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Abstract— This paper presents a new algorithm for mutual
exclusion in which each passage through the critical section costs
amortized O(log2 logn) RMRs with high probability. The algo-
rithm operates in a standard asynchronous, local spinning, shared-
memory model with an oblivious adversary. It guarantees that
every process enters the critical section with high probability.
The algorithm achieves its efficient performance by exploiting a
connection between mutual exclusion and approximate counting.

1. INTRODUCTION

Coordinating access to shared resources is a fundamental
problem in parallel computing. In the classic problem of
mutual exclusion, introduced by Dijkstra [10], each process
attempts to gain exclusive access to some shared resource.
Whenever a process gains exclusive access, it can safely
execute its critical section.

There have been hundreds of papers written on mutual
exclusion; see, e.g., [1]–[4], [8], [11], [14]–[16], [19]. Perfor-
mance of a mutual-exclusion algorithm is typically measured
in terms of remote memory references or RMRs. The assump-
tion is that each process has a local memory/cache, which it
can access cheaply, and a read/write shared memory, which
is expensive to access—these are the RMRs. Processes thus
have the capacity to perform local spinning for free, i.e., to
spin-wait on a local variable until it changes. (Without local
spinning, efficient mutual exclusion is impossible [19].)

Until recently, the most efficient mutual-exclusion algo-
rithms, such as the one by Yang and Anderson [19], used
O(log n) RMRs per passage on a system of n processes.

It was recently proved that this bound is optimal for
deterministic algorithms [8], [11]. In 2009 Hendler and
Woelfel [14] showed that randomized algorithms can per-
form better than deterministic algorithms by demonstrating
one that achieves O(log n/ log log n) expected RMRs per
passage.

Most efficient prior solutions (typified by [14], [19]) are
based on a tournament tree construction. A process’s passage
begins at the leaf of a tree. Processes compete to climb the
tree. When a process reaches the root, it executes its critical
section and then exits the tree, allowing other processes to
continue competing. Since the degree of the tree must be
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relatively small (to ensure that competition at each node is
efficient), it is hard to achieve performance that is much
better than O(log n) RMRs per process.

Results: This paper represents a departure from pre-
vious work in terms of techniques, adversary model, and
performance. We give a mutual exclusion protocol where
each process performs only O(log2 log n) amortized RMRs
per passage with high probability. Our protocol is random-
ized and works against an oblivious adversary; every process
enters the critical section with high probability.

Mutual Exclusion and Counting: Our work exploits
a connection between mutual exclusion and approximate
counting. It should not be surprising that such a connection
exists. Consider, for example, a standard “mutual exclusion”
mechanism found in retail stores everywhere: each customer
takes a number, issued in sequential order, and the customers
are serviced in the order of their numbers. (Lamport fa-
mously exploited this idea in the Bakery Algorithm [17].)

There are several difficulties in putting this connection
to good use. First, mutual-exclusion algorithms have gener-
ally possessed better complexities than counting algorithms.
Prior to [5], the best concurrent-counter protocols took Ω(n)
steps per increment, and even the best approximate counting
protocols were just barely sublinear [6]. Thus, it might have
seemed unlikely that reducing mutual exclusion to counting
would yield asymptotically good results. It was an exciting
development when Aspnes et al. [5] gave an elegant wait-
free data structure for exact counting with only O(log2 n)
steps per increment and O(log n) steps per read. These
counting bounds are still exponentially larger than our goal
of O(log2 log n) RMRs for mutual exclusion. However, we
can leverage the counter construction of [5] to build an
approximate counter in which increment operations take
O(log2 log n) steps.

A further difficulty is that wait-free counter (and
approximate-counter) constructions only support increment,
not decrement, operations. Ideally, a process would incre-
ment a counter on beginning its passage and decrement
a counter on completing its passage. In this case, the
value of the counter would indicate the number of active
processes. This information would significantly simplify the
construction of a mutual exclusion algorithm. Unfortunately,
it appears difficult to support both increment and decrement
efficiently (even for exact counters).



This paper takes advantage of the connection between
(approximate) counting and mutual exclusion by weakening
what we actually require from the counter, i.e., by relying
on an approximate counter with no decrement operation.

Adversary Models: While we give exponentially better
bounds than previous papers (e.g., [15], [16], [19]), we
cannot claim that our results subsume these earlier papers,
because we depart from the adaptive-adversary model, in-
stead assuming an oblivious adversary. It has been conjec-
tured [18] that for an adaptive adversary, Ω(log n/ log log n)
RMRs per process is a lower bound (for starvation-free
algorithms). This would imply that a weaker adversary is
essential to obtain our improved bounds. This paper is the
first to beat the O(log n/ log log n) RMR bound for some
adversary.

An oblivious adversary models many but not all sources
of asynchrony. Specifically, it models asynchrony whose
sources are independent of the choices made by the mutual-
exclusion protocol (e.g., speed changes caused by other
programs competing for CPU cycles or memory bandwidth).

It might be interesting to execute our algorithm in parallel
with an existing algorithm [15], [16], [19] that can tolerate
an adaptive adversary (using a simple lock to mediate
winners of the two protocols). The resulting combination
would be fast when the adversary is oblivious, while still
guaranteeing good results when the adversary is not.

Model: We consider n processes, each of which ac-
cesses the critical section at most once. (This simplifies
the presentation, because we can associate each passage
with a unique process. Generalizing to a polynomial number
of accesses per process follows trivially.) Each process
takes an arbitrary (unbounded) number of steps, and the
oblivious adversary (acting as a scheduler) decides, for
each execution, the order in which processes take steps. An
oblivious adversary makes these choices with full knowledge
of the initial state, including the mutual-exclusion protocol,
but without knowing the outcomes of random coin flips
of the processes. Thus, an oblivious adversary scheduler
determines the entire schedule prior to the execution.

Since modern architectures cache memory aggressively,
we model memory accesses as per the cache-coherent (CC)
model. Each process keeps a local cache of some variables
from the shared memory. Whenever the value of a variable
is cached locally, a process can read it for free. Whenever a
variable is written, all caches except for that of the writing
process are invalidated; the next read by each process (except
for the writing process) costs a normal shared memory
access, i.e., an RMR.

We make use of local (cached) memory for the purpose
of spinning. While executing the protocol, processes may
register events, meaning they indicate a location in memory
to monitor, and a callback function to execute if that location
in memory is modified. During registration, this memory is
read into cache, at which point it is continually monitored

locally. If that location in memory ever changes, the cache
is invalidated, and the process discovers that the memory
has changed. This wakes/interrupts the process, and the
previously registered callback function is executed. Notice
that registering an event and discovering that it has been
triggered each cost one RMR, while the remaining local
monitoring is free. All local spinning will be captured via
this mechanism; every other read or write operation is
assumed to cost an RMR.

We also assume, without loss of generality, that processes
can execute compare-and-swap (CAS) operations. We can
transform each CAS operation into a set of read and write
operations using the construction of Golab et al. [12]. They
show that each CAS operation requires O(1) RMRs.1 A
CAS(v, old ,new) operation compares v and old ; if they are
equal, then it atomically sets v to new .

2. ALGORITHM OVERVIEW

We now give an overview of the mutual exclusion al-
gorithm. We begin with high-level ideas. We progressively
summarize problems and their solutions until the full algo-
rithm comes into focus.

2.1. High-level Ideas

Assume that we have a counter C that supports both incre-
ment and decrement operations. In this case, every process
increments C when it begins its passage and decrements C
when it completes its passage. At any given time, reading
C yields a count of the number of active processes.

After incrementing counter C, a process reads the counter
and uses the value to find a free spot in the waiting array A,
which is used for local spinning while processes wait their
turn to enter the critical section. Specifically, if the counter
C returns value k, then the process randomly searches for a
spot in the first Θ(k) slots in the array. Since the counter C
accurately estimates the number of active processes, at most
a constant fraction of the first Θ(k) slots are full; hence each
random probe has a constant probability of finding an empty
slot. Once the process finds a spot, it goes to sleep, spinning
until it is awakened.

When a process exits the critical section, it searches
for a replacement process in the array A, handing off
control of the critical section. It proceeds by reading the
counter C—assume that k is the value returned by C—and
searching randomly for a process in the first Θ(k) slots of
the array. If there are k active processes waiting in the first
Θ(k) slots of the array, each random probe has a constant
probability of finding an occupied slot. At this point, the
exiting process removes itself from the array A, wakes the
process occupying the selected slot, and decrements the
counter C.

1Their implementation is strongly linearizable, and hence can be safely
used in the presence of an oblivious adversary; see [13].



There are problems with this basic protocol. First, we
have to address how the very first process enters the critical
section. Second, we have to cope with the case when many
processes have incremented the counter, but not yet joined
the array. Third, we can only use counters that increment,
not decrement.

In Section 2.2 we provide a base protocol that addresses
these issues. The resulting protocol is inefficient, but illus-
trates the basic ideas of our protocol. In Section 2.3, we
show how to replace the exact counters used in Section 2.2
with approximate counters.

Finally, in Section 2.4, we address the problem of decre-
menting counters as follows. We maintain two separate
counts: the (approximate) number of increments and the
(exact) number of decrements. As long as the number
of increments is sufficiently larger than the number of
decrements, then we can ignore the decrements and the
counter still yields a constant-factor approximation. When
the number of decrements becomes sufficiently large, we
reset the counters, beginning a new epoch.

This resetting, however, creates a chicken-and-egg prob-
lem: the first step that a process takes in an epoch must
be a write—a process must make a mark—specifically, one
that is visible to other processes. If the first step is a read,
then a set of slow processes could wake up, take invisible
steps, sleep until the epoch finishes, wake up in the next
epoch, take invisible steps, sleep until the epoch finishes,
and so on, without accomplishing useful or visible work.
In this case, the total work could grow too large because
of the invisible read operations. On the other hand, if the
first step of a process in an epoch is a write, how does the
process discover the epoch number (i.e., where to find the
data structure for the given epoch)? We address these issues
in Section 2.4.

2.2. Base Mutual Exclusion Protocol

The basic mutual exclusion protocol consists of four
components: (i) a variable lock to guard the critical section;
(ii) an array A, which processes use while waiting for
the critical section to become free; (iii) a counter C that
processes increment immediately on joining the system, and
(iv) a counter join-count that processes increment after they
have joined the array A (but before any spinning occurs).

The lock is implemented via a CAS operation: when a pro-
cess p wants to claim the lock, it executes CAS(lock , 0, p).
If the CAS operation succeeds, then p has acquired the lock.
When a process p wants to release the lock, it simply writes 0
to lock . The counters C and join-count can be implemented
using the construction in [5].

A process p enters the critical section as follows. First,
it increments the counter C. It then repeats the following
until it succeeds in claiming a slot in A: (i) it reads value
k ← C.read(); (ii) it chooses a random location ` in array A
in the range 1 . .Θ(k); and (iii) it attempts to claim slot ` by

executing CAS(A[`], 0, p). When the CAS succeeds, process
p increments counter join-count . It then tries to acquire the
lock . If the process succeeds, it enters the critical section.
Otherwise, it spins on the array slot A[`].

A process p exits the critical section as follows. First, p
sets the array slot A[`] ← −1, indicating that the slot is
now empty. Next, p releases the lock. Finally, p repeats the
following steps: (i) it reads c1 ← C.read(); (ii) it reads c2 ←
join-count .read(); (iii) if c1 > c2, then p exits; otherwise,
(iv) it chooses a random location ` in the range 1 . .Θ(c1);
and (v) if A[`] > 0, then it signals to the process spinning
at A[`] to wake up and exits. Otherwise, p repeats (1)–(v).

This protocol ensures mutual exclusion, as no process
enters the critical section without acquiring the lock. The
protocol also guarantees liveness: Assume process p spins
forever. Since p fails to acquire the lock, we know that at
least one process succeeds in entering the critical section.
Let q be the last process to exit the critical section. Observe
that q necessarily releases the lock at some point after p tries
to acquire it. Since q is the last process to exit the critical
section, it does not find (and awaken) another process in A.
Thus, we conclude that q exits on finding c1 > c2. This exit
condition implies that some process p′ has incremented c1
but not c2; p′ will proceed to try to acquire the lock after q
has released it, ensuring that either p′ or some other process
enters the critical section after q, which is a contradiction.

Finally, we observe that the algorithm is reasonably effi-
cient (i.e., on average each process performs O(1) counter
increments and other operations) as long as the number of
processes that have exited the critical section is at most a
constant fraction of the total number of processes that have
incremented counter C. To see this, there are two parts of
the protocol that we have to examine.

First, looking for a free slot in the array A: since a process
reads the counter C prior to searching for a spot in the array,
either it succeeds with constant probability, or the number
of processes in the system has doubled since it read C. In
the latter case, we can amortize the cost of the read against
the newly arrived processes.

Second, finding a process in the array A, after exiting the
critical section: we search for a process in A only when
c1 = c2, i.e., all the processes that have begun joining have
found a slot in the array A. Thus, at least a constant fraction
of the slots in the range from 1 . .Θ(c1) are either marked by
processes that are spinning, or by processes that have already
exited the critical section. If the number of processes that
have completed is at most a constant faction of the number
of processes that have begun joining, then each probe in A
has a constant probability of finding a spinning process.

On the other hand, if most of the processes have already
completed the critical section (and the array A is empty),
then this protocol becomes inefficient.



2.3. Approximate Counters

We now observe that we can replace the exact counters
with approximate counters. In Section 4, we show how
to implement approximate counters where each increment
and read operation requires at most O(log2 log n) steps. Al-
though the exact counter works even with a strong adversary,
our approximate counter requires a weaker adversary.

Replacing the exact counter with the approximate counter
creates two potential problems. First, we use the value k read
from the counter C to find a spot in the array A. Since the
counter is within a constant factor of the correct value, it
remains easy to see that the range 1 . .Θ(k) is big enough
to contain all the processes that have joined.

The second problem arises when a process exits the
critical section, since the values c1 and c2 may each be off by
a constant factor. Instead of exiting when c1 > c2, a process
exits if for some constant 0 < ε < 1 (which depends on the
approximation factor of the counters), the value c1 > c2/ε.
In this case, at least one process has incremented C and
not join-count , and hence it is safe for a process leaving
the critical section to exit. Otherwise, if c1 ≤ c2/ε, we
know that some Θ(c1) processes have completed joining
and hence we can find one in the array A in the range
1 . .Θ(c1). Thus, using approximate counters instead of
exact counter, the mutual exclusion protocol maintains the
properties previously discussed.

2.4. Resetting the Counters

Finally, we address the issue of efficiency. We keep a
count LCount of the number of processes that have com-
pleted the critical section. When lCount reaches a constant
fraction of C, we reset the data structure and begin a new
epoch. We cannot, however, simply create a new copy of
the data structure (i.e., counters C, join-count , array A) for
the new epoch and move all the processes to the new data
structure. The (chicken-and-egg) problem is as follows.

Assume that in every epoch at least T = Θ(log4 n)
processes complete (for reasons to be explained later). Thus,
there may be Θ(n/T ) epochs. If each epoch has its own
data structure (i.e., counters and arrays), then the first step
a process takes in an epoch must be to read some epoch
counter that specifies which data structure to use. Consider
some Θ(n) processes that read the epoch counter without
modifying the data structure in any other way, and then
stall until the epoch ends. Since the large batch of stalled
processes is invisible, each epoch must come to an end after
some T processes join, enter the critical section, and leave.
The total number of steps taken by the batch of stalling
processes, after Θ(n/T ) epochs, is Θ(n2/T ), which is too
much.

Instead, we insist that in its first step in an epoch, a
process makes a mark, i.e., begins by incrementing counter
C. We instantiate three copies of counter C which we call
C[0], C[1] and C[2]. When a process increments counter C,

it simply chooses one of the three counters at random to
increment. In epoch e, we read from counter C[e mod 3].
With constant probability, a process performing an increment
chooses the correct counter for the current epoch. Thus, the
value read from counter C[e mod 3] remains a constant-
approximation of the correct count. (Notice that a further
problem is ensuring that one write step by a process is
sufficient to ensure that it is counted, as incrementing the
counter may take more than one step; this is achieved by a
helping mechanism and is explained further in Section 5.)

Each epoch maintains its own specific copy of counter
join-counter and array A. After process p increments the
randomly selected counter C[·], it reads the epoch counter
and proceeds to use the correct instance of the data structure.

Whenever an epoch ends, the counter C[(e−1) mod 3] is
cleared, and the epoch counter is incremented. At the same
time, all the processes spinning in the array A for the old
epoch are awakened, and repeat the entire protocol in the
new epoch (i.e., incrementing C[·], joining A, incrementing
join-counter ). Since the counter C[·] is a good approxima-
tion of the total number of processes that have taken even
one step, and we use the value of counter C[·] to determine
when to end the epoch, we can amortize the work done by
processes moving from one epoch to the next against the
work done by processes that complete in that epoch.

The remaining problem is that, since we choose a counter
C1 at random, the estimate is good only after a polylogarith-
mic number of processes join. (The estimate can be too low;
it can never be more than a factor of 3 too big.) Thus, we
only rely on the counter C[·] when at least T = Θ(log4 n)
processes have joined it. To cope with this problem, we will
in parallel execute a second (deterministic) mutual exclusion
instance which only T processes are allowed to use. We can
construct this secondary instance using existing techniques
where each process performs at most O(log T ) steps.

There are also three places we rely on counter C[·]. First,
when we are searching for a spot in the array A, if the value
read from the counter is smaller than T , we round the value
up to T . Second, when we are searching for a process in the
array A, if the value read from the counter is smaller than T ,
we round the value up to T . Finally, when comparing c1 and
c2 (to determine if a process exiting the critical section can
safely depart), we simply exit if the counter c1 < Θ(T ): in
that case, it is safe to assume that the small mutex instance
will send a process into the critical section.

3. BACKGROUND

This section describes four basic building blocks.

3.1. Max-Registers

A max-register is an object that stores the largest value
ever written to it. A max-register supports two operations:
read and write, where the read operations returns the largest
value ever written. A max-register is parameterized by



a value vmax that specifies the maximum allowed value.
Aspnes et al. [5] describe a max-register in which each
operation has cost O(log vmax).

3.2. Exact Activity Counter
An activity counter has a set of ports P , and supports two

operations: (i) join(p), for some port p ∈ P , and (ii) read().
The read operation returns a count of the number of ports
for which there has been at least one join operation. (If there
are two join operations executed on the same port, then the
count is only incremented by one.) The counter construction
in [5] immediately yields an exact activity counter with cost
O(log |P |) to read and O(log2 |P |) to increment.

3.3. Small Bounded Counter
We also need a traditional counter that returns the ex-

act number of increments. The maximum value of the
counter will be bounded by some small value vmax. The
bounded-counter construction uses an exact activity counter
of size 2vmax. To increment the counter, a process repeatedly
chooses and joins a port p ∈ {1, . . , 2vmax} at random until
it finds one that is free, or it discovers that the counter
has exceeded vmax. Notice that each attempt to find a port
succeeds with probability at least 1/2.

One additional feature of this counter is that it returns the
port number claimed during the increment, if any. Thus, it
will return a valid port identifier to at least vmax and at most
2vmax processes.

Lemma 1: Assume log n ≤ vmax ≤ n. For every c, for
a set of k join operations, collectively they cost O((k +
vmax) log2 vmax) RMRs, with probability ≥ 1− 1/nc. �

Observe the distinct semantics between these two coun-
ters: the bounded counter does not require the calling process
to provide a port number, and counts every increment; the
exact activity counter assumes the caller has a port number,
and counts the number of ports that have been joined.

3.4. Deterministic Mutual Exclusion
When there are only a small (e.g., polylogarithmic) num-

ber of active processes, we rely on a deterministic mutual
exclusion protocol (e.g., [19]). The protocol has P ports,
i.e., can be accessed by up to |P | different processes, where
|P | will be polylogarithmic. It supports two operations: (i)
join(p, on-win-mutex), which accesses the mutual exclusion
object on port p and executes the function on-win-mutex
when the critical section is obtained; and (ii) leave(p), which
indicates that the process on port p is leaving. The protocol
consists of a tree with |P | leaves where each node has a lock
that can be claimed (and released) via a CAS operation. On
joining port p, a process claims the lock at the leaf. It then
attempts to walk up the tree as in [19], claiming each lock on
the leaf-to-root path. If a lock is already taken, the process
spins locally, waiting for it to become free. When a process
leaves (or completes the critical section), it walks down the
tree, releasing the locks.

4. APPROXIMATE ACTIVITY COUNTER

This section describes an approximate activity counter,
approx-counter, that counts the number of processes that
have executed a join operation. It also supports a clear that
resets the counter to zero; however, we require that the clear
operation is never executed by more than one process con-
currently. With high probability, the read operation returns a
constant-fraction approximation of the number of processes
that have joined the counter since it was last cleared.

Basic Idea: Here we adapt a standard trick: if k ≤ n
independent variables 〈X1, . . . , Xk〉 are each exponentially
distributed on the range [1, . . . , log n], then in expectation,
max(Xj) = log k (to a suitable approximation). If each
joining process chooses a value at random according to
the exponential distribution and writes that value to a max-
register, then the max-register stores an estimate of the
number of processes that have joined.

To achieve a high-probability estimate of the number of
joins, we modify this scheme slightly: a joining process only
writes a value j to the max-register if at least log n other
processes have also randomly selected j. For each of the
log n possible values of j, we use an activity counter to de-
termine whether sufficiently many processes have chosen j.

Observe that the approximate counter does not work if the
adversary is adaptive, because an adaptive adversary could
bias the estimate by delaying the small number of processes
that randomly select large values.

Detailed Description: The counter is parameterized by
a constant c. The data structure consists of four parts: (i) a
max-register M , (ii) an array of log n exact activity counters,
each with c log2 n ports, (iii) a two-dimensional array of
bits L that contains one bit for every port on every counter,
and (iv) a bounded counter. To clear the counter, we simply
allocate new memory for the max-register, exact activity
counters, and bounded counter, thus allowing each to be
“atomically” cleared. (Thus we can view M and C and sC
as “pointers” to the specified data structures.’) The array L
is cleared sequentially (so that there is no need to read a
pointer to find the location of array L).

We define a threshold T = Θ(log4 n) differentiating
“small activity” and “normal activity”: when there are fewer
than T active processes, we rely on the bounded counter;
when there are more than T active processes, we rely on
the estimate derived from the max-register M and the exact
activity counters. This is necessary since the estimate derived
in this fashion is only accurate when a polylogarithmic
number of processes have joined.

Joining the approximate counter consists of two parts:
a pre-join and a join. In the pre-join a process chooses
an exact activity counter at random using an exponential
distribution, and it chooses a port on that counter using
a uniform distribution. It then marks the bit in array L
associated with this counter and port. By making this mark



immediately during the pre-join, slower processes can have
their join finished by faster processes. After the pre-join, a
process calls join specifying the previously chosen counter
and port. The process then checks whether the bit in the array
L remains set (i.e., there has been no intervening clear), and
if so, the process joins the specified exact activity counter
at the specified port. If the counter value is sufficiently big,
then the process writes the counter id to the max-register.
Finally, the process, increments the bounded counter.

A read operation examines both the bounded counter and
the approximate counter. If the bounded counter exceeds the
threshold T , then it returns the maximum of T and 2m log n,
where m is the value read from the max-register. Otherwise,
it simply returns the value of the bounded counter.

One risk is that a slow process may never get counted.
The array L is the location where a process first “makes its
mark.” The help procedure is executed by faster processes,
ensuring that every process that makes a mark is counted. To
help, a process chooses a random entry in the array L, and
if there is a mark, then it completes the join for the process
that made a mark there. After Θ(log4 n) helping operations,
with high probability, every process that has made a mark
has been counted.

Analysis: We now argue that the counter returns a
constant factor approximation.

Lemma 2: For every constant c, there exists a constant
0 < δ < 1 (as a function of c) such that: Let z be the value
returned by some read() operation τ . Assume that there are
no clear operations concurrent with τ . Let κ be the most
recent clear operation that completed (if any exists) prior to
the beginning of τ . If there exists a set of p processes that
begin executing the join procedure after clear operation κ,
and completed the join procedure prior to the read operation
τ , then z ≥ δp with probability at least 1/nc. �

Lemma 3: For every constant c ≥ 3, there exists a
constant γ > 1 (as a function of c) such that: Let z be the
value returned by some read() operation τ . Let κ be the most
recent clear operation (if any exists) that completed prior to
the beginning of τ . Let P be the set of join operations that
end after κ begins and begin no later than when the read
operation ends. Then z ≤ γ|P | with probability at least
1− 1/nc. �
Next, we show that if there is sufficient helping, every
process is counted (even those that are slow).

Lemma 4: For every constant c, there exists a constant
ψ < 1 (as a function of c) such that: Let z be the value
returned by some read() operation τ . Let H be a set of
help() operations, where |H| ≥ 3c2 log4 n. Assume that
there are no concurrent clear operations, and let κ be the
most recent clear operation that completed (if any exist).

If there exists a set of p ≥ T processes that execute at
least the first write step of a pre-join operation after the
clear operation κ and prior to the first operation in H , and
if the read operation τ begins after the last operation in H

1 object approx-counter〈c〉
2 // Threshold between small & normal activity:

3 threshold T = Θ(log4 n)
4 M : max-register〈logn〉, initially 0
5 // Array of activity ctrs, counting to c log2 n:

6 C [1 . . logn] : basic-counter〈{1 . . c log2 n}〉
7 // L[i][j] is value in jth leaf of the ith ctr:

8 L[1 . . logn][1 . . c log2 n] : two-dim array of bits
9 sC : bounded-counter〈T 〉

10
11 procedure pre-join() // Indicate intent to join.

12 // Random exponentially distributed choice:

13 Choose i ∈ {1 . . logn}: Pr(i) = 1/2i

14 // Random uniformly distributed choice:

15 Choose j ∈ {1 . . c log2 n}: Pr(j) = 1/c log2 n
16 L[i, j]← 1 // Process makes its mark.

17 return 〈i, j〉 // Return counter and port.

18
19 procedure join(〈i, j〉) // Join counter i at port j.

20 // Copy in case of concurrent clear:

21 C′ ← copy of pointer to C[i]
22 M ′ ← copy of pointer to M
23 S′ ← copy of pointer to sC
24 // If the mark is still there:

25 if L[i, j] = 1 then
26 C′.join(j) // Join ctr i at port j.

27 // If ctr is big, then write max-register.

28 if (C′.read() ≥ c logn) then M’.write(i)
29 S ′.join()
30
31 procedure check(〈i, j〉) return (L[i, j] = 1)
32
33 procedure read() // Read approx counter.

34 v1 ← sC .read()
35 v2 ←M.read()
36 if v1 ≥ T then return max(v1, 2

v2 logn)
37 else return v1
38
39 // Help those that have not finished joining.

40 procedure help()
41 // Pick a random ctr i and leaf j to help join.

42 Choose i ∈ {1 . . logn}: Pr(i) = 1/ logn
43 Choose j ∈ {1 . . c log2 n}: Pr(j) = 1/c log2 n
44 if L[i, j] = 1 then
45 C[i].join(j)
46 if (C[i].read() ≥ c logn) then M.write(i)
47
48 // The clear operation cannot be called concurrently.

49 procedure clear() // Clearing is not atomic.

50 M ← new(max-register〈logn〉)
51 C ← new-array(basic-counter〈1 . . c log2 n〉)
52 sC ← new(bounded-counter〈T 〉)
53 for i = 1 to logn, j = 1 to log2 n do L[i, j]← 0

completes, then z ≥ ψp with probability at least 1− 1/nc.
Finally, we bound the cost of using the approximate counter:

Lemma 5: Suppose that after each clear operation, there
are at least Ω(T ) join operations before the next clear. Then
each pre-join, join, check, read, and help operation has
amortized cost O(log2 log n), with high probability. Each



clear operation has cost O(log2 n). �
Note that we only clear the counter once Θ(T ) processes
have joined; otherwise, the above bounds may not hold.

5. DYNAMIC EPOCH-BASED COUNTER

This section describes a dynamic counter that supports
both join and leave operations. The basic idea is to divide the
execution into epochs, where each epoch has an approximate
counter. As long as the number of processes that have joined
an epoch is much larger than the number of processes that
have left an epoch, then the value returned by the counter
remains a good approximation. Whenever the number of de-
parted processes reaches a constant fraction of the processes
that have joined, then a new epoch is triggered, and all the
processes are awakened and instructed to join the new epoch.

There are two challenges here. First, the dynamic counter
must continue to give good estimates, even as processes
slowly transition from one epoch to the next. Second, as
already discussed, the very first step of a process must be a
write operation that “makes a mark.” Hence, a new process
must increment the counter before reading the epoch counter.

We solve both problems as follows: instead of allocating
one approximate counter per epoch, we use three approxi-
mate counters, rotating the approximate counter in use for
the current epoch. That is, in epoch e, we read from counter e
mod 3. When a process wants to join, it randomly chooses
a counter to increment, ensuring that a constant fraction
of joins update the right counter. When we transition from
epoch e to e + 1, we clear counter (e − 1) mod 3, so we
can continue to observe the final count from epoch e, while
we transition to e+ 1.

Joining: A process p joins the dynamic counter by
calling the function join(p, f), where f is a callback function
to be executed when the epoch ends. The first part of the
join procedure chooses an approximate counter to increment
(Line 17) and attempts to execute a pre-join on that counter
(Lines 22–27). This pre-join is where the process performs
its first write, ensuring that it can be counted immediately.
The pre-join is repeated until it succeeds in making its mark
in an epoch without the epoch changing. At this point the
join is completed (Line 28), and the process helps each of
the three counters (Line 30). Finally, the process registers
the callback function to be triggered when the epoch ends.
Specifically, if the process joined at epoch e, then the
callback function is triggered when new-epoch[e] toggles to
true, indicating that the epoch finished, and the procedure
join returns the value e.

Leaving: When a process that joined epoch e exits
the critical section, it executes leave(e). Notice that since
a leave is executed only after a critical section, there are
never concurrent leave operations. The process first checks
whether the epoch has advanced beyond e, and if so, the
leave is ignored. Next, the departing process increments
the leave counter (Line 48) which tracks the number of

processes that have left. (Since there are no concurrent leave
operations, we need not implement a concurrent counter.)
Next, the process reads the dynamic counter (Line 49)
to check how many processes are currently active. If the
number of processes that have left has reached a constant
fraction of the processes that have joined (Line 53), and if at
least T processes have left, then the epoch ends: the counter
for epoch e − 1 is cleared, the epoch is incremented, and
processes are triggered to join a new epoch. Note that at
least T processes complete in each epoch.

Analysis: We now show that the dynamic counter
returns a constant-factor approximation of the number of
active processes. We first argue that the number of processes
that take steps in epoch e−1 is no greater than some constant
times the number of processes that complete in epoch e. This
allows us to amortize the work done by processes in e− 1
against processes that complete in epoch e. Let Pe be the
set of processes that execute one read/write step of Line 22
in epoch e.

Lemma 6: For every constant c, there exists a constant
ε < 1 such that: If ζ is the last leave operation in epoch e,
then at the end of ζ, Lcount [e] ≥ ε|Pe−1| with probability
at least 1− 1/nc. �

We now show that the dynamic counter returns a value
that is at least as large as a constant ε times the number of
processes that completed a join operation in that epoch.

Lemma 7: For every constant c, there exists a constant
0 < ε < 1 such that: For every read operation τ in epoch e,
where z ≥ 0 is the value returned by τ , if there exists a set
P ⊆ Pe of at least 48cT processes that completed a join in
epoch e prior to the beginning of τ , then z ≥ ε|P |. �
Next, we show that the counter cannot grow too big: its value
is bounded by the number of processes that have joined in
the most recent three epochs. This follows since the counters
are cleared every three epochs.

Lemma 8: For every constant c, there exists some con-
stant γ1 > 1 such that: For every read operation τ in epoch
e that returns value z, if P is the set of processes that take
one step of a join in epochs e− 2 or e− 1 or e, where the
join begins prior to the end of τ , then z ≤ γ1|P |. �

Finally, we show that the value returned by the dynamic
counter is at most a constant factor greater than the number
of active processes. This lemma relies on two facts: First:
at the end of each leave operation, the value of the leave
counter is at most a constant fraction of the number of active
processes. This is important, as it ensures that not too many
processes leave during an epoch, and hence we can prove a
second claim: every read operation returns a value at most
some constant times the number of processes active at the
end of the operation. The first claim itself depends on the
second, however, as the decision to end an epoch depends on
the value of the counter (Line 53). We must also account for
when the number of processes falls below the threshold T .
Let Aζ be the number of active processes at the end of leave



1 object dynamic-counter〈c〉
2 // Threshold between small and normal activity.

3 threshold T = Θ(log4 n)
4 C [0 . . 2] : approx-counter〈c〉
5 // The epoch is updated by a leaving process.

6 epoch : global integer, initially 1
7 // Count # processes that leave in epoch e:

8 Lcount [1 . . n] : array of integers, initially all 0
9 // During epoch e, new-epoch[e− 1] = true.

10 new-epoch[1 . . n] : array of bits, initially false
11 // Proc. p stores epoch it joined in last-epoch[p].

12 last-epoch[1 . . n] : array of int, initially all 0
13
14 // on-new-epoch is called when epoch ends.

15 procedure join(p, on-new-epoch)
16 // Choose approx. counter to increment.

17 Choose i ∈ {1 . . 3} such that: Pr(i) = 1/3
18 done ← false
19 while done = false do
20 // Port b of counter a marked.

21 // First RMR occurs here in pre-join.

22 〈a, b〉 ← C[i].pre-join()
23 last-epoch[p]← epoch // Read epoch.

24 // Check that ctr has not been cleared and

25 // that the epoch has not changed.

26 done ← C[i].check(〈a, b〉) and
27 last-epoch[p] = get-epoch()
28 C[i].join(〈a, b〉) // Finish join port b, ctr a.

29 // Help increment counters

30 C[0].help(); C[1].help(); C[2].help()
31 // Monitor last-epoch[p].

32 // Call on-new-epoch when epoch changes.

33 register(when(new-epoch[last-epoch[p]]=true))
34 do on-new-epoch(last-epoch[p] + 1))
35 return(last-epoch[p]) // Return epoch number.

36
37 procedure read()
38 e← epoch // Read current counter.

39 v ← C[e mod 3].read()
40 // If epoch changed, return -1.

41 if epoch = e then return v
42 else return −1
43
44 // The leave operation cannot be called concurrently.

45 procedure leave(e) // Leave after exiting critical sec.

46 if epoch = e then
47 // Increment count of departed procs:

48 Lcount [epoch]← Lcount [epoch] + 1
49 total ← read() // Read dynamic counter.

50 // If # departures is above threshold,

51 // and # departures is a large-enough

52 // fraction of arrivals, epoch ends.

53 if (Lcount [epoch] > λ · total) and
(Lcount [epoch] ≥ T ) then

54 // Clear counter for previous epoch.

55 C[(epoch − 1) mod 3].clear()
56 epoch ← epoch + 1 // Increment epoch.

57 // Trigger wake-up of all procs.

58 new-epoch[epoch − 1]← true
59
60 procedure get-epoch()
61 return epoch

ζ in epoch e, and let Aτ be the number of active processes
at the end of τ . Note that λ < 1 is defined in Line 53, and
its precise value is fixed to Θ(1/γ1) in the proof.

Lemma 9: For every constant c, there exists a constant
β ≥ 1 such that for every epoch e:

1) For every leave operation ζ in epoch e: Lcount [e] ≤
max(4λβ|Aζ |, T ) at the end of ζ, with probability at
least 1− 1/nc.

2) For every read operation τ in epoch e that returns
value z, then z ≤ βmax(|Aτ |, T ), with probability at
least 1− 1/nc. �

6. MUTUAL EXCLUSION ALGORITHM

We now give the mutual exclusion algorithm. To ensure
safety, the protocol guards the critical section with a lock .
A process can enter the critical section only after writing
its identifier to the lock with a CAS operation. We use a
dynamic counter C to track the number of active processes
and to define the epoch structure. When each competing
process p finishes joining epoch e, it attempts to find a slot
in a dense array A[e]. The array slot [p] stores the slot in the
array A[e] that p is currently holding. For each epoch e, we
also maintain a second approximate counter joinCount [e],
which counts the number of processes that have successfully
found a slot in the array A[e]. (The difference C minus
joinCount [e] indicates how many processes have begun but
not yet finished joining.)

For when there are only a small number of processes,
each epoch e also has a deterministic small mutual exclusion
object sMutex [e] with only Θ(T ) ports (i.e., it costs each
process O(log T ) to use). A bounded counter sC [e] (with
max value Θ(T )) assigns the first Θ(T ) processes to join
an epoch to ports.

Competing for the Critical Section: When a process
p is first activated or awakened to join a new epoch, p
executes the compete procedure. The first step is to clear all
events registered in prior epochs. Next, p executes a join on
the dynamic counter (Line 24) with the call-back function
compete as a parameter. This callback function indicates
that when the next epoch begins, the process p should call
compete again. Note that this is the first place where process
p performs an RMR after awakening, and critically, that the
RMR is a write to memory that makes a mark, allowing the
other processes to observe p’s existence.

Next, process p loops (Lines 28–31): it reads the dynamic
counter C, and attempts to claim (via a CAS) a random
location in the array A[e], selecting within a subarray based
on the value returned by C, but always of size Ω(T ). The
density of C is determined by the accuracy of the counter
C: ideally, a constant-fraction of the slots in the array A[e]
are full. This allows p to readily find a free slot. Next, in
Line 34, the process p increments the counter joinCount [e],
indicating that it has successfully joined array A[e].



1 object mutual-exclusion〈c〉
2 constant T = Θ(log4 n)
3 constant β, as defined in Lemma 9
4 constant δ, as defined in Lemma 2
5 constant ε, as defined in Lemma 7
6 // Lock to guard critical section.

7 lock : process identifier, initially zero
8 C : dynamic-counter〈c〉, dynamic counter
9 // In epoch e, spin in A[e] until awakened:

10 A[1 . . n][1 . .Θ(n)] : 2D array
11 // Slot in A where p is currently spinning:

12 slot [1 . . n] : array of integers, one per process
13 // Counts # processes that have finished joining:

14 joinCount [1 . . n] : approx-counter〈c〉, one per epoch
15 // Used to claim a port in small mutex instance:

16 sC [1 . . n] : bounded-counter〈(48cβ/ε)T 〉
17 // Small mutex instances:

18 sMutex [1 . . n] : array of deterministic mutual exclusion
instances of size (96cβ/ε)T

19
20 procedure compete(p)
21 // Stop interrupts from earlier epoch events.

22 clear-registered-events(p)
23 // Join dynamic ctr: callback function is compete.

24 e← C .join(p, compete(p))
25 done ← false
26 while done = false do
27 // Read dynamic counter.

28 v ← max(C.read(), (48c/ε)T )
29 Randomly choose slot [p] ∈ {1 . . (4/ε)v}
30 // Claim slot in array A.

31 done ← CAS(A[e, slot [p]], 0, p)
32 // Count procs that finished joining the array.

33 〈a, b〉 = joinCount [e].pre-join()
34 joinCount [e].join(〈a, b〉)
35 // First Θ(T ) processes join the small mutex.

36 s← sC [e].join()
37 if s ≥ 0 then
38 sMutex [e].join(s, small-mutex-win(p, e))
39 // Register an interrupt if a slot in A is updated.

40 register(when(A[e, slot [p]] changes))
41 do mutex-win(p, e))
42 CAS(lock , 0, p) // Try to claim lock.

43 // If p gets lock, attempt to enter critical sec.

44 if lock = p then mutex-win(p,e)

The next part of the compete procedure copes with the
case when there are a small number of processes active in
epoch e. Process p increments the small counter sC , and if
it is one of the first O(T ) processes to do so (i.e., if it gets
back a value s ≥ 0) then it competes in the small mutual
exclusion instance for epoch e, i.e., sMutex [e]. The function
small-mutex-win(p, e) is passed as the callback function to
be executed if p wins the sMutex [e] instance. If p wins, it
continually tries to get the lock until it succeeds or a new
epoch begins. At any given time, at most one process has
won the sMutex instance and is waiting for the lock.

In the last part of the compete procedure, process p
registers an event, i.e., to call mutex-win if some other

45 procedure small-mutex-win(p, e)
46 CAS(lock , 0, p) // Try to claim lock.

47 // If p gets lock, attempt to enter critical sec.

48 if lock = p then mutex-win(p,e)
49 else // If lock frees, try again.

50 register(when (lock = 0)) do small-mutex-win(p, e))
51
52 // Try to enter critical section for epoch e.

53 procedure mutex-win(p, e)
54 CAS(lock , 0, p)
55 if (lock = p) and (C.getEpoch() = e) then
56 // Stop anything that can interrupt process.

57 clear-registered-events(p)
58 Execute critical section.
59 sMutex[e].leave() // Exit small mutex instance.

60 C.leave(e) // Leave dynamic counter.

61 A[e, slot [p]]← 0 // Clear array slot.

62 CAS(lock , p, 0) // Release lock.

63 done ← false // Find process to handoff to.

64 while done = false do
65 v1 ← C.read()
66 v2 ← joinCount [e].read()
67 // If small # of participants:

68 if v1 ≤ (32βγ/δ)T then done ← true
69 // If we know ≥ 1 processes are joining: else

if v1 ≥ 2(β/δ)v2 then done ← true
70 else
71 Randomly choose i ∈ {1 . .∆v2}.
72 x← A[e, i]
73 if x>0 then done ← CAS(A[e, i], x, p)

process awakens it by modifying its slot in the array A[e].
Process p then checks whether the lock is available, and if
so, it tries to acquire it and execute mutex-win. After trying
to acquire the lock, process p can safely spin, waiting for
either a new epoch or to be awakened via the array A.

On Winning the Lock: When process p is awakened via
the array A, it executes mutex-win. The first action by p is to
try to acquire the lock . If it fails, then it continues spinning.
If it succeeds, and if the epoch has not changed, then it
clears all registered events and enters the critical section.
(Note that up until this point, it may be interrupted by other
events, e.g., a new epoch or a new mutex-win.)

When p exits the critical section, it leaves the small mutual
exclusion instances sMutex [e], it leaves the counter C, and
it departs from the array A[e]. (Note that it does not matter
in which way p won the critical section.) It then releases the
lock on Line 62, allowing others to enter the critical section.

The remainder of the mutex-win procedure ensures that
some other process will later enter the critical section. If
the number of processes in epoch e is small, i.e., they are
all contained in sMutex [e], then there is no need to do any
further work. (This is checked on Line 68.) On the other
hand, if there are processes that have entered, but not yet
finished joining the array A[e] (and not yet begun to spin),
then process p can safely exit. (This is checked on Line 69.)

Otherwise, process p must find some process in the array



and wake it. A key technical challenge is ensuring that this
array remains dense, and hence that spinning processes are
easy to find, even as some processes may not yet have joined
the array A[e], and other processes may have already left the
system. Fortunately, if there are Ω(T ) processes that have
joined epoch e, and if all of those processes have completed
joining the array A[e], then we can be sure that the array is
dense, and hence with constant probability, process p will
find a spinning process (Lines 71–73).

Analysis: Mutual exclusion follows trivially from the
use of a lock to protect the critical section.

Theorem 10: For every execution, no two processes enter
the critical section at the same time. �
The second key claim is that there is no deadlock.

Theorem 11: Every process eventually enters the critical
section, with high probability. �

We now examine the performance of the protocol.
Theorem 12: In each execution there are O(n log2 log n)

RMRs, with high probability. �

7. CONCLUSION

We have presented a new mutual exclusion algorithm
with amortized O(log2 log n) RMRs per process, with high
probability.

We have achieved exponentially smaller bounds by weak-
ening the model of in two ways. First, we assumed an
oblivious adversary, whereas Hendler et al. [14] assume
an adaptive adversary. It has been conjectured that the
O(log n/ log log n) RMR bound is the best possible for
an adaptive adversary [18], at least for algorithms that
are starvation-free. If so, then our choice of a weaker
adversary seems fundamental. It would be interesting to
explore intermediate adversaries (see, e.g., [7], [9]).

Second, we ensure only that all processes enter the critical
section with high probability (rather than with probability 1).
This weakening does not seem fundamental. By detecting
when the counter’s value is too big or too small, it may be
possible to avoid deadlock in all cases.

It would also be interesting to consider other local spin-
ning models. It seems likely that the results here extend to
the DSM (dynamic shared memory) model, but there are
subtle differences to resolve.
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