
Meeting the Deadline:
On the Complexity of Fault-Tolerant Continuous Gossip ∗

Chryssis Georgiou
†

Dept. of Computer Science
University of Cyprus

CY-1048 Nicosia, Cyprus
chryssis@cs.ucy.ac.cy

Seth Gilbert
École Polytechnique, Fédérale

de Lausanne
1015 Lausanne, Switzerland

seth.gilbert@epfl.ch

Dariusz R. Kowalski
‡

Dept. of Computer Science
University of Liverpool
Liverpool L69 3BX, UK

D.Kowalski@liverpool.ac.uk

ABSTRACT
In this paper, we introduce the problem of Continuous Gos-
sip in which rumors are continually and dynamically injected
throughout the network. Each rumor has a deadline, and
the goal of a continuous gossip protocol is to ensure good
“Quality of Delivery,” i.e., to deliver every rumor to every
process before the deadline expires. Thus, a trivial solution
to the problem of Continuous Gossip is simply for every
process to broadcast every rumor as soon as it is injected.
Unfortunately, this solution has a high per-round message
complexity. Complicating matters, we focus our attention
on a highly dynamic network in which processes may contin-
ually crash and recover. In order to achieve good per-round
message complexity in a dynamic network, processes need
to continually form and re-form coalitions that cooperate to
spread their rumors throughout the network. The key chal-
lenge for a Continuous Gossip protocol is the ongoing adap-
tation to the ever-changing set of active rumors and non-
crashed process. In this work we show how to address this
challenge; we develop randomized and deterministic proto-
cols for Continuous Gossip and prove lower bounds on the
per-round message-complexity, indicating that our protocols
are close to optimal.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; C.4 [Performance of Systems]: [fault tol-
erance]

General Terms
Algorithms, Theory

∗A full version of the paper is available at the first author’s
website.
†The work of this author was supported in part by research
funds from the University of Cyprus.
‡The work of this author was supported by the Engineer-
ing and Physical Sciences Research Council [grant number
EP/G023018/1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’10, July 25–28, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-60558-888-9/10/07 ...$10.00.

Keywords
Gossip, crashes and restarts, dynamic rumor injection, ex-
pander graphs

1. INTRODUCTION
Disseminating information lies at the core of distributed

computing. Gossiping is a fundamental mechanism for achiev-
ing efficient data dissemination [20]. The Gossip problem is
typically defined as follows: a set of n processes each re-
ceive an initial piece of information, called a rumor; each
process wants to learn all the other rumors. Gossip proto-
cols have been used as building blocks in numerous areas of
distributed computing, including distributed consensus [5,
12, 13], database consistency [8], cooperative task comput-
ing [14], failure detection [23], group communication [1, 11,
18], and resource location [17].

Continuous Gossip. In this paper, we focus on a gener-
alized gossip problem, Continuous Gossip, that we believe
better captures the requirements of data dissemination in
large-scale, dynamic distributed systems. Continuous gos-
sip differs from traditional gossip in the following ways:

Continuous: Most gossip algorithms tend to focus on single-
shot versions of the data dissemination problem. In this pa-
per, we study Continuous Gossip where rumors are injected
dynamically, at any process, at any time. By contrast to
traditional gossip, an execution is of unbounded duration,
and there is no bound on the number of rumors that may
be injected during the execution.

Real-time: We focus on a real-time variant of the gossip
problem: every rumor has a strict deadline by which it must
be delivered. Some rumors may have short deadlines, and
need to be delivered in O(1) time; other rumors may have
longer deadlines allowing for slower delivery.

Targeted: Most gossip protocols distribute every rumor to
every process. In this paper, each rumor has a specified set
of destinations that may be much smaller. For example, in
a video streaming system, the source may wish to send a
stream (i.e., a set of rumors) to a certain set of viewers.

Continuous gossip can be used as a basic building block for
designing distributed services. For example, consider im-
plementing a publish-subscribe service in which there are a
set of topics, each associated with a group of processes that
subscribe to that topic: whenever a message is published,
the publisher injects a rumor with the specified group as
the set of destinations; different topics may have different
deadlines—for example, a topic representing a video stream

may have short deadlines, while a topic representing an e-
mail listerv may have longer deadlines.

Fault Tolerance. The efficiency of gossip is greatly affected
by faults. The fault-tolerance of gossip protocols has been
widely studied in the context of process crashes, link failures,
transient disconnections, message omission faults, Byzantine
failures, etc. (See, for example, [15, 19, 20].) Here, we
focus on a dynamic network in which processes may crash
and restart at any time. Such networks are particularly
challenging since there is no guarantee that any given subset
of processes will remain active. In fact, we assume no lower
bound on the number of active processes; at any given time,
all the active processes may fail!

Metrics. There is a trivial solution to the problem of con-
tinuous gossip: each rumor is sent immediately to the de-
sired set of destinations. When there are not many rumors in
the system, or when each rumor is destined for only a small
number of destinations, this simple “protocol” may be quite
efficient, requiring only one message per rumor-destination.
And for rumors with a very short deadline (e.g., one round),
there may be no other feasible solution.

However, when there are a large number of rumors and a
large number of destinations, such a simple approach may
require quadratic (w.r.t the number of processes) Θ(n2) mes-
sages per round. Thus, our goal is to develop a continuous
gossip protocol that minimizes the per-round message com-
plexity, i.e., the maximum number of messages sent in any
round. (Notice that since we are considering an unbounded
execution and an unbounded number of rumors, it does not
make sense to consider total message complexity, as that
may also be unbounded.) As hinted above, the per-round
message complexity will depend significantly on the length of
the deadline: very short deadlines will lead to (unavoidably)
high per-round message complexity, while longer deadlines
allow for more efficient data dissemination.

Contributions. To the best of our knowledge, this pa-
per is the first to consider the complexity of gossip subject
to dynamic crashes and restarts and dynamic injection of
deadline-based rumors. To summarize our contributions:

1. Problem Definition: We formulate the Continuous Gos-
sip problem, and define an acceptable Quality of Delivery
(QoD) that defines the correctness of Continuous Gossip.

2. Lower Bounds: We prove lower bounds on the per-round
message complexity of continuous gossip: if rumors have a
deadline of d, then every deterministic protocol has a per-
round message complexity of Ω(n1+1/d/d); every random-
ized protocol has, with high probability, a per-round mes-
sage complexity of Ω(n1+1/d/d2). These lower bounds im-
ply that the message complexity is strongly related to the
length of the deadline of the rumors: for very short dead-
lines, linear per-round message complexity is impossible; yet
for slightly longer deadlines, the lower bound is compatible
with achieving subquadratic per-round message complexity.
The randomized and deterministic algorithms we develop
are close to optimal with respect to these lower bounds. In
fact, for d = logO(1)(n), they are optimal within log factors.

3. Randomized Algorithm: We develop an efficient ran-
domized algorithm for continuous gossip that sends at most

O(n1+5
√

2/dm logO(1)(n)) messages per-round, where dm is
the minimum deadline of any rumor active in the system.
The key to achieving good efficiency is for processes with

active rumors (i.e., those whose deadline has not expired)
to collaborate, sharing the work of distributing the rumors.
Thus, the algorithm relies on two random mechanisms that
execute concurrently: the first mechanism discovers other
collaborators, i.e., processes with active rumors; the second
mechanism distributes the rumors to their destinations. At
any given time, any (or all) of the collaborating processes
may crash, and the remaining processes must finish the job.

Notice that a key challenge here is coping with crashes
and restarts. In the absence of failures, continuous gossip
is easy: one process is designated as the coordinator, which
collects and distributes the rumors so as to meet all the
deadlines. Even simple crash failures are easier to tolerate.
For example, gossip algorithms typically attempt to build a
low-degree overlay on top of the fully connected network, en-
abling efficient dissemination of information. As the number
of failures increases, in order to prevent the overlay from be-
coming disconnected, protocols typically increase the degree
of the overlay, i.e., increase the amount of communication
among the surviving processes. As long as the increase in
messages is slower than the rate of failures, good message
complexity can be maintained. This strategy fails entirely
when processes can restart: if processes send more messages
to compensate for failures, the failed nodes may also restart,
overwhelming the network with messages. Since an execu-
tion of continuous gossip may be arbitrarily long, it does not
make sense to bound the number of crash failures; hence we
must cope with the case where processes can restart.

4. Adaptivity: We show that the randomized algorithm is
adaptive. When there are a large number of rumors or a large
number of destinations, the per-round message complexity

is always O(n1+5
√

2/dm logO(1)(n)); yet when there are a
small number of rumors or a small number of destinations-
per-rumor, the trivial “direct transmission” protocol where
each source sends its own rumors directly to the destinations
may be better. Our randomized protocol adapts to these
“sparse” situations, achieving a per-round message complex-
ity that is almost as good as the “direct transmission” so-
lution. More specifically: if {ρ1, ρ2, . . . , ρk} are the set of
active rumors in some round, and if ρj .D is the set of desti-
nations for rumor ρj , then our algorithm never sends more

than O
(∑k

j=1 |ρj .D| logO(1)(n)
)

messages.

This property of adaptivity is hard to achieve precisely
because of dynamic rumor injection: if rumors are only in-
jected at a single process, then the optimal behavior of that
process is to simply send the rumor directly to everyone.
By contrast, if rumors are injected widely throughout the
network, then processes must perform a cooperative pro-
tocol to reduce the message complexity. Unfortunately, to
distinguish these cases, the processes need to exchange in-
formation amongst themselves, leading to increased message
complexity. In order to adapt to the message injection pat-
tern, the algorithm we present is efficient in its search for
collaborating processes, and in the sharing of work among
collaborators, introducing relatively little message overhead.

5. Deterministic Algorithm: We show how to de-randomize
the algorithm above, replacing the random choices with ex-
pander graphs. This leads to a deterministic algorithm that

sends at most O(n1+6/ 3√dm logO(1)(n)) messages per round,
where dm is the minimum deadline of any rumor active in the
system. (While the deterministic version can also be made

adaptive, we omit that aspect.) We show a new property of
the specified expander graphs relevant to the crash-restart
environment. The resulting protocol is quite involved, as in
a deterministic environment it is significantly harder to co-
ordinate collaborating processes: due to failures, they may
not be as well connected; it is also harder to evenly distribute
the work of disseminating rumors among the collaborators.

Other related work. There is a large amount of literature
dedicated to fault-tolerant gossip in different settings; we
limit our discussion only to the most relevant prior work.

The gossip problem has frequently been considered in re-
lation to random, epidemic communication (see for exam-
ple [10, 16, 17, 18]). In this context, the problem is also
know as rumor spreading and the protocols usually use a
simple epidemic approach: each process periodically sends
its rumor—along with any new rumors it has learned—to
another randomly selected process. Karp et al [16] showed,
using a synchronous round-based epidemic protocol (a pro-
cess sends a rumor to one other process in each round), that
a single rumor can be disseminated in O(logn) rounds using
O(n log logn) messages with high probability, n being the
number of processes.

The best (to-date) deterministic synchronous crash-
tolerant algorithm (for a complete communication network)
for one-shot n-rumor gossip is due to Chlebus and Kowal-
ski [6]. Their algorithm achieves O(log3 n) time complex-
ity and O(n log4 n) total message complexity, even if up to
n−1 processes may crash. In [19], Kowalski and Strojnowski
studied the impact of faults on the total message complex-
ity of n-rumor deterministic gossip problem under several
failure classes: crashes, message omissions, authenticated
Byzantine and Byzantine faults. Focusing on solutions with
constant time complexity, they showed that crashes cost
more messages than non-faulty processes, however polyno-
mially fewer messages than more severe types of failures like
omission and (authenticated) Byzantine. According to our
knowledge, restarts were not considered in the context of
the complexity of one-shot distributed gossip. The survey
by Pelc [20] together with the book by Hromkovic et al. [15]
provide a presentation of gossiping in fault-prone distributed
networks (under various network topologies).

As in the present work, for the purposes of their algo-
rithms, Chlebus and Kowalski [6] and Kowalski and Stro-
jnowski [19] defined and used graphs with specific fault-
tolerant properties. Different kinds of graphs with expan-
sion properties were studied before in the context of fault-
tolerant communication in message-passing systems and net-
works [4, 5, 6, 9, 14] and shared memory [7]. In this work we
study a new fault-tolerant property of expander graphs, in
the context of a tradeoff between the initial number of non-
faulty nodes and the diameter of the connected component
induced by some large subset of non-faulty nodes.

2. MODEL
Distributed Setting. We consider a synchronous,
message-passing system of n crash-prone processes (where
n is fixed and known a priori). Processes have unique
ids from the set [n] = {1, 2, . . . , n}. Each process can
communicate directly with every other process (i.e., the
underlying communication network is a complete graph);
messages are not lost or corrupted.

Rounds. The computation proceeds in synchronous

rounds. In each round, each process can: (i) send point-
to-point messages to selected processes, (ii) receive a set of
point-to-point messages sent in the current round, and (iii)
perform some local computation (if necessary). We assume
that there is no global clock available to the processes,
i.e., rounds are not globally numbered. Any reference to a
global round number is only for the purpose of presentation
or algorithm analysis.

Crashes/Restarts. Processes may crash and restart dy-
namically as an execution proceeds. Each process is in one
of two states: either alive or crashed. When a process is
crashed, it does not perform any computation, nor does it
send or receive any messages. Processes have no durable
storage, and thus when a process restarts, it is reset to a
default initial state consisting only of the algorithm and [n].
Each process can only crash or restart once per round.

When a process p crashes in round t, some of the messages
sent by p in round t may be delivered, and some may be lost.
Similarly, when a process p restarts in round t, some of the
messages sent to p may be delivered and some may be lost.
(Recall that no message is sent/received by a process that
is crashed during the whole round.)

We denote by crash(p, t,X) the crash event for process p
in round t, where X is the (possibly empty) set of processes
that are allowed to receive messages from p in round t. We
denote by restart(p, t, Y) the restart event for process p in
round t, where Y is the (possibly empty) set of processes
that are allowed to deliver messages to p in round t.

We say that a process p is continuously alive in the
period [ta, tb] if: (a) process p is alive at the beginning
of round ta and at the end of round tb, and (b) for every
t ∈ [ta, tb], there are no crash(p, t, ·) events.

Rumors. Rumors are dynamically injected into the system
as the execution proceeds. A rumor ρ consists of a 4-tuple
〈z, D, d, p〉, where z is the data to be disseminated, D ⊆ [n]
is the set of processes to which z must be sent (destination
set), d is the deadline duration by which the rumor must be
delivered, and p is the process at which the rumor is injected;
we call p the source of rumor ρ. We denote by inject(ρ, t)
the event where rumor ρ is injected in round t.

We assume that at most one rumor per round is injected
at each process. Rumors are injected at the beginning of a
round, and only at processes that are alive throughout the
round. The basic expectation is that a rumor 〈z, D, d, p〉
injected in round t should be delivered by the end of round
t+ d to all processes in D that are alive. Due to continuous
crashes and restarts, this goal (delivery to all processes in D
that are alive) must be specified in more detail; see Section 3.

Adversary. We model crash/restarts and rumor injec-
tion via a Crash-and-Restart-Rumor-Injection (CRRI) ad-
versary. Adversary CRRI consists a set of adversarial pat-
terns A = {F , R}, where F denotes a set of crash/restart
events and R denotes a set of rumor injection events.

We assume that every adversarial pattern A ∈ CRRI
satisfies natural well-formedness conditions, e.g., a
crash(p, t,X) event cannot occur if p is already crashed

in round t, and a restart(p, t, Y) event cannot occur if p is
already alive. We also assume that the adversary “knows”
the algorithm being executed by the processes, meaning
that the set of adversarial patterns may depend on the
algorithm. However, in the case of randomized algorithms,
the adversary is not aware of the random choices made

during the execution. That is, the adversary is oblivious: it
chooses the adversarial pattern prior to the execution (and
cannot change the pattern once the execution begins).

Complexity Metrics. Typically, message complexity ac-
counts for the total number of point-to-point messages sent
during a given computation. (A multicast to k processes
counts as k point-to-point messages.) However, in this work
we allow for computations to have unbounded duration, and
rumors may be injected into the system over an unbounded
time period; thus counting the total number of messages
sent in the entire computation is not meaningful. Instead,
we focus on the number of messages sent per round.

More formally, let Det be a deterministic algorithm op-
erating under adversary CRRI. For an adversarial pattern
A ∈ CRRI, define Mt(Det,A) to be the number of mes-
sages sent by Det in round t. We say that algorithm Det
has per-round message complexity at most M(Det) if
∀t, ∀A ∈ CRRI, Mt(Det,A) ≤M(Det).

Similarly, the per-round message complexity for a random-
ized algorithm is a bound on the number of messages that,
with high probability, are sent in a round. More formally,
we say that a randomized algorithm Rand operating under
adversary CRRI has per-round message complexity at most
M(Rand), if for every round t, for every A ∈ CRRI, with
high probability, Mt(Rand,A) is at most M(Rand).

3. QUALITY OF DELIVERY (QOD) AND
CONTINUOUS GOSSIP

We now describe the desired quality-of-delivery (QoD),
that is, the requirements on when a rumor will be delivered.
Ideally, we would like every rumor ρ injected in the system
to be learned by all processes in ρ.D. Moreover, each rumor
should be delivered before it expires. However, this is not
always possible: for example, a process q ∈ ρ.D may be
crashed throughout the duration of a rumor’s lifetime.

A natural (weaker) quality-of-delivery guarantee is as fol-
lows: if ρ = 〈z, D, d, p〉 is a rumor injected in round t, and
if p is continuously alive in the period [t+1, t+d], then ρ is
delivered to every process q ∈ D that is continuously alive
in at least one round in the period [t + 1, t + d]. While it
is possible to achieve such a strong quality-of-delivery guar-
antee, unfortunately this unavoidably requires high message
complexity in our context. This is due to the following fact:

Fact 1. Any deterministic or randomized algorithm that
guarantees strong QoD under adversary CRRI must dissem-
inate each injected rumor immediately.

Otherwise, if process p does not immediately send the ru-
mor injected in round t to every other process in the rumor’s
destination set in round t+1 (i.e., as soon as possible), then,
for example, a process q that was alive in round t+1, but not
in the period [t+2, t+d], will not receive the rumor, violat-
ing the strong QoD requirement. Thus, any such protocol
will have high per-round message complexity.

Instead, we say that a rumor ρ = 〈z, D, d, p〉 injected
at p in round t is admissible for q ∈ D if both p and q
are continuously alive in the period [t + 1, t + d]. We say
that a protocol ensures satisfactory quality-of-delivery
or simply quality of delivery (QoD) if it delivers every
rumor ρ = 〈z, D, d, p〉 injected at p in round t that is
admissible for q ∈ D to process q by the end of round t+ d.

Basically, for a rumor to be admissible, the adversary
needs to leave a sufficiently large “window of opportunity”

for p to deliver the rumor to q. This yields more efficient
(and more practical) protocols. Note that for randomized
algorithms, it is natural to expect the QoD guarantee to
hold with probability 1. In other words, we expect both de-
terministic and randomized algorithms to guarantee QoD.

We say that an algorithm Alg (randomized or determin-
istic) solves the Continuous Gossip problem if it guaran-
tees QoD under any adversarial pattern A ∈ CRRI. Our
goal is to design randomized and deterministic algorithms
for the Continuous Gossip problem with subquadratic mes-
sage complexity (that is, M(Alg) = o(n2)).

4. LOWER BOUNDS
We begin our study of efficient solutions (with respect to

message complexity) for the Continuous Gossip problem by
looking at lower bounds. We focus on adversarial patterns
in which the adversary CRRI injects rumors that must be
delivered to all processes (that is, the destination set is [n])
and with uniform deadlines (that is, all rumors have the
same deadline). We first show a lower bound for determin-
istic and then a lower bound for randomized algorithms.

Theorem 1. Every deterministic algorithm Det guaran-
teeing QoD for rumors with destination set [n] and deadline
d with at most M(Det) per-round message complexity must

have M(Det) = Ω(n1+1/d/d).

Theorem 2. Every randomized algorithm Rand guaran-
teeing QoD for rumors with destination set [n] and dead-
line d with at most M(Rand) per-round message complexity
with probability bigger than 1−min{1/(2d), 2/n}, must have

M(Rand) = Ω(n1+1/d/d2).

Observe that the above lower bound results suggest that
for small deadlines, a superlinear per-round message com-
plexity is inevitable. (This is in contrast to the model with
no failures.) Furthermore, this has motivated our search
for randomized and deterministic continuous gossip solu-
tions with subquadratic per-round message complexity. The
randomized and deterministic algorithms we develop in the
following two sections achieve such subquadratic complexity.

5. RANDOMIZED SOLUTION
We now describe and analyze a randomized algorithm,

called rand-gossip, for the Continuous Gossip problem.

5.1 Basic Strategy
Rumors may be injected in any round, at any process, with

different deadlines and different sets of destinations. We par-
tition these rumors, as they are injected, into sets of rumors
that were: (i) injected in the same round; (ii) have approx-
imately equal deadlines; and (iii) have approximately the
same number of destinations. For each such set of rumors,
we spawn a separate instance of routine fixed-rand-gossip.
We ensure that there are at most O(log4 n) instances of
fixed-rand-gossip running in each round, and hence this par-
titioning increases the per-round message complexity by at
most a polylogarithmic factor. (Some log-factor improve-
ments can be gained by avoiding this partitioning, but the
resulting protocol is significantly more complicated.)

The pseudocode for the main rand-gossip routine is de-
scribed in Algorithm 1. The rumor’s deadline is rounded
down to the nearest power of two, and truncated at
Θ(log2 n). (Every rumor is delivered within Θ(log2 n)

rounds, regardless of the deadline – there is no benefit to
deadlines longer than Θ(log2 n).) The size of the rumor’s
destination set is rounded up to the nearest power of two.
The process then spawns a new instance of fixed-rand-gossip.
Thus, there may be many instances of fixed-rand-gossip run-
ning in parallel. Messages from each instance are distin-
guished by adding certain control bits (such as dline and
dsize). For clarity, we treat each instance as exchanging
messages on its own private network. Therefore, for the
remainder of this section, we present and analyze a single
instance of the fixed-rand-gossip routine, concluding with an
analysis of the per-round message complexity of the entire
randomized algorithm in Theorem 3.

1 procedure rand-gossip(rumor ρ)i
2 dline ← min{25 log2 n, ρ.d}
3 dline ← 2blog dlinec

4 dsize ← 2dlog |ρ.D|e

5 spawn fixed-rand-gossip(ρ, dline, dsize, α)

Algorithm 1: Main randomized continuous gossip routine
at process i.

5.2 Randomized Algorithm Description
We now describe the randomized algorithm

fixed-rand-gossip. The pseudocode can be found in Al-
gorithm 2. The basic idea is as follows: The “participants”
in each “instance” of fixed-rand-gossip repeatedly choose two
random graphs defined by the edgesets Na and Nb; the
variable dguess controls the degree of these graphs. When
the degree is sufficiently large, two things happen: first,
the participants are connected in Na by a small diameter
graph, and hence they can rapidly exchange information on
the edges of Na; second, the participants are collectively
connected to every process in the system via Nb, and hence
can cooperatively deliver all their rumors. If there are too
few participants, then dguess may never get sufficiently
large, in which case each process simply sends its rumor
directly to the specified destinations.

We now proceed to describe the pseudocode in more de-
tail. The algorithm takes four parameters: a rumor ρ, a
deadline dline that is no greater than ρ.d, a destination set
size dsize that is at least as large as |ρ.D|, and a factor α
controlling the growth of variable dguess. Consider some
process i executing the fixed-rand-gossip routine in an at-
tempt to distribute rumor ρ.

The goal of the main loop from lines 11–24 is to guess
the right number of messages to send in each round, i.e.,
the right degree for the random graphs Na and Nb. The
loop terminates for a process i in two cases. Case 1: Pro-
cess i learns that its rumor was successfully sent to every
destination, in which case 1 is finished. The variable sent [p]
tracks which rumors have been sent to process p, and when
ρ ∈ sent [p] for every p ∈ ρ.D, then i can be sure that ρ
has been successfully delivered (see line 23). Case 2: The
variable dguess reaches, approximately, dsize. In the latter
case, process i can abort the loop and simply send the rumor
directly to the destinations ρ.D (lines 25–28), as there are
no more than dsize such destinations.

Recall that the variable dguess controls the degree of the
random graph Na, in which the participants communicate
with each other, and the graph Nb, in which the partici-
pants communicate with the other processes. In both cases,

the protocol succeeds in delivering rumors and terminat-
ing when dguess is sufficiently large (lines 12–22). That
is, if there are k non-failed participants in these instances
of fixed-rand-gossip, then when dguess is about (n/k) log2 n,
the protocol completes.

We will later show that, in this case, the random graphNa,
when restricted to the participants, has a small (logarithmic)
diameter; thus the participants can communicate efficiently
with each other by exchanging messages along edges of Na.
(The graph Na is selected in line 12, and lines 13–14 ensure
that it is undirected.) Similarly, the subgraph of Nb induced
by the participants has roughly Θ(n log2 n) outgoing random
edges, i.e., enough to ensure that every possible destination
in [n] can be reached by one of the participants. Thus, once
dguess is sufficiently large, the following steps take place:
(1) after the first O(logn) rounds, all the participants learn
about all the rumors; (2) in the next rounds, every rumor
is sent to every destination; and (3) in the final O(logn)
rounds, all the participants again exchange information and
learn that their rumors have been delivered, allowing them
to terminate. (Of course, this description is somewhat sim-
plified, as participants may fail during the protocol.)

5.3 Algorithm Analysis
We analyze the algorithm assuming that dline ≥ 64 and

that α = max(n1/
√

dline , 2). The analysis also relies on the
following fact, whose proof is relatively standard (see for
example [2]).

Fact 2. Given c, n, k, γ: Let V = [n], and let V ′ ⊆ V
where k = |V ′|. For each v ∈ V ′, choose 16c(n/k)γ log2 n
neighbors in V , resulting in an edgeset E. Then graph G =
(V ′, E) has diameter at most logγ k with probability at least
1− 1/nc.

5.3.1 Analysis: Correctness.
We first argue that the rand-gossip protocol is correct, i.e.,

it delivers every admissible rumor by the deadline.

Lemma 1. The rand-gossip protocol delivers every admis-
sible rumor by the specified deadline.

Proof sketch. First, it is easy to observe that every ru-
mor is delivered, as, if it is not delivered, then the source
sends it directly to the destinations (lines 25–28). It only
remains to count the number of rounds, observing that[
logα (dsize/α4)

]
[3 · dline/(4 logα(dsize)) + 1] + 1 is always

no greater than dline.

5.3.2 Analysis: Message Complexity.
We now examine the message complexity of our ran-

domized continuous gossip protocol. We first fix a
round r, a deadline dline, and a size dsize, and
analyze the messages sent by every invocation of
fixed-rand-gossip(·, dline, dsize, α). We also fix the set of ru-
mors {ρ1, ρ2, . . . , ρk} that are associated with these invo-
cations of fixed-rand-gossip. Define k to be the number of
such rumors, and P to be the set of k processes where these
rumors are injected.

The basic idea underlying the fixed-rand-gossip protocol is
that as soon as dguess is sufficiently large to discover enough
“collaborating” processes, then all the rumors injected at
those processes are disseminated and the gossip protocol ter-
minates. To that end, we begin by examining an iteration of
lines 11–24, arguing that if dguess ≥ 16c(n/k) log2 n, then

1 dguess : integer
2 Na, Nb : set of neighbors
3 R : set of rumors
4 done : boolean
5 sent [] : array of sets of rumors, indexed by [n]

6 procedure fixed-rand-gossip(rumor ρ, integer dline, integer dsize, integer α)i
7 R← {ρ}
8 if (i ∈ ρ.D) then deliver(ρ)
9 dguess ← 1

10 done ← false

11 while (done = false) and (dguess ≤ dsize/α4) do:

12 let Na ← {n4 logα(dsize)/dline · dguess processes chosen uniformly at random from [n]}
13 send(nbr, i) to every process in Na
14 for every (nbr, `) message received : Na ← Na ∪ {`}
15 repeat 3dline/(4 logα(dsize)) rounds:
16 let Nb ← {dguess processes chosen uniformly at random from [n]}
17 send(rumors, R, sent) to every process in Na ∪Nb
18 for every p ∈ Na ∪Nb, for every rm ∈ R : sent [p]← sent [p] ∪ {rm}
19 for every (rumors, R′, sent ′) message received :
20 for every ρ′ ∈ R′ : if (i ∈ ρ′.D) then deliver(ρ′)
21 R← R ∪R′
22 for every p ∈ [n] : sent [p]← sent [p] ∪ sent ′[p]
23 if (∀p ∈ ρ.D : ρ ∈ sent [p]) then done ← true
24 dguess ← α · dguess
25 if (done = false) then
26 send(rumors, R) to every process in ρ.D
27 for every (rumors, R′) message received :
28 for every ρ′ ∈ R′ : if (i ∈ ρ′.D) then deliver(ρ′)

Algorithm 2: The fixed-rand-gossip routine at process i for specific values of dline and dsize.

the protocol completes. (Notice that since rounds are syn-
chronous, processes that begin the gossip protocol in the
same round also execute the protocol in lockstep, and hence
processes execute the same line in the same round.)

Lemma 2. Consider a single iteration of lines 11–24 of
fixed-rand-gossip(·, dline, dsize, α) by processes in P . Let P ′

be the set of processes that: (i) do not set done = true prior
to the beginning of the iteration, and (ii) do not fail by the
end of the iteration. Let k′ = |P ′|. Let dguess ′ be the value
of dguess for every process in P at the beginning of the iter-
ation. (Notice that every process in P that is not complete
has the same value of dguess, as each increases it by the
same factor α in each round.) If dguess ′ ≥ 16c(n/k′) log2 n,
then every process in P completes or fails by the end of the
iteration, with probability at least 1− 1/nc−1.

Proof sketch. In each iteration, the subgraph of Na in-
duced by the non-failed participants has diameter at most
dline/(4 logα(dsize)), by Fact 2. Thus, in the first iteration
of lines 16–22, every participant learns every rumor. Next,
observe that the subgraph of Nb induced by the non-failed
participants has Θ(n logn) outgoing edges leaving the sub-
graph, and hence every rumor is sent to every process, with
high probability. Finally, in the last iteration of lines 16–
22, every participant learns that all the rumors have been
disseminated and then terminates.

We can now analyze the overall performance, bounding the
per-round message complexity:

Lemma 3. The per-round message complexity of
fixed-rand-gossip, beginning in round r, associated with pa-

rameter dline and dsize, is at most O
(
n1+5/

√
dline log2 n

)
,

with probability at least (1− 1/nc−1).

Proof sketch. If any iteration of lines 11–24 satisfies
the assumptions of Lemma 2, then it remains only to calcu-
late the message complexity of that last iteration: we know
that dguess < 16cα · (n/k) log2 n, for k and dguess defined
according to Lemma 2, as otherwise the participants would
have all completed in the previous iteration. This leads to
the desired bound on message complexity.

On the other hand, if no iteration of lines 11–24 satisfies
Lemma 2, then we again know that dguess < 16c(n/k) log2 n
throughout, leading to the same bound throughout. We
bound the message complexity in the last round (lines 25–
28) by also observing that dguess > dsize/α5, and hence we
can bound k · dsize, the maximum number of messages sent
in the final round.

5.3.3 Adaptive Per-Round Message Complexity
When there are relatively few rumors, or when there are

relatively few destinations-per-rumor, it may be more effi-
cient for each process to send its rumor directly to the desti-
nation, rather than participating in the gossip protocol. In
order to obviate this scenario, we have designed the gossip
protocol to always be as efficient, within logO(1)(n) factors,
as sending rumors directly. In particular, notice that dguess
is bounded by dsize; thus no process ever sends more than
dsize messages in a round.

Lemma 4. The per-round message complexity of the
fixed-rand-gossip protocol beginning in round r associated

with parameter dline and dsize is at most O
(∑k

j=1 |ρj .D|
)

(with probability 1).

Lemmas 3 and 4 together yield our main result:

Theorem 3. The per-round message com-
plexity of algorithm rand-gossip is at most

O

(
min

{
n1+5

√
2/dm log6 n,

k∑
j=1

|ρj .D| log4 n

})
, with

probability at least 1− 1/nc−2; dm is the minimum deadline
of any rumor active in the system.

6. DETERMINISTIC SOLUTION
In this section we show how to obtain a deterministic al-

gorithm achieving message complexity only slightly larger
than the randomized solution. For clarity of presentation,
we focus on the case dsize = n (thus automatically hold-
ing for all dsize = O(n)), and we do not address the issue
of adaptavitiy. We call this algorithm det-gossip. We first
present the basic theory behind expander graphs and their
fault-tolerant properties; we then show how to deploy them
in a similar scheme as seen in Section 5.

6.1 Fault-Tolerance of Expanders
Let Ga, for an integer 1 ≤ a ≤ n, be a fixed regular

a-expansion graph of n nodes, c.f., [22]. Formally, an a-
expander, for a positive integer a, is defined as a simple
graph with set of nodes V of size n ≥ a and such that if W1

and W2 are any sets of nodes, each of size at least a, then
there is a node w1 in W1 and another node w2 in W2 such
that {w1, w2} is an edge in the graph. Let ∆a stand for the
maximum node degree of graph Ga.

The following result, due to Pinsker [21], describes depen-
dency between expansion parameter a and the maximum
node degree ∆a (it can be proved using a standard proba-
bilistic argument).

Fact 3. [21] For any positive integers a and n, with
a ≤ n, there exists an a-expander with n nodes and of a
maximum node degree O((n/a) logn).

The best explicitly constructed a-expanders, for any in-
teger a, are due to Ta-Shma, Umans and Zuckerman [24],
who showed how to efficiently construct regular a-expanders
with node degree O((n/a) logO(1)(n)).

We now prove a fault-tolerant property of a-expander
graphs, stating that for sufficiently large number of non-
faulty nodes there is a subset of at least a nodes that induce
a subgraph of arbitrarily small diameter. Assume α ≥ 2
is an integer, and let β = logα/2 a. Consider a regular a-
expander G. Let Q be a subset of nodes of size at least α ·a,
and let H denote the subgraph of G induced by nodes in
Q. We use N j

H(W) to denote the set of nodes v such that v
is of distance at most j in graph H from some node in W .
Note that N j+1

H (W) = NH(N j
H(W)), where NH(W) abbre-

viates N1
H(W). We also write N j

H(w), instead of N j
H({w}),

if W = {w} is a singleton.

Lemma 5. If a set W ⊆ Q has size of at least a, then
there exists a node w ∈ W such that the set Nβ

H(w) is of a
size larger than a.

Proof. The set NH(W) = NG(W) ∩ Q has size larger
than (α/2) · a, since |NG(W)| > n − a and |Q| ≥ α · a ≥

a+(α/2)·a. Hence, by the pigeonhole principle, there is a set
W1 ⊆ W of a size a

α/2
such that NH(W1) is of a size larger

than a. We will extend this argument to show the existence
of sets of nodes Wj ⊆W for j = 1, . . . , β, with the following
properties: (a) |Wj | = a

(α/2)j
, and (b) |N j

H(Wj)| > a.

This can be done by induction. The set W1 has just been
shown to exist. Suppose we have a set Wj with the required
properties (a)-(b), for j < β. Observe that |N j+1

H (Wj)| >
(α/2) · a. This is because N j+1

H (Wj) = NG(N j
H(Wj)) ∩ Q,

where set Q has size at least α · a ≥ a + (α/2) · a, while
set NG(N j

H(Wj)) has size bigger than n− a, due to expan-

sion property and invariant (b) applied to N j
H(Wj). By the

pigeonhole principle, there is a set Wj+1 ⊆ Wj such that

|Wj+1| =
|Wj |
α/2

and the inequality |N j+1
H (Wj+1)| > a holds.

This completes the proof of the invariant. It implies that the
set Wβ is comprised of a single element w ∈W , by definition

of β, and set Nβ
H(w) has size larger than a.

The following states the fault-tolerant property required by
the expander graphs used in the deterministic algorithm pre-
sented in the next Section.

Theorem 4. Let G be an a-expander and α ≥ 4. For
every set Q of at least α · a nodes there is a subset Q∗ ⊆ Q
of at least a nodes such that the subgraph of G induced by
set Q∗ has diameter of at most 2β = 2 logα/2 a.

Proof. Apply Lemma 5 to W = Q and define Q∗ as
Nβ
H(w), where w is the node such that |Nβ

H(w)| > a. By
definition, every two nodes in Q∗ are connected by a path
of length at most 2β in graph Ga through nodes in Q∗, and
in particular through node w.

6.2 Deterministic Algorithm Description
In this section we present a description of det-gossip (Al-

gorithm 3) and fixed-det-gossip (Algorithm 4). For similar
reasons as in Section 5, we may assume that rumors were in-
jected in the same round and they have approximately equal
deadlines. Recall also that in this section we consider only
destination sets of size n, i.e., broadcast requests; if they are
smaller, algorithm det-gossip simply delivers the rumor to a
larger set of all processes.

1 procedure det-gossip(rumor ρ)i
2 dline ← min{21 log3

α/2 n, ρ.d}
3 dline ← 2blog dlinec

4 spawn fixed-det-gossip(ρ, dline, α)

Algorithm 3: Main deterministic continuous gossip rou-
tine at process i.

As in the case of the rand-gossip algorithm, the high-level
det-gossip routine is simply a wrapper for the fixed-det-gossip
routine: each deadline ρ.d is rounded to the closest power of
2 that is larger than ρ.d and no greater than Θ(log3

α/2 n), be-
fore invoking fixed-det-gossip; each fixed-det-gossip instance
is invoked with three parameters: ρ, dline and α, where pa-
rameter α controls the growth of dguess and dexcess (its role
and optimal value is slightly different from its randomized
counterpart).

As in fixed-rand-gossip, the main idea underlying
fixed-det-gossip is that all processes at which a rumor is in-
jected cooperate to distribute the rumors. Instead of sending
messages to random sets of processes, as in fixed-rand-gossip,

the processes communicate by sending/receiving messages
from processes corresponding to its neighbors in carefully
chosen expander graphs. By choosing these graphs with
suitable expansion and node degree, we guarantee efficient
delivery within the deadline. Let G(x), for an integer
1 ≤ x ≤ n of the form αj for some non-negative inte-
ger j, be a (n/x)-expander graph of maximum node de-

gree ∆(x) = Θ(x logO(1)(n)). We also assume that G(αj)
is a subset of G(αj+1), as otherwise we could take a union
of these two graphs and get a (n/αj+1)-expander of degree

Θ(αj+1 logO(1)(n)) as required.
We refer to each iteration of the main loop of the algorithm

as an epoch (lines 12–35). The main parameter associated
with an epoch is dguess, which attempts to guess the size of
the group of similar processes to be potential collaborators
in rumor distribution. This parameter stays the same for the
whole epoch, except its very last line 35 when it is increased
by factor α.

The main part of an epoch is an inner loop (line 16),
each iteration of which we refer to as a stage (lines 17–33).
(Additional local computation within an epoch (lines 12-15
and 34-35) can be accounted to a single round of a stage.)
In each stage, the variable dexcess is increased by a factor
of α (line 33), increasing the degree of graph G(·) used to
defining set Nb (c.f., line 28).

A stage consists of two parts, called collaborating and
working periods. In the collaborating period (19–25),
each process communicates 10 logα/2 n times with its neigh-
bors in graph G(dguess) having the same local round
counter, epoch and stage number. The goal of this com-
munication is to build two sets Close Col ⊆ Col consisting
of nodes with the same local round counter, epoch and stage
number within distance at most 2 logα/2 n and 10 logα/2 n,
respectively, in graph G(dguess); we often refer to these
nodes as close collaborators and collaborators, respectively.
Since collaborators must have been alive in the previous
stage, the process may assume that they informed the pro-
cesses they were supposed to inform in the previous stage,
and thus it can update this knowledge in its progress set
W (line 26). Nodes with sufficiently large sets of close col-
laborators will send messages in the succeeding working pe-
riod, while the remaining ones will switch to the next epoch
(c.f., line 27). Summarizing, collaborators are for recording
the progress in rumor propagation, while close collaborators
are to decide whether we have enough collaborators in the
close neighborhood in G(dguess) and may continue with the
current epoch or we should switch to the next epoch in-
stead, looking for more accurate set of (close-)collaborators
(in graph G(dguess · α)).

The set W initially stores all the destinations for rumors,
and is re-initialized in the beginning of each epoch (line 12);
as processes are sent rumors, they are removed from W (see
lines 26 and 31). In the second part of the stage, which
we refer to as the working period (lines 27–31), each par-
ticipant that has enough close collaborators (line 27) sends
all the rumors it knows to processes in its set Nb, which
consists of its neighbors in graph G(dguess · dexcess) that
are still in set W (lines 28-29). The rumors are then de-
livered to the destinations and the progress in delivering
rumors is recorded by the sender (lines 30-31). Even though
the degree of graph G(dguess · dexcess) increases in every
stage, the size of set Nb, and thus the number of rumors
messages sent in the working period, does not necessarily

grow substantially, since a process only sends messages to
the neighbors that remain in W ; actually, we show in the
analysis that the amortized number of such messages per
collaborator is bounded by dguess · logO(1)(n).

Finally, the last step of the routine is exactly as in
fixed-rand-gossip: if a process cannot ensure that its rumor
has been delivered, it simply sends its rumor directly to ev-
eryone (lines 36–38).

6.3 Algorithm Analysis
We first show that det-gossip guarantees QoD under

any (worst-case adaptive) adversarial pattern of adversary
CRRI, and then we analyze its per-round message complex-

ity. For this purpose, we fix α such that α = n3/
3√

dline ≥ 4

and
(

(10 logα/2 n+ 1) · logα n
)

logα n+ 1 ≤ dline. We also

assume that dline is sufficiently large, which for the purpose
of our analysis means dline ≥ 100.

In each round, we conceptually split processes into groups
associated with a unique triple (t, g, x), corresponding to
their values of (rcount , dguess, dexcess). We say that a triple
(t, g, x) is valid if it can be associated with some non-empty
group of processes at some point of some execution. Let
Xp,t denote the value of a variable X in process p at the end
of round t.

We start by showing that removing elements from set W
is consistent with the progress of delivering the rumor of the
removing process in its current epoch.

Lemma 6. If a process p removes the id of another process
q from its set W during an epoch (lines 26 and 31) then the
current rumor of p has been sent to process q in some round
of the current epoch of process p.

Theorem 5. Given any adversarial pattern A ∈ CRRI,
algorithm det-gossip guarantees QoD.

Proof sketch. Observe that a single run of routine
fixed-det-gossip, when counting all the rounds, lasts at most(

(10 logα/2 n+ 1) · logα n
)

logα n+ 1 ≤ dline rounds. If set

W is emptied, then by Lemma 6 the rumor has been sent to
all processes. Otherwise, it is sent directly to all processes
in the last round while executing lines 37-38.

We now proceed to analyze the message complexity of
algorithm det-gossip. Consider a valid triple (t, g, x). We
proceed by counting the number of messages sent in a round
by processes associated with this triple. In particular, we
will show that this is O(α2n logO(1)(n)). Combining this
with the upper bound O(log5

α n) on the number of different
valid triples, and with the bound dline = O(log3

α n), we get
the final result on the message complexity, c.f., Theorem 6.
Let Q(t, g, x) be the number of processes that are alive and
are associated with triple (t, g, x) at the end of the considered
(global) round of an execution, which is also round t of their
routines fixed-det-gossip.

Lemma 7. There are no more than logα n ·α2 · (n/g) pro-
cesses associated with a triple (t, g, x) in a single round.

Proof sketch. If in some stage there are more than
logα n · α2 · (n/g) processes associated with a triple, then in
the previous epoch there must have been more than α2·(n/g)
of them associated with some triple (t′, g/α, x′), for any
round counter t′ of the previous epoch and stage x′ of that
epoch; yet if there were that many correct participants, they

1 rcount , dguess, dexcess, col rounds: integer
2 N : set of neighbors
3 R : set of rumors
4 done, cont : boolean
5 Col , Close Col , W : set of processes’ ids

6 procedure fixed-det-gossip(rumor ρ, integer dline, integer α)i
7 R← {ρ}
8 rcount ← 1
9 dguess ← 1

10 done ← false
11 while (done = false) and (dguess ≤ n/α) do: // Iterating epochs
12 W ← [n] \ {i}
13 Na ← the set of neighbors of node i in graph G(dguess)
14 dexcess ← 1
15 cont ← true
16 while (cont = true) and (dguess · dexcess ≤ n/α) do: // Iterating stages
17 Col← {i}
18 Close Col← {i}
19 for col rounds ← 1 to 10 logα/2(n) do: // Lines 20-25: Collaborating period

20 send(collaborate, (rcount , dguess, dexcess), R,Col ,Close Col) to every process in Na
21 for every (collaborate, (t, g, x), R′, Col′, Close Col′) message received and such that

(t, g, x) = (rcount , dguess, dexcess) :
22 R← R ∪R′ and deliver(R′)
23 Col ← Col ∪ Col ′

24 if col rounds > 8 logα/2(n) then Close Col ← Close Col ∪ Close Col ′

25 rcount ← rcount + 1
26 if dexcess ≥ α then W ←W \ {neighbors of nodes in Col in graph G(dguess · dexcess/α)}
27 if |Close Col| < n

dguess
then (cont ← false) else // Lines 27-31: Working period

28 Nb ← the set of neighbors of node i in graph G(dguess · dexcess) intersected with W
29 send(rumors, R) to every process p in Nb
30 for every (rumors, R′) message received : deliver(R′)
31 W ←W \Nb
32 rcount ← rcount + 1
33 dexcess ← α · dexcess
34 if W = ∅ then done ← true
35 dguess ← α · dguess
36 if (done = false) then
37 send(rumors, R) to every process
38 for every (rumors, R′) message received : deliver(R′)

Algorithm 4: The deterministic routine fixed-det-gossip at process i for a specific value of dline.

would have collaborated in the previous epoch to distribute
the rumors, by Theorem 4, instead of changing it (line 27);
this leads to contradiction.

We now consider the progress in propagating rumors during
the working period — the last round of a stage. This is
important for bounding the number of rumors messages
sent by processes with the same triple (t, g, x).

Lemma 8. Consider triple (t, g, x) such that x ≥ α and
all processes in Q(t, g, x) execute line 27 during their round
with counter t. The union U of sets W taken over processes
p in Q(t, g, x) satisfying |Close Colp,t| ≥ n/g (i.e., processes
p that send some rumors messages in the working period,
during the succeeding line 29), taken before sending any ru-
mors message in line 29, is of size smaller than α ·n/(g ·x).

Proof sketch. Consider nodes p, q sending messages in
the working period. Their sets of close collaborators must
be of size at least n/g. By α · n/(g · x)-expansion of graph
G(g · x/α) used in the working period of the previous stage,
there is an edge between sets of close collaborators of p and

q in this graph. Therefore through this edge these two sets
exchange information about themselves during the collab-
orating period in-between the considered working periods.
Each of these sets of close collaborators is large enough to
have more than n−α ·n/(g ·x) neighbors in graph G(g ·x/α)
used in the preceding working period, which assures that be-
fore the next working period sets W of processes p, q shrink
to less than α · n/(g · x) elements each.

We are now ready to bound the message complexity of al-
gorithm det-gossip.

Theorem 6. The per-round message complexity of algo-

rithm det-gossip is at most O(n1+6/ 3√dm logO(1)(n)), dm be-
ing the minimum deadline of any rumor active in the system.

Proof sketch. We need to bound each of the two types
of messages for each triple (t, g, x). Lemma 7 bounds
the number of collaborate messages to O(logα(n) · α2 ·
(n/g) · ∆(g)), since there are never too many collabora-
tors. The rumors messages are bounded by Lemma 7 to
O(logα n ·α2 ·n/(g ·x) ·∆(g ·x)). The bound follows from the

observation that there are at most log5
α n valid tuples, and

by the estimates α = n3/ 3√dm and ∆(a) = a logO(1)(n).

7. CONCLUSION AND FUTURE WORK
In this paper we have introduced and studied a novel ver-

sion of the gossip problem, called Continuous Gossip, where
n crash-and-restart-prone processes are continuously subject
to injected rumors. Rumors have deadlines and the goal is
for all rumors, subject to a condition that we call quality-of-
delivery (QoD), to be disseminated. We first presented lower
bounds on the per-round message complexity of randomized
and deterministic continuous gossip and then we described
and analyzed an efficient (close to optimal) randomized al-
gorithm and its de-randomized version that guarantee QoD
in every execution. We note that our algorithms can be
implemented in such a way that each message sent carries
only rumors and at most O(n2) additional bits. (Hence if
the rumors are large, the per-round bit complexity of the
algorithms is essentially the per-round message complexity
times the size of the rumors.) It would be interesting to in-
vestigate whether the bit complexity of the algorithms can
be reduced even further.

Several future research directions emanate from this work.
For example, it would be interesting to investigate whether it
is possible to close the gap between our presented lower and
upper bound results. Also, there is the question of whether
it is possible to obtain subquadratic per-round message com-
plexity for rumors with very short deadlines, i.e., d < 64 for
randomized and d < 100 for deterministic gossip.

Other interesting future directions involve variants of the
model we have introduced. For example, perhaps, other
types of QoD could be considered. Along with message
complexity, we could also consider latency as an efficiency
measure, especially for long deadlines (e.g., of duration

Ω(logO(1)(n))); it would be interesting to study the trade-
offs between deadlines, message complexity and latency. An
even more challenging research direction would be to con-
sider partially-synchronous continuous gossip, perhaps in an
analogous manner as the one-shot n-rumor gossip problem
was considered in [13]. Last but not least, we would like to
use our continuous gossip algorithms as a building block in
improving the communication cost of other related problems
such as“continuous”consensus and“continuous”cooperative
task computing.

8. REFERENCES
[1] K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M.

Budiu, and Y. Minsky. Bimodal multicast. ACM
Trans. on Computer Systems, 17(2): 41–86, 1999.

[2] B. Bollobas and W. Fernandez de la Vega. The
diameter of random regular graphs. Combinatorica,
2(2): 125–134, 1982.

[3] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah.
Randomized gossip algorithms. IEEE Trans. on
Information Theory, 52(6): 2508–2530, 2006.

[4] M.R. Capalbo, O. Reingold, S.P. Vadhan, and A.
Wigderson. Randomness conductors and
constant-degree lossless expanders. In STOC 2002,
pages 659–668.

[5] B. S. Chlebus and D. R. Kowalski. Robust gossiping
with an application to consensus. J. Comput. Syst.
Sci., 72(8): 1262–1281, 2006.

[6] B. S. Chlebus and D. R. Kowalski. Time and
communication efficient consensus for crash failures.
In DISC 2006, pages 314–328.

[7] B. S. Chlebus, D. R. Kowalski, and A. A. Shvartsman.
Collective asynchronous reading with polylogarithmic
worst-case overhead. In STOC 2004, pages 321–330.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. In PODC 1987, pages 1–12.

[9] K. Diks and A. Pelc. Optimal adaptive broadcasting
with a bounded fraction of faulty nodes. Algorithmica,
28(1): 37–50, 2000.

[10] B. Doerr, T. Friedrich, and T. Sauerwald.
Quasirandom rumor spreading: Expanders, push vs
pull, and robustness. In ICALP 2009, pages 366–377.

[11] P. Eugster, R. Guerraoui, S. Handurukande, A-M
Kermarrec, and P. Kouznetsov. Lightweight
probabilistic broadcast. ACM Trans. on Computer
Systems, 21(4), 2003.

[12] Z. Galil, A. Mayer, and M. Yung. Resolving message
complexity of Byzantine agreement and beyond. In
FOCS 1995, pages 724–733.

[13] C. Georgiou, S. Gilbert, R. Guerraoui, and D.R.
Kowalski. On the complexity of asynchronous gossip.
In PODC 2008, pages 135–144.

[14] Ch. Georgiou, D. R. Kowalski, and A. A. Shvartsman.
Efficient gossip and robust distributed computation.
Theor. Comput. Sci., 347(1-2): 130–166, 2005.

[15] J. Hromkovic, R. Klasing, A. Pelc, P. Ruzika, and W.
Unger. Dissemination of Information in Comm.
Networks: Broadcasting, Gossiping, Leader Election,
and Fault-Tolerance, Springer-Verlag, 2005.

[16] R. Karp, C. Schindelhauer, S. Shenker, and B.
Vocking. Randomized Rumor Spreading. In FOCS
2000, pages 565–574.

[17] D. Kempe, J. Kleinberg, and A. Demers. Spatial
gossip and resource location protocols. J. of ACM, 51:
943–967, 2004.

[18] A. Kermarrec, L. Massoulie, and A. Ganesh.
Probabilistic reliable dissemination in large-scale
systems. IEEE Trans. on Parallel and Distr. Syst.,
14(3): 248–258, 2003.

[19] D. R. Kowalski and M. Strojnowski. On the
communication surplus incurred by faulty processors.
In DISC 2007, pages 328–342.

[20] A. Pelc. Fault-tolerant broadcasting and gossiping in
communication networks. Networks, 28: 143-156, 1996.

[21] M.S. Pinsker. On the complexity of a concentrator. In
Proc. of 7th Annual Teletraffic Conference, 1973.

[22] N. Pippenger. Sorting and selecting in rounds. SIAM
J. Computing, 16: 1032–1038, 1987.

[23] R. van Renesse, Y. Minsky, and M. Hayden. A
gossip-style failure detection service. In Proc. of IFIP
Int-l Conference on Distributed Systems Platforms and
Open Distributed Processing, pages 55–70, 1998.

[24] A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less
condensers, unbalanced expanders, and extractors. In
STOC 2001, pages 143–152.

