
Confidential Gossip

Chryssis Georgiou
University of Cyprus
chryssis@cs.ucy.ac.cy

Seth Gilbert
National University of Singapore

seth.gilbert@comp.nus.edu.sg

Dariusz R. Kowalski
University of Liverpool

D.Kowalski@liverpool.ac.uk

Abstract—Epidemic gossip has proven a reliable and efficient
technique for sharing information in a distributed network.
Much of the reliability and efficiency derives from processes
collaborating, sharing the work of distributing information. As
a result of this collaboration, processes may receive information
that was not originally intended for them. For example, a pro-
cess may act as an intermediary, aggregating and forwarding
messages from some set of sources to some set of destinations.

But what if rumors are confidential? In that case, only
processes that were originally intended to receive a rumor
should be allowed to learn the rumor. This blatantly contradicts
the basic premise of epidemic gossip, which assumes that
processes can collaborate. In fact, if only processes in a rumor’s
“destination set” participate in gossiping that rumor, we show
that high message complexity is unavoidable.

In this paper, we propose a scheme in which each rumor
is broken into multiple fragments using a very simple coding
scheme: any given fragment provides no information about the
rumor, while together, the fragments can be reassembled into
the original rumor. The processes collaborate in disseminating
the rumor fragments in such a way that no process outside
of a rumor’s destination set ever receives all the fragments of
a rumor, while every process in the destination set eventually
learns all the fragments. Notably, our solution operates in an
environment where rumors are dynamically and continuously
injected into the system and processes are subject to crashes
and restarts. In addition, the scheme presented can tolerate a
moderate amount of collusion among curious processes without
too large an increase in cost.

Keywords-Confidentiality, Collusion, Randomized gossip,
Fault-tolerance, Dynamic rumor injection, Message complexity.

I. INTRODUCTION

Collaboration is as the heart of distributed computing:
when a network of devices cooperates to solve a problem,
the resulting computation is often more robust and more
efficient than if each device had worked independently. A
classic example of the benefits of collaboration can be found
in the paradigm of epidemic gossip. Consider, for example,
a set of n devices that want to share information. If each
device communicates independently with the other devices
in the network, then the message complexity for the protocol
is Θ(n2). By contrast, if the devices collaborate to share the
information, each communicating with a small number of
random devices in each round, then the message complexity
for the protocol can be reduced to O(n log n).

Yet there are some drawbacks to collaboration. One sig-
nificant cost is privacy: by collaborating with other devices

to solve a problem, it is often the case that private infor-
mation is divulged. Consider again n devices that want to
share information—however the information is potentially
confidential and should only be shared among specified
groups of recipients. For example, a user may want to
share an engineering blueprint with her colleagues, but not
with her competitors. Or a psychiatrist may want to send
an e-mail to a group of patients, but not to everyone.
Unfortunately, standard distributed protocols for efficiently
sharing information do not satisfy these requirements. If the
users rely on epidemic gossip to distribute their information,
then all confidentiality is lost: every device in the system
may learn every piece of information.

We focus on honest, but curious processes. This concept
has attracted considerable attention as a model of processes
in distributed applications that need limited anonymity and
privacy, c.f., [30], [14] (see more in related work below). It is
not our protocol’s intent to be secure against truly malicious
parties: if data must be kept secure in all circumstances,
then a more expensive solution is needed. For everyday
transactions, however, where privacy is desired, we can
ensure that no process ends up in possession of information
that it is not intended to learn. Moreover, we can achieve
this additional guarantee at a relatively limited cost (in terms
of message complexity), even if a moderate number of the
participants may be colluding (i.e., sharing information).

A. Results

The question we ask is whetherit is possible to achieve the
benefits of collaboration—i.e., robustness and efficiency—
without sacrificing confidentiality. We focus on the problem
of Continuous Gossip, a long-lived version of information
sharing (introduced in [13]) that has three notable properties:
(1) any process can inject a rumor at any time; (2) each
rumor specifies a set of recipients that should receive the
rumor; and (3) each rumor has a deadline specifying by
when it should be received. In this paper, we present a
continuous gossip protocol that guarantees:
• Confidentiality: Only the specified recipients of a ru-

mor learn the contents of the rumor, even if processes
outside the specified recipients may collude.

• Timeliness: Every rumor is delivered by the deadline.
• Efficiency: The maximum per-round message complex-

ity, with high probability, and in the absence of collu-

sions, is O((n1+48/
√

dmin + n1+6/
6√
dmin) polylog n),

where dmin is the shortest deadline of any active rumor
(that is, a rumor whose deadline has not expired); note
that for rumors with deadline of Ω(log6 n), this results
in per-round message complexity of O(n polylog n).
When up to τ processes may collude, the maximum
per-round message complexity grows by a factor of τ2.

• Robustness: Processes may crash and restart at any
time; there is no bound on the number of crashed
processes at any given time. Moreover, failures are
adaptive: they may depend on the execution and the
random choices made by the individual processes.

The major challenge underlying confidential gossip is
reconciling the need for collaboration to achieve efficiency,
and the inherent loss of confidentiality created by collab-
oration. At first glance, it seems that only recipients of a
rumor can help in its dissemination. Yet, if we limit all
information regarding the rumor to its recipients, then it
is impossible to achieve good message complexity. As we
show in Theorem 1, if we limit messages regarding a rumor
ρ to the destination set ρ.D, then the per-round message
complexity is Ω(n(3/2)−ε/dmax), for any ε > 0 (dmax is
the longest deadline of any active rumor). Thus it seems that
confidentiality and efficiency are inherently at odds.

We circumvent this seeming impossibility via a simple
insight: each rumor can be divided into multiple independent
fragments; each fragment provides no information regarding
the original rumor, and yet together they can be combined
to re-assembled the original rumor. (This is the basic idea
underlying cryptographic secret sharing [33], [35], though
we require only the simplest instantiation of this idea.) All
the processes in the system can now collaborate to distribute
the rumor fragments, as long as we ensure that no process
collects all the fragments. (In fact, we can rely on existing
gossip protocols as a black box.) In this way, we gain the
benefits of collaboration without sacrificing confidentiality.

A second challenge is that failures are not independent and
history-oblivious. We assume that processes may crash and
restart at any time, and we model failures as being caused by
an adaptive and omniscient adversary that can fail processes
based on the random choices made by the protocol. For
example, every time a source sends a rumor (or rumor
fragment) to another process, the adversary may choose
to immediately crash that recipient, entirely preventing the
dissemination of that rumor. We address this challenge
by having processes collaborate, exchanging metadata that
contains no information on rumors. This information allows
processes to determine which other processes have failed
recently. Using this metadata, processes can target their
messages better, and processes can adjust the number of
messages they are sending. By collaborating on metadata,
rather than rumors, processes can still overcome an adaptive
adversary without giving up confidentiality. (While some
information is leaked via the metadata, we discuss in Sec-

tion VI how to avoid this problem.)

B. Alternative approaches and other related work

There are several possible cryptographic approaches to
the problem of confidential gossip, many of which ex-
ist under the rubric of multicast security (e.g., [5], [11],
[25], [28], [31], [33]). If a system must be secure against
truly malicious parties (i.e., not simply “honest-but-curious”
processes), then these cryptographic solutions are the only
method of achieving confidentiality. The basic idea, in many
cases, is that each process holds some subset of the cryp-
tographic keys; by encrypting the message with appropriate
subsets of the keys, the sender can ensure that the message
can only be decrypted by the intended recipients. The cost
of such a solution depends on the number of keys needed
to encrypt the message for a given destination set.

In general, cryptographic solutions will be more efficient
when the groupings are stable. That is, when some processes
want to communicate with a fixed or slowly changing set of
destinations (e.g., [2], [27], [34], [36]), these cryptographic
solutions can be made quite efficient by ensuring that
the set of destinations share a single cryptographic key.
However, we are not aware of any sub-quadratic, in terms
of message complexity, cryptographic approach to guarantee
confidential gossip when the groups are changing rapidly,
or when there are no fixed groups, i.e., when each rumor
has a different destination set. In many cases, the best
solution appears to be encrypting the message individually
for each process in the destination set, thereby significantly
increasing the amount of data to be sent. Furthermore, there
is the question on how efficient secret key maintenance
would be in the presence of dynamic crashes and restarts,
especially when restarted processes have no memory of the
computation prior to restarting (as assumed in our model).
As we show, our confidential gossip protocol is efficient even
under such dynamic adverse conditions.

The gossip problem has frequently been considered in re-
lation to random, epidemic communication (e.g., [10], [18],
[19], [20]). Each process periodically sends its rumor—along
with any new rumors it has learned—to another randomly
selected process. This approach can lead to efficient rumor
dissemination while tolerating benign failures ([18]).

The gossip problem has also been considered in a variety
of fault-prone environments, ranging from crash failures
to malicious/Byzantine ones (e.g., [6], [16], [22], [24],
[26]). The survey by Pelc [32] together with the book by
Hromkovic et al. [17] overview solutions for the gossip
problem in fault-prone distributed networks.

Another related line of work is the problem of construct-
ing scalable overlays of topic-based Publication/Subscribe
systems (e.g., [1], [7], [8], [29]). The aim is to design
an overlay for each pub/sub topic, so that for each topic,
the subgraph induced by the nodes interested in the topic
will be connected. New events for each topic can then be

routed from publishers to interested subscribers using such
“topic-connected” overlays. If destination sets are viewed
as topics, then a topic-connected overlay could provide a
confidential way of distributing a rumor to its destination
set. Unfortunately, we don’t know how to maintain topic-
connected overlays in a dynamic setting (i.e., for changing
destination sets), and even the static case is NP-complete [8],
[29]. Theorem 1 (Section III) effectively implies that topic-
connected overlays cannot be used to support efficient con-
fidential gossip.

The honest-but-curious model, also refered as the semi-
honest model [4] is a standard cryptographic adversarial
model [14]. This model has been widely considered in the
problem of multi-party privacy-preserving computation of
some function [37], [14]. Our solution to the confidential
gossip problem can be viewed as a tool for multiparty
computation when the privacy of inputs (in the form of
rumors) could be kept within groups of processes. For
example, a group of social networking websites, wishing
to efficiently calculate aggregate statistics such as degrees
of seperation and average number of acquaintances without
compomising the in-group privacy, could use as a building
block our confidential gossip algorithm.

II. MODEL AND DEFINITIONS

We consider a distributed system consisting of n syn-
chronous processes that can communicate via message-
passing over a reliable network, where each process can
communicate directly with each other process. Messages are
not lost or corrupted in transit. Processes have unique ids
from the set [n] = {1, . . . , n}.

The computation proceeds in synchronous rounds. In each
round, each process can: (i) send point-to-point messages
to selected processes, (ii) receive a set of point-to-point
messages sent in the current round, and (iii) perform some
local computation. We assume that processes have access to
a global clock, that is, rounds are globally numbered.

Processes may crash and restart dynamically as an exe-
cution proceeds. Each process is in one of two states: either
alive or crashed. When a process is crashed, it does
not perform any computation, nor does it send or receive
any messages. We assume that processes have no durable
storage, and thus when a process restarts, it is reset to
a default initial state consisting only of the algorithm to
execute and [n]. Each process can only crash or restart once
per round. We denote by crash(p, t) the event in which
process p crashes in round t. The event restart(p, t) is
defined similarly. We say that a process p is continuously
alive in the period [ta, tb] if: (a) process p is alive at the
beginning of round ta and at the end of round tb, and (b)
for every t ∈ [ta, tb], there are no crash(p, t, ·) events.

When a process p crashes in round t, some of the
messages sent by p in round t may be delivered and some

may be lost. When p restarts in round t, some of the
messages sent to p may be delivered and some may be lost.

Rumors are dynamically injected into the system as
the execution proceeds. A rumor ρ consists of a triplet
〈z, d, D〉, where z is the data to be disseminated, D ⊆ [n] is
the set of processes to which z must be sent (destination set),
and d is the deadline by which the rumor must be delivered.
We denote by Inj (ρ, t, p) the event in which rumor ρ is
injected to process p in round t. We refer to p as the source
of rumor ρ. We assume that at most one rumor is injected
at each process per round.

We model crash/restarts and rumor injection via a Crash-
and-Restart-Rumor-Injection adversary, or CRRI adver-
sary. In each round, the adversary determines which pro-
cesses to fail, which processes to restart, and which rumors
to inject. The adversary is adaptive in the sense that it can
make decisions in a round t based on the events in all prior
rounds < t, as well as the random choices being made in
round t itself. We refer to an adversarial pattern A ∈ CRRI
as a set of crash, restart and injection events caused by
adversary CRRI .

Definition 1 (Quality of Delivery): A gossip protocol sat-
isfies a quality of delivery guarantee if every rumor ρ injected
in round t at a process p is delivered no later than round
t + ρ.d to every process in ρ.D that is continuously alive
for [t, t+ d], if p is also continuously alive for [t, t+ d].

Definition 2 (Confidentiality): A gossip protocol is con-
fidential if every rumor ρ is delivered only to processes in
ρ.D, in every execution of the protocol.

Definition 3 (Per-round Message Complexity): A
randomized algorithm Rand subject to adversary CRRI
has per-round message complexity at most M(Rand), if for
every round t, for every A ∈ CRRI , with high probability:
the number of messages sent Mt(Rand,A) by Rand in
round t, is at most M(Rand).

Note that for randomized algorithms we guarantee Quality
of Delivery and confidentiality, while achieving a probabilis-
tic bound on the per-round message complexity. More on
the rationale of Quality of Delivery and in general on the
continuous gossip problem can be found in [13].

III. THE LIMITATIONS OF STRONG CONFIDENTIALITY

A gossip protocol is strongly confidential if for every
rumor, no message causally dependent on that rumor is ever
sent to a process that is not in the destination set of the ru-
mor. In this case, only the processes in the destination set of
a rumor can collaborate on that rumor’s dissemination. This
collaboration incurs a high per-round message complexity,
even against an oblivious adversary:

Theorem 1: For all ε > 0, every randomized strongly
confidential gossip algorithm has a maximum per-round
message-complexity of at least Ω(n(3/2)−ε/dmax), with
probability 1, even against an oblivious adversary, where
dmax is the longest deadline of the injected rumors.

Proof: (sketch) Let x = n1/2−2/c and let c =
d2/εe. Suppose that only rumors with uniform deadlines
dmax are injected. We show a lower bound nx

2c·dmax =
Ω(nx/dmax) ⊇ Ω(n(3/2)−ε/dmax). Suppose that each
process is initially injected with a single rumor with ran-
dom set of destinations: each process belongs to each
destination set with probability x/n. The crucial argu-
ment is that under this scenario, with probability at least
1 − x2c+2/nc−1, no message can carry more than c
rumors. Having this, observe that the number of pairs
(source process, destination process) is at least nx/2,
with probability at least 1 − e−nx/8 ≥ 1 − 1/e, by a
Chernoff bound. It follows that the total number of rumor
copies carried by messages is at least nx/2. Therefore,
the total number of messages delivering these rumors is at
least nx

2c , with probability at least 1− 1/e− x2c+2/nc−1 ≥
1− 1/e− n−2 ≥ 1− 2/e > 0. By the probabilistic method,
there is a configuration of destination sets where the above
claims are satisfied, and so it takes at least nx

2c messages to
deliver all these rumors. This occurs over dmax rounds, thus
there must be a round with at least nx

2c·dmax messages. Since
there are no crashes/restarts, the adversary is oblivious.

In view of the upper bound O(n1+6
3√
dmin polylog n) on

continuous gossip without confidentiality assumptions [13]
(against an adaptive adversary), we obtain a polynomial, in
n, price of strong confidentiality, in terms of per-round mes-
sage complexity (for minimum deadline dmin > 24). This
motivates the study of the weaker version of confidentiality.

IV. GOSSIPING CONTINUOUSLY AND CONFIDENTIALLY

In this section we present and analyze a continuous gossip
algorithm, called CONGOS, that guarantees that the content
of rumors remains confidential under adversary CRRI . For
simplicity, here we assume no collusion.

A. Algorithm CONGOS

When a rumor is injected at a process pi, the algorithm
repeats the following procedure log n times concurrently:
Step 1: Process pi splits the rumor into two fragments such
that only a process with both fragments can reconstruct the
rumor. Processes are partitioned (deterministically) into two
equal-sized groups. Step 2: Since process pi itself belongs to
one of the two groups, it uses a black-box continuous gossip
service to share one of the half rumors with its own group.
It uses a Proxy Service to distribute the other half rumor
to the other group, with which it cannot gossip directly.
At the end of the second step, each non-failed process has
received one of the two half rumors. Step 3: The rumor
fragments are sent to their appropriate final destinations
using the GroupDistribution service: the fragments for rumor
ρ are sent to processes in the destination set ρ.D. No process
outside a rumor’s destination set gets both fragments, while
all processes in the rumor’s destination set (for which the
rumor is admissible) deliver the rumor by the specified

deadline. (A pseudocode-based description of the algorithm
can be found in [12].) We now proceed to present the
technical details of the above outline.

1) Preliminaries: For the purposes of the description, fix
a deadline dline and focus on rumors with deadlines in the
range [dline/2, dline]. We execute Θ(log log n) instances of
the protocol, each for a specified range of deadlines. When a
rumor has a deadline > Θ(log6 n), we truncate the deadline
and handle it accordingly, as there is no benefit to deadlines
longer than Θ(log6 n).)

We present CONGOS as a set of composed distributed
services. We will leverage existing distributed protocols as
black box services, without delving into the underlying
implementation details. We assume that the system consists
of the following services:
• Network: a communication network with ports send and
receive at each process.
• GroupGossip[`]: a Continuous Gossip service, albeit, one
that does not guarantee confidentiality. We assume per-round
message complexity by O(n1+6

3√
dmin polylog n), with high

probability, where dmin is the shortest deadline of any active
rumor (see [13]).

We assume there are log n instantiations of this continuous
gossip service, GroupGossip[`] for ` ∈ {1, . . . , log n}. The
instance GroupGossip[`] is associate with partition ` of
the network, which we define shortly. Every message sent
by GroupGossip[`] is filtered before being sent over the
network: if a process pi is a member of some group P ′

in partition `, then every message sent by GroupGossip[`] at
process pi to a process not in P ′ is dropped; every message
sent by GroupGossip[`] at process pi to a process in P ′ is
relayed to the Network and sent. From the perspective of
the instance GroupGossip[`], the processes that cannot be
reached due to the filter are effectively failed.
• AllGossip: a non-filtered Continuous Gossip service.

CONGOSis composed of three further services:
ConfidentialGossip, Proxy, and GroupDistribution. We
now describe these components.

2) ConfidentialGossip Service: Rumors are injected in
the ConfidentialGossip service, which acts as the main
control unit of the protocol. To ensure confidentiality, each
rumor ρ is divided into two fragments ρ0 and ρ1. Both
fragments maintain certain metadata, such as the rumor’s
destination set, but each fragment on its own provides no
information as to the original rumor datum ρ.z; together,
they allow the original rumor to be reconstructed. There
are a variety of simple schemes for accomplishing this:
for example, let ρ0.z be a random binary string, and let
ρ1.z = (ρ.z xor ρ0.z). We have thus reduced the problem
of confidentiality to ensuring that no process, except those in
the destination set, learn both fragments. All the processes
in the system are partitioned into two components, and one
rumor fragment is distributed to each half.

It is not sufficient, however, to carry out this splitting-

ConfidentialGossip:
• Do in parallel for each ` = 1, . . . , logn:

1) Split rumor ρ into a pair 〈ρ0,`, ρ1,`〉.
2) If pi is in group b of partition `, inject ρb,` into

GroupGossip[`], and inject ρ1−b,` into Proxy[`]. Together,
these two services ensure that each rumor fragment is delivered
to every non-failed process in the appropriate group of the
partition.

3) For each rumor fragment received from GroupGossip[`] or
Proxy[`], inject the fragment into GroupDistribution[`].

4) Save every fragment received from GroupDistribution[`], and
reassemble and deliver rumors as fragments become available.

• Whenever a message from AllGossip confirms that, for some partition
`, both fragments of a rumor ρ, initiated at pi, have been sent to every
destination in ρ.D, confirm that ρ has been delivered.

• Whenever a deadline is about to expire for some rumor ρ initiated
at pi, and there is no confirmation that ρ has been delivered, send ρ
directly to every process in ρ.D.

Figure 1. Outline of ConfidentialGossip service at pi.

and-partitioning process only once: the adversary, being
adaptive, may kill all the processes in one of the groups
in the partition. We thus define, a priori, log n different
partitions. Each partition is based on a specified bit in the
binary representation of a process’s identifier. Let pj [`] be
the `th bit in pj’s binary representation. Then partition `
is defined by the two sets P0,` = {pj : pj [`] = 0} and
P1,` = {pj : pj [`] = 1}. For each partition, rumor ρ is
divided into two fragments ρ0,` and ρ1,`.

The ConfidentialGossip service, running at each process
pi, “spawns” ` instances of the other services. The notation
ServiceName[`] denotes the instance of a service for partition
`. (The Network service and the AllGossip service run only
one instance for all partitions.) Figure 1 has a high-level
outline of the ConfidentialGossip at a process pi. (Detailed
pseudocode can be found in [12].) We now summarize.

Time is divided into blocks of dline/4 rounds. A rumor
injected during some block B is split into fragments during
block B (step 1); the fragments are distributed to their
respective groups during block B+1 (step 2); the fragments
are reassembled in block B+2 (step 3 and 4); and the source
verifies that its rumor has been delivered by the end of block
B + 3. If it cannot verify that its rumor has been delivered
in time, it sends the rumor directly.

A notable aspect is that a process cannot directly distribute
both fragments. If a process pi is in group P0,`, it cannot
directly participate in gossip with group P1,`; if it did, it
might risk learning rumor fragments from the other group.
The Proxy service is used to circumvent this problem.

Another notable aspect occurs at the end of the protocol,
when a process attempts to confirm that its rumors have been
delivered. Each process, as part of the GroupDistribution
service, initiates a gossip (via AllGossip) indicating which
rumor fragments have been distributed to which processes.
Of course, a process cannot divulge the contents of the rumor
that have been distributed; however, it can safely indicate a
unique identifier that was appended by the source, when the

rumor was split. In this way, the source can ensure that, for at
least one partition, both rumor fragments were successfully
delivered. (It would not be sufficient for recipients to send
an acknowledgment, as the source does not know which
processes have remained alive.)

3) Proxy Service: The proxy service delivers rumor frag-
ments safely across group boundaries. The proxy service
for partition ` at process pi repeatedly samples processes
from the other group (i.e., the group that pi does not belong
to), requesting that these processes act as proxies for pi in
distributing its rumor fragments. The proxies then participate
in GroupGossip[`] to distribute the rumor fragments, as
requested. If they succeed, they send an acknowledgment
to pi. Otherwise, process pi needs to try again.

The challenge, here, is that the adversary may (adaptively)
crash processes as soon as they receive proxy requests. Even
worse, at any given time, most members of a group may be
failed, requiring pi to send a very large number of queries to
find a non-failed proxy. To avoid this problem, the processes
in one group collaborate on finding proxies in the other.
During this process, pi does not share any information on
the fragments it is attempting to distribute. The Proxy service
for partition ` proceeds as in Figure 2 (detailed pseudocode
can be found in [12]).

Proxy[`]:
• Time is divided into blocks of length dline/4.
• At the beginning of a block, collect all the fragments that have been

injected since the last block began, and set status to active.
• Each block is divided into iterations of

√
dline + 2 rounds. In each

iteration, we maintain a set collaborators of the active processes
in the same group as pi. We also keep track of failed-proxies , i.e.,
those that we have already learned (in previous iterations) have failed
in this block. For each iteration:

– Round 1: send every rumor fragment associated with the
other group to n1+48/

√
dline logn/|collaborators| processes

chosen uniformly at random from the other group, excluding
processes in failed-proxies . (Notice that as long as the set
collaborators is a good estimate of the set of collaborators,
this ensures a good bound on the message complexity of this
step.) Every process that receives a request to be a proxy for
the other group caches the received rumor fragments.

– Rounds 2, . . . ,
√

dline + 1: initiate a GroupGossip[`] in
which processes in the same group as pi share the set of
failed-proxies , as well as choose a new set of collaborators ,
i.e., members of the group that are still active. Processes also
share all the rumor fragments received from the other group.
(The deadline for rumors in GroupGossip[`] here is

√
dline.)

– Round
√
dline+ 2: Any process that was asked to be a proxy

for the other group sends an acknowledgment that proxying was
successful. Any process that sent a request, and does not receive
an acknowledgment, adds the non-acknowledging processes to
the set of failed-proxies .

Figure 2. Outline of Proxy[`] at pi.

4) GroupDistribution Service: The GroupDistribution[`]
service forwards rumor fragments to their final destination.
To this point, for a partition `, the rumor fragment ρ0,` has
been distributed to processes in P0,`, and the rumor fragment
ρ1,` has been distributed to processes in P1,`. Now, group

GroupDistribution[`]:
• Time is divided into blocks of length dline/4.
• At the beginning of the second round of a block, collect all the

fragments that have been injected since the first round of the block,
and set status to active. (The first round of the block is spent waiting
for rumor fragments from the previous block.)

• Each block is divided into iterations of
√

dline + 2 rounds. In each
iteration, we maintain a set collaborators of the active processes in
the same group as pi. We also keep track of a set hitSet of processes
that have been sent a message in this block. Each process in this set
was sent all the rumor fragments for this block. For each iteration:

– Round 1: wait for rumor fragments to be injected.
– Round 2: send every “appropriate” rumor fragment to
n1+48/

√
dline logn/|collaborators| processes chosen uni-

formly at random from the other group, excluding processes
in hitSet . By appropriate we mean that if pj is a process
chosen randomly by pi, then pi sends to pj only the rumor
fragments in which pj is in the destination set. (Recall that
each partial rumor contains the target destination set as part
of the metadata.) Every process that receives rumor fragments
can now reconstruct the rumor and return it to its user (via the
ConfidentialGossip service).

– Rounds 3, . . . ,
√

dline + 2 rounds: initiate an instance of
GroupGossip[`] (with deadline

√
dline) in which processes in

the same group as pi share their hitSets, as well as count how
many members of the group are still active.

• In the last round of the block, initiate an instance of AllGossip (with
deadline dline/4−1). Each process pi gossips the information in its
hitSet , but without including the rumor fragments themselves. That
is, if the hitSet of process pi indicates that some rumor fragment
ρ0,` was sent to some process pj , and if ρ0,` has identifier r, then
pi gossips that the fragment 0 for partition ` of the rumor associated
with identifier r was sent to pj . This provides sufficient information
for the source to determine whether the rumor was delivered, without
revealing the contents of the rumor. (See the description of the
ConfidentialGossip service, above, for how this information is used.)

Figure 3. Outline of GroupDistribution[`] at pi.

P0,` collaborates to send the fragment ρ0,` to ρ0,`.D, while
P1,` does the same for fragment ρ1,`. Of course there may
be many different fragments active in each group, each with
a different destination set.

The basic operation of the GroupDistibution is simi-
lar to that of the Proxy Service. Each process chooses
a set of recipients at random, and sends each of them
a message carefully composed of only appropriate rumor
fragments. The processes then gossip within their group (via
GroupGossip[`]), sharing information on which processes
have already been notified, and which remain to be notified.
At the same time, processes calculate the number of pro-
cesses active in a group, which allows them to determine
the appropriate number of messages to send. We give an
outline of the GroupDistribution service for partition ` in
Figure 3 (detailed pseudocode can be found in [12]).

B. Algorithm Analysis

We begin with the correctness of CONGOS. A formal
proof is deferred to [12].

Theorem 2: Algorithm CONGOS solves the Confidential
Continuous Gossip problem under adversary CRRI .

We now state important properties needed for analyzing
the message complexity of the algorithm.

Lemma 3: Given rumor ρ, injected at time t: if there are
at least 2 processes that remain alive throughout the interval
[t, t + ρ.d], then for some partition `, there is at least one
process in P0,` and one process in P1,` that remain alive
throughout the interval [t, t+ ρ.d].

Proof: Let pi and pj be the two processes hypothesized
to remain alive throughout the specified interval. Since
identifiers are unique, let ` be some bit where the identifier
of pi and pj differ. The claim follows for partition `.

Lemma 4: In each block, the Proxy[`] service and the
GroupDistribution[`] service execute at least

√
dline/8 it-

erations, if dline > 4.
Proof: Each block is of length dline/4, and each

interval is of length at most
√

dline + 2 ≤ 2
√

dline .

Lemma 5: In each round, the Proxy[`] service
and the GroupDistribution[`] service send at most
O(n1+48/

√
dline log n) messages.

Proof: (sketch) In Proxy[`] and GroupDistribution[`],
each process sends n1+48/

√
dline logn

|collaborators| messages in, respec-
tively, the first and second round of an iteration. The bound
on collaborators implies the desired result. In Proxy[`],
each process that received a proxy request sends a response
at the end of an iteration. Each response is the result of
an earlier request in the first round of the iteration, and
we have already bounded the message complexity of the
first round of an iteration, leading here too to a bound of
O(n1+48/

√
dline log n).

The next lemma would be straightforward if the adversary
were oblivious. However, since the adversary is adaptive and
can schedule according to the random choices, we have to
show that the requisite properties hold despite all possible
adversarial choices.

Lemma 6: Given rumor ρ, injected at time t at process pi:
if at least one process in P0,` and one process in P1,` remain
alive throughout the interval [t, t+ ρ.d], then every process
in P0,` that remains alive throughout the interval [t, t+ ρ.d]
receives ρ0,`, and every process in P1,` that remains alive
throughout the interval [t, t+ ρ.d] receives ρ1,` by time t+
2dline/4− (t mod dline), with high probability.

Proof: (sketch) Fix ` to be the partition identified in
Lemma 3. Assume w.l.o.g. that pi ∈ P0,`. (The alternate
case is symmetric.) Since pi injects rumor fragment ρ0,`

into the GroupGossip[`] service with deadline
√

dline , it
is guaranteed to reach every process in P0,` that remains
alive throughout the interval. It remains to show that each
process in P0,` succeeds in finding a proxy in P1,`, while
executing Proxy[`] during the first complete block after
rumor ρ is injected beginning at time t + dline/4 − (t
mod dline). Let Z = n48/

√
dline . The crucial argument is

that in every pair of iterations, one of the three following
events occurs: (i) At least a (1− 1/Z) fraction of processes
in P0,` that were alive at the beginning of the first iteration

fail by the end of the second iteration; (ii) At least a
(1−1/Z) fraction of processes in P1,` that were alive at the
beginning of the first iteration fail by the end of the second
iteration; (iii) In the second iteration, at least a (1 − 1/Z)
fraction of processes in P0,` succeed in finding a proxy.
From this claim and by the lemma assumptions, we can
conclude that by the end of 3 logZ(n) pairs of iterations,
every process in P0,` has succeeded in finding a proxy.
Note that since logZ(n) =

√
dline/48, this process finishes

within 6 logZ(n) ≤
√

dline/8 iterations, as required. Once
a process has succeeded in finding a proxy, it follows from
the guarantees of GroupGossip that its rumor fragment is
distributed to every non-failed process in the other group.

Lemma 7: Given rumor ρ, injected at time t at process pi:
if at least one process in P0,` and one process in P1,` remain
alive throughout the interval [t, t+ ρ.d], then every process
pj ∈ ρ.D receives fragment ρ0,` and fragment ρ1,` by time
t+ 3dline/4− (t mod dline), with high probability.

Proof: (sketch) Due to Lemma 6, it remains to show
that during the following block of rounds, for every process
pj ∈ ρ.D, at least one process from each group sends its
rumor fragment to pj . W.l.o.g. we focus on group P0,`. Let
Z = n48/

√
dline . The crucial observation is that in each pair

of iterations of the GroupDistribution[`] service, one of the
following two events occurs: (i) At least a (1−1/Z) fraction
of processes in P0,` that were alive at the beginning of the
first iteration fail by the end of the second iteration; (ii)
For every process pk active throughout both iterations, the
set of processes [n] \ hitProcsk decreases by a factor of Z
by the end of the second iteration.(hitProcsk = {pq ∈ [n] :
〈pq, ·〉 ∈ hitSetk}.) From this claim, we conclude that within
2 logZ n pairs of iterations, either every process in P0,` fails,
or every process has been added to hitProcs . Hence we
conclude that by the end of 4 logZ n ≤

√
dline/8 iterations,

every process has been sent all of its rumor fragments.
Lemma 8: Given rumor ρ, injected at time t at process pi:

if pi does not fail by time t+ρ.d, then by round t+ρ.d−1,
process pi receives confirmation that rumor ρ was delivered,
with high probability.

Proof: By Lemma 3, we know that if rumor ρ has even
one admissible destination 6= pi, then there is some partition
` where there is at least one process in P0,` and one process
in P1,` that does not fail in [t, t + ρ.d]. By Lemma 7, we
know that by time t+3dline/4−(t mod dline), with high
probability, rumor ρ has been delivered to every destination
in ρ.D by the GroupDistribution[`] service. Moreover, since
at least one process p0 in P0,` and one process p1 in P1,`

does not fail during [t, t+ ρ.d], we conclude that p0 and p1

complete the block in which the rumor fragments for ρ are
delivered to their destinations. At the end of the last round
of the block, processes p0 and p1 inject sanitized versions
of the hitSets as rumors into the AllGossip service with
deadline dline/4− 1, thus ensuring that process pi receives

this information no later than round t+ ρ.d− 1. Process pi
then marks rumor ρ confirmed.

Theorem 9: The per-round message complexity of algo-
rithm CONGOS is:

O
(

(n1+48/
√

dline + n1+6/
6√
dline) polylog n

)
.

Proof: From Lemma 8 we have that for a given
rumor ρ injected at process pi, with high probability
the rumor is confirmed prior to the deadline expiring.
Since each process is injected at most one rumor per
round (hence there can be O(n polylog n) active rumors
in the system at any given time), with high probability, no
source process sends any messages directly to the desti-
nations. From Lemma 5, the per-round message complex-
ity for each instance of Proxy[`] and GroupDistribution[`]
is O(n1+48/

√
dline log n), leading to a per-round message

complexity of O(n1+48/
√

dline log2 n). Each instance of
continuous gossip, invoked with rumors at least

√
dline ,

has message complexity O(n1+6/
6√
dline polylog n). There

are log n+ 1 such instances of continuous gossip.

V. GOSSIPING IN THE PRESENCE OF COLLUSION

In this section we extend our investigation of the confiden-
tial gossip problem by additionally assuming that processes
outside of a rumor’s destination set may collude in an
attempt to learn the rumor. We assume throughout that
the processes are honest-but-curious, i.e., they may collude
to learn information, but they will continue to follow the
protocol.

More formally, given a rumor ρ injected at a process
pi, we denote by Cρ the collusion set of ρ. Cρ may
contain any process q 6∈ ρ.D ∪ {pi}. Adversary CRRI
selects the colluding processes in an adaptive way during
the execution. CRRI(τ) denotes the adversarial patterns of
CRRI for which |Cρ| ≤ τ for all rumors ρ system. Finally,
an algorithm is τ -collusion-tolerant if it solves confidential
gossip under adversary CRRI(τ).

A. Lower Bound
We show a lower bound for any algorithm generlizing

CONGOS. A gossip algorithm is partition-based if it allows
only two operations tampering with the content of the
rumors: splitting, which splits a rumor into fragments, and
merging, which merges fragments of the same rumor1. Oth-
erwise, the protocol must treat the rumor (and its fragments)
as nonmalleable tokens. We show that in this case, the effect
of collusion is quite significant, even against an oblivious
adversary.

Theorem 10: For all ε > 0, every randomized, τ -
collusion-tolerant, partition-based algorithm solving con-
fidential gossip has a maximum per-round message-
complexity of at least Ω(min{nτ, n(3/2)−ε}/dmax), with

1Notice that this does not allow other algebraic manipulation of the
rumor, as in “network coding” techniques.

probability 1, against an oblivious adversary, where dmax
is the longest deadline of the injected rumors.

Proof: (sketch) We assume the same initial setting of
parameters and rumors, including their destination sets and
deadlines, as in the proof of Theorem 1. We assume n > 8,
and let c be a constant and x be a parameter, to be specified,
depending on ε. Each process is initially injected with one
rumor, all of which have deadline dmax . The destination set
of each rumor is as in the proof of Theorem 1.

Consider an execution. Let a rumor interval be a set of
rumor fragments such that any set of fragments sufficient to
reconstruct the rumor includes one fragment from the rumor
interval. Two cases are possible:
Case 1: More than half of the rumors satisfy the following
property: there is a rumor interval such that none of its
contained fragments is ever transmitted to a process outside
the destination set. It follows that each destination process
receives some rumor fragment in this rumor interval directly
from the rumor’s source or relayed entirely through the
processes in the destination set. Therefore, the messages
carrying rumor fragments in this rumor interval altogether
suffer from the same constraints as it would an original
rumor propagated within its destination sets only, and by
Theorem 1, the number of such messages is proportional to
the size of the destination set. Since there are more than
n/2 such rumors, we get the lower bound Ω(n(3/2)−ε) on
the total number of such messages in the considered period
of length dmax . Hence, the per round message complexity
in this case is Ω(n(3/2)−ε/dmax).
Case 2: At least half of the rumors satisfy the following
property each: fragments of the rumor transmitted outside
the destination set cover the whole original rumor.

In this case for each such rumor there are at least τ + 1
processes outside its destination set that receive a fragment
of the rumor directly from some processes in the destination
set or the rumor’s source (the process that the rumor was
injected at); otherwise at most τ such outside processes
could collude and get fragments covering the whole rumor,
thus violating the definition of confidentiality (which must
hold for every execution). We call such at least τ + 1
fragments border fragments. Therefore there are at least τ+1
point-to-point messages sent from some processes in the
destination set or the rumor’s source to the considered at
least τ + 1 outside processes. Call these messages border
messages. It follows that there are at least (τ + 1)n/2
copies of border fragments sent via border messages. Recall
the property of the considered configuration of destination
sets as proved in Theorem 1: each process is in at most
c destination sets, where c is a constant. It follows that
a process sends at most c border fragments per border
message, which gives at least (τ+1)n/2

c = Ω(nτ) border
messages. Hence the per-round message complexity in this
case is Ω(nτ/dmax).

B. Algorithm

We modify algorithm CONGOS in the following way. In-
stead of log n partitions, we utilize cτ log n differe tpartitions
of the processes, for an appropriate choice of constant c.
Each partition contains τ + 1 groups, instead of 2 groups.
Rumors are now divided into τ + 1 fragments.

1) Partitions: The set of cτ log n partitions needs to
satisfy the following properties, for appropriate choice of
constants c and c′: (i) In each partition, each group contains
at least one process. (ii) For every set S of at least 2c′τ log n
processes, there exists a partition such that every group in
the partition contains at least one process in S. The first
property ensures well-formedness, i.e., that the partition is a
proper division of the processes into non-empty groups. The
second property ensures good performance: as long as there
are Ω(τ log n) processes alive, then one partition has live
processes in every group and hence can be used to distribute
the rumor fragments. By randomly selecting the groups for
each partition, observe that with positive probability both
properties are satisfies. Thus, by the probabilistic method, we
can show (see [12]) that there exists a good set of partitions
that meets the requirements:

Lemma 11: If τ < n/ log2 n, then there is a set of
cτ log n partitions satisfying the above conditions, for some
constants c, c′ > 0.
We leave the polynomial time construction of partitions
satisfying the required conditions as future work.

2) Overview of collusion-tolerant CONGOS: The mod-
ified version of algorithm CONGOS operates much like
CONGOS, just relying on more groups and more partitions.
Consider a newly injected rumor ρ at a process pi. For
each partition `, the procedure ConfidentialGossip divides
the rumor into the fragments ρ0,`, . . . , ρτ,` such that all
fragments (from the same partition) are needed in order for
ρ to be re-assembled. (A way to do this is as follows: Let
ρ0,`, . . . , ρτ−1,` be different random binary strings and set
ρτ,` = (ρ xor ρ0,` xor . . . xor ρτ−1,`). Then ρ can be
computed when all τ + 1 fragments are received. Note that
this scheme makes the algorithm partioned-based.)

Say that in partition `, process pi belongs in group x.
Then it injects fragment ρx,` in GroupGossip[`] and all other
fragments into Proxy[`]. Via procedure GroupGossip[`], the
fragment ρx,` is gossiped in the members of group x and
via Proxy[`] each other fragment is gossiped into every
other corresponding group (such that every other group
learns a different fragment of the rumor). Then procedure
GroupDistribution[`] is called so that the processes in each
group collaborate in sending their corresponding fragment of
the rumor only to the processes of the rumor’s destination
set. These processes receive all fragments and hence can
reassemble the rumor. Lemma 11 assures the existence of
at least one partition ` in which all admissible rumors are
received by the live processes of the rumor’s destination set.

Detailed outlines of the procedures can be found in [12]. We
now give the main result of this section.

Theorem 12: The modified version of algorithm CON-
GOS solves the confidential gossip problem under adversary
CRRI(τ) with per-round message complexity of

O
(

(n1+48/
√

dline + n1+6/
6√
dline)τ2 polylog n

)
.

Proof: (sketch) The correctness follows by similar
arguments as for algorithm CONGOS, since the partitions
used for the modified algorithm (with the properties proved
in Lemma 11) satisfy the same conditions explored in the
analysis as the partitions used in the original algorithm
CONGOS.

The message complexity increases by a factor τ2, com-
pared to the complexity of the original algorithm CONGOS,
because of the following two observations.

First, for all rounds but the last one of the considered
deadline period the amount of inter-group communication
(that is, the last round in procedure GroupDistribution)
increases by a factor of at most τ + 1, as the number
of groups is now τ + 1 instead of 2. The communication
is increased by another factor Θ(τ) due to the fact that
now there are Θ(τ log n) partitions instead of log n. Thus
each message sent in the original algorithm CONGOS is
multiplied by at most Θ(τ2) different copies.

Second, in the last round of ConfidentialGossip (shooting
directly to processes in the destination set) there is no
communication if the number of processes alive in the
whole period is at least 2c′τ log n (that is, all rumors have
been confirmed to be delivered); this follows by the second
property of the set of partitions and by the same argument
as in the analysis of the original algorithm CONGOS. In
the case where the number of alive processes is smaller
than 2c′τ log n, the number of point-to-point messages sent
is bounded by 2c′τn log n due to the fact that only these
processes that remain alive throughout may send messages
in the last round (each sending at most n messages). This
completes the proof.

Observe from Theorem 12 that when dline = Θ(log6 n)
the per-round message complexity is O(nτ2 polylog n).
When contrasted with Theorem 10 it follows that for
τ < n1/4, the per-round message complexity is within a
factor of τ polylog n of the lower bound. (For τ =
O(polylog n) the algorithm is optimal within log factors.)

VI. DISCUSSION

In this paper we have considered the problem of confiden-
tial gossip, where each rumor is learned only by processes in
the rumor’s specified destination set. Assuming an adaptive
and omniscient adversary that dynamically and continuously
injects rumors into the system and causes process crashes
and restarts, we have designed an efficient (w.r.t. per-
round message complexity) algorithm which we call algo-
rithm CONGOS. As an alternative to cryptographic schemes,

which can be expensive in such a dynamic environment,
the algorithm deploys a simple rumor splitting technique
that enables an efficient “all-process” collaboration while
guaranteeing confidentiality. For this purpose, the algorithm
combines, in a non-trivial way, a black-box efficient non-
confidential continuous gossip service with other auxiliary
services (namely, Filter, Proxy, GroupDistribution). While
we have focused on continuous gossip, we believe that the
same techniques apply to other gossip variants (e.g., single-
instance gossip, etc.).

We have also discussed the problem of collusion, and
shown how to tolerate a moderate amount of collusion at
a limited cost. An interesting open question is whether we
can tolerate higher levels of collusion if the adversary is
oblivious, or if we allow some small probabilistic violation
of confidentiality.

In addition, as currently presented, the algorithm guaran-
tees the confidentiality of rumors, but various other metadata
is released. For example, processes learn of the existence of
rumors, roughly how many rumors are active, the source of
each rumor, a sequence number of each rumor, and the set
of destinations for each rumor. Some of this information can
be readily hidden. For example, the sequence number can be
replaced with a pseudorandom identifier. Other information
appears more difficult to hide, for example, the proxies learn
precisely who is requesting that they act as a proxy, and this
seems, to some extent, unavoidable.

The destination set associated with each rumor can be
hidden, without increasing the overall message complexity,
but at the cost of increasing the message size (significantly).
When a rumor ρ is injected at process pi, the source creates
n new rumors, each with a single process in its destination
set. For every process in ρ.D, the new rumor contains a
copy of the injected rumor’s content. For the remaining new
rumors, the contents of the new rumor are chosen at random.
The source then proceeds to distribute this entire collection
of rumors. Only the processes in the destination set can
determine whether a rumor contains real content or simply
a random string, and hence processes cannot determine the
real destination set.

Similarly, the very existence of rumors can be hidden
by the continual injection of fake content-free rumors, at
the cost of wasted messages. In this way, a process cannot
determine how many real rumors are currently active.

Finally, an interesting open question is whether we can
tolerate truly malicious processes, i.e., those that do not
follow the protocol. In fact, we believe that the approach for
tolerating collusion may be extended to deal with malicious
processes, if the adversary is oblivious. In that case, we can
tolerate some groups misbehaving and failing to deliver their
message fragments.

REFERENCES

[1] S. Baehni, P.T. Eugster, and R. Guerraoui. Data-Aware Mul-
ticast. In DSN 2004, pages 233–242.

[2] A.J. Ballardie. A New Approach to Multicast Communication
in a Datagram Network, Ph.D. Thesis, University College
London, 1995.

[3] A. Beimel, K. Nissim, and E. Omri. Distributed Private Data
Analysis. In CRYPTO 2008, pages 451–468.

[4] J. Brickell and V. Shmatikov. Privacy-preserving Graph Algo-
rithms in the Semi-honest Model. In ASIACRYPT 2005, pages
236–252.

[5] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B.
Pinkas. Multicast Security: A Taxonomy and Some Efficient
Constructions. In INFOCOM 1999, pages 708–716.

[6] B.S. Chlebus and D.R. Kowalski. Time and Communication
Efficient Consensus for Crash Failures. In DISC 2006, pages
314–328.

[7] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Spi-
derCast: A Scalable Interest-Aware Overlay for Topic-Based
Pub/Sub Communication. In DEBS 2007, pages 14–25.

[8] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Con-
structing Scalable Overlays for Pub/Sub with Many Topics.
In PODC 2007, pages 109–118.

[9] G. Delposte-Gallet, H. Fauconnier, R. Guerraoui, and E.
Ruppert. Secretive Birds: Privacy in Population Protocols. In
OPODIS 2007, pages 329–342.

[10] B. Doerr, T. Friedrich, and T. Sauerwald. Quasirandom Rumor
Spreading: Expanders, Push vs Pull, and Robustness. In
ICALP 2009, pages 366–377.

[11] A. Fiat and M. Naor. Broadcast Encryption. In CRYPTO 1993,
pages 480–491.

[12] Ch. Georgiou, S. Gilbert, and D.R. Kowalski. Confidential
Gossip. Technical Report, available at http://www.cs.ucy.ac.
cy/∼chryssis/congosTR.pdf.

[13] Ch. Georgiou, S. Gilbert, and D.R. Kowalski. Meeting the
Deadline: On the Complexity of Fault-Tolerant Continuous
Gossip. In PODC 2010, pages 247–256.

[14] O. Goldreich. Foundations of Cryptography: Volume II (Basic
Applications). Cambridge University Press, 2004.

[15] I. Gupta, A.M. Kermarrec, and A.J. Ganesh. Efficient
Epidemic-style Protocols for Reliable and Scalable Multicast.
In SRDS 2002, pages 180–189.

[16] Havard D. Johansen, Andre Allavena, and Robbert van Re-
nesse. Fireflies: Scalable Support for Intrusion-tolerant Net-
work Overlays. In EuroSys 2006, pages 3–13.

[17] J. Hromkovic, R. Klasing, A. Pelc, P. Ruzika, and W.
Unger. Dissemination of Information in Communication Net-
works: Broadcasting, Gossiping, Leader Election, and Fault-
Tolerance, Springer-Verlag, 2005.

[18] R. Karp, C. Schindelhauer, S. Shenker, B. Vocking. Random-
ized Rumor Spreading. In FOCS 2000, pages 565–574.

[19] D. Kempe, J. Kleinberg, and A. Demers. Spatial Gossip and
Resource Location Protocols. Journal of the ACM, 51:943–
967, 2004.

[20] A. Kermarrec, L. Massoulie, A. Ganesh. Probabilistic Reli-
able Dissemination in Large-scale Systems. IEEE Transac-
tions on Parallel and Distributed Systems, 14(3):248–258,
2003.

[21] L. Kissner and D. Song. Privacy-preserving Set Operations.
In CRYPTO 2005, pages 241–257.

[22] D. R. Kowalski and M. Strojnowski. On the Communication
Surplus Incurred by Faulty Processors. In DISC 2007, pages
328–342.

[23] Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. J.
Cryptology, 15(3):177–206, 2002.

[24] D. Malkhi, Y. Mansour, and M.K. Reiter. Diffusion Without
False Rumors: On Propagating Updates in a Byzantine Envi-
ronment. Theoretical Computer Science, 299:289–306, 2003.

[25] D. Micciancio and S. Panjwani. Corrupting One Vs. Corrupt-
ing Many: The Case of Broadcast and Multicast Encryption.
In ICALP 2006, pages 70–82.

[26] Y.M. Minsky and F.B. Schneider. Tolerating Malicious Gos-
sip. Distributed Computing, 16:49–68, 2003.

[27] S. Mittra. Iolus: A Framework for Scalable Secure Multi-
casting. SIGCOMM Comput. Commun. Rev., 27(4):277–288,
1997.

[28] Multicast Security. http://datatracker.ietf.org/wg/msec/

[29] M. Onus and A.W. Richa. Minimum Maximum Degree
Pub/Sub Overlay Network Design. In INFOCOM 2009, pages
882–890.

[30] J. Pang and C. Zhang. How to Work with Honest but Curious
Judges? In Proc. 7th International Workshop on Security
Issues in Concurrency, pages 31–45, 2009.

[31] S. Panjwani. Tackling Adaptive Corruptions in Multicast
Encryption Protocols. In TCC 2007, pages 21–40.

[32] A. Pelc. Fault-tolerant Broadcasting and Gossiping in Com-
munication Networks. Networks, 28: 143–156, 1996.

[33] A. Shamir. How to Share a Secret. Communications of the
ACM, 22(11):612–613, 1979.

[34] A.T. Sherman and D.A. McGrew. Key Establishment in Large
Dynamic Groups Using One-Way Function Trees. IEEE
Transactions on Software Engineering, 29(5):444–458, 2003.

[35] D.R. Stinson. Cryptography: Theory and Practice, CRC
Press, 3rd edition, 2005.

[36] C.K.Wong, M. Gouda, and S. Lam. Secure Group Com-
munications Using Key Graphs. IEEE/ACM Transactions on
Networking, 8(1):16–30, 2000.

[37] A.C. Yao. Protocols for Secure Computations. In FOCS 1982,
pages 160–164.

