different probabilities assigned to each channel (captured by lchan
in our algorithm description).9 In both subroutines, care must be taken to account for
the fact that many processes are both transmitters and receivers: a problem we solve by
having processes choose a role with probability 1/2.
Algorithm Description. The local broadcast algorithm has all processes alternate be-
tween executing the SEARCH and LISTEN subroutines presented in Figure 1, starting

ing a message m from the environment in our model corresponds to bcast(m) in the Abstract
MAC Layer, and outputting the message corresponds to calling recv(m). In addition, the TA
parameter corresponds to fprog(∆), the constant probability of the TA property holding corre-
sponds to 1−εprog , and the high probability of all neighbors eventually outputting the message
corresponds to 1− εack. We do not define an equivalent of fack or frcv , as neither are used in
the transformation. We point the interested reader to [18] for more details.

9 To make the probabilities work in our proofs, transmitters also try, for each channel, a constant
number of probabilities from the neighboring channels. This is why lchan cycles through
logn/C +O(1) different probability assignments, not just logn/C.

Leveraging Channel Diversity for Wireless Broadcast 7

in round 1. Each call to SEARCH returns a candidate channel c1, and the following call
to LISTEN is made with channel = c1. On receiving a message msg from the envi-
ronment, a process sets m← msg, and continues to try to transmit the message for the
subsequent AMAX calls to both subroutines, starting with the next call to SEARCH.
After these AMAX calls it outputs ack. In all other rounds, it sets m ← ⊥. (Note, as
required by our model, processes do not broadcast until they first receive a message.)

Constants Used in Algorithm. Let k = d lognC e. The constant k represents the (ap-
proximate) number of probabilities assigned to each channel. Let pc = 1/2k(c−1)+1,
for c ∈ [C]. The function schan() returns channel c ∈ [C] with probability pc, and the
null channel 0 with the sum of the remaining probability: 1−

∑
c∈[C] pc. That is, schan

chooses channels using an exponential probability distribution.

Next, we define a family of functions lchan(r), for r ∈ {1, ..., k + 3}. Intuitively,
lchan partitions the log n probabilities from { 1n ,

2
n , ...,

1
2} among the C channels. This

means that k, defined above as d lognC e, describes the number of probabilities in each
channel partition. For each index passed to lchan, it assigns channels one of the prob-
abilities from their partition, and then randomly selects a channel based on this distri-
bution. The function lchan(r) is defined as follows: if r = 1, it returns channel 1 with
probability 0; if r > k + 1, it returns channel C with probability 0; if r = k + 3 and
k = 1, it returns channel C − 1 with probability 0; for all other r and c pairs, it returns
channel c with probability (2pc)/2

r−1. As with schan(), it returns the null channel 0
with the sum of the remaining probabilities for the given r value. The function lchanis
defined for more than k values (i.e., k + 3 instead of k) because, to simplify the proof
later, it helps if in addition to using every probability in a given channel’s partition,
we also use a constant number of probabilities that have been assigned to neighboring
channels.

Finally, let SMAX = 2(dlog (C)e + 1), LMAX = d lognC e + 3, and AMAX =
Θ(log n), where the constants are defined in our main theorem proof.

SEARCH(m)
c1 ← 1; c2 ← C; count← 1
while count ≤ SMAX
phase← random(broadcast, listen)
if (phase = broadcast) and (m 6= ⊥)
bc ← schan()
bcast(m, bc)

else if (phase = listen) and (c1 6= c2)
channel← dc1 + (c2 − c1)/2e
rmsg ← recv(channel)
if (rmsg = ⊥) then c2 ← channel − 1
else c1 ← channel

count← count+ 1

LISTEN(m, channel)
count← 1
while count ≤ LMAX
phase← random(broadcast, listen)
if (phase = broadcast) and (m 6= ⊥) then
bc ← lchan(count)
bcast(m, bc)

else
rmsg ← recv(channel)
if (rmsg 6= ⊥) and (rmsg 6= ±) then

output(rmsg)
count← count+ 1

Fig. 1. The SEARCH and LISTEN subroutines called by our local broadcast solution. SMAX =
Θ(log C) and LMAX = Θ(logn/C).

8 Shlomi Dolev, Seth Gilbert, Majid Khabbazian, and Calvin Newport

Correctness Proof. We prove that each pair of calls to SEARCH and LISTEN receives
a message with constant probability, assuming there is a message to be received. We also
prove that over AMAX calls to these subroutines, a message is received w.h.p. It follows
that we solve TA-local broadcast problem for TA = O(SMAX + LMAX), which
when combined with Theorem 1 yields an algorithm that solves multihop broadcast
problem in O((D + log n)(log C + logn

C)) rounds.
To begin the proof, fix a process i and a call to SEARCH. Let I , |I| ≤ ∆, be the set

of active neighbors of i during this call—that is, the neighbors of i with a message to
send (i.e., m 6= ⊥ in their call to SEARCH). We say a call to SEARCH is valid for this
process i if and only if these following three conditions hold: (1) at the conclusion of
the subroutine, c1 = c2; (2) for each recv(c), if pc|I| ≤ 1

2 , it returns⊥; and (3) for each
recv(c), if pc|I| ≥ 4, it does not return⊥. (Otherwise, if a call to SEARCH is invalid, it
may return a channel with too much or too little contention.) We prove this occurs with
constant probability:
Lemma 1. The call to SEARCH is valid with constant probability.

Proof (Proof (sketch)). To prove the first condition of validity we must show that SEARCH
sets phase← listen at least γ ≥ (dlog(C)e+1) times. Since this occurs according to a
binomial distribution, with median 1

2 · SMAX ≥ γ, we conclude that with probability
at least 1

2 the SEARCH completes with c1 = c2.
To prove the second condition, let L contain every channel c such that i receives on

c and assume pc|I| ≤ 1
2 . For a given c ∈ L, the condition holds with probability (1 −

1
2pc)

|I|, and hence by a union bound, the condition holds over all relevant rounds with
probability at least 1/2. We prove the third condition in a similar manner, concluding
that the condition holds over all relevant rounds with probability at least 0.8.

We now show that if process i’s call to SEARCH is valid then, with constant proba-
bility, process iwill receive a message during the subsequent call to LISTEN (assuming,
of course, |I| > 0).
Lemma 2. Suppose process i’s call to SEARCH is valid and |I| > 0. Then, process i
will receive a message during the subsequent LISTEN subroutine, with constant proba-
bility.

Proof (Proof (sketch)). Let c be the channel returned by the call to SEARCH.
We consider two cases for the size of I . In the first case, assume |I| = 1. Here,

pc′ |I| ≤ 1
2 for every channel c′ > 1. Since we assume SEARCH was valid (with

constant probability), every call to recv during the subroutine would return⊥. It follows
that LISTEN executes on channel c = 1, where process i will receive a message with
probability at least 1

2 ·
1
2 · p1 = 1

8 .
For the second case, assume |I| > 1. Let pmin be the smallest non-0 probability

assigned to channel c in all k + 3 calls to lchan in the listen phase, and let pmax be
the largest probability. We can then bound both pmax and pmin: pmax|I| ≥ 1 and
pmin|I| ≤ 2.

By definition, pmin ≤ pmax. Combined, we conclude that there must exists a prob-
ability p′, among those assigned to channel c by lchan during LISTEN such that
1 ≤ p′|I| ≤ 2. Consider the LISTEN round during which p′ is assigned to chan-
nel c by lchan. During this round, process i will receive a message with probabil-
ity prcv ≥ 1

2p
′′|I|(1 − p′′)|I|−1, where p′′ = p′

2 is the probability that a process

Leveraging Channel Diversity for Wireless Broadcast 9

broadcasts in channel c in that round, and the first 1
2 bounds the probability that i

receives. Note that 1
2 ≤ p′′|I| ≤ 1 and p′′ ≤ 1

2 . We now simplify prcv: prcv =
1
2p
′′|I| (1− p′′)|I|−1 ≥ 1

2p
′′|I| (1− p′′)|I|. This later term is greater than or equal to

1
2p
′′|I|

(
1
4

)p′′|I| ≥ 1
2 ·

1
4 = 1

8 . Notice, the third step uses our above-stated fact that
p′′ ≤ 1

2 , and the fourth step uses the other above-stated fact that 1
2 ≤ p

′′|I| ≤ 1.

We can now prove that the algorithm solves the local broadcast problem.

Lemma 3. The algorithm solves the 2(SMAX +LMAX)-local broadcast problem.

Proof. By Lemmas 1 and 2, we know the algorithm satisfies property (b) of the local
broadcast problem, for TA = 2(SMAX + LMAX) (the factor of 2 accounts for the
case that a message arrives after SEARCH has begun, necessitating we wait until the
next call to SEARCH begins before the process begins trying to send the message).
To show the algorithm satisfies property (a), assume that some process i receives the
message from the environment for the first time at some round r. Let j be a neighbor
of i. By our above argument, over the next AMAX pairs of calls to SEARCH and
LISTEN, j will receive the message from i (or another neighboring process) with some
constant probability p. Process j therefore fails to receive the message in all AMAX
pair of calls, with probability no greater than (1 − p)AMAX ≤ e−p·AMAX . Because p
is constant and AMAX = O(log n), for sufficiently large constant factors, this failure
with probability no more than 1

nx+1 , for any positive constant x. By a union bound over
the O(n) neighbors of i, property (a) holds w.h.p., as needed.

Given Lemma 3, we can now apply Theorem 1 to derive our final result:

Theorem 2. We can construct an algorithm that solves the multihop broadcast problem
with no disruption (t = 0) in O((D + log n)(log C + logn

C)) rounds.

4 Upper Bound for Disruption and Common Randomness

In this section, we assume that channels may be disrupted (i.e., t > 0) and that processes
have access to a common source of randomness. We present an algorithm that solves the
multihop broadcast problem in O((D+ log n)(C log C log log C

C−t + logn
C−t)) rounds, where t

is the known upper bound on disrupted channels. Therefore, for even large amounts of
disruption (i.e., for any t up to a constant factor of C) our disruption-tolerant protocol
performs only a factor of O(log log C) slower than our no disruption protocol from
Section 3. This means that for sufficiently large C, we still outperform the best possible
single channel solution in many cases, and are more efficient than the canonical single
channel algorithm of [3]. It follows that common randomness is a potent weapon against
disruptive interference.
Intuition. Our approach is to extend the no disruption algorithm from Section 3. In
more detail, we replace the broadcast and received primitives of the no disruption pro-
tocol with disruption-tolerant versions that use coordinated frequency hopping (speci-
fied by the common random bits) to evade disruption. We show that the new sim-recv
subroutine outputs the same value as its no disruption counterpart (i.e., the recv subrou-
tine) with just enough probability to ensure that our analysis still applies. Note that the

10 Shlomi Dolev, Seth Gilbert, Majid Khabbazian, and Calvin Newport

sim-bcastγ(m, c):
simcount← 1
while simcount ≤ γ
ψ ← a channel permutation generated with
common source of randomness for this round.
bcast(m,ψ(c))
simcount← simcount+ 1

sim-recvγ(c)
rmsg ← ±; simcount← 1
while simcount ≤ γ
ψ ← a channel permutation generated with
common source of randomness for this round.
m← recv(ψ(c))
if m 6= ± then rmsg ← m
simcount← simcount+ 1

return rmsg

Fig. 2. The simulated broadcast and receive functions that replace the bcast and recv functions
of the no disruption algorithm (Figure 1) to produce a local broadcast algorithm for the setting
with disruption and a common source of randomness. For SEARCH, γ = Θ(CC−t log log C), and
for LISTEN, γ = Θ(CC−t).

new subroutines call the bcast and recv functions several times, but not so much that
the running time becomes unwieldy.
Algorithm Description. Our local broadcast algorithm replaces each call to bcast and
recv in the no disruption subroutines from Figure 1, with calls to simulated broadcasts
and receives that use multiple rounds to evade disruption. In more detail, in our mod-
ified version of the SEARCH subroutine from Figure 1, which we call DSEARCH,
we replace each call to bcast(m, bc) with a call to sim-bcastγS (m, bc), and each call to
recv(channel) with a call to sim-recvγS (channel), where sim-bcast and sim-recv are
defined in Figure 2, and γS = Θ(CC−t log log C). For the modified LISTEN subroutine,
which we call DLISTEN, we do the same replacement of bcast and recv with sim-bcast
and sim-recv, substituting γL = Θ(CC−t) for γS . For any round r of an execution, we
assume that every process generating the random channel permutation ψ during r, will
generate the same permutation, using the common randomness.
Correctness Proof. We begin by bounding the probability that our simulated bcast and
receives behave the same as if we were in the no disruption setting. This claim follows
primarily from the fact that the probability that the adversary disrupts every channel in
ψ(c) in the relevant round is O(1/ log C).

Lemma 4. Suppose process i calls sim-recv during some round of DSEARCH, and all
of i’s neighbors also call either sim-bcast or sim-recv during this same round. With
probability at least 1−O(1

log C), sim-recv will return i the same value as if these same
processes had called bcast and recv, with the same parameters, in the setting where
t = 0.

If we replace γS with γL, we can show a similar result for DLISTEN, this time with
constant probability:

Lemma 5. Suppose process i calls sim-recv during some round of DSEARCH, and all
of i’s neighbors also call either sim-bcast or sim-recv during this same round. With
constant probability, sim-recv will return i the same value as if these same processes
had called bcast and recv, with the same parameters, in the setting where t = 0.

We now show, much as in Section 3, that the local broadcast performs well:

Leveraging Channel Diversity for Wireless Broadcast 11

Lemma 6. The algorithm solves the 2(SMAX · γS + LMAX · γL)-local broadcast
problem.

Given Lemma 6, we apply Theorem 1 to derive our final result regarding multihop
broadcast:

Theorem 3. We can construct an algorithm that solves the multihop broadcast problem
with common randomness in O((D + log n)(C log C log log C

C−t + logn
C−t)) rounds.

5 Upper Bound for Disruption and No Common Randomness

In this section, we assume disruption and no common source of randomness. We present
an algorithm that solves multihop broadcast in O((D + log n) CtC−t log (

n
t)) rounds. In

Section 6, we prove this to be within a factor of O(log (nt)) of optimal. Unlike the
common randomness case, here we actually perform (slightly) worse than the single
channel algorithm of [3] (at least, for large t). This difference, however, is bounded by
a factor of O(log n), which is arguably still a reasonable price to pay for the increased
robustness. In the following, we assume w.l.o.g. that C < 2t.
Intuition. There are three basic challenges to overcome: First, because some t chan-
nels are disrupted, processes must attempt to communicate on more than t channels,
and to avoid the disruption, the communication must be randomized. Second, since the
processes have no source of common randomness, the random channel selection po-
tentially delays the receivers from finding the broadcasts. Third, processes still have to
solve the problem of contention, i.e., the fact that many broadcasters may be competing
to send a message. To overcome these problems, we have processes repeatedly choose
channels uniformly at random, cycling through the log n broadcast probabilities that are
exponentially distributed between 1/n and 1/2.
Algorithm Description. Our local broadcast algorithm works as follows. First, the ex-
ecution is divided into epochs of length dlog n/Ce. If a message is injected at a process
v in some round r, then process v waits until the beginning of the next epoch before
trying to disseminate the message. We say that a process that has received message m
by the first round of some epoch e, but has not yet returned an acknowledgment for m,
participates in epoch e. In each round of an epoch, each participating process decides
whether to broadcast and on which channel. In particular, in round r, a participating
process v broadcasts with probability 1/2r; it chooses channel c ∈ [C] with probability
1/C. Every process u that is not broadcasting a message chooses a channel on which to
listen with the same uniform probability 1/C. A process v returns an acknowledgment
when it has participated for Θ((C2 log n)/(C − t)) epochs.
Correctness. We argue that this protocol solves TA-local broadcast for
TA = O((C2 log n/C)/(C − t)). We first argue that if process u has a participating
neighbor in epoch e, then by the end of the epoch, it receives the message with constant
probability:

Lemma 7. Let u be a process that has not received the messagem prior to epoch e. Let
V be the set of neighbors of u participating in epoch e, and assume that |V | > 0. Then
with probability at least (C − t)/(32C2), u receives message m by the end of epoch e.

12 Shlomi Dolev, Seth Gilbert, Majid Khabbazian, and Calvin Newport

Proof (Proof (sketch)). Process u receives the message m in a round r if the following
three conditions are satisfied: (a) there is exactly one process in v ∈ V that broadcasts
in round r; (b) the channel selected by v is not disrupted in round r; and (c) process u
chooses to listen on the same channel on which v broadcasts in round r. Consider round
r = dlog |V |e in epoch e. We now bound the probability that these three events occur.

Let c ∈ C be the channel chosen by u in round r of epoch e. With probability
(C − t)/C we observe that c is not disrupted. We calculate the probability that exactly
one participating process in V broadcasts on channel c:

∑
v∈V

1
C2r
(
1− 1

C2r
)|V |−1 ≥

1/(32C). Thus, with probability (C − t)/(32C2), process u receives the message by the
end of the epoch.

From this we conclude that the protocol solves the TA-local broadcast problem:
Lemma 8. The specified protocol solves the TA-local broadcast problem for TA =

O(C
2 log(n/C)
(C−t)).

Proof. First, we argue that every process with active neighbors receives the message
within time TA with constant probability. Consider a process u. By Lemma 7, during
each epoch in which a neighbor participates, u receives the message with probability
(C − t)/(32C2). Thus, over (32C2/(C − t)) epochs, process u receives the message
with constant probability. An active neighbor may not participate for the first epoch
when it receives the message, and from this we conclude that if TA = [(32C2/(C −
t)) + 1] log(n/C), then u receives the message as required.

Next, we argue that when a node sends an acknowledgment, every neighboring pro-
cess has received the message. Specifically: in each epoch, each neighbor receives the
message with constant probability. Thus within O(log n) epochs, every neighbor has
received the message with high probability, as required.

Since t < C ≤ 2t, we can apply Theorem 1 to conclude:
Theorem 4. We can construct an algorithm that solves the multihop broadcast problem
without common randomness in O((D + log n)(CtC−t) log (

n
t)) rounds.

6 Lower Bounds

We begin by showing that the O((D+ log n)(log C + logn
C))-time broadcast algorithm

from Section 3 is (almost) tight for sufficiently large C, by proving a Ω(D + log2 n
C)

lower bound for solving broadcast in this setting. (In more detail, for C = Ω(log n), the
upper bound is within a factor of O(log log n) of the lower.)

Theorem 5. For any D ≤ n/2: every multihop broadcast algorithm requires Ω(D +
log2 n
C) rounds.

Proof. We first note that we can simulate any protocol for a network with C > 1 in a
network where C = 1. In more detail, we use C rounds in the single channel network to
simulate each round from the multi-channel network, with each simulation round being
dedicated to a different channel. It follows that if f(n) is a lower bound for multihop
broadcast in a network where C = 1, then f(n)/C is a lower bound for networks with
larger C. The question remains what lower bounds apply to our network model with

Leveraging Channel Diversity for Wireless Broadcast 13

C = 1. The commonly cited Ω(D log (n/D)) bound of Kushilevitz and Mansour [25],
proved for randomized distributed multihop broadcast, does not apply in our setting, as
we assume receiver collision detection. In fact, there are no bounds, that we know of,
specific to distributed broadcast with collision detection. With this in mind, we turn to
the bound for centralized solutions to broadcast in single channel networks, from [2].
This bound proves that there exists a family of constant-diameter graphs such that every
centralized broadcast algorithm requires at least f(n) = Ω(log2 n) rounds. Centralized
solutions, of course, are stronger than randomized distributed solutions with collision
detection, so a bound for the former certainly holds for the latter. By our above sim-
ulation argument, it holds that no algorithm can solve multihop broadcast in less than
f(n)/C = Ω(log

2 n
C) rounds. If we replace n with n − D, due to our assumption that

D ≤ n/2 we get a network of size O(n) that still requires Ω(log
2 n
C) rounds to broad-

cast in. If we put this network on one end of a line of D nodes, and make the far end
the broadcast source, the bound extends to Ω(D + log2 n

C).

We now continue with a lower bound for the setting with disruption (t > 0) and no
common source of randomness. In Section 5, we presented aO((D+log n) CtC−t log (

n
t))-

time broadcast algorithm in this setting. Our lower bound below shows this to be within
a factor of O(log (nt)) of optimal. This bound uses the following fact, first proved in
our study of the wireless synchronization problem in the t-disrupted model [12]:

Lemma 9 (Theorem 4 of [12]). Assume there are two processes u and v attempting to
communicate in a t-disrupted network with C channels, t > 0, and no common source
of randomness. Fix a constant ε. With probability ε, u and v cannot communicate for
Ω(CtC−t log(1/ε)) rounds.

We use this fact to prove our bound on broadcast:

Theorem 6. Assume no common source of randomness. It follows that every algorithm
requires Ω((D + log n) CtC−t) rounds to solve the multihop broadcast problem.

Proof. We consider two different networks. First, consider the simple network with
only two processes, u and v. Lemma 9 shows that for ε = 2/n there is a probability of
at least 2/n that u and v do not communicate for Ω(log n CtC−t) rounds.

Next, consider the “line” network consisting of a set of processes v0, v2, ..., vD,
where v0 is the source and can communicate only with v1, and, for 0 < i < D, vi
can communicate only with vi−1 and vi+1. Fix ε′ = 1/4e. By Lemma 9, we know that
with probability 1−ε′, for some constant c, it takes vi at least c(CtC−t) rounds to transmit
the message to vi+1.

We now calculate the probability that for some D/2 of the vi, the communication
from vi to vi+1 is faster than c(CtC−t). In particular, for a given set of D/2 links, the
probability is ε′D/2 that each communication from vi to vi+1 is faster than c(CtC−t).
Moreover, there are at most

(
D
D/2

)
≤ (2e)D/2 such sets of D/2 links. Thus, for ε′ <

1/4e, we conclude that the probability of D/2 links exceeding the specified speed is at
most (2eε′)D/2 < (1/2)D/2 ≤ 1/2 (where D > 1). Thus, with probability at least 1/2,
half the links require time Ω(CtC−t), leading to a running time of Ω(D Ct

C−t). Combining
these two claims yields the desired result.

7 Conclusion and Future Work

In this paper, we study the problem of multihop broadcast in a radio network model
that assumes multiple channels and a bounded amount of adversarial disruption. We
show that additional communication channels can add both efficiency (as compared to
the single channel setting) and robustness (in terms of resilience to a bounded amount
of adversarial communication disruption). These advantages are especially pronounced
if we assume a common source of randomness. This reinforces our belief that broadcast
algorithms should better leverage the multiple communication channels made available
today by most popular radio protocols.
An interesting future work is to relax the assumption on the knowledge of an upper
bound on t, and design algorithms that perform with running time relative to the actual
amount of adversarial disruption. Another interesting future work is to design determin-
istic solutions that leverage the multi-selectors introduced in [17].

References

1. IEEE 802.11. Wireless LAN MAC and Physical Layer Specifications, June 1999.
2. N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A Lower Bound for Radio Broadcast. Journal

of Computer System Sciences, 43(2):290–298, 1991.
3. R. Bar-Yehuda, O. Goldreich, and A. Itai. On the Time-Complexity of Broadcast in Multi-

Hop Radio Networks: An Exponential Gap Between Determinism and Randomization. Jour-
nal of Computer and System Sciences, 45(1):104–126, 1992.

4. Bluetooth Consortium. Bluetooth Specification Version 2.1, July 2007.
5. I. Chlamtac and S. Kutten. On Broadcasting in Radio Networks: Problem Analysis and

Protocol Design. IEEE Transactions on Communications, 33(12):1240–1246, 1985.
6. I. Chlamtac and O. Weinstein. The wave expansion approach to braodcasting in multihop

radio networks. IEEE Transactions on Communications, 39:426–433, 1991.
7. B. S. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter. Deterministic Broadcasting

in Ad Hoc Radio Networks. Distributed Computing, 15(1):27–38, 2002.
8. Bogdan S. Chlebus, Leszek Gasieniec, Alan Gibbons, Andrzej Pelc, and Wojciech Rytter.

Deterministic Broadcasting in Unknown Radio Networks. In Proceedings of the Symposium
on Discrete Algorithms, 2000.

9. A. Clementi, A. Monti, and R. Silvestri. Round Robin is Optimal for Fault-Tolerant Broad-
casting on Wireless Networks. Journal of Parallel and Distributed Computing, 64(1):89–96,
2004.

10. Artur Czumaj and Wojciech Rytter. Broadcasting Algorithms in Radio Networks with Un-
known Topology. In Proceedings of the Symposium on Foundations of Computer Science,
2003.

11. Shlomi Dolev, Seth Gilbert, Rachid Guerraoui, Dariusz R. Kowalski, Calvin Newport, Fabian
Kohn, and Nancy Lynch. Reliable Distributed Computing on Unreliable Radio Channels. In
the Proceedings of the 2009 MobiHoc S3 Workshop, 2009.

12. Shlomi Dolev, Seth Gilbert, Rachid Guerraoui, Fabian Kuhn, and Calvin Newport. The Wire-
less Synchronization Problem. In Proceedings of the International Symposium on Principles
of Distributed Computing, 2009.

13. Shlomi Dolev, Seth Gilbert, Rachid Guerraoui, and Calvin Newport. Gossiping in a Multi-
Channel Radio Network: An Oblivious Approach to Coping with Malicious Interference. In
Proceedings of the International Symposium on Distributed Computing, 2007.

Leveraging Channel Diversity for Wireless Broadcast 15

14. Shlomi Dolev, Seth Gilbert, Rachid Guerraoui, and Calvin Newport. Secure Communica-
tion Over Radio Channels. In Proceedings of the International Symposium on Principles of
Distributed Computing, 2008.

15. Vadim Drabkin, Roy Friedman, and Marc Segal. Efficient byzantine broadcast in wireless
ad hoc networks. In Proceedings of the Conference on Dependable Systems and Networks,
pages 160–169, 2005.

16. L. Gasieniec, D. Peleg, and Q. Xin. Faster Communication in Known Topology Radio Net-
works. Distributed Computing, 19(4):289–300, 2007.

17. Seth Gilbert, Rachid Guerraoui, Darek Kowalski, and Calvin Newport. Interference-Resilient
Information Exchange. In the Proceedings of the Conference on Computer Communication,
2009.

18. Majid Khabbazian, Dariusz Kowalski, Fabian Kuhn, and Nancy Lynch. Decomposing Broad-
cast Algorithms Using Abstract MAC Layers. In Proceedings of the International Workshop
on Foundations of Mobile Computing, 2010.

19. C-Y. Koo. Broadcast in radio networks tolerating byzantine adversarial behavior. In Proceed-
ings of the International Symposium on Principles of Distributed Computing, pages 275–282,
2004.

20. Chiu-Yuen Koo, Vartika Bhandari, Jonathan Katz, and Nitin H. Vaidya. Reliable broadcast in
radio networks: The bounded collision case. In Proceedings of the International Symposium
on Principles of Distributed Computing, 2006.

21. D. Kowalski and A. Pelc. Broadcasting in Undirected Ad Hoc Radio Networks. In Proceed-
ings of the International Symposium on Principles of Distributed Computing, 2003.

22. D. Kowalski and A. Pelc. Time of Deterministic Broadcasting in Radio Networks with Local
Knowledge. SIAM Journal on Computing, 33(4):870–891, 2004.

23. D. Kowalski and A. Pelc. Optimal Deterministic Broadcasting in Known Topology Radio
Networks. Distributed Computing, 19(3):185–195, 2007.

24. Fabian Kuhn, Nancy Lynch, and Calvin Newport. The Abstract MAC Layer. In Proceedings
of the International Symposium on Distributed Computing, 2009.

25. E. Kushilevitz and Y. Mansour. An Ω(D log (N/D)) Lower Bound for Broadcast in Radio
Networks. SIAM Journal on Computing, 27(3):702–712, 1998.

26. Calvin Newport. Distributed Computation on Unreliable Radio Channels. PhD thesis, MIT,
2009.

27. Andrzej Pelc and David Peleg. Feasibility and Complexity of Broadcasting with Random
Transmission Failures. In Proceedings of the International Symposium on Principles of
Distributed Computing, 2005.

28. A. Richa, C. Scheideler, S. Schmid, and J. Zhang. A Jamming-Resistant MAC Protocol
for Multi-Hop Wireless Networks. In Proceedings of the International Symposium on Dis-
tributed Computing, 2010.

29. Johannes Schneider and Roger Wattenhofer. What Is the Use of Collision Detection (in Wire-
less Networks)? In Proceedings of the International Symposium on Distributed Computing,
2010.

30. Mario Strasser, Christina Pöpper, and Srdjan Capkun. Efficient Uncoordinated FHSS Anti-
jamming Communication. In Proceedings International Symposium on Mobile Ad Hoc Net-
working and Computing, 2009.

31. Mario Strasser, Christina Pöpper, Srdjan Capkun, and Mario Cagalj. Jamming-resistant Key
Establishment using Uncoordinated Frequency Hopping. In the Proceedings of the IEEE
Symposium on Security and Privacy, 2008.

