
The Complexity of Renaming

Dan Alistarh
EPFL

James Aspnes
Yale

Seth Gilbert
NUS

Rachid Guerraoui
EPFL

Abstract— We study the complexity of renaming, a fundamen-
tal problem in distributed computing in which a set of processes
need to pick distinct names from a given namespace. We prove
an individual lower bound of Ω(k) process steps for deterministic
renaming into any namespace of size sub-exponential in k, where
k is the number of participants. This bound is tight: it draws
an exponential separation between deterministic and randomized
solutions, and implies new tight bounds for deterministic fetch-and-
increment registers, queues and stacks. The proof of the bound is
interesting in its own right, for it relies on the first reduction from
renaming to another fundamental problem in distributed computing:
mutual exclusion. We complement our individual bound with a
global lower bound of Ω(k log(k/c)) on the total step complexity
of renaming into a namespace of size ck, for any c ≥ 1. This
applies to randomized algorithms against a strong adversary, and
helps derive new global lower bounds for randomized approximate
counter and fetch-and-increment implementations, all tight within
logarithmic factors.

1. INTRODUCTION

Unique identifiers are a fundamental prerequisite for effi-
ciently solving a variety of problems in distributed systems.
In some settings, such as Ethernet networks, unique names
are available, but come from a very large namespace, which
reduces their usefulness. Thus, the problem of assigning
small unique names to a set of participants, known as
renaming [7], is fundamental in distributed computing.

A lot of work has been devoted to devising renaming
algorithms that minimize the size of the available names-
pace, whether deterministically, e.g. [7], [12], [13], [27],
[28] or using randomization [3], [5], [16], [29]. Herlihy
and Shavit [21], as well as Rajsbaum and Castañeda [14],
showed that, for deterministic algorithms using only reads
and writes, wait-free renaming is impossible in less than
(2k − 1) names, where k is the number of participants.
Algorithms using randomization or atomic compare-and-
swap operations, e.g. [3], [27], are able to circumvent this
impossibility and solve strong renaming, i.e. assigns a tight
namespace of k consecutive names to the k participants.

Little is known about renaming lower bounds. Establish-
ing such bounds is challenging, especially when the names-
pace is loose (non-tight): intuitively, the difficulty comes
from the fact that the number of possible outputs increases
exponentially with the size of the allowed namespace.

Contribution. In this paper, we study the complexity of
renaming in a namespace whose size depends on the number
of participants (this is also called adaptive renaming [8]).
Our study covers both randomized and deterministic al-

gorithms, and also implies lower bounds for other shared
objects such as counters, stacks, and queues.

Individual Lower Bound. We present a lower bound on the
number of process steps (reads, writes, and compare-and-
swap operations) for renaming into any namespace of size
sub-exponential in the number of participants k. We prove
that any deterministic algorithm that renames into a names-
pace of size at most 2f(k), for any function f(k) in o(k), has
executions in which a process performs Ω(k) steps. This re-
sult shows that assigning names in a huge namespace, e.g. of
size Θ(k100), is no easier (asymptotically) than renaming in
a small namespace of size O(k). The lower bound holds even
in a system with no failures, and even if the devices have
access to powerful synchronization primitives like compare-
and-swap. In essence, we show that some process must pay
a linear cost for “contention resolution,” i.e., competing for a
name, even if the namespace is extremely sparse. The bound
is tight for algorithms that use atomic compare-and-swap
operations [27]. For read-write algorithms, which cannot
achieve a tight namespace, the bound is matched by the
algorithm of [28], which ensures a namespace of size O(k2).
The bound highlights an exponential complexity separation
between deterministic and randomized adaptive renaming,
since there exist randomized renaming algorithms with
O(log k) expected local (per-process) step complexity [3].

The key idea behind the lower bound is a new reduction
between renaming and mutual exclusion. The strategy is
composed of two steps (please see Figure 2 for an illus-
tration). The first reduction step transforms any wait-free
adaptive loose renaming algorithm R into an algorithm for
adaptive wait-free strong renaming. The transformation is
efficient as long as the original algorithm renames into a
namespace of size sub-exponential in the number of partici-
pants k. The second step of the reduction uses the resulting
strong renaming algorithm to solve mutual exclusion, with
only a constant blowup in terms of complexity. Overall,
the transformation ensures that, if the algorithm R renames
in a sub-exponential namespace with step complexity o(k),
the resulting mutual exclusion algorithm uses o(k) remote
memory references (RMRs) [10], [24] to enter and exit
the critical section (for a definition of RMRs, please see
Section 2). However, the existence of such an algorithm
contradicts a linear lower bound of Anderson and Kim [24]
on the RMR complexity of mutual exclusion, concluding the
argument. One side result of the reduction is a new mutual

Shared Object Lower Bound Type Matching Algorithms New Result

Deterministic c-loose Renaming
Ω(k) Individual [8], [27], [28] Yes

Ω(k log(k/c)) Global [3] Yes

Randomized c-loose Renaming Ω(k log(k/c)) Global [3] Yes

Randomized c-approx. Counter Ω(k log(k/c)) Global [6] Yes

Fetch-and-Increment
Ω(k) Individual [3], [27] Improves on [18]

Ω(k log k) Global [3] Improves on [9]

Queues and Stacks
Ω(k) Individual Universal Constructions [1] Improves on [18]

Ω(k log k) Global - Improves on [9]

Figure 1: Summary of results and relation to previous work.

exclusion algorithm, based on an AKS sorting network,
which is asymptotically time-optimal. Also, we prove that
this technique implies a similar linear lower bound for
the step complexity of non-adaptive renaming algorithms
(where the size of the set of participants is fixed in advance).

More generally, our reduction connects the complexity of
wait-free algorithms that use reads, writes, and synchroniza-
tion primitives such as compare-and-swap or test-and-set,
with the complexity of locking implementations that rely on
busy-waiting loops. In fact, our reduction technique implies
a stronger Ω(k) lower bound on the number of RMRs that a
process has to perform in worst-case executions. RMRs are
orders of magnitude slower than accesses to local memory
on most multi-processor architectures. Since renaming can
be achieved deterministically wait-free with O(k) remote
memory references (RMRs) [28], this also shows that there
is no advantage to local spinning (i.e., busy waiting loops)
when solving renaming. (By contrast, efficient solutions to
mutual exclusion require local spinning.)

Our lower bound has ramifications beyond renaming.
Since adaptive renaming can be easily solved using either
a fetch-and-increment register, or an initialized queue or
stack, our lower bound applies to these objects as well. We
obtain new lower bounds for fetch-and-increment, queues
and stacks, which improve on previously known results [18],
[23]. In particular, our result suggests that the cost of
implementing shared objects such as queues is at least as
high as the cost of implementing locks, even when compare-
and-swap is available. Since we count RMRs, and only
require one operation per process in worst-case executions
(as opposed to exponentially many), our result is stronger
than those of [18], [23].

Global Lower Bound. We complement our individual step
complexity1 lower bound by also analyzing the total number
of steps that processes must perform in a worst-case execu-
tion. We prove a global step complexity lower bound for
randomized adaptive renaming against a strong adversary:

1By individual step complexity we mean the number of per-process
shared memory operations, not the number of local computation steps.

given any algorithm that renames into a namespace of size
ck with c ≥ 1, there exists an adversarial strategy that
causes the processes to take Ω(k log(k/c)) total steps in
expectation. For this, we employ an information-theoretic
technique to bound the knowledge that a process may
gather throughout an execution: we start from an adversarial
strategy which forces each process to take Ω(log `) steps
to find out about ` other participating processes, and prove
that, roughly, a process returning name ` has to know that at
least `/c other processes have taken steps. Since the names
returned have to be distinct, the lower bound follows. This
total step complexity lower bound is tight for c = 1, i.e.
for strong adaptive renaming, since it is matched by the
randomized algorithm of [3].

This global technique implies new total step complexity
lower bounds for randomized implementations of approx-
imate counters, fetch-and-increment registers, queues, and
stacks. (The results are summarized in Figure 1.) The
technique improves on previous lower bounds for these
objects [9], [10], [22], since it covers the global complexity
of randomized approximate solutions. Our global results are
tight within logarithmic factors for counters [6] and fetch-
and-increment registers [3]. In the case of counters, since
the lower bounds apply to randomized algorithms, and the
almost-matching algorithm [6] is deterministic, this suggests
that, against a strong adversary, the complexity improvement
that may be obtained through randomization can be at most
logarithmic. For approximate counters, the lower bound also
limits the complexity gain from allowing approximation
within constant factors. This global technique also applies
to randomized algorithms that may not terminate with some
non-zero probability.
Roadmap. The model and problem statements are defined
in Section 2. We prove the main lower bound in Section 3,
and the global lower bound in Section 4. Section 5 presents
the ramifications to other shared objects. Section 6 presents
an overview of related work, while Section 7 summarizes our
results. Due to space limitations, we present proof sketches
for some claims; complete proofs can be found in the full
version of this paper [4].

2. PRELIMINARIES

Assumptions. We consider a standard asynchronous shared
memory model with n processes, t < n of which may
fail by crashing. Processes that do not crash during the
execution are called correct. Algorithms that work in this
model are called wait-free. In this paper, we consider wait-
free algorithms that work for any value of n.

Each process has a unique initial identifier pi, from a
namespace of unbounded size. We consider k to denote
total contention, i.e. the total number of processes that take
steps during a certain execution. Processes may know n,
but do not know k. Processes communicate through atomic
registers. Each register R exports atomic read, write, and
compare-and-swap operations, with the usual semantics,
and allows multiple readers and multiple writers. The test-
and-set object has initial value 0, and exports an atomic
test-and-set operation, which atomically reads the value and
sets it to 1 (compare-and-swap can simulate test-and-set at
no extra cost).

Process failures and scheduling are controlled by an
adaptive adversary (also called a strong adversary). For
randomized algorithms, at any point in the execution the
adversary knows the results of the random coin flips that
the processes have performed, and can adjust the schedule
and the failure pattern accordingly.

Problem Statement. The renaming problem [7] requires
each correct (non-faulty) process to eventually return a
name, and that the names returned should be unique. For
adaptive renaming, the size of the resulting namespace
should only depend on the number of participants k (as
opposed to n for non-adaptive renaming). The adaptive
strong renaming problem requires the size of the namespace
to be exactly k. The c-loose renaming problem requires
names to be between 1 and ck, for any constant c ≥ 1.

Alternatively, renaming can be seen as an object an
arbitrary number of input and output ports. The number
of input ports depends on the size of the input namespace,
and is at least n. Each input port is associated to an initial
identifier, and the object eventually assigns a unique output
port to each correct process. The renaming object is adaptive
if it assumes no bound on the number of processes that
may participate in an execution, and if the size of the
range of assigned output ports (i.e., the target namespace)
depends only on the contention k. By contrast, a non-
adaptive renaming object assumes a known parameter n
that bounds the number of participating processes (and thus
also the number of input ports that may be occupied in an
execution). Also, the range of assigned output ports is a
function of the parameter n.

The counter object exports operations increment and read.
The increment operation increments the value of the counter
by one, and returns a success indication. The read operation
returns the number of increment operations that precede it in

the linearization order. A c-approximate counter (also called
a c-multiplicative-approximate counter) has the property that
the result returned by a read operation is always between v/c
and c ·v, where v is the number of increment operations that
precede the read operation in the linearization order.

The mutual exclusion object supports two operations enter
and exit. The enter operation is executed by a process
when it wants to enter the critical section; after competing
the critical section, a process invokes the exit operation. A
correct mutex implementation satisfies (1) mutual exclusion:
at most one process can be in the critical section at any given
point in time; (2) deadlock freedom: if some process calls
enter, then, eventually, a process enters the critical section;
(3) finite exit: every process that invokes the enter operation
will complete exit in a finite number of steps. The adaptive
mutual exclusion problem requires the complexity of the
algorithm to depend on the number of participants k (instead
of n); the correctness conditions above remain unchanged.

Complexity Measures. We measure complexity in terms of
process steps: each shared-memory operation is counted as
one step, coin flips are not counted. The total step complexity
is the total number of process shared-memory operations in
an execution, while individual step complexity (or simply
step complexity) is the number of shared-memory operations
a single process may perform during an execution.

For the bound in Section 3, we provide a stronger mea-
sure of complexity by counting remote memory references
(RMRs) [10], [24]. In cache-coherent (CC) shared memory,
each processor maintains local copies of shared variables
inside its cache, whose consistency is ensured by a coher-
ence protocol. A variable is remote to a processor if its
cache contains a copy of the variable that is out of date
(or no copy of the variable); otherwise, the variable is local.
A step is local if it accesses a local variable; otherwise it
is a remote memory reference (RMR). A similar definition
exists for the distributed shared memory (DSM) model. For
a more precise description of RMRs, please see [10], [24].
For wait-free algorithms, such as the renaming algorithms
we consider, the RMR complexity is always a lower bound
on their step complexity.

3. THE MAIN LOWER BOUND

We prove an Ω(k) lower bound on the step and RMR
complexity of any deterministic adaptive renaming algorithm
that renames into a namespace of size sub-exponential in
k. The technique establishes a reduction between renaming
and mutual exclusion using optimal-depth AKS sorting
networks [2] as an intermediate step.

The Strategy. The proof is based on two steps, outlined
in Figure 2. The first step, contained in Claim 1, starts
from a wait-free algorithm R, that renames adaptively
into a loose namespace of sub-exponential size M(k), and
obtains an algorithm T (R) for strong adaptive renaming.

Renaming
Algorithm R

Namespace M(k)
Complexity C(k)

Strong Renaming
Algorithm T(R)

Namespace k

Complexity
O(C(k) + log (M(k)))

Adaptive Mutex
Algorithm
ME(T(R))

RMR Complexity

O(C(k) + log (M(k)))

Claim 1 Claim 2

Figure 2: The structure of the reduction in Theorem 1. When C(k), the complexity of algorithm R, is in o(k), and M(k), the target
namespace for R, is a sub-exponential function, the RMR complexity of the resulting adaptive mutex algorithm ME(T (R)) is o(k),

contradicting a lower bound by Anderson and Kim [24].

The extra complexity cost of this step is an additive factor
of O(logM(k)). The second step, contained in Claim 2,
uses the strong renaming algorithm T (R) to solve adaptive
mutual exclusion, with the property that the RMR com-
plexity of the resulting adaptive mutual exclusion algorithm
ME (T (R)) is O(C(k) + logM(k)), where C(k) is the
step complexity of the initial algorithm R. Finally, we
revert to an Ω(k) lower bound on the RMR complexity
of adaptive mutual exclusion by Anderson and Kim [24].
When plugging in any sub-exponential function for M(k)
in the expression bounding the complexity of ME (T (R)),
we obtain that the algorithm R must have step complexity
at least linear in k, which concludes the proof.

We make this argument precise in the following. Due to
space limitations, we only present proof sketches for some of
the claims, and defer the complete proofs to the full version
of this paper [4].

Theorem 1 (Individual Lower Bound). For every function
f(x) = o(x), for every adaptive renaming algorithm A that
renames any set of m participants into a namespace of size
at most 2f(m), for every k ≥ 1, there exists n ≥ k such
that A has an execution with at most (2k − 1) participants
in which (1) some process performs k RMRs (and k steps)
and (2) each participating process performs a single rename
operation.

Proof: We begin by assuming for contradiction that
there exists a deterministic adaptive algorithm R that re-
names into a namespace of size M(k) = 2f(k) for f(k) ∈
o(k), with step complexity C(k) = o(k). The first step
in the proof is to show that any such algorithm can be
transformed into a wait-free algorithm that solves adaptive
strong renaming in the same model; the complexity cost of
the resulting algorithm will be O(C(k) + logM(k)).

Claim 1. Any wait-free algorithm R that renames into
a namespace of size M(k) with complexity C(k) can be
transformed into a tight adaptive renaming algorithm T (R)
with complexity O(C(k) + logM(k)).

Proof: We start from a recursive data structure based

on AKS sorting networks [2], called an adaptive renaming
network [3]. An adaptive renaming network is a construction
with an unbounded number of input and output ports,
which ensures the properties of a sorting network whenever
truncated to any number of input (and output) ports; every
comparator in the original sorting network is replaced with
a (two-process) test-and-set object. The structure and prop-
erties of renaming networks have been introduced in [3].
We now present a reduction from loose renaming to strong
renaming based on renaming networks.
Description. Given an AKS adaptive renaming network A,
we first use the algorithm R to assign unique input ports
to processes in the renaming network. More precisely, a
process first calls the algorithm R to obtain a temporary
name; the process then uses this name as an input port for
the adaptive AKS renaming network. Once it has an input
port by returning from R, the process starts at that port and
follows a path through the network determined by leaving
each comparator on its higher output wire, if it wins the test-
and-set (i.e. returns 0 from the test-and-set invocation), and
on the lower output wire otherwise (lower wires have higher
index, as wire indices are assigned from top to bottom). The
process returns the index of its output port as its final name
in the algorithm T (R).
Analysis. We recall that renaming networks have the prop-
erty that, for any k, they solve strong adaptive renaming for
k processes [3, Theorem 3]. Also, if the range of occupied
input ports is bounded by a parameter M > 0, then a
renaming network has depth O(logM) [3, Corollary 3].

Based on these properties, it follows that the algorithm
T (R) has the following properties: (1) every correct pro-
cess eventually reaches a unique output port; (2) in every
execution, the k participants may exit the renaming network
only on the first (highest) k output ports of the network;
(3) if M(k) is the size of the namespace generated by
algorithm R and O is the largest index of an occupied output
port, then the largest number of steps a process performs
in the renaming network is O(log max(M(k), O)). (For
a complete derivation, please see the full version of this
paper [4].)

Properties (1) and (2) ensure that the composition of
R and A solves strong adaptive renaming. Properties
(2) and (3) imply that the number of steps a process
takes while executing the resulting algorithm is O(C(k) +
log max(M(k), k)) = O(C(k) + logM(k)).

Returning to the main proof, in the context of assumed al-
gorithm R, the claim guarantees that the resulting algorithm
T (R) solves strong adaptive renaming with complexity
o(k) +O(log 2f(k)) = o(k) +O(f(k)) = o(k).

The second step in the proof shows that any wait-free
strong adaptive renaming algorithm can be used to solve
adaptive mutual exclusion with only a constant blowup in
terms of step complexity.

Claim 2. Any deterministic algorithm R for adaptive strong
renaming implies a correct adaptive mutual exclusion algo-
rithm ME (R). The RMR complexity of ME (R) is upper
bounded asymptotically by the RMR complexity of R, which
is in turn upper bounded by its step complexity.

Proof: We begin by noting a few key distinctions
between renaming and mutual exclusion. Renaming al-
gorithms are usually wait-free, and assume a read-write
shared-memory model which may be augmented with atomic
compare-and-swap or test-and-set operations; complexity is
measured in the number of steps that a process takes during
the execution. For simplicity, in the following, we call this
the wait-free (WF) model. Mutual exclusion assumes a more
specific cache-coherent (CC) or distributed shared memory
(DSM) shared-memory model with no process failures (oth-
erwise, a process crashing in the critical section would block
the processes in the entry section forever). Thus, solutions to
mutual exclusion are inherently blocking; the complexity of
mutex algorithms is measured in terms of remote memory
references (RMRs). We call this second model the failure-
free, local spinning model, in short LS.

The transformation from adaptive tight renaming algo-
rithm R in WF to the mutex algorithm ME (R) in LS uses
the algorithm R to solve mutual exclusion. The key idea is
to use the names obtained by the processes as “tickets” to
enter the critical section.

For the enter procedure of the mutex implementation,
each of the k participating processes runs algorithm R, and
obtains a unique name from 1 to k. Since the algorithm
R is wait-free, it can be run in the LS model with no
modifications.

The process that obtained name 1 enters the critical
section; upon leaving, it sets the Done[1] bit to true. Any
process that obtains a name id ≥ 2 from the adaptive
renaming object spins on the Done[id − 1] bit associated
to name id−1, until the bit is set to true. When this occurs,
the process enters the critical section. When calling the exit
procedure to release the critical section, each process sets the
Done[id] bit associated with its name to true and returns.
(This construction is designed for the CC model; a similar

construction exists for the DSM model.)
Notice that the resulting algorithm ME (R) is a blocking

algorithm. The fact that ME (R) is a correct mutex imple-
mentation follows from the tightness and adaptivity of the
namespace generated by algorithm R. For the complexity
claims, notice that, once a process obtains the name from
algorithm R, it performs at most two extra RMRs before
entering the critical section, since RMRs may be charged
only when first reading the Done[v − 1] register, and
when the value of this register is set to true. Therefore,
the (individual or global) RMR complexity of the mutex
algorithm is the same (modulo constant additive factors) as
the RMR complexity of the original algorithm R. Since the
algorithm R is wait-free, its RMR complexity is a lower
bound on its step complexity, which concludes the proof of
the claim.

To conclude the proof of Theorem 1, notice that the
algorithm resulting from the composition of the two claims,
ME (T (R)), is an adaptive mutual exclusion algorithm that
requires o(k) + O(f(k)) = o(k) RMRs to enter and exit
the critical section. However, the existence of this algorithm
contradicts the Ω(k) lower bound on the RMR complexity of
adaptive mutual exclusion by Anderson and Kim [24, The-
orem 2]. More precisely, they showed that, given k > 0, for
n = Ω(k2

k

), any deterministic mutual exclusion algorithm
using reads, writes, and compare-and-swap operations, that
accepts at least n participating processes has a computation
involving (2k − 1) participants in which some process
performs k remote memory references to enter and exit the
critical section [24].

Since the algorithm R is adaptive and therefore works
for arbitrary n, the adaptive mutual exclusion algorithm
ME (T (R)) also works for unbounded n. Hence, the above
mutual exclusion lower bound contradicts the existence of
algorithm ME (T (R)). The contradiction arises from our
initial assumption on the existence of algorithm R. The
claim about step complexity follows, since, for wait-free
algorithms, the RMR complexity is always a lower bound
on step complexity. The claim about the number of rename
operations follows from the structure of the transformation
and from that of the mutual exclusion lower bound of [24].

Relation between k and n. The lower bound of Anderson
and Kim [24] from which we obtain our result assumes large
values of n, the maximum possible number of participating
processes, in the order of k2

k

. Therefore, algorithms that
work only for small values of n may be able to circumvent
the lower bound. However, the lower bound applies to all
algorithms that work for arbitrary values of n.

Namespace size. The lower bound applies to algorithms
that admit an initial namespace of unbounded size. On the
other hand, it may not apply to algorithms whose complexity
depends on the size of the initial namespace.

3.1. Non-Adaptive Renaming Lower Bound

This technique also implies a linear lower bound on
the step complexity of non-adaptive renaming algorithms.
Recall that for non-adaptive algorithms the size of the set
of participants is bounded by a fixed parameter n, and the
size of the resulting namespace depends on this parameter.

We define a renaming algorithm with overflows as a
non-adaptive renaming algorithm RF , that has the same
specification as a standard renaming algorithm as long as
the number of participants k does not exceed the maximum
number of participants n. On the other hand, if k > n, then
the algorithm RF may return a special value overflow to
the calling process instead of a (unique) name. We call an
instance of the algorithm a variant of RF for n fixed. Note
that an instance assumes no limit on the size of the initial
identifiers that participanting processes may have; however,
a non-overflow return value is guaranteed only if at most n
processes participate in the instance.

The lower bound has two steps. The first is to show that
any (non-adaptive) renaming algorithm can be transformed
into a renaming algorithm with overflows, preserving its
asymptotic step complexity. In turn, the second step shows
that renaming algorithms with overflows can be used to solve
adaptive renaming, preserving asymptotic step complexity
and polynomial namespace size. For the details of these
transformations, and the complete proof of this claim, we
refer the reader to the full version of this paper [4]. Thus,
the adaptive lower bound from the previous section implies
a linear lower bound on the step complexity of renaming
with overflows, which in turn implies a linear lower bound
on the complexity of non-adaptive renaming algorithms.

Corollary 1. Any deterministic renaming algorithm such
that for any n ≥ 1 the algorithm ensures a namespace
polynomial in n, has worst-case step complexity Ω(n).

3.2. A Time-Optimal Non-Adaptive Mutex Protocol

Another application of the lower bound construction is
that we can obtain an asymptotically optimal mutual exclu-
sion algorithm from an AKS sorting network [2].

Processes share an AKS sorting network with n input
(and output) ports, and a vector Done of boolean bits,
initially false. We replace each comparator in the network
with a two-process test-and-set object with constant RMR
complexity [20]. In the mutual exclusion problem processes
hold unique initial identifiers from 1 to n, therefore we
use these initial identifiers to assign unique input ports to
processes. A process progresses through the network starting
at its input port, competing in test-and-set objects. A process
takes the top comparator output if it wins (returns 0 from) the
test-and-set, and the bottom output otherwise. The process
adopts the index of the output port it reaches as a temporary
name id. If id = 1, then it enters the critical section;
otherwise it busy-waits until the bit Done[id − 1] is set to

1 procedure adversarial-scheduler()
2 r ← 1
3 while true do
4 for each process p do
5 schedule p to perform coin flips until it has

enabled a shared-memory operation, or p returns
6 R← processes that have read operations enabled
7 W ← processes that have write operations enabled
8 C ← processes that have compare-and-swap

operations enabled
9 schedule all processes in R to perform their

operations, in the order of their initial identifiers
10 schedule all processes in W to perform their

operations, in the order of their initial identifiers
11 schedule all processes in C to perform their in the

order defined by the secretive schedule σ
12 r ← r + 1

Algorithm 1: The adversarial strategy for the global
lower bound.

true. Upon exiting the critical section, the process sets the
Done[id] bit to true.

The correctness of the algorithm above follows from
Claims 1 and 2. In particular, the asymptotic local RMR
complexity of the above algorithm is the same as the depth
of the AKS sorting network (plus at most two RMRs), i.e.
O(log n), therefore the algorithm is time-optimal by the
lower bound of Attiya et al. [10]. Anderson and Yang [30]
presented an upper bound with the same asymptotic com-
plexity, but better constants, using a different technique. The
same construction can be used starting from constuctible
sorting networks, e.g. bitonic sorting networks [25], at the
cost of increased time complexity.

4. THE TOTAL STEP COMPLEXITY LOWER BOUND

In this section, we present lower bounds on the total step
complexity of randomized renaming and counting. We start
from an adversarial strategy that schedules the processes in
lock-step, and show that this limits the amount of informa-
tion that each process may gather throughout an execution.
We then relate the amount of information that each process
must gather with the set of names that the process may return
in an execution. For executions in which everyone terminates
and the adversary follows the lock-step strategy, we obtain
a lower bound of Ω(k log(k/c)) for c-loose renaming. We
then notice that a similar argument can be applied to obtain
a lower bound for c-approximate counting.
Strategy Description. We consider an algorithm A in
shared-memory augmented with atomic compare-and-swap
operations. The adaptive adversary follows the steps de-
scribed in Algorithm 1. The adversary schedules the pro-
cesses in rounds: in each round, each process that has not yet
returned from A is scheduled to perform a shared-memory
operation. More precisely, at the beginning of each round,
the adversary allows each process to perform local coin flips

until it either terminates or has to perform an operation that
is either a read, a write, or a compare-and-swap (lines 3-5).

The adversary partitions processes into three sets: R, the
readers,W , the writers, and C, the swappers. Processes inR
are scheduled by the adversary to perform their enabled read
operations, in the order of their initial identifiers (line 9).
Then each process in W is scheduled to perform the write,
again in the order of initial identifiers (line 10). Finally,
the swappers are scheduled following a particular secretive
schedule σ, defined in Lemma 1, whose goal is to minimize
the information flow between processes. Once each process
has either been scheduled or has returned, the adversary
moves on to the next round.

Before we proceed with the analysis, we define the
schedule for the processes performing compare-and-swap
operations in round r. Notice that, if a set of processes all
perform compare-and-swap operations in a round, there exist
interleavings of these operations such that the last scheduled
process finds out about all other processes after performing
its compare-and-swap. However, the adversary can always
break such interleavings and ensure that, given any set
of compare-and-swap operations, a process only finds out
about a constant number of other processes, using a secretive
schedule, introduced in [22]. We re-state the definition and
properties of secretive schedules [22] in our model.

Lemma 1 (Secretive Schedules [22]). Given a set of
compare-and-swap operations enabled after some execution
prefix P , there exists an ordering σ of these events, called
secretive, such that the value originating at any process
reaches at most two other processes.

Analysis. First, notice that, since the algorithms we consider
are randomized, the adversarial strategy we describe creates
a set of executions in which all processes take steps (if
the algorithm is deterministic, then the strategy describes
a single execution). We denote the set of such executions
by S(A). In the following, we study the flow of information
between the processes in executions from S(A).

We prove that the adversarial strategy described above
prevents any process from “finding out” about more than
4r active processes by the end of round r in any execution
from S(A). In particular, for each process p following the
algorithm A, each register R, and for every round r ≥ 0,
we define the sets UP(p, r) and UP(R, r), respectively.
Intuitively, UP(p, r) is the set of processes that process p
might know at the end of round r as having taken a step in an
execution resulting from the adversarial strategy. Similarly,
UP(R, r) is the set of processes that can be inferred to have
taken a step in an execution resulting from the adversarial
strategy, by reading the register R at the end of round r.
Our notation follows the one in [22], which defines similar
measures for a model in which LL/SC, move, and swap
operations are available.

Formally, we define these sets inductively, using the
following update rules. Initially, for r = 0, we consider
that UP(p, 0) = {p} and UP(R, 0) = ∅, for all processes
p and registers R. For any later round r ≥ 1, we define
the following update rules: (1) At the beginning of round
r ≥ 1, for each process p and register R, we set UP(p, r) =
UP(p, r−1) and UP(R, r) = UP(R, r−1); (2) If process p
performs a successful write operation on register R in round
r, then UP(R, r) = UP(p, r−1). Informally, the knowledge
that process p had at the end of round r − 1 is reflected in
the contents of register R at the end of round r. On the other
hand, the writing process p gains no new knowledge from
writing, i.e. UP(p, r) = UP(p, r− 1); (3) If process p per-
forms a successful compare-and-swap operation on register
R in round r, i.e. if the operation returns the expected value,
then the information contained in the register is overwritten
with p’s information, that is UP(R, r) = UP(p, r − 1).
We also assume that the process p gets the information
previously contained in the register UP(p, r) = UP(p, r −
1) ∪ UP(R, r) (the contents of UP(R, r) might have been
already updated in round r); (4) If process p performs an
unsuccessful compare-and-swap operation on register R in
round R, then UP(R, r) remains unchanged. On the other
hand, the process gets the information currently contained
in the register, i.e. UP(p, r) = UP(p, r − 1) ∪ UP(R, r);
(5) If process p performs a successful read operation on
register R in round r, then UP(R, r) remains unchanged,
and UP(p, r) = UP(R, r) ∪UP(p, r − 1).
Based on these update rules, we can easily compute an upper
bound on the size of the UP sets for processes and registers,
as the rounds progress. The proof follows by induction on
the round number r ≥ 0.

Lemma 2 (Bounding information). Given a run of the
algorithm A controlled by the adversarial scheduler in
Algorithm 1, for any round r ≥ 0, and for every process
or shared register X , |UP(X, r)| ≤ 4r.

Indistinguishability. Let E be an execution of the algorithm
obtained using the adversarial strategy above, i.e. E ∈ S(A).
Given the previous construction, the intuition is that, for a
process p and a round r, if UP(p, r) = S for some set S,
then p has no evidence that any process outside the set S
has taken a step in the current execution E . Alternatively,
there exists a parallel execution E ′ in which only processes
in the set S take steps, and p cannot distinguish between the
two executions.

We make this intuition precise. First, we define
state(E , p, r) as the local state of process p at the end of
round r (i.e. the values of its local registers and its current
program counter), and val(E , R, r) as the value of register
R at the end of round r. We also define numtosses(E , p, r)
as the number of coin tosses that the process p performed
by the end of round r of E . Two executions E and E ′

are said to be indistinguishable to process p at the end
of round r if (1) state(E , p, r) = state(E ′, p, r), and (2)
numtosses(E , p, r) = numtosses(E ′, p, r).

Starting from the execution E , the adversary can build
an execution E ′ in which only processes in S participate,
that is indistinguishable from E from p’s point of view, by
starting from execution E and only scheduling processes in
S = UP(p, r) up to the end of round r of E ′. The proof
is similar to one presented by Jayanti [22] in the context
of local lower bounds in the LL/SC model. Therefore, we
omit this technical step in this extended abstract (an outline
of the construction can be found in the full version of this
paper [4]).

Lemma 3 (Indistinguishability). Let E be an execution in
S(A) and p be a process with UP(p, r) = S at the end
of round r. There exists an execution E ′ of A in which
only processes in S take steps, such that E and E ′ are
indistinguishable to process p.

Renaming Lower Bound. We now prove an Ω(k log(k/c))
lower bound on the total step complexity of c-loose adaptive
renaming algorithms. In particular, this lower bound implies
that we cannot gain more than a constant factor in terms of
step complexity by relaxing the tight namespace requirement
by a constant factor. There are two key technical points: first,
we relate the amount of information that a process gathers
with the set of names it may return (we show this relation
holds even if renaming is loose); second, for each process,
we relate the number of steps it has taken with the amount
of information it has gathered.

Theorem 2 (Renaming). Fix c ≥ 1 constant. Given k partic-
ipating processes, any c-loose adaptive renaming algorithm
that terminates with probability α has worst-case expected
total step complexity Ω(αk log(k/c)).

Proof: Let A be a c-loose adaptive renaming algorithm.
We consider a terminating execution E ∈ S(A) with
k participating processes, i.e. every participating process
returns in E . We first prove that a process that returns
name j ∈ [1, ck] in execution E has to perform Ω(log(j/c))
shared-memory operations. First, notice that each execution
E ∈ S(A) contains no process failures, so each process
has to return a unique name in the interval 1, . . . , ck in
such an execution. Therefore, there exist distinct names
m1, . . . ,mk ∈ {1, 2, . . . , ck} and processes q1, . . . , qk such
that process qi returns name mi in execution E . W.l.o.g,
assume that the names are in increasing order; since they
are distinct, we have that mi ≥ i for i ∈ 1, . . . , k.

Consider process qi returning name mi in E . Let `i be the
number of shared-memory operations that qi has performed
in E . Since the adversary schedules each process once in
every round of E , until termination, it follows that process
qi has returned at the end of round `i. Let S = UP(qi, `i).

Since E ∈ S(A), by Lemma 2, we have that |S| ≤ 4`i .
Assume for the sake of contradiction that the number of

processes that qi found out about in this execution, |S|, is
less than mi/c. By Lemma 3, there exists an execution E ′
of A which is indistinguishable from E from qi’s point of
view at the end of round `i, in which only |S| < mi/c
processes take steps. However, since the algorithm is c-loose,
the highest name that process qi can return in execution
E ′, and thus in E , is strictly less than c · (mi/c) = mi, a
contradiction.

Therefore, it has to hold that |S| ≥ mi/c, which implies
that `i, the number of shared-memory operations that process
qi performs in E , is at least log4(mi/c) = 1

2 log(mi/c).
Therefore, for any i ∈ 1, . . . , k, process qi returning name
mi has to perform at least 1

2 log(mi/c) shared memory
operations. Then the total number of steps that the pro-
cesses perform in E is 1

2

∑k
i=1 `i ≥

1
2

∑k
i=1 log(i/c) =

Ω(k log(k/c)).
Since this complexity lower bound holds for every execu-
tion resulting from the adversarial strategy, we obtain that
the expected total step complexity of the algorithm A is
Ω(αk log(k/c)).

Counting Lower Bound. Using a similar argument, we can
show that any c-approximate counter implementation has
worst-case expected total step complexity Ω(k log(k/c2))
in executions where each process performs one increment
and one read. Since the almost-matching algorithm [6] is
deterministic and exact, this bound limits the gain that can
be obtained by randomization or approximation to a constant
factor.

One key difference in the proof (which implies the extra
c factor) is that processes may return the same value from
the read operation; we take this into account by studying
the linearization order of the increment operations. Due to
space limitations, we defer the proof of this result to the full
version of this paper [4].

Theorem 3 (Counting). Fix c ≥ 1 constant. Let A be a
linearizable c-approximate counter implementation that ter-
minates with probability α. For any k, the algorithm A has
worst-case expected total step complexity Ω(αk log(k/c2)),
in runs where each process performs an increment followed
by a read operation.

5. RAMIFICATIONS

We find that our results imply local and global lower
bounds for implementations of other shared objects, such
as fetch-and-increment registers, queues, and stacks. Some
of these results are new, while others improve on previously
known results.

We first show reductions between fetch-and-increment,
queues, and stacks, on the one hand, and adaptive strong
renaming, on the other hand. Given a linearizable fetch-
and-increment register, we can trivially solve adaptive

strong renaming by having each participant call the
fetch-and-increment operation once, and return the value
received plus 1. Given a linearizable shared queue initialized
with n distinct objects 1, 2, . . . , n, we can solve adaptive
strong renaming by having each participant call the dequeue
operation once, and return the value received. The transfor-
mation is similar for a stack. This implies local and global
lower bounds for these objects.

Corollary 2 (Applications). Consider a wait-free lineariz-
able implementation A of a fetch-and-increment register,
queue, or stack, in shared memory with read, write, and
compare-and-swap operations. The following hold.
• If the algorithm A is deterministic, then, for any k, there

exists n ≥ k such that A has an execution with (2k−1)
participants in which (1) each participant performs a
single call, and (2) some process performs k RMRs (or
steps).

• If the algorithm A is randomized, then, for any k, if A
terminates with probability α, then its expected worst-
case global step complexity is Ω(αk log k), where k is
the number of participating processes.

Similarly, Corollary 1 implies the following linear lower
bound for these objects.

Corollary 3. In this model, there is no deterministic queue,
stack, or fetch-and-increment implementation such that for
all n > 0 its worst-case running time is o(n).

6. RELATED WORK

Renaming was introduced in [7], where the authors pro-
posed a wait-free solution using (2n − 1) names in an
asynchronous system, and showed that at least (n + 1)
names are required in the wait-free case. The lower bound
on the size of the namespace for deterministic read-write
solutions was improved to (2n− 2) in a landmark paper by
Herlihy and Shavit [21], with refinements by Rajsbaum and
Castañeda [14]. This lower bound can be circumvented using
hardware compare-and-swap or test-and-set operations [27],
as well as using randomization [16] (at the cost of allowing a
vanishing probability that the algorithm does not terminate).
Renaming has been shown to be related to weak symmetry
breaking in [19]; it is also related to the processor identity
problem [26]; the key difference is that, for renaming,
participants are assumed to have distinct initial identifiers
(from an unbounded namespace).

Several renaming algorithms were proposed in the liter-
ature, e.g. [3], [5], [7], [8], [12], [27], [28]. The random-
ized renaming algorithm of [3] is time-optimal, as per our
global lower bound. On the other hand, our local lower
bound is matched by the algorithm of [27] which assumes
hardware test-and-set operations; for read-write algorithms,
it is matched by the algorithm of [28], which achieves
a namespace of size O(k2); it is also matched (within a

logarithmic factor) by the algorithm of [8], which ensures a
linear namespace of size (6k−1). On the lower bound side,
the only to apply to randomized solutions was a logarithmic
lower bound on the local step complexity of strong renam-
ing, derived in [3] using a technique by Jayanti [22]. Our
lower bound generalizes Jayanti’s result [22] in two ways:
first, since we consider total step complexity, our results
imply the local bounds of [22]; second, we consider the loose
version of the problem, which relaxes the tight namespace
requirements. Chlebus and Kowalski [15] showed a linear
lower bound for deterministic renaming algorithms under
the assumption that the number of available registers is
limited. (By contrast, our lower bounds do not require such
a restriction.)

As we pointed out, our local lower bound applies to coun-
ters, fetch-and-increment, queues, and stacks, and extends
previous results obtained on these objects. Indeed, Jayanti,
Tan and Toueg [23], as well as Ellen et al. [18], already
presented linear lower bounds for deterministic counters,
queues and stacks. One limitation of these two results is that
the worst-case executions they build require processes to per-
form an exponential number of operations–by contrast, there
exist counter implementations that have polylogarithmic step
complexity for polynomially many increment operations [6].
Our linear local bound does not have this limitation, since
each process performs only one operation in the worst-case
execution (note that our deterministic linear lower bound
does not apply to counters). In essence, we show that the lin-
ear threshold is inherent for worst-case executions of fetch-
and-increment, queues, and stacks, even if each process
performs only one operation. Our global lower bound is the
first to cover randomized and approximate implementations
and in this sense generalizes the deterministic lower bounds
of Attiya et al. [9], [10] and Fan and Lynch [17], when
applied to these objects.

7. SUMMARY AND FUTURE WORK

We prove tight bounds for assigning unique names using
a shared memory. We cover the local and global cost of
adaptive renaming, both for deterministic and randomized
solutions. In short, we prove a linear per-process cost to de-
terministic renaming, which cannot be overcome as long as
the name space is sub-exponential, and a logarithmic average
local cost, which cannot be avoided using randomization or
relaxing the namespace size by a constant factor. Our results
imply new tight bounds for counters, queues, and stacks.

One way to circumvent our lower bounds would be to
assume a weaker adversary, or to allow some probability of
error for the algorithms. In particular, it is known [11] that
approximate counting can be achieved with O(log2 log n)
expected steps against an oblivious adversary that fixes
the schedule in advance. Another would be to allow the
complexity of the algorithms to depend on the size of the
namespace from which processes get their initial identifiers.

Our results reveal the first connection between renaming
and another fundamental problem in distributed computing:
mutual exclusion. This connection opens the possibility of
deriving new lower bounds on randomized mutual exclusion
from renaming lower bounds. We also highlighted the central
role of sorting networks when reasoning about both the
mutual exclusion and renaming problems. Precisely char-
acterizing this role is an interesting problem that might
contribute further in reducing the set of fundamental results
in distributed computing.

8. ACKNOWLEDGEMENTS

The authors would like to thank Hagit Attiya and Keren
Censor-Hillel for discussions and feedback on earlier ver-
sions of this paper, and the anonymous reviewers for their
very useful suggestions.

REFERENCES

[1] Y. Afek, D. Dauber, and D. Touitou, “Wait-free made fast,” in
Proceedings of the twenty-seventh annual ACM symposium
on Theory of computing, ser. STOC ’95. New York,
NY, USA: ACM, 1995, pp. 538–547. [Online]. Available:
http://doi.acm.org/10.1145/225058.225271

[2] M. Ajtai, J. Komlós, and E. Szemerédi, “An O(n log n)
Sorting Network,” in STOC. ACM, 1983, pp. 1–9.

[3] D. Alistarh, J. Aspnes, K. Censor-Hillel, S. Gilbert, and
M. Zadimoghaddam, “Optimal-time adaptive strong renam-
ing, with applications to counting,” in PODC, 2011.

[4] D. Alistarh, J. Aspnes, S. Gilbert, and R. Guerraoui, “The
Complexity of Renaming,” EPFL, Tech. Rep., 2011.

[5] D. Alistarh, H. Attiya, S. Gilbert, A. Giurgiu, and R. Guer-
raoui, “Fast randomized test-and-set and renaming,” in DISC,
2010, pp. 94–108.

[6] J. Aspnes, H. Attiya, and K. Censor, “Max registers, counters,
and monotone circuits,” in PODC, 2009, pp. 36–45.

[7] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk,
“Renaming in an asynchronous environment,” Journal of the
ACM, vol. 37, no. 3, pp. 524–548, 1990.

[8] H. Attiya and A. Fouren, “Adaptive and efficient algorithms
for lattice agreement and renaming,” SIAM J. Comput.,
vol. 31, no. 2, pp. 642–664, 2001.

[9] H. Attiya and D. Hendler, “Time and space lower bounds
for implementations using k-CAS,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 21, no. 2, pp. 162 –173,
February 2010.

[10] H. Attiya, D. Hendler, and P. Woelfel, “Tight RMR
lower bounds for mutual exclusion and other problems,”
in Proceedings of the 40th annual ACM symposium on
Theory of computing, ser. STOC ’08. New York, NY,
USA: ACM, 2008, pp. 217–226. [Online]. Available:
http://doi.acm.org/10.1145/1374376.1374410

[11] M. Bender and S. Gilbert, “Mutual exclusion with O(log log
n) amortized work,” in FOCS, 2011.

[12] E. Borowsky and E. Gafni, “Immediate atomic snapshots and
fast renaming,” in PODC. New York, NY, USA: ACM Press,
1993, pp. 41–51.

[13] A. Brodsky, F. Ellen, and P. Woelfel, “Fully-adaptive algo-
rithms for long-lived renaming,” in DISC, 2006, pp. 413–427.

[14] A. Castañeda and S. Rajsbaum, “New combinatorial topology
upper and lower bounds for renaming,” in PODC ’08. New
York, NY, USA: ACM, 2008, pp. 295–304.

[15] B. S. Chlebus and D. R. Kowalski, “Asynchronous exclusive
selection,” in PODC ’08. New York, NY, USA: ACM, 2008,
pp. 375–384.

[16] W. Eberly, L. Higham, and J. Warpechowska-Gruca, “Long-
lived, fast, waitfree renaming with optimal name space and
high throughput,” in DISC, 1998, pp. 149–160.

[17] R. Fan and N. Lynch, “An O(n log n) lower bound on the
cost of mutual exclusion,” in PODC ’06. New York, NY,
USA: ACM, 2006, pp. 275–284.

[18] F. E. Fich, D. Hendler, and N. Shavit, “Linear lower bounds
on real-world implementations of concurrent objects,” in
FOCS, 2005, pp. 165–173.

[19] E. Gafni, “The extended BG-simulation and the characteriza-
tion of t-resiliency,” in STOC, 2009, pp. 85–92.

[20] W. M. Golab, V. Hadzilacos, D. Hendler, and P. Woelfel,
“Constant-RMR implementations of CAS and other syn-
chronization primitives using read and write operations,” in
PODC, 2007, pp. 3–12.

[21] M. Herlihy and N. Shavit, “The topological structure of
asynchronous computability,” J.ACM, vol. 46, no. 2, pp. 858–
923, 1999.

[22] P. Jayanti, “A time complexity lower bound for randomized
implementations of some shared objects,” in PODC ’98. New
York, NY, USA: ACM, 1998, pp. 201–210.

[23] P. Jayanti, K. Tan, and S. Toueg, “Time and space lower
bounds for nonblocking implementations,” SIAM J. Comput.,
vol. 30, no. 2, pp. 438–456, 2000.

[24] Y.-J. Kim and J. H. Anderson, “A time complexity bound
for adaptive mutual exclusion,” in DISC ’01. London, UK,
UK: Springer-Verlag, 2001, pp. 1–15. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645958.676104

[25] D. E. Knuth, The art of computer programming, volume 3:
(2nd ed.) sorting and searching. Redwood City, CA, USA:
Addison Wesley Longman Publishing Co., Inc., 1998.

[26] S. Kutten, R. Ostrovsky, and B. Patt-Shamir, “The Las-Vegas
Processor Identity Problem (How and When to Be Unique),”
J. Algorithms, vol. 37, no. 2, pp. 468–494, 2000.

[27] M. Moir and J. H. Anderson, “Wait-free algorithms for fast,
long-lived renaming,” Science of Computer Programming,
vol. 25, pp. 1–39, 1995.

[28] M. Moir and J. A. Garay, “Fast, long-lived renaming im-
proved and simplified,” in WDAG ’96: Proceedings of the 10th
International Workshop on Distributed Algorithms. London,
UK: Springer-Verlag, 1996, pp. 287–303.

[29] A. Panconesi, M. Papatriantafilou, P. Tsigas, and P. M. B.
Vitányi, “Randomized naming using wait-free shared vari-
ables,” Distributed Computing, vol. 11, no. 3, pp. 113–124,
1998.

[30] J.-H. Yang and J. Anderson, “A fast, scalable mutual exclu-
sion algorithm,” Distributed Computing, vol. 9, pp. 51–60,
1995.

