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ABSTRACT
In traditional game theory, players are typically endowed
with exogenously given knowledge of the structure of the
game—either full omniscient knowledge or partial but fixed
information. In real life, however, people are often unaware
of the utility of taking a particular action until they perform
research into its consequences. In this paper, we model this
phenomenon. We imagine a player engaged in a question-
and-answer session, asking questions both about his or her
own preferences and about the state of reality; thus we call
this setting “Socratic” game theory. In a Socratic game,
players begin with an a priori probability distribution over
many possible worlds, with a different utility function for
each world. Players can make queries, at some cost, to learn
partial information about which of the possible worlds is the
actual world, before choosing an action. We consider two
query models: (1) an unobservable-query model, in which
players learn only the response to their own queries, and
(2) an observable-query model, in which players also learn
which queries their opponents made.

The results in this paper consider cases in which the un-
derlying worlds of a two-player Socratic game are either
constant-sum games or strategically zero-sum games, a class
that generalizes constant-sum games to include all games in
which the sum of payoffs depends linearly on the interaction
between the players. When the underlying worlds are con-
stant sum, we give polynomial-time algorithms to find Nash
equilibria in both the observable- and unobservable-query
models. When the worlds are strategically zero sum, we give
efficient algorithms to find Nash equilibria in unobservable-
query Socratic games and correlated equilibria in observable-
query Socratic games.
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1. INTRODUCTION
Late October 1960. A smoky room. Democratic Party

strategists huddle around a map. How should the Kennedy
campaign allocate its remaining advertising budget? Should
it focus on, say, California or New York? The Nixon cam-
paign faces the same dilemma. Of course, neither campaign
knows the effectiveness of its advertising in each state. Per-
haps Californians are susceptible to Nixon’s advertising, but
are unresponsive to Kennedy’s. In light of this uncertainty,
the Kennedy campaign may conduct a survey, at some cost,
to estimate the effectiveness of its advertising. Moreover, the
larger—and more expensive—the survey, the more accurate
it will be. Is the cost of a survey worth the information that
it provides? How should one balance the cost of acquiring
more information against the risk of playing a game with
higher uncertainty?

In this paper, we model situations of this type as Socratic
games. As in traditional game theory, the players in a So-
cratic game choose actions to maximize their payoffs, but we
model players with incomplete information who can make
costly queries to reduce their uncertainty about the state of
the world before they choose their actions. This approach
contrasts with traditional game theory, in which players are
usually modeled as having fixed, exogenously given infor-
mation about the structure of the game and its payoffs. (In
traditional games of incomplete and imperfect information,
there is information that the players do not have; in Socratic
games, unlike in these games, the players have a chance to
acquire the missing information, at some cost.) A number of
related models have been explored by economists and com-
puter scientists motivated by similar situations, often with
a focus on mechanism design and auctions; a sampling of
this research includes the work of Larson and Sandholm [41,
42, 43, 44], Parkes [59], Fong [22], Compte and Jehiel [12],
Rezende [63], Persico and Matthews [48, 60], Crémer and
Khalil [15], Rasmusen [62], and Bergemann and Välimäki [4,
5]. The model of Bergemann and Välimäki is similar in
many regards to the one that we explore here; see Section 7
for some discussion.

A Socratic game proceeds as follows. A real world is cho-



sen randomly from a set of possible worlds according to a
common prior distribution. Each player then selects an ar-
bitrary query from a set of available costly queries and re-
ceives a corresponding piece of information about the real
world. Finally each player selects an action and receives a
payoff—a function of the players’ selected actions and the
identity of the real world—less the cost of the query that
he or she made. Compared to traditional game theory, the
distinguishing feature of our model is the introduction of
explicit costs to the players for learning arbitrary partial in-
formation about which of the many possible worlds is the
real world.

Our research was initially inspired by recent results in psy-
chology on decision making, but it soon became clear that
Socratic game theory is also a general tool for understanding
the “exploitation versus exploration” tradeoff, well studied
in machine learning, in a strategic multiplayer environment.
This tension between the risk arising from uncertainty and
the cost of acquiring information is ubiquitous in economics,
political science, and beyond.

1.0.0.1 Our results..
We consider Socratic games under two models: an unobservable-

query model where players learn only the response to their
own queries and an observable-query model where players
also learn which queries their opponents made. We give
efficient algorithms to find Nash equilibria—i.e., tuples of
strategies from which no player has unilateral incentive to
deviate—in broad classes of two-player Socratic games in
both models. Our first result is an efficient algorithm to
find Nash equilibria in unobservable-query Socratic games
with constant-sum worlds, in which the sum of the players’
payoffs is independent of their actions. Our techniques also
yield Nash equilibria in unobservable-query Socratic games
with strategically zero-sum worlds. Strategically zero-sum
games generalize constant-sum games by allowing the sum of
the players’ payoffs to depend on individual players’ choices
of strategy, but not on any interaction of their choices. Our
second result is an efficient algorithm to find Nash equilib-
ria in observable-query Socratic games with constant-sum
worlds. Finally, we give an efficient algorithm to find corre-
lated equilibria—a weaker but increasingly well-studied solu-
tion concept for games [2, 3, 32, 56, 57]—in observable-query
Socratic games with strategically zero-sum worlds.

Like all games, Socratic games can be viewed as a spe-
cial case of extensive-form games, which represent games
by trees in which internal nodes represent choices made by
chance or by the players, and the leaves represent outcomes
that correspond to a vector of payoffs to the players. Al-
gorithmically, the generality of extensive-form games makes
them difficult to solve efficiently, and the special cases that
are known to be efficiently solvable do not include even sim-
ple Socratic games. Every (complete-information) classical
game is a trivial Socratic game (with a single possible world
and a single trivial query), and efficiently finding Nash equi-
libria in classical games has been shown to be hard [10, 11,
13, 16, 17, 27, 54, 55]. Therefore we would not expect to
find a straightforward polynomial-time algorithm to com-
pute Nash equilibria in general Socratic games. However, it
is well known that Nash equilibria can be found efficiently
via an LP for two-player constant-sum games [49, 71] (and
strategically zero-sum games [51]). A Socratic game is itself
a classical game, so one might hope that these results can

be applied to Socratic games with constant-sum (or strate-
gically zero-sum) worlds.

We face two major obstacles in extending these classi-
cal results to Socratic games. First, a Socratic game with
constant-sum worlds is not itself a constant-sum classical
game—rather, the resulting classical game is only strategi-
cally zero sum. Worse yet, a Socratic game with strategi-
cally zero-sum worlds is not itself classically strategically
zero sum—indeed, there are no known efficient algorith-
mic techniques to compute Nash equilibria in the resulting
class of classical games. (Exponential-time algorithms like
Lemke/Howson, of course, can be used [45].) Thus even
when it is easy to find Nash equilibria in each of the worlds
of a Socratic game, we require new techniques to solve the
Socratic game itself. Second, even when the Socratic game
itself is strategically zero sum, the number of possible strate-
gies available to each player is exponential in the natural
representation of the game. As a result, the standard linear
programs for computing equilibria have an exponential num-
ber of variables and an exponential number of constraints.

For unobservable-query Socratic games with strategically
zero-sum worlds, we address these obstacles by formulat-
ing a new LP that uses only polynomially many variables
(though still an exponential number of constraints) and then
use ellipsoid-based techniques to solve it. For observable-
query Socratic games, we handle the exponentiality by de-
composing the game into stages, solving the stages sepa-
rately, and showing how to reassemble the solutions effi-
ciently. To solve the stages, it is necessary to find Nash
equilibria in Bayesian strategically zero-sum games, and we
give an explicit polynomial-time algorithm to do so.

2. GAMES AND SOCRATIC GAMES
In this section, we review background on game theory and

formally introduce Socratic games. We present these models
in the context of two-player games, but the multiplayer case
is a natural extension.

Throughout the paper, boldface variables will be used to
denote a pair of variables, one for each player (e.g., a =
〈ai, aii〉). Let Pr[x← π] denote the probability that a par-
ticular value x is drawn from the distribution π, and let
Ex∼π[g(x)] denote the expectation of g(x) when x is drawn
from π.

2.1 Background on Game Theory
Consider two players, Player I and Player II, each of whom

is attempting to maximize his or her utility (or payoff). A
(two-player) game is a pair 〈A,u〉, where, for i ∈ {i,ii},

• Ai is the set of pure strategies for Player i, and A =
〈Ai, Aii〉; and

• ui : A → R is the utility function for Player i, and
u = 〈ui, uii〉.

We require that A and u be common knowledge. If each
Player i chooses strategy ai ∈ Ai, then the payoffs to Play-
ers I and II are ui(a) and uii(a), respectively. A game is con-
stant sum if, for all a ∈ A, we have that ui(a) + uii(a) = c
for some fixed c independent of a.

Player i can also play a mixed strategy αi ∈ Ai, where Ai

denotes the space of probability measures over the set Ai.
Payoff functions are generalized as ui(α) = ui(αi, αii) :=
Ea∼α[ui(a)] =

P
a∈A α(a)ui(a), where the quantity α(a) =



αi(ai) · αii(aii) denotes the joint probability of the indepen-
dent events that each Player i chooses action ai from the
distribution αi. This generalization to mixed strategies is
known as von Neumann/Morgenstern utility [70], in which
players are indifferent between a guaranteed payoff x and an
expected payoff of x.

A Nash equilibrium is a pair α of mixed strategies so that
neither player has an incentive to change his or her strategy
unilaterally. Formally, the strategy pair α is a Nash equi-
librium if and only if both ui(αi, αii) = maxα′i∈Ai ui(α

′
i, αii)

and uii(αi, αii) = maxα′ii∈Aii uii(αi, αii); that is, the strate-
gies αi and αii are mutual best responses.

A correlated equilibrium is a distribution ψ over A that
obeys the following: if a ∈ A is drawn randomly according
to ψ and Player i learns ai, then no Player i has incentive to
deviate unilaterally from playing ai. (A Nash equilibrium is
a correlated equilibrium in which ψ(a) = αi(ai) ·αii(aii) is a
product distribution.) Formally, in a correlated equilibrium,
for every a ∈ A we must have that ai is a best response to
a randomly chosen âii ∈ Aii drawn according to ψ(ai, âii),
and the analogous condition must hold for Player II.

2.2 Socratic Games
In this section, we formally define Socratic games. A

Socratic game is a 7-tuple 〈A,W, ~u, S,Q, p, δ〉, where, for
i ∈ {i,ii}:

• Ai is, as before, the set of pure strategies for Player i.

• W is a set of possible worlds, one of which is the real
world wreal.

• ~ui = {uw
i : A→ R | w ∈W} is a set of payoff functions

for Player i, one for each possible world.

• S is a set of signals.

• Qi is a set of available queries for Player i. When
Player imakes query qi : W → S, he or she receives the
signal qi(wreal). When Player i receives signal qi(wreal)
in response to query qi, he or she can infer that wreal ∈
{w : qi(w) = qi(wreal)}, i.e., the set of possible worlds
from which query qi cannot distinguish wreal.

• p : W → [0, 1] is a probability distribution over the
possible worlds.

• δi : Qi → R≥0 gives the query cost for each available
query for Player i.

Initially, the world wreal is chosen according to the proba-
bility distribution p, but the identity of wreal remains un-
known to the players. That is, it is as if the players are
playing the game 〈A,uwreal〉 but do not know wreal. The
players make queries q ∈ Q, and Player i receives the signal
qi(wreal). We consider both observable queries and unob-
servable queries. When queries are observable, each player
learns which query was made by the other player, and the
results of his or her own query—that is, each Player i learns
qi, qii, and qi(wreal). For unobservable queries, Player i learns
only qi and qi(wreal). After learning the results of the queries,
the players select strategies a ∈ A and receive as payoffs
u

wreal
i (a)− δi(qi).
In the Socratic game, a pure strategy for Player i consists

of a query qi ∈ Qi and a response function mapping any re-
sult of the query qi to a strategy ai ∈ Ai to play. A player’s

state of knowledge after a query is a point in R := Q × S
or Ri := Qi × S for observable or unobservable queries, re-
spectively. Thus Player i’s response function maps R or
Ri to Ai. Note that the number of pure strategies is ex-
ponential, as there are exponentially many response func-
tions. A mixed strategy involves both randomly choosing
a query qi ∈ Qi and randomly choosing an action ai ∈ Ai

in response to the results of the query. Formally, we will
consider a mixed-strategy-function profile f = 〈f query, f resp〉
to have two parts:

• a function fquery
i : Qi → [0, 1], where fquery

i (qi) is the
probability that Player i makes query qi.

• a function f resp
i that maps R or Ri to a probabil-

ity distribution over actions. Player i chooses an ac-
tion ai ∈ Ai according to the probability distribution
f resp

i (q, qi(w)) for observable queries, and according to
f resp

i (qi, qi(w)) for unobservable queries. (With un-
observable queries, for example, the probability that
Player I plays action ai conditioned on making query
qi in world w is given by Pr[ai ← f resp

i (qi, qi(w))].)

Mixed strategies are typically defined as probability distri-
butions over the pure strategies, but here we represent a
mixed strategy by a pair 〈f query, f resp〉, which is commonly
referred to as a “behavioral” strategy in the game-theory
literature. As in any game with perfect recall, one can eas-
ily map a mixture of pure strategies to a behavioral strategy
f = 〈f query, f resp〉 that induces the same probability of mak-
ing a particular query qi or playing a particular action after
making a query qi in a particular world. Thus it suffices to
consider only this representation of mixed strategies.

For a strategy-function profile f for observable queries, the
(expected) payoff to Player i is given by

X
q∈Q,w∈W,a∈A

2664
fquery
i (qi) · fquery

ii (qii) · p(w)
· Pr[ai ← f resp

i (q, qi(w))]
· Pr[aii ← f resp

ii (q, qii(w))]
· (uw

i (a)− δi(qi))

3775 .
The payoffs for unobservable queries are analogous, with
f resp

j (qj , qj(w)) in place of f resp
j (q, qj(w)).

3. STRATEGICALLY ZERO-SUM GAMES
We can view a Socratic game G with constant-sum worlds

as an exponentially large classical game, with pure strate-
gies “make query qi and respond according to fi.” How-
ever, this classical game is not constant sum. The sum of
the players’ payoffs varies depending upon their strategies,
because different queries incur different costs. However, this
game still has significant structure: the sum of payoffs varies
only because of varying query costs. Thus the sum of pay-
offs does depend on players’ choice of strategies, but not on
the interaction of their choices—i.e., for fixed functions gi
and gii, we have ui(q, f) + uii(q, f) = gi(qi, fi) + gii(qii, fii)
for all strategies 〈q, f〉. Such games are called strategically
zero sum and were introduced by Moulin and Vial [51], who
describe a notion of strategic equivalence and define strate-
gically zero-sum games as those strategically equivalent to
zero-sum games. It is interesting to note that two Socratic
games with the same queries and strategically equivalent
worlds are not necessarily strategically equivalent.

A game 〈A,u〉 is strategically zero sum if there exist labels
`(i, ai) for every Player i and every pure strategy ai ∈ Ai



such that, for all mixed-strategy profiles α, we have that the
sum of the utilities satisfies

ui(α)+uii(α) =
X

ai∈Ai

αi(ai) ·`(i, ai)+
X

aii∈Aii

αii(aii) ·`(ii, aii).

Note that any constant-sum game is strategically zero sum
as well.

It is not immediately obvious that one can efficiently de-
cide if a given game is strategically zero sum. For com-
pleteness, we give a characterization of classical strategically
zero-sum games in terms of the rank of a simple matrix de-
rived from the game’s payoffs, allowing us to efficiently de-
cide if a given game is strategically zero sum and, if it is, to
compute the labels `(i, ai).

Theorem 3.1. Consider a game G = 〈A,u〉 with Ai =
{a1

i , . . . , a
ni
i }. Let MG be the ni-by-nii matrix whose 〈i, j〉th

entry MG
(i,j) satisfies log2M

G
(i,j) = ui(a

i
i , a

j
ii) + uii(a

i
i , a

j
ii).

Then the following are equivalent:

(i) G is strategically zero sum;
(ii) there exist labels `(i, ai) for every player i ∈ {i,ii} and

every pure strategy ai ∈ Ai such that, for all pure
strategies a ∈ A, we have ui(a) + uii(a) = `(i, ai) +
`(ii, aii); and

(iii) rank(MG) = 1.

Proof Sketch. (i ⇒ ii) is immediate; every pure strat-
egy is a trivially mixed strategy. For (ii ⇒ iii), let ~ci be the
n-element column vector with jth component 2`(i,a

j
i ); then

~ci · ~ciiT = MG. For (iii ⇒ i), if rank(MG) = 1, then MG =
u · vT. We can prove that G is strategically zero sum by
choosing labels `(i, aj

i ) := log2 uj and `(ii, aj
ii) := log2 vj .

4. SOCRATIC GAMES WITH UNOBSERV-
ABLE QUERIES

We begin with Socratic games with unobservable queries,
where a player’s choice of query is not revealed to her oppo-
nent. We give an efficient algorithm to solve unobservable-
query Socratic games with strategically zero-sum worlds.
Our algorithm is based upon the LP shown in Figure 1,
whose feasible points are Nash equilibria for the game. The
LP has polynomially many variables but exponentially many
constraints. We give an efficient separation oracle for the LP,
implying that the ellipsoid method [28, 38] yields an efficient
algorithm. This approach extends the techniques of Koller
and Megiddo [39] (see also [40]) to solve constant-sum games
represented in extensive form. (Recall that their result does
not directly apply in our case; even a Socratic game with
constant-sum worlds is not a constant-sum classical game.)

Lemma 4.1. Let G = 〈A,W, ~u, S,Q, p, δ〉 be an arbitrary
unobservable-query Socratic game with strategically zero-sum
worlds. Any feasible point for the LP in Figure 1 can be ef-
ficiently mapped to a Nash equilibrium for G, and any Nash
equilibrium for G can be mapped to a feasible point for the
program.

Proof Sketch. We begin with a description of the cor-
respondence between feasible points for the LP and Nash
equilibria for G. First, suppose that strategy profile f =
〈f query, f resp〉 forms a Nash equilibrium for G. Then the fol-

lowing setting for the LP variables is feasible:

yi
qi

= f query
i (qi)

xi
ai,qi,w = Pr[ai ← f resp

i (qi, qi(w))] · yi
qi

ρi =
P

w,q∈Q,a∈A

p(w) · xi
ai,qi,w · x

ii
aii,qii,w · [u

w
i (a)− δi(qi)].

(We omit the straightforward calculations that verify feasi-
bility.) Next, suppose 〈xi

ai,qi,w, y
i
qi
, ρi〉 is feasible for the LP.

Let f be the strategy-function profile defined as

fquery
i : qi 7→ yi

qi

f resp
i (qi, qi(w)) : ai 7→ xi

ai,qi,w/y
i
qi
.

Verifying that this strategy profile is a Nash equilibrium
requires checking that f resp

i (qi, qi(w)) is a well-defined func-
tion (from constraint VI), that fquery

i and f resp
i (qi, qi(w)) are

probability distributions (from constraints III and IV), and
that each player is playing a best response to his or her op-
ponent’s strategy (from constraints I and II). Finally, from
constraints I and II, the expected payoff to Player i is at most
ρi. Because the right-hand side of constraint VII is equal
to the expected sum of the payoffs from f and is at most
ρi + ρii, the payoffs are correct and imply the lemma.

We now give an efficient separation oracle for the LP in
Figure 1, thus allowing the ellipsoid method to solve the
LP in polynomial time. Recall that a separation oracle is
a function that, given a setting for the variables in the LP,
either returns “feasible” or returns a particular constraint
of the LP that is violated by that setting of the variables.
An efficient, correct separation oracle allows us to solve the
LP efficiently via the ellipsoid method.

Lemma 4.2. There exists a separation oracle for the LP
in Figure 1 that is correct and runs in polynomial time.

Proof. Here is a description of the separation oracle SP.
On input 〈xi

ai,qi,w, y
i
qi
, ρi〉:

1. Check each of the constraints (III), (IV), (V), (VI),
and (VII). If any one of these constraints is violated,
then return it.

2. Define the strategy profile f as follows:

fquery
i : qi 7→ yi

qi

f resp
i (qi, qi(w)) : ai 7→ xi

ai,qi,w/y
i
qi

For each query qi, we will compute a pure best-response
function f̂

qi
i for Player I to strategy fii after making

query qi.

More specifically, given fii and the result qi(wreal) of the
query qi, it is straightforward to compute the proba-
bility that, conditioned on the fact that the result of
query qi is qi(w), the world is w and Player II will play
action aii ∈ Aii. Therefore, for each query qi and re-
sponse qi(w), Player I can compute the expected utility
of each pure response ai to the induced mixed strategy
over Aii for Player II. Player I can then select the ai

maximizing this expected payoff.

Let f̂i be the response function such that f̂i(qi, qi(w)) =
f̂

qi
i (qi(w)) for every qi ∈ Qi. Similarly, compute f̂ii.



“Player i does not prefer ‘make query qi, then play according to the function fi’ ”:

∀qi ∈ Qi, fi : Ri → Ai : ρi ≥
P

w∈W,aii∈Aii,qii∈Qii,ai=fi(qi,qi(w))

`
p(w) · xii

aii,qii,w · [u
w
i (a)− δi(qi)]

´
(I)

∀qii ∈ Qii, fii : Rii → Aii : ρii ≥
P

w∈W,ai∈Ai,qi∈Qi,aii=fii(qii,qii(w))

`
p(w) · xi

ai,qi,w · [u
w
ii (a)− δii(qii)]

´
(II)

“Every player’s choices form a probability distribution in every world”:

∀i ∈ {i,ii}, w ∈W : 1 =
P

ai∈Ai,qi∈Qi
xi

ai,qi,w (III)

∀i ∈ {i,ii}, w ∈W : 0 ≤ xi
ai,qi,w (IV)

“Queries are independent of the world, and actions depend only on query output”:

∀i ∈ {i,ii}, qi ∈ Qi, w ∈W,w′ ∈W such that qi(w) = qi(w
′) :

yi
qi

=
P

ai∈Ai
xi

ai,qi,w (V)

xi
ai,qi,w = xi

ai,qi,w′ (VI)

“The payoffs are consistent with the labels `(i, ai, w)”:
ρi + ρii =

P
i∈{i,ii}

P
w∈W,qi∈Qi,ai∈Ai

`
p(w) · xi

ai,qi,w · [`(i, ai, w)− δi(qi)]
´

(VII)

Figure 1: An LP to find Nash equilibria in unobservable-query Socratic games with strategically zero-sum
worlds. The input is a Socratic game 〈A,W, ~u, S,Q, p, δ〉 so that world w is strategically zero sum with labels
`(i, ai, w). Player i makes query qi ∈ Qi with probability yi

qi
and, when the actual world is w ∈W , makes query

qi and plays action ai with probability xi
ai,qi,w. The expected payoff to Player i is given by ρi.

3. Let ρ̂
qi
i be the expected payoff to Player I using the

strategy “make query qi and play response function
f̂i” if Player II plays according to fii.

Let ρ̂i = maxqi∈Qq ρ̂
qi
i and let q̂i = arg maxqi∈Qq ρ̂

qi
i .

Similarly, define ρ̂
qii
ii , ρ̂ii, and q̂ii.

4. For the f̂i and q̂i defined in Step 3, return constraint
(I-q̂i-f̂i) or (II-q̂ii-f̂ii) if either is violated. If both are
satisfied, then return “feasible.”

We first note that the separation oracle runs in polynomial
time and then prove its correctness. Steps 1 and 4 are clearly
polynomial. For Step 2, we have described how to compute
the relevant response functions by examining every action of
Player I, every world, every query, and every action of Player
II. There are only polynomially many queries, worlds, query
results, and pure actions, so the running time of Steps 2 and
3 is thus polynomial.

We now sketch the proof that the separation oracle works
correctly. The main challenge is to show that if any con-
straint (I-q′i-f

′
i ) is violated then (I-q̂i-f̂i) is violated in Step 4.

First, we observe that, by construction, the function f̂i com-
puted in Step 3 must be a best response to Player II playing
fii, no matter what query Player I makes. Therefore the
strategy “make query q̂i, then play response function f̂i”
must be a best response to Player II playing fii, by definition
of q̂i. The right-hand side of each constraint (I-q′i-f

′
i ) is equal

to the expected payoff that Player I receives when playing
the pure strategy “make query q′i and then play response
function f ′i ” against Player II’s strategy of fii. Therefore,
because the pure strategy “make query q̂i and then play
response function f̂i” is a best response to Player II play-
ing fii, the right-hand side of constraint (I-q̂i-f̂i) is at least

as large as the right hand side of any constraint (I-q̂i-f
′
i ).

Therefore, if any constraint (I-q′i-f
′
i ) is violated, constraint

(I-q̂i-f̂i) is also violated. An analogous argument holds for
Player II.

These lemmas and the well-known fact that Nash equilib-
ria always exist [52] imply the following theorem:

Theorem 4.3. Nash equilibria can be found in polyno-
mial time for any two-player unobservable-query Socratic
game with strategically zero-sum worlds.

5. SOCRATIC GAMES WITH OBSERVABLE
QUERIES

In this section, we give efficient algorithms to find (1) a
Nash equilibrium for observable-query Socratic games with
constant-sum worlds and (2) a correlated equilibrium in the
broader class of Socratic games with strategically zero-sum
worlds. Recall that a Socratic gameG = 〈A,W, ~u, S,Q, p, δ〉
with observable queries proceeds in two stages:

Stage 1: The players simultaneously choose queries q ∈ Q.
Player i receives as output qi, qii, and qi(wreal).

Stage 2: The players simultaneously choose strategies a ∈
A. The payoff to Player i is u

wreal
i (a)− δi(qi).

Using backward induction, we first solve Stage 2 and then
proceed to the Stage-1 game.

For a query q ∈ Q, we would like to analyze the Stage-2
“game” Ĝq resulting from the players making queries q in
Stage 1. Technically, however, Ĝq is not actually a game,
because at the beginning of Stage 2 the players have different
information about the world: Player I knows qi(wreal), and



Player II knows qii(wreal). Fortunately, the situation in which
players have asymmetric private knowledge has been well
studied in the game-theory literature. A Bayesian game is
a quadruple 〈A,T, r,u〉, where:

• Ai is the set of pure strategies for Player i.

• Ti is the set of types for Player i.

• r is a probability distribution over T; r(t) denotes the
probability that Player i has type ti for all i.

• ui : A × T → R is the payoff function for Player i.
If the players have types t and play pure strategies a,
then ui(a, t) denotes the payoff for Player i.

Initially, a type t is drawn randomly from T according to the
distribution r. Player i learns his type ti, but does not learn
any other player’s type. Player i then plays a mixed strategy
αi ∈ Ai—that is, a probability distribution over Ai—and
receives payoff ui(α, t). A strategy function is a function
hi : Ti → Ai; Player i plays the mixed strategy hi(ti) ∈ Ai

when her type is ti. A strategy-function profile h is a
Bayesian Nash equilibrium if and only if no Player i has uni-
lateral incentive to deviate from hi if the other players play
according to h. For a two-player Bayesian game, if α = h(t),
then the profile h is a Bayesian Nash equilibrium exactly
when the following condition and its analogue for Player II
hold: Et∼r[ui(α, t)] = maxh′i

Et∼r[ui(〈h′i(ti), αii〉, t)]. These
conditions hold if and only if, for all ti ∈ Ti occurring with
positive probability, Player i’s expected utility conditioned
on his type being ti is maximized by hi(ti). A Bayesian
game is constant sum if for all a ∈ A and all t ∈ T, we
have ui(a, t) + uii(a, t) = ct, for some constant ct indepen-
dent of a. A Bayesian game is strategically zero sum if the
classical game 〈A,u(·, t)〉 is strategically zero sum for every
t ∈ T. Whether a Bayesian game is strategically zero sum
can be determined as in Theorem 3.1. (For further discus-
sion of Bayesian games, see [25, 31].)

We now formally define the Stage-2 “game” as a Bayesian
game. Given a Socratic game G = 〈A,W, ~u, S,Q, p, δ〉 and
a query profile q ∈ Q, we define the Stage-2 Bayesian game
Gstage2(q) := 〈A,Tq, pstage2(q),ustage2(q)〉, where:

• Ai, the set of pure strategies for Player i, is the same
as in the original Socratic game;

• Tq
i = {qi(w) : w ∈W}, the set of types for Player i, is

the set of signals that can result from query qi;

• pstage2(q)(t) = Pr[q(w) = t |w ← p]; and

• ustage2(q)
i (a, t) =

P
w∈W Pr[w ← p |q(w) = t] · uw

i (a).

We now define the Stage-1 game in terms of the payoffs
for the Stage-2 games. Fix any algorithm alg that finds a
Bayesian Nash equilibrium hq,alg := alg(Gstage2(q)) for each
Stage-2 game. Define valuealg

i (Gstage2(q)) to be the expected
payoff received by Player i in the Bayesian game Gstage2(q)
if each player plays according to hq,alg, that is,

valuealg
i (Gstage2(q))

:=
P

w∈W p(w) · ustage2(q)
i (hq,alg(q(w)),q(w)).

Define the game Galg
stage1 := 〈Astage1,ustage1(alg)〉, where:

• Astage1 := Q, the set of available queries in the Socratic
game; and

• ustage1(alg)
i (q) := valuealg

i (Gstage2(q))− δi(qi).

I.e., players choose queries q and receive payoffs correspond-
ing to valuealg(Gstage2(q)), less query costs.

Lemma 5.1. Consider an observable-query Socratic game
G = 〈A,W, ~u, S,Q, p, δ〉. Let Gstage2(q) be the Stage-2 games
for all q ∈ Q, let alg be an algorithm finding a Bayesian
Nash equilibrium in each Gstage2(q), and let Galg

stage1 be the
Stage-1 game. Let α be a Nash equilibrium for Galg

stage1, and
let hq,alg := alg(Gstage2(q)) be a Bayesian Nash equilibrium
for each Gstage2(q). Then the following strategy profile is a
Nash equilibrium for G:

• In Stage 1, Player i makes query qi with probability
αi(qi). (That is, set f query(q) := α(q).)

• In Stage 2, if q is the query in Stage 1 and qi(wreal)
denotes the response to Player i’s query, then Player i
chooses action ai with probability hq,alg

i (qi(wreal)). (In
other words, set f resp

i (q, qi(w)) := hq,alg
i (qi(w)).)

We now find equilibria in the stage games for Socratic games
with constant- or strategically zero-sum worlds. We first
show that the stage games are well structured in this setting:

Lemma 5.2. Consider an observable-query Socratic game
G = 〈A,W, ~u, S,Q, p, δ〉 with constant-sum worlds. Then
the Stage-1 game Galg

stage1 is strategically zero sum for every
algorithm alg, and every Stage-2 game Gstage2(q) is Bayesian
constant sum. If the worlds of G are strategically zero sum,
then every Gstage2(q) is Bayesian strategically zero sum.

We now show that we can efficiently compute equilibria for
these well-structured stage games.

Theorem 5.3. There exists a polynomial-time algorithm
BNE finding Bayesian Nash equilibria in strategically zero-
sum Bayesian (and thus classical strategically zero-sum or
Bayesian constant-sum) two-player games.

Proof Sketch. Let G = 〈A,T, r,u〉 be a strategically
zero-sum Bayesian game. Define an unobservable-query So-
cratic game G∗ with one possible world for each t ∈ T, one
available zero-cost query qi for each Player i so that qi re-
veals ti, and all else as in G. Bayesian Nash equilibria in G
correspond directly to Nash equilibria in G∗, and the worlds
of G∗ are strategically zero sum. Thus by Theorem 4.3 we
can compute Nash equilibria for G∗, and thus we can com-
pute Bayesian Nash equilibria for G.

(LP’s for zero-sum two-player Bayesian games have been
previously developed and studied [61].)

Theorem 5.4. We can compute a Nash equilibrium for
an arbitrary two-player observable-query Socratic game G =
〈A,W, ~u, S,Q, p, δ〉 with constant-sum worlds in polynomial
time.

Proof. Because each world of G is constant sum, Lemma
5.2 implies that the induced Stage-2 games Gstage2(q) are
all Bayesian constant sum. Thus we can use algorithm
BNE to compute a Bayesian Nash equilibrium hq,BNE :=
BNE(Gstage2(q)) for each q ∈ Q, by Theorem 5.3. Fur-
thermore, again by Lemma 5.2, the induced Stage-1 game
GBNE

stage1 is classical strategically zero sum. Therefore we can
again use algorithm BNE to compute a Nash equilibrium
α := BNE(GBNE

stage1), again by Theorem 5.3. Therefore, by
Lemma 5.1, we can assemble α and the hq,BNE’s into a Nash
equilibrium for the Socratic game G.



We would like to extend our results on observable-query
Socratic games to Socratic games with strategically zero-
sum worlds. While we can still find Nash equilibria in the
Stage-2 games, the resulting Stage-1 game is not in gen-
eral strategically zero sum. Thus, finding Nash equilibria
in observable-query Socratic games with strategically zero-
sum worlds seems to require substantially new techniques.
However, our techniques for decomposing observable-query
Socratic games do allow us to find correlated equilibria in
this case.

Lemma 5.5. Consider an observable-query Socratic game
G = 〈A,W, ~u, S,Q, p, δ〉. Let alg be an arbitrary algorithm
that finds a Bayesian Nash equilibrium in each of the derived
Stage-2 games Gstage2(q), and let Galg

stage1 be the derived Stage-
1 game. Let φ be a correlated equilibrium for Galg

stage1, and let
hq,alg := alg(Gstage2(q)) be a Bayesian Nash equilibrium for
each Gstage2(q). Then the following distribution over pure
strategies is a correlated equilibrium for G:

ψ(q, f) := φ(q)
Y

i∈{i,ii}

Y
s∈S

Pr
h
fi(q, s)← hq,alg

i (s)
i
.

Thus to find a correlated equilibrium in an observable-query
Socratic game with strategically zero-sum worlds, we need
only algorithm BNE from Theorem 5.3 along with an effi-
cient algorithm for finding a correlated equilibrium in a gen-
eral game. Such an algorithm exists (the definition of cor-
related equilibria can be directly translated into an LP [3]),
and therefore we have the following theorem:

Theorem 5.6. We can provide both efficient oracle ac-
cess and efficient sampling access to a correlated equilib-
rium for any observable-query two-player Socratic game with
strategically zero-sum worlds.

Because the support of the correlated equilibrium may be
exponentially large, providing oracle and sampling access is
the natural way to represent the correlated equilibrium.

By Lemma 5.5, we can also compute correlated equilibria
in any observable-query Socratic game for which Nash equi-
libria are computable in the induced Gstage2(q) games (e.g.,
when Gstage2(q) is of constant size).

Another potentially interesting model of queries in So-
cratic games is what one might call public queries, in which
both the choice and outcome of a player’s query is observ-
able by all players in the game. (This model might be most
appropriate in the presence of corporate espionage or media
leaks, or in a setting in which the queries—and thus their
results—are done in plain view.) The techniques that we
have developed in this section also yield exactly the same
results as for observable queries. The proof is actually sim-
pler: with public queries, the players’ payoffs are common
knowledge when Stage 2 begins, and thus Stage 2 really is a
complete-information game. (There may still be uncertainty
about the real world, but all players use the observed sig-
nals to infer exactly the same set of possible worlds in which
wreal may lie; thus they are playing a complete-information
game against each other.) Thus we have the same results
as in Theorems 5.4 and 5.6 more simply, by solving Stage 2
using a (non-Bayesian) Nash-equilibrium finder and solving
Stage 1 as before.

Our results for observable queries are weaker than for un-
observable: in Socratic games with worlds that are strategi-
cally zero sum but not constant sum, we find only a corre-
lated equilibrium in the observable case, whereas we find a

Nash equilibrium in the unobservable case. We might hope
to extend our unobservable-query techniques to observable
queries, but there is no obvious way to do so. The funda-
mental obstacle is that the LP’s payoff constraint becomes
nonlinear if there is any dependence on the probability that
the other player made a particular query. This dependence
arises with observable queries, suggesting that observable
Socratic games with strategically zero-sum worlds may be
harder to solve.

6. RELATED WORK
Our work was initially motivated by research in the social

sciences indicating that real people seem (irrationally) par-
alyzed when they are presented with additional options. In
this section, we briefly review some of these social-science
experiments and then discuss technical approaches related
to Socratic game theory.

Prima facie, a rational agent’s happiness given an added
option can only increase. However, recent research has found
that more choices tend to decrease happiness: for exam-
ple, students choosing among extra-credit options are more
likely to do extra credit if given a small subset of the choices
and, moreover, produce higher-quality work [35]. (See also
[19].) The psychology literature explores a number of expla-
nations: people may miscalculate their opportunity cost by
comparing their choice to a “component-wise maximum” of
all other options instead of the single best alternative [65],
a new option may draw undue attention to aspects of the
other options [67], and so on. The present work explores
an economic explanation of this phenomenon: information
is not free. When there are more options, a decision-maker
must spend more time to achieve a satisfactory outcome.
See, e.g., the work of Skyrms [68] for a philosophical per-
spective on the role of deliberation in strategic situations.
Finally, we note the connection between Socratic games and
modal logic [34], a formalism for the logic of possibility and
necessity.

The observation that human players typically do not play
“rational” strategies has inspired some attempts to model
“partially” rational players. The typical model of this so-
called bounded rationality [36, 64, 66] is to postulate bounds
on computational power in computing the consequences of
a strategy. The work on bounded rationality [23, 24, 53, 58]
differs from the models that we consider here in that instead
of putting hard limitations on the computational power of
the agents, we instead restrict their a priori knowledge of
the state of the world, requiring them to spend time (and
therefore money/utility) to learn about it.

Partially observable stochastic games (POSGs) are a gen-
eral framework used in AI to model situations of multi-agent
planning in an evolving, unknown environment, but the gen-
erality of POSGs seems to make them very difficult [6]. Re-
cent work has been done in developing algorithms for re-
stricted classes of POSGs, most notably classes of cooper-
ative POSGs—e.g., [20, 30]—which are very different from
the competitive strategically zero-sum games we address in
this paper.

The fundamental question in Socratic games is deciding
on the comparative value of making a more costly but more
informative query, or concluding the data-gathering phase
and picking the best option, given current information. This
tradeoff has been explored in a variety of other contexts;
a sampling of these contexts includes aggregating results



from delay-prone information sources [8], doing approximate
reasoning in intelligent systems [72], deciding when to take
the current best guess of disease diagnosis from a belief-
propagation network and when to let it continue inference
[33], among many others.

This issue can also be viewed as another perspective on
the general question of exploration versus exploitation that
arises often in AI: when is it better to actively seek addi-
tional information instead of exploiting the knowledge one
already has? (See, e.g., [69].) Most of this work differs
significantly from our own in that it considers single-agent
planning as opposed to the game-theoretic setting. A no-
table exception is the work of Larson and Sandholm [41, 42,
43, 44] on mechanism design for interacting agents whose
computation is costly and limited. They present a model
in which players must solve a computationally intractable
valuation problem, using costly computation to learn some
hidden parameters, and results for auctions and bargaining
games in this model.

7. FUTURE DIRECTIONS
Efficiently finding Nash equilibria in Socratic games with

non-strategically zero-sum worlds is probably difficult be-
cause the existence of such an algorithm for classical games
has been shown to be unlikely [10, 11, 13, 16, 17, 27, 54,
55]. There has, however, been some algorithmic success in
finding Nash equilibria in restricted classical settings (e.g.,
[21, 46, 47, 57]); we might hope to extend our results to
analogous Socratic games.

An efficient algorithm to find correlated equilibria in gen-
eral Socratic games seems more attainable. Suppose the
players receive recommended queries and responses. The
difficulty is that when a player considers a deviation from
his recommended query, he already knows his recommended
response in each of the Stage-2 games. In a correlated equi-
librium, a player’s expected payoff generally depends on his
recommended strategy, and thus a player may deviate in
Stage 1 so as to land in a Stage-2 game where he has been
given a “better than average” recommended response. (So-
cratic games are “succinct games of superpolynomial type,”
so Papadimitriou’s results [56] do not imply correlated equi-
libria for them.)

Socratic games can be extended to allow players to make
adaptive queries, choosing subsequent queries based on pre-
vious results. Our techniques carry over to O(1) rounds of
unobservable queries, but it would be interesting to com-
pute equilibria in Socratic games with adaptive observable
queries or with ω(1) rounds of unobservable queries. Spe-
cial cases of adaptive Socratic games are closely related to
single-agent problems like minimum latency [1, 7, 26], de-
termining strategies for using priced information [9, 29, 37],
and an online version of minimum test cover [18, 50]. Al-
though there are important technical distinctions between
adaptive Socratic games and these problems, approximation
techniques from this literature may apply to Socratic games.
The question of approximation raises interesting questions
even in non-adaptive Socratic games. An ε-approximate
Nash equilibrium is a strategy profile α so that no player
can increase her payoff by an additive ε by deviating from α.
Finding approximate Nash equilibria in both adaptive and
non-adaptive Socratic games is an interesting direction to
pursue.

Another natural extension is the model where query re-

sults are stochastic. In this paper, we model a query as
deterministically partitioning the possible worlds into sub-
sets that the query cannot distinguish. However, one could
instead model a query as probabilistically mapping the set
of possible worlds into the set of signals. With this modi-
fication, our unobservable-query model becomes equivalent
to the model of Bergemann and Välimäki [4, 5], in which
the result of a query is a posterior distribution over the
worlds. Our techniques allow us to compute equilibria in
such a “stochastic-query” model provided that each query is
represented as a table that, for each world/signal pair, lists
the probability that the query outputs that signal in that
world. It is also interesting to consider settings in which the
game’s queries are specified by a compact representation of
the relevant probability distributions. (For example, one
might consider a setting in which the algorithm has only a
sampling oracle for the posterior distributions envisioned by
Bergemann and Välimäki.) Efficiently finding equilibria in
such settings remains an open problem.

Another interesting setting for Socratic games is when the
set Q of available queries is given by Q = P(Γ)—i.e., each
player chooses to make a set q ∈ P(Γ) of queries from a
specified groundset Γ of queries. Here we take the query
cost to be a linear function, so that δ(q) =

P
γ∈q δ({γ}).

Natural groundsets include comparison queries (“if my op-
ponent is playing strategy aii, would I prefer to play ai or
âi?”), strategy queries (“what is my vector of payoffs if I
play strategy ai?”), and world-identity queries (“is the world
w ∈W the real world?”). When one can infer a polynomial
bound on the number of queries made by a rational player,
then our results yield efficient solutions. (For example, we
can efficiently solve games in which every groundset element
γ ∈ Γ has δ({γ}) = Ω(M −M), where M and M denote
the maximum and minimum payoffs to any player in any
world.) Conversely, it is NP-hard to compute a Nash equi-
librium for such a game when every δ({γ}) ≤ 1/|W |2, even
when the worlds are constant sum and Player II has only
a single available strategy. Thus even computing a best
response for Player I is hard. (This proof proceeds by re-
duction from set cover; intuitively, for sufficiently low query
costs, Player I must fully identify the actual world through
his queries. Selecting a minimum-sized set of these queries
is hard.) Computing Player I’s best response can be viewed
as maximizing a submodular function, and thus a best re-
sponse can be (1 − 1/e) ≈ 0.63 approximated greedily [14].
An interesting open question is whether this approximate
best-response calculation can be leveraged to find an ap-
proximate Nash equilibrium.
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Halldórsson, C. A. J. Hurkens, J. K. Lenstra, R. Ravi,
and L. Stougie. Approximation algorithms for the test
cover problem. Mathematical Programming,
98(1–3):477–491, September 2003.

[19] Ap Dijksterhuis, Maarten W. Bos, Loran F. Nordgren,

and Rick B. van Baaren. On making the right choice:
The deliberation-without-attention effect. Science,
311:1005–1007, 17 February 2006.

[20] Rosemary Emery-Montemerlo, Geoff Gordon, Jeff
Schneider, and Sebastian Thrun. Approximate
solutions for partially observable stochastic games
with common payoffs. In Autonomous Agents and
Multi-Agent Systems, 2004.

[21] Alex Fabrikant, Christos Papadimitriou, and Kunal
Talwar. The complexity of pure Nash equilibria. In
Proceedings of the Symposium on the Theory of
Computing, 2004.

[22] Kyna Fong. Multi-stage Information Acquisition in
Auction Design. Senior thesis, Harvard College, 2003.

[23] Lance Fortnow and Duke Whang. Optimality and
domination in repeated games with bounded players.
In Proceedings of the Symposium on the Theory of
Computing, pages 741–749, 1994.

[24] Yoav Freund, Michael Kearns, Yishay Mansour, Dana
Ron, Ronitt Rubinfeld, and Robert E. Schapire.
Efficient algorithms for learning to play repeated
games against computationally bounded adversaries.
In Proceedings of the Foundations of Computer
Science, pages 332–341, 1995.

[25] Drew Fudenberg and Jean Tirole. Game Theory. MIT,
1991.

[26] Michel X. Goemans and Jon Kleinberg. An improved
approximation ratio for the minimum latency problem.
Mathematical Programming, 82:111–124, 1998.

[27] Paul W. Goldberg and Christos H. Papadimitriou.
Reducibility among equilibrium problems. In
Electronic Colloquium on Computational Complexity,
2005.

[28] M. Grotschel, L. Lovasz, and A. Schrijver. The
ellipsoid method and its consequences in combinatorial
optimization. Combinatorica, 1:70–89, 1981.

[29] Anupam Gupta and Amit Kumar. Sorting and
selection with structured costs. In Proceedings of the
Foundations of Computer Science, pages 416–425,
2001.

[30] Eric A. Hansen, Daniel S. Bernstein, and Shlomo
Zilberstein. Dynamic programming for partially
observable stochastic games. In National Conference
on Artificial Intelligence (AAAI), 2004.

[31] John C. Harsanyi. Games with incomplete information
played by “Bayesian” players. Management Science,
14(3,5,7), 1967–1968.

[32] Sergiu Hart and David Schmeidler. Existence of
correlated equilibria. Mathematics of Operations
Research, 14(1):18–25, 1989.

[33] Eric Horvitz and Geoffrey Rutledge. Time-dependent
utility and action under uncertainty. In Uncertainty in
Artificial Intelligence, pages 151–158, 1991.

[34] G. E. Hughes and M. J. Cresswell. A New
Introduction to Modal Logic. Routledge, 1996.

[35] Sheena S. Iyengar and Mark R. Lepper. When choice
is demotivating: Can one desire too much of a good
thing? J. Personality and Social Psychology,
79(6):995–1006, 2000.

[36] Ehud Kalai. Bounded rationality and strategic
complexity in repeated games. Game Theory and



Applications, pages 131–157, 1990.

[37] Sampath Kannan and Sanjeev Khanna. Selection with
monotone comparison costs. In Proceedings of the
Symposium on Discrete Algorithms, pages 10–17, 2003.

[38] L.G. Khachiyan. A polynomial algorithm in linear
programming. Dokklady Akademiia Nauk SSSR, 244,
1979.

[39] Daphne Koller and Nimrod Megiddo. The complexity
of two-person zero-sum games in extensive form.
Games and Economic Behavior, 4:528–552, 1992.

[40] Daphne Koller, Nimrod Megiddo, and Bernhard von
Stengel. Efficient computation of equilibria for
extensive two-person games. Games and Economic
Behavior, 14:247–259, 1996.

[41] Kate Larson. Mechanism Design for Computationally
Limited Agents. PhD thesis, CMU, 2004.

[42] Kate Larson and Tuomas Sandholm. Bargaining with
limited computation: Deliberation equilibrium.
Artificial Intelligence, 132(2):183–217, 2001.

[43] Kate Larson and Tuomas Sandholm. Costly valuation
computation in auctions. In Proceedings of the
Theoretical Aspects of Rationality and Knowledge,
July 2001.

[44] Kate Larson and Tuomas Sandholm. Strategic
deliberation and truthful revelation: An impossibility
result. In Proceedings of the ACM Conference on
Electronic Commerce, May 2004.

[45] C. E. Lemke and J. T. Howson, Jr. Equilibrium points
of bimatrix games. J. Society for Industrial and
Applied Mathematics, 12, 1964.

[46] Richard J. Lipton, Evangelos Markakis, and Aranyak
Mehta. Playing large games using simple strategies. In
Proceedings of the ACM Conference on Electronic
Commerce, pages 36–41, 2003.

[47] Michael L. Littman, Michael Kearns, and Satinder
Singh. An efficient exact algorithm for singly
connected graphical games. In Proceedings of Neural
Information Processing Systems, 2001.

[48] Steven A. Matthews and Nicola Persico. Information
acquisition and the excess refund puzzle. Technical
Report 05-015, Department of Economics, University
of Pennsylvania, March 2005.

[49] Richard D. McKelvey and Andrew McLennan.
Computation of equilibria in finite games. In
H. Amman, D. A. Kendrick, and J. Rust, editors,
Handbook of Compututational Economics, volume 1,
pages 87–142. Elsevier, 1996.

[50] B.M.E. Moret and H. D. Shapiro. On minimizing a set
of tests. SIAM J. Scientific Statistical Computing,
6:983–1003, 1985.

[51] H. Moulin and J.-P. Vial. Strategically zero-sum
games: The class of games whose completely mixed
equilibria cannot be improved upon. International J.
Game Theory, 7(3/4), 1978.

[52] John F. Nash, Jr. Equilibrium points in n-person
games. Proceedings of the National Academy of
Sciences, 36:48–49, 1950.

[53] Abraham Neyman. Finitely repeated games with finite
automata. Mathematics of Operations Research,
23(3):513–552, August 1998.

[54] Christos Papadimitriou. On the complexity of the

parity argument and other inefficient proofs of
existence. J. Computer and System Sciences,
48:498–532, 1994.

[55] Christos Papadimitriou. Algorithms, games, and the
internet. In Proceedings of the Symposium on the
Theory of Computing, pages 749–753, 2001.

[56] Christos H. Papadimitriou. Computing correlated
equilibria in multi-player games. In Proceedings of the
Symposium on the Theory of Computing, 2005.

[57] Christos H. Papadimitriou and Tim Roughgarden.
Computing equilibria in multiplayer games. In
Proceedings of the Symposium on Discrete Algorithms,
2005.

[58] Christos H. Papadimitriou and Mihalis Yannakakis.
On bounded rationality and computational
complexity. In Proceedings of the Symposium on the
Theory of Computing, pages 726–733, 1994.

[59] David C. Parkes. Auction design with costly
preference elicitation. Annals of Mathematics and
Artificial Intelligence, 44:269–302, 2005.

[60] Nicola Persico. Information acquisition in auctions.
Econometrica, 68(1):135–148, 2000.

[61] Jean-Pierre Ponssard and Sylvain Sorin. The LP
formulation of finite zero-sum games with incomplete
information. International J. Game Theory,
9(2):99–105, 1980.

[62] Eric Rasmussen. Strategic implications of uncertainty
over one’s own private value in auctions. Technical
report, Indiana University, 2005.

[63] Leonardo Rezende. Mid-auction information
acquisition. Technical report, University of Illinois,
2005.

[64] Ariel Rubinstein. Modeling Bounded Rationality. MIT,
1988.

[65] Barry Schwartz. The Paradox of Choice: Why More is
Less. Ecco, 2004.

[66] Herbert Simon. Models of Bounded Rationality. MIT,
1982.

[67] I. Simonson and A. Tversky. Choice in context:
Tradeoff contrast and extremeness aversion. J.
Marketing Research, 29:281–295, 1992.

[68] Brian Skyrms. Dynamic models of deliberation and
the theory of games. In Proceedings of the Theoretical
Aspects of Rationality and Knowledge, pages 185–200,
1990.

[69] Richard Sutton and Andrew Barto. Reinforcement
Learning: An Introduction. MIT, 1998.

[70] John von Neumann and Oskar Morgenstern. Theory of
Games and Economic Behavior. Princeton, 1957.

[71] Bernhard von Stengel. Computing equilibria for
two-person games. In R. J. Aumann and S. Hart,
editors, Handbook of Game Theory with Economic
Applications, volume 3, pages 1723–1759. Elsevier,
2002.

[72] S. Zilberstein and S. Russell. Approximate reasoning
using anytime algorithms. In S. Natarajan, editor,
Imprecise and Approximate Computation. Kluwer,
1995.


