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ABSTRACT
In this paper we study the problem of building a connected domi-
nating set with constant degree (CCDS) in the dual graph radio net-
work model [4,9,10]. This model includes two types of links:reli-
able, which always deliver messages, andunreliable, which some-
times fail to deliver messages. Real networks compensate for this
differing quality by deploying low-layer detection protocols to fil-
ter unreliable from reliable links. With this in mind, we begin by
presenting an algorithm that solves the CCDS problem in the dual
graph model under the assumption that every processu is provided
a local link detectorset consisting of every neighbor connected to
u by a reliable link. The algorithm solves the CCDS problem in

O(∆ log2 n
b

+ log3 n) rounds, with high probability, where∆ is
the maximum degree in the reliable link graph,n is the network
size, andb is an upper bound in bits on the message size. The al-
gorithm works by first building a Maximal Independent Set (MIS)
in log3 n time, and then leveraging the local topology knowledge
to efficiently connect nearby MIS processes. A natural follow up
question is whether the link detector must be perfectly reliable to
solve the CCDS problem. With this in mind, we first describe an
algorithm that builds a CCDS inO(∆polylog(n)) time under the
assumption ofO(1) unreliable links included in each link detector
set. We then prove this algorithm to be (almost) tight by showing
that the possible inclusion of only a single unreliable linkin each
process’s local link detector set is sufficient to requireΩ(∆) rounds
to solve the CCDS problem, regardless of message size. We con-
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clude by discussing how to apply our algorithm in the settingwhere
the topology of reliable and unreliable links can change over time.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—computations on discrete struc-
tures; G.2.2 [Discrete Mathematics]: Graph Theory—graph algo-
rithms; G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords
unreliable networks, dual graphs, maximal independent set, con-
nected dominating set

1. INTRODUCTION
In this paper we study the problem of constructing a connected

dominating set with constant degree (CCDS) in a radio network.
The CCDS problem is important in this setting as it provides a
routing backbone that can be used to efficiently move information
through the network [15,19]. In more detail, we study this problem
in the dual graph network model, which describes static ad hoc ra-
dio networks. The dual graph model, previously studied in [4,9,10],
includes two types of links:reliable, which in the absence of col-
lisions always deliver messages, andunreliable, which sometimes
fail to deliver messages. This model was inspired by the observa-
tion that in real radio network deployments unreliable links are an
unavoidable (and much cursed) feature; c.f., [1, 2, 5–7, 16,18, 20].
To mitigate the difficulties introduced by such links, most modern
ad hoc radio network deployments use low-level link detector pro-
tocols (e.g., [2, 5–7, 20]) or sometimes even specialized hardware
(e.g., [1]) that attempt to isolate reliable from unreliable links. We
capture this strategy in our model with the newlink detectorab-
straction, which provides each processu, at the beginning of each
execution, a set of ids that represent an estimate of which neighbors
are reliable (i.e., connected tou by a reliable link).

Using this abstraction, we are able to explore two important
questions: (1) How can we leverage the link detection informa-
tion commonly assumed in practice to build efficient solutions to
the CCDS problem? (2) How reliable must these link detectorsbe



for their information to be useful? Our answers potentiallyextend
beyond the realm of theoretical interest and into the realm of prac-
tice, where the optimal use of link detection is considered an open
problem.

Results.
In this paper, we study theτ -complete link detector, 0 ≤ τ ≤ n.

A τ -complete link detector, for a given processu, contains the id
of every reliable neighbor ofu and potentially up toτ additional
ids. In other words,τ bounds the number of classification mistakes
made by the detector, with0-complete indicating perfect knowl-
edge of reliable neighbors.1 Notice, however, that assuming a0-
complete link detector is different than assuming a networkwith
only reliable edges: the completeness of the link detector only de-
scribes the quality of knowledge about the network topology, but
one still must grapple with the uncertainty caused by the presence
of unreliable edges.

As mentioned, practical network deployments seek to accurately
filter reliable from unreliable links; i.e., implement a0-complete
link detector [2, 5–7, 20]. With this in mind, in Section 5 we de-
scribe a randomized upper bound that uses a0-complete link detec-
tor to construct a CCDS. In more detail, the algorithm constructs a

CCDS inO(∆ log2 n
b

+log3 n) rounds, with high probability, where
∆ is the maximum degree in the reliable link graph,b is an upper
bound in bits on the message size, andn is the network size. For
reasonably large messages (b = Ω(∆)), this algorithm terminates
in polylogarithmic time. The algorithm works by first building a
Maximal Independent Set (MIS) inO(log3 n) rounds (the algo-
rithm for which is presented separately, in Section 4), and then
leveraging the link detector information to execute a novelpath
findingprocedure to identify paths to nearby MIS processes.

A natural follow-up question is whether such accuracy in ourlink
detector is necessary. In other words, can we find efficient solutions
to the CCDS problem for someτ > 0? To answer this question, we
start by describing, in Section 6, an algorithm that solves the CCDS
problem inO(∆polylog(n)) rounds, given aτ -complete detector
for anyτ = O(1). We then prove in Section 7 that this bound is (al-
most) tight by showing that with a1-complete link detector, every
algorithm that solves the CCDS problem requiresΩ(∆) rounds, re-
gardless of message size. This bound not only defines a separation
with the classic radio network model, which assumes only reliable
links, but also defines a separation with theτ = 0 case. Concur-
rent work has identified a CCDS algorithm for the classic model
that uses no topology knowledge and requires onlyO(polylog(n))
rounds [17].

We conclude by discussing, in Section 8, how to apply our algo-
rithm in the setting where the topology of reliable and unreliable
links can change over time.

Related Work.
The dual graph model was introduced in [4], where it was called

the dynamic fault model, and then later studied in [9, 10] under its
current name. These papers show, among other results, that the
canonical problem of multihop broadcast is strictly harderin the
presence of unreliable links. There are some similarities between
the dual graph model and the quasi-unit disk graph model [13],
which includes a gray zone distance at which two nodes in a radio
network may or may not have a link. Unlike the dual graph model,

1Notice, these detectors never misclassify reliable neighbors as un-
reliable. In practice, we suspect such misclassifications would not
affect our algorithms’ correctness, provided that the correctly clas-
sified reliable edges still describe a connected graph. We omit this
variant for the sake of conciseness.

however, the quasi-unit disk graph model features uncertainty only
in the definition of the topology; once the links have been decided,
they behave reliably.

The CCDS problem, along with related coordination problems,
have been extensively studied in general graph models (see [12] for
a good overview). In the context of radio networks without unre-
liable links (what we call theclassic radio network model), [19]
describes anO(n) time CCDS algorithm, and [15] describes an
O(log2 n) time algorithm. The latter algorithm, however, requires
that processes know their multihop local neighborhoods so they can
construct collision-free broadcast schedules. In our model, for a
process to learn its(h + 1)-hop neighborhood (of reliable links)
would requireΩ(∆h) time, and even then the broadcast schedules
constructed in [15] could be thwarted by unreliable links causing
collisions. As with our paper, both [19] and [15] assume syn-
chronous starts (i.e., processes start during the same round). Con-
current work has identified aO(polylog(n))-time CCDS solution
in the classic radio network modelwithout synchronous starts[17].

The MIS problem, which we use as a step in our construction of
a CCDS, was studied in the classic radio network model without
synchronous starts in [11], which provides aO(log6 n) time solu-
tion. This was later improved in [14] toO(log2 n). The MIS algo-
rithm presented in the main body of this paper requiresO(log3 n)
rounds, and it assumes synchronous starts and a0-complete link
detector. In the full version of this paper, however, we describe
a minor variation to the algorithm that works in the same running
time in the classic radio network model, without synchronous starts
or any topology information. This algorithm is a factor ofO(log n)
slower than the result of [14], but trades this decreased speed for
increased simplicity in both the algorithm description andproof
structure.

2. MODEL
Fix somen > 2. We define a network(G,G′) to consist of two

undirected graphs,G = (V,E) andG′ = (V,E′), whereV is a set
of n wireless nodes andE ⊆ E′. We assumeG is connected. For
eachu ∈ V , we use the notationNG(u) to describe the neighbors
of u in E, and the notationNG′ (u) to describe the neighbors ofu
in E′. Let∆ be the maximum size ofNG over all nodes and∆′ be
the maximum size ofNG′ over all nodes. To simplify notation we
assume in this paper that∆ = ω(logn). We assume that each node
in V is embedded in a two-dimensional plane, and usedist(u, v)
to denote the distance between nodesu andv in the plane. We
assume there exists aconstantdistanced ≥ 1 = O(1), such that
for all u, v ∈ V wheredist(u, v) ≤ 1, (u, v) ∈ E, and for all
(u′, v′) ∈ E′, dist(u′, v′) ≤ d. Notice, this is a generalization of
the unit disk graph model that now captures the (potentially) large
gray zoneof unpredictable connectivity observed in real wireless
networks.

We next define an algorithmA to be a collection ofn processes.
An execution of an algorithmA on network(G,G′) first fixes some
bijectionproc from processes ofA to V . This bijection represents
the assignment of processes to graph nodes. We assume an ad-
versary controls the definition ofproc. We also assume that each
process inA has a unique identifier from the range1 to n. We use
the notationid(v), v ∈ V , with respect to an execution, to indicate
the unique identifier ofproc(v). For simplicity, throughout this pa-
per we sometimes use the notationprocessu, for someu ∈ V , to
refer toproc(u) in the execution in question. We also sometimes
use the notationprocessi, for somei ∈ [n], to refer to the process
with id i.

An execution proceeds in synchronous rounds,1, 2, . . . , with all
nodes starting in the first round. At the beginning of each round,



r, every nodev decides whether or not to send a message, as indi-
cated by its process,proc(v). Next, the adversary chooses areach
setof edges that consists ofE and some subset, potentially empty,
of edges inE′ but notE. This set describes the links that will
behave reliably in this round.2 Let Bv,r be the set of nodes that
broadcast in roundr and are connected tov by an edge in the reach
set for this round. The messages received byv depend on the size
ofBv,r. If nodev broadcasts inr then it receives only its own mes-
sage. If nodev does not broadcast and|Bv,r| = 1, then it receives
the message sent by the single broadcaster inBv,r. Otherwise, it
receives⊥; i.e., we assume no collision detection.

We sometimes use the notation[i], for positive integeri, to in-
dicate the sequence{1, ..., i}. Furthermore, we use the notation
w.h.p. (i.e.,with high probability) to indicate a probability at least
1 − 1

nc , for some positive constantc. For simplicity we omit the
specific constants used in our proofs, and assume only that they
are large enough such that the union bounds applied to our various
w.h.p. results produce a final probability that is also at least1− 1

n
.

Link Detectors.
As described in the introduction, real wireless network deploy-

ments compensate for unreliability by using low-level protocols
and special hardware to differentiate reliable from unreliable links.
Because these link detection strategies often make use of informa-
tion not described in our network model (e.g., properties ofthe
received physical layer signal) we introduce thelink detectorab-
straction to capture the functionality of these services.

In more detail, this abstraction provides each processproc(u)
a link detector setLu ⊆ [n]. This set, fixed through the entire
execution, is an estimate of which neighbors are connected to u by
a reliable link. In this paper we study theτ -complete link detector,
0 ≤ τ ≤ n. In more detail, we say a link detector setLu is
τ -complete if and only if Lu = {id(v) : v ∈ NG(u)} ∪ Wu,
whereWu ⊆ {id(w) : w ∈ V \ NG(u)}, and|Wu| ≤ τ . That
is, the detector contains the id of every neighbor ofu connected
by a reliable link, plus up to an additionalτ additional neighbors.
This makesτ a bound on the number of links that are mistakenly
classified as reliable.

3. PROBLEM DEFINITIONS
We define the maximal independent set and constant-bounded

connected dominating set problems. In both definitions, we refer-
ence the graphH = (V,EH), defined with respect to a specific
execution, whereV is the vertex set fromG andG′, andEH is
the edge set consisting of every edge(u, v) such that:u ∈ Lv

andv ∈ Lu (that is,u andv are in each other’s link detector set).
Notice, for aτ -complete link detector, for any value ofτ , G is a
subgraph ofH , and forτ = 0,H = G.

Maximal Independent Set.
A maximal independent set (MIS) algorithm has every process

eventually output a0 or a1, where a1 indicates the process is in
the MIS, and a0 indicates it is not. We say an execution of an MIS
algorithm hassolved the MIS problemby roundr, if and only if
the following three conditions hold: (1)[Termination] every pro-

2This behavior might seem to constrain the adversary, as it requires
reliability to be symmetric. In practice, however, this restriction has
no noticeable effect. In more detail, the only way to learn about the
reliability of a directed link(u, v) is for proc(u) to broadcast and
proc(v) to receive (as broadcasters receive only their own mes-
sages). Therefore, even if the adversary could specify differing re-
liability on (u, v) versus(v, u), only the reliability of one of these
directions could be assessed in any given round.

cess outputs0 or 1 by the end of roundr; (2) [Independence] if
processesu andv both output1, then(u, v) /∈ E; and (3)[Max-
imality] if processu outputs0, then there exists a processv such
thatv outputs1 and(u, v) ∈ EH .

Constant-Bounded Connected Dominating Set.
A constant-bounded connected dominating set (CCDS) algorithm

has every process eventually output a0 or a1, where a1 indicates
the process is in the CCDS, and a0 indicates it is not. We say
an execution of a CCDS algorithm hassolved the CCDS problem
by roundr, if and only if the following four conditions hold: (1)
[Termination] every process outputs0 or 1 by the end of roundr;
(2) [Connectivity] the set of processes that output1 is connected
in H ; (3) [Domination] if a processu outputs0, then there ex-
ists a processv such thatv outputs1 and(u, v) ∈ EH ; and (4)
[Constant-Bounded] there exists a constantδ, such that for every
processu, no more thanδ neighbors ofu in G′ output1.

4. MIS ALGORITHM
In this section, we present an algorithm that solves the MIS prob-

lem in O(log3 n) rounds, w.h.p. We assume the processes have
access to a0-complete link detector and that the message sizeb is
Ω(log n) bits. In Section 5, we use this algorithm as a subroutine in
our solution to the CCDS problem. Recall that having a0-complete
link detector is not equivalent to having a network model with only
reliable edges. The completeness of the link detector describes the
quality of information about the topology; it does not eliminate the
negative impact of unreliable edges. In particular, as highlighted by
the proofs in this section and the next, one of the main difficulties
presented by unreliable edges is that their unpredictable behavior
can thwart standard contention-reduction techniques, such as the
exponential increase of broadcasting probability.

Algorithm Description.
The algorithm has processes discard messages received froma

process not in its link detector set. Therefore, in the following de-
scription, when we say that a processreceives a message, we imply
that it is a message sent from a neighbor inE. Each processumain-
tains a setMu of MIS process ids (initially empty). The execution
is divided intoℓE = Θ(log n) groups of consecutive rounds that
we call epochs, and which we index1, . . . , ℓE . At the beginning
of each epochi, each processu declares itselfactiveif and only if
its MIS setMu does not include its own id or the id of a process
in its link detector set. Only active processes will participate in the
epoch.

In more detail, the epoch is divided into⌈log n⌉ competition
phaseseach of lengthℓP = Θ(log n), followed by a singlean-
nouncement phaseof the same length. During the first competition
phase, in each round, each active process broadcasts a contender
message, labeled with its id, with probability1/n. If an active
processu receives a contender message from another process, pro-
cessu is knocked out: it sets its status to non-active and does no
further broadcasting during this epoch. At each successivecompe-
tition phase, the remaining active processes double their broadcast
probabilities. In the second competition phase they broadcast with
2/n, in the third4/n, and so on, up to probability1/2 in the final
competition phase.

An active processu that makes it through all⌈log n⌉ competi-
tion phases without being knocked out adds itself to the MIS set. It
outputs1, adds its own id toMu, and broadcasts an MIS message
labeled with its id, with probability1/2, in every round of the an-
nouncement phase. Every processv that receives an MIS message
from a processu addsu to its MIS setMv .



Correctness Proof.
As with the MIS solutions presented in [11,14], which are proved

for the standard radio model whereG = G′, we begin by cov-
ering the plane with an overlay of disks of radius1/2, arranged
on an hexagonal lattice to minimize overlap. We index the disks:
D1, . . . . (Notice, because our graph is connected, no more thann
disks are required to cover all occupied portions of the plane.) Also
following [11, 14], we use the notationEr

i to reference the disk of
radiusr centered at diskDi. We introduce the new notationIr to
reference the maximum number of overlay disks that can intersect
a disk of radiusr. The following fact concerning this overlay, also
used in [11,14], will prove useful:

FACT 4.1. For anyc = O(1): Ic = O(1).

In the following, letPi(r) =
∑

u∈Ai(r)
p(u, r), whereAi(r)

is the set of active processes inDi at the beginning of the epoch
that contains roundr, andp(u, r) is the broadcast probability of
processu in roundr. The following standard probability facts will
prove useful:

FACT 4.2. For any p ≤ 1/2 it holds that(1 − p) ≥ (1/4)p,
and for anyp > 0 it holds that(1− p) < e−p.

We continue with an important lemma that bounds the broadcast
probability in the network.

LEMMA 4.3. Fix some epoch. During every roundr of this
epoch, and every disk indexi: Pi(r) ≤ 1, w.h.p.

PROOF. Fix some diskDi. We begin by bounding the proba-
bility that Di is the first disk to have its broadcast sum(Pi) ex-
ceed1. ForPi to exceed1, there must be some roundr, such that
r is the first round in whichDi’s broadcast probability is greater
than1. Roundr must be the first round of a competition phase, as
these are the only rounds in which processes increase their broad-
cast probabilities. Furthermore,r cannot be the first round of the
first competition phase, as the broadcast sum of the first phase can
never exceed1, as it has each process broadcasting with probability
1/n. Combining these observations with fact that broadcast prob-
abilities double between each phase, it follows: there exists a full
competition phase beforer, such that during every roundr′ of this
preceding phase:1/2 ≤ Pi(r

′) ≤ 1. Furthermore, by assumption,
r was the first round in whichanydisk exceeds a broadcast sum of
1, so we also know that for all disksj 6= i, during every roundr′

of this preceding competition phase,Pj(r
′) ≤ 1.

We will now use these two observations to prove that there is a
high probability that a single process inDi broadcasts alone among
nearby disks, and therefore knocks out all other active processes in
Di: reducing its broadcast probability to1/2 for the remainder of
the epoch. To start, fix any roundr′ of the phase precedingr. Let
p1 be the probability of a single process broadcasting inDi during
this round. Using Fact 4.2 and our our bounds on disk broadcast
sums from above, we can boundp1 as follows: First, note that

p1 =
∑

u∈Ai(r
′)

(

p(u, r′)
∏

v∈Ai(r
′),v 6=u(1− p(v, r′))

)

, which

is greater than or equal to

∑

u∈Ai(r
′)



p(u, r′)
∏

v∈Ai(r
′),v 6=u

1

4

p(v,r′)



 ≥
1

2
·
1

4
.

Next, letDj be a disk that contains aG′ neighbor of a node in
Di, and let probabilityp2 be the probability that no process inDj

broadcasts inr′. By the same approach used above, we can bound
p2 =

∏

u∈Aj(r
′)(1 − p(u, r′)), which we know is greater than

or equal to:
∏

u∈Aj(r
′)

1
4

p(u,r′)
≥ 1

4
. Let γ = Id+1/2 describe

the total number of disks potentially containingG′ neighbors of
nodes inDi (recall thatd = O(1) is the maximum distance at
which aG′ edge exists), and letp3 be the probability that a single
process inDi broadcasts inr′, and this message is received by all
processes inDi (an event we call anuncontestedbroadcast). We
know: p3 ≥ p1p

γ
2 = 1

2
· 1
4

(γ+1)
= ( 1

4
)γ+1.5. (Notice, by Fact 4.1,

γ = O(1), thereforep3 is also constant.)
To conclude the proof, we note that the probability that wefail

to achieve an uncontested broadcasts inDi in all ℓP rounds of this
phase is no more than(1 − p3)

ℓP . By Fact 4.2 this is less than
e−p3ℓP . For sufficiently large constant factors in our definition of
ℓP , this evaluates to1

nc , with a sufficiently large constantc that we
retain high probability even after we perform a union bound over
allO(n) occupied disks. The result, is that w.h.p no disk is the first
to exceed1 during this epoch.

The following lemma leverages the observation that if the broad-
cast probability in the system is low (as established by Lemma 4.3),
then a process about to enter the MIS will have a good probability
of both knocking out itsG neighbors and announcing to them its
new status, during theΘ(logn) round final competition phase and
subsequent announcement phase.

LEMMA 4.4. (Independence) For every pair of nodesu andv,
(u, v) ∈ E, it is not the case that both output1, w.h.p.

PROOF. Fix any epoch in which neitheru norv has yet output1.
Such an epoch must exist in any execution whereu andv proceed
to both output1. Assume that Lemma 4.3 holds in this epoch. Un-
der this assumption, we will show that with high probability, either
neither process joins the MIS in this epoch, or one process joins
and the other outputs0. Assume that at least one process makes it
through the final competition phase (otherwise, we are done). With-
out loss of generality, assume this isu. Processu broadcasts in this
phase with probabilityp1 = 1/2. LetDi be the disk containingu,
and letp2 be the probability that no process other thanu in a disk
intersectingEd+1.5

i broadcasts inr. (This is sufficient to ensure
thatv would receive any message sent byu, asEd+1.5

i contains all
G′ neighbors ofv.) Under the assumption that Lemma 4.3 holds,
we can use Fact 4.2 in a similar manner as in Lemma 4.3 to bound
p2 ≥ 1

4

γ′

, whereγ′ = Id+1.5. Let p3 be the probability thatv
receives a message fromu during this final competition phase, and
is therefore knocked out and does not join the MIS. We combine

p1 andp2 to yield p3 ≥ 1
2
· 1

4

γ′

. (By Fact 4.1,γ′ = O(1), there-
fore p3 is also constant.) We note thatu fails to knockv in all ℓP
rounds of the phase with probability no more than(1− p3)

ℓP . By
Fact 4.2 this is less thane−p3ℓP . For sufficiently large constant fac-
tors in our definition ofℓP , this evaluates to1

nc , for any constant
c. We can use the same argument to show thatu fails deliver its
MIS message tov during the subsequent announcement phase with
a similarly low probability. For sufficiently large constant factors
in our definition ofℓP , these probabilities are small enough to re-
tain high probability even after we perform a union bound over all
O(n2) pairs of processes and allO(log n) epochs, combined with a
union bound establishing that Lemma 4.3 holds in each epoch.

This next lemma, whose proof is deferred to the full version
of this paper, leverages the observation that a processu, in each
epoch, either joins the MIS or is knocked out by aG neighborv. If
the latter occurs, due to the low amount of contention provided by
Lemma 4.3,v has a constant probability of knocking outall of its
G neighbors, and then continuing uncontested to join the MIS and
announce this tou. OverΘ(logn) epochs, therefore,u will either
output1 or 0, w.h.p.



LEMMA 4.5. (Termination) By the end of the last epoch, every
process has outputted0 or 1, w.h.p.

THEOREM 4.6. Using 0-complete link detectors, our MIS al-
gorithm generates an execution that solves the MIS problem in
O(log3 n) rounds, w.h.p.

PROOF. By definition, the algorithm requiresO(log3 n) rounds:
O(log n) epochs each consisting ofO(log n) phases each of length
O(log n). To satisfy termination, we note that by Lemma 4.5, ev-
ery process outputs0 or 1 by the end of the algorithm, w.h.p. To
satisfy independence, we note that by Lemma 4.4, no two processes
who are neighbors inE both output1, w.h.p. And finally, to sat-
isfy maximality, we note that by the definition of the algorithm, a
process does not output0 unless it receives an MIS message from
a neighbor inE, and any process that sends an MIS message, out-
puts1. To achieve our final high probability we simply use a union
bound to combine the two high probability results from above.

This corollary about the density of the resulting MIS follows
from the definition of independence which allows no more than
a single MIS node in any disk.

COROLLARY 4.7. Fix an execution in which the MIS algorithm
solves the MIS problem. For any processu and distancer, there
are no more thanIr MIS processes within distancer of u.

5. CCDS ALGORITHM
In this section, we present an algorithm that solves the CCDS

problem inO(∆ log2 n
b

+ log3 n) rounds, w.h.p., whereb is the
bound on message size in bits. This algorithm uses the MIS algo-
rithm from Section 4 as a subroutine. As in that previous section,
we assume thatb = Ω(log n). Without loss of generality, we also
assume thatb = O(∆ log n) (as our algorithm never sends mes-
sages of any larger size). Finally, we assume that processesare
provided a0-complete link detector.

At a high-level, the algorithm proceeds in two phases. First, it
has processes build an MIS, placing each MIS node in the CCDS.
Next, it connects all MIS nodes within3 hops inG with a path
consisting of CCDS nodes. Standard techniques show that there-
sulting structure satisfies the definition of a CCDS. The coretech-
nical novelty of the algorithm is its efficient method for discovering
and connecting nearby MIS nodes. In more detail, the simple ap-
proach would be to have each MIS node give each of its neighbors
a chance to explore whether it is on a path to a nearby MIS node.
This would require, however,O(∆) explorations. This is too slow
given that there are onlyO(1) nearby MIS nodes to be discovered
(a property that follows from Corollary 4.7, which bounds the den-
sity of our MIS). The algorithm presented here, by contrast,makes
use of abanned listdata structure to ensure that an MIS node gives
a neighbor a chance to explore only if that neighbor is on the path
to a nearby MIS node that has not yet been discovered. This re-
duces the required number of explorations fromO(∆) to O(1).

TheO(∆ log2 n
b

) term in the time bound expression describes the
time required to for an MIS node to communicate its banned list to
its neighbors. For large message size (i.e., largeb), this is fast, and
the time to build the MIS and explore dominates the time complex-
ity. For small message size, however, this banned list communica-
tion time dominates the time complexity and yields an algorithm no
faster than the simple approach of giving each neighbor a chance
to explore.

For clarity, we start by presenting and proving the correctness of
the subroutines before moving on to the main algorithm.

Subroutine Descriptions.
We start by describing the two subroutines used by our CCDS

algorithm. The first subroutine,bounded-broadcast, is used by a
process to broadcast a message to itsG neighbors, given a known
bound on contention for this message. The second subroutine,
directed-decay, assumes an MIS and that each MIS process has
a subset of its covered neighbors wanting to send it a message. The
subroutine efficiently delivers at least one message to eachMIS
process.

bounded-broadcast(δ, m): This subroutine, when called by a pro-
cessu with messagem, attempts to deliverm to u’s G neighbors.

The subroutine works as follows:A process calling bounded-
broadcast(δ,m) broadcastsm with probability1/2 for ℓBB(δ) =
Θ(2δ log n) consecutive rounds.

The following lemma, whose proof is deferred to the full version
of this paper, states the property that the above subroutineguaran-
tees.

LEMMA 5.1. Assume processu calls bounded-broadcast(δ, m),
and that during every round of the subroutine, no more thanδ other
processes within distanced + 1 of u are running the subroutine
concurrently. It follows thatu deliversm to all of itsG neighbors,
w.h.p.

directed-decay(〈m1,m2, ...〉): This subroutine assumes that the
processes have already solved the MIS problem. We will use the
terminologycovered processesto describe the processes that are
not in the MIS. It also assumes that all processes call the subrou-
tine during the same round. Covered processes pass the subroutine
a vector containing the messages they want to attempt to send—at
most one message per neighboring MIS process. We assume each
message is labeled with the id of its destination. All other processes
pass an empty vector to the subroutine. The subroutine attempts to
ensure that for every covered processv with a message to send to
MIS neighboru, u will receive at least one message from one of its
neighbors with a message to send tou.

The subroutine works as follows:The subroutine divides time
into ⌈log n⌉ phasesof length ℓDD = Θ(logn), each associated
with an exponentially increasing broadcast probability, starting with
1/n and ending with1/2. Every covered process with a message
to send simulates a unique covered process for each of its mes-
sages. Initially all simulated covered processes areactive. If a
simulated covered process with a message starts a phase active, it
broadcasts its message with the corresponding probabilityduring
every round of the phase. If a process has multiple simulatedpro-
cesses broadcast during the same round, it combines the messages.
(No process has more than a constant number of neighbors in the
MIS, therefore these messages are of sizeO(log n) bits, match-
ing our assumption thatb = Ω(log n).) At the end of each phase,
every MIS process that received a message during the phase runs
bounded-broadcast(d + 2,m) to send its neighbors astop order,
m, labeled with its id. On receiving a stop order from its message’s
destination, a simulated covered process sets its status toinactive
for the remainder of the subroutine.

LEMMA 5.2. Assume that in some round after the processes
have solved the MIS problem, they run the directed-decay subrou-
tine. It follows that by the end of the subroutine, for every covered
processv that has a message to send to MIS neighboru, u will
receive at least one message intended for it from a neighboring
covered process, w.h.p.



Main Algorithm Description.
Having described our subroutines we continue by describingthe

main CCDS algorithm that makes use of these subroutines. Our
algorithm begins with the processes executing the MIS algorithm
from Section 4. We assume every process not in the MIS knows
the ids of the MIS processes that neighbor it inG (the algorithm in
Section 4 provides this information). After building the MIS, the
algorithm adds every MIS process to the CCDS, then attempts to
discover, and add to CCDS, a constant-length path between every
pair of MIS processes that are within3 hops inG.

At a high-level, this path-finding procedure works as follows:
Each MIS processu maintains abanned list, initially set to con-
tain its id and the id of the processes in its link detector set(i.e., its
neighbors inG). Throughout the path-finding procedure, process
u will add to its banned listBu the MIS processes that it discovers
as well as theG neighbors of these discovered processes. When a
given MIS process asks its neighbors to a nominate a nearby pro-
cess to explore (i.e., to see if its connected to an MIS), it uses this
banned list to prevent exploration of processes that lead toalready
discovered MIS processes. In other words, an MIS process will ask
processes to report any neighbors that arenot already in its banned
list.

We divide the search procedure intosearch epochs. During the
first phase of each epoch, processu will transmit its banned list
to its neighbors using bounded-broadcast. The time required to do
this depends onb: this is the source of the∆/b term in the final
time complexity.

During the second phase, processu asks its reliable neighbors to
use directed-decay to nominate one of their reliable neighbors for
further exploration (recall, “reliable neighbor” refers to a neighbor
connected by a reliable link). The restriction for such a nomination,
however, is that the nominated process cannot be in the banned list.
Notice, these nominations require that each process knows its set
of reliable neighbors: this is where the assumption of0-complete
link detectors proves useful. By the definition of the bannedlist,
any such nominated process must either be an MIS process thatu
does not know about, or be a neighbor of an MIS process thatu
does not know about. In both cases, we find a new MIS process
within 3 hops if such an MIS process exists.

In the third phase, bounded broadcast is used to talk to the nom-
inated process, find out if it is in the MIS, or if it is a neighbor of a
process in the MIS, and then transmit the necessary new informa-
tion tou to add to its banned list.

This path findingprocess, which ensures thatu never explores a
path that leads to an MIS process it already knows, is what provides
our efficient running time (as long as the message size is large). If
we instead hadu explore every reliable neighbor, and in turn had
these neighbors explore each oftheir neighbors, the running time
would beO(∆polylog(n)), regardless of the message size.

We continue by describing more details of this path finding pro-
cedure: Each MIS process maintains abanned listBu and adeliv-
ered banned listDu. Bu is initially set tou’s link detector set and
Du is empty. Each non-MIS processv maintains areplica banned
list Bv

u and aprimary replica banned listP v
u , both initially empty,

for each MIS processu that neighbors it inG. The algorithm pro-
ceeds by dividing groups of consecutive rounds intoℓSE = O(1)
search epochs. Each search epoch is divided into3 search phases,
which we describe below.

Phase 1: Each MIS processu dividesBu \Du into messages of
sizeb − log n bits, whereb is the maximum message size. It then
includes its own id with each message so recipients know its source.
Processu sends these messages to its non-MIS neighbors using

bounded-broadcast(δ, m), with δ = Id+1 = O(1). Let process
v be a non-MIS process that neighborsu in G. This process adds
the values received fromu to Bv

u. If this is the first search epoch,
it also adds these values toP v

u . At the end of the phase,u sets
Du = Bu. The phase is of a fixed length, long enough for the
maximum number of calls to bounded-broadcast that might need to
be made. As will be clear by the description of subsequent phases,
the setBu \Du never contains more than∆ ids, therefore we can
bound the number of calls byO(∆ log n

b
).

Total Length:O(∆ log2 n
b

) rounds.
Phase 2: Let Nu be the subset of processes that neighbor MIS

processu inG, where eachv ∈ Nu has a neighborw in its link de-
tector set such thatw /∈ Bv

u. We sayw is the neighbornominated
for u by v. To do so, the processes run directed-decay to report their
nominations to their neighbor MIS processes. With high probabil-
ity, each MIS processu will hear from one process inNu, if the set
is non-empty. The fixed length of this process is number of rounds
required to run directed-decay.

Total Length:O(log2 n) rounds.
Phase 3: Let u be an MIS process that heard from a process

v ∈ Nu during the previous phase. Letw be the process nominated
for u by v. During this phase,u will initiate an exploration ofw.
In more detail, using bounded-broadcast, with the same parameters
as phase1, u tellsv that it has been selected. Nextv uses bounded-
broadcast with these same parameters to tellw that it wants to find
out more about it. Ifw is in the MIS, it sendsu its neighbor set. If
w is not in the MIS, it chooses a neighborx that is in the MIS, and
sends tou the id ofx andPw

x (i.e., x’s neighbor set). Finally,v
uses bounded-broadcast to pass this information along tou, which
adds the new values to its banned set,Bu. Processv andw add
themselves to CCDS by outputting1 if they have not already done
so. The fixed length of this phase is set to the number of rounds
required for the maximum number of calls that might need to be
made to bounded-broadcast, which, as in phase 1, is bounded as
O(∆ log n

b
).

Total Length:O(∆ log2 n
b

) rounds.
The total running time for the MIS algorithm isO(log3 n)

rounds, and the time required to runO(1) search epochs is

O(max{∆ log2 n
b

, log2 n}). Combined this provides our final run-

ning time ofO(∆ log2 n
b

+ log3 n) rounds.
We conclude with our main theorem:

THEOREM 5.3. Using0-complete link detectors, our CCDS al-
gorithm generates an execution that solves the CCDS problemin

O(∆ log2 n
b

+ log3 n) rounds, w.h.p.

PROOF. Our CCDS algorithm first constructs an MIS using the
algorithm presented in 4. It then executesℓSE search epochs, each
consisting of three phases. The MIS algorithm and the searchepoch
phases are of fixed length, so the running time of the algorithm
follows directly from its definition.

For the remainder of the proof, assume that the MIS algorithm
called by the CCDS algorithm solves the MIS problem, and that
all O(n) calls to bounded-broadcast and directed-decay during the
search epochs satisfy the guarantees of Lemmas 5.1 and 5.2. By a
union bound, these assumptions hold w.h.p.

Useful Notation. We begin by defining some useful notation: (a)
We say a processv is coveredby an MIS processu if v andu are
neighbors inG. (b) we say an MIS processu hasdiscoveredan
MIS processv (u 6= v) if u learned aboutv andv’s G neighbors
during phase3 of a search epoch; (c) we say an MIS processu is
connectedto an MIS processv (u 6= v) if there exists a path in the
CCDS of length6 hops or less betweenu andv in G; and (d) we



defineUu, for MIS processu, to be the set of MIS processes (not
includingu) that are within3 hops ofu and that arenot connected
to u.

Useful Claims. Our goal will be to show that this setUu be-
comes empty by the end of the algorithm. To aid this task, we
define the following useful claims:

Claim1: If MIS processu discovers MIS processv, then by the
end of the same search epoch it adds a path of length no more than
3 hops betweenu andv to the CCDS.

Proof. This claim follows from the definition of the algorithm.
Claim 2: Let u be an MIS process. Assume that during phase

2 of some search epoch at least one process covered byu has a
neighbor to nominate tou. It follows thatu will discover a new
MIS process during this epoch.

Proof. Let u′ be the process covered byu assumed by the claim.
Assumeu′ is nominating a neighborv′ for u. By definition of the
algorithm,v′ is not in the banned setBu for this epoch. It follows
that eitherv′ is an MIS process that has not been discovered byu,
or none of the MIS neighbors ofv′ have been discovered byu. At
least one suchu′ succeeds in its call to directed decay. In either
case,u discovers a MIS process during phase3 of this epoch.

Main Proof Argument. By repeated application of Claim2, it
follows thatu will keep discovering processes within3 hops until
its neighbors run out of nominations foru. There are two things
to note here: first, banned sets are monotonically increasing, so
once a process runs out of nominations it will never again have
nominations; second, by Corollary 4.7, we know there are no more
thanI3d = O(1) MIS processes within3 hops ofu, so if we set
ℓSE = I3d, we have enough search epochs to reach the point where
we run out of nominations.

We will now consider the setUu of processes that are in the
MIS, are within3 hops ofu, but are still undiscovered byu after
the point where its neighbors have run out of nominations. Our
goal is to show that a constant length path in the CCDS betweenu
and these processes will exist by the end of algorithm. We first note
that every processv ∈ Uu must be exactly3 hops fromu: if some
v was within2 hops, it would have been nominated by its common
neighbor withu until discovered. Letu, u′, v′, v be a3 hop path
from u to somev ∈ Uu. Because we assume that no neighbor of
u has nominations foru at this point,v′ must be in the banned set
Bu—otherwise,u′ could nominate it. By the definition of the algo-
rithm, it follows that thatu must have previously discovered some
MIS processw such thatw neighborsv′. This, in turn, puts MIS
processw within 2 hops ofv, on the pathw, v′, v. As we argued
above, however, any MIS processes within2 hops will eventually
discover each other. It follows that by the end of the algorithmw
will discoverv.

We now have a path fromu tow and fromw to v. By claim1,
because each path was from a discovery, each is of length3 hops or
less. We can combine these two paths to get a single path, of length
6 hops or less, fromu to v.

Assuming our assumptions from the beginning of the proof hold,
which occurs w.h.p., we have shown that the algorithm constructs a
CCDS consisting of all MIS processes, plus a constant-length path
between every pair of MIS processes within3-hops. By the stan-
dard argument (See section2.6.1 of [8]), this yields a valid CCDS.
We are left to show that the CCDS is constant-bounded. To prove
this, fix a processu. By Corollary 4.7, there are only a constant
number of MIS processes within1 hop ofu in G′. We must also
bound, however, the CCDS processes added by connecting nearby
MIS processes with a path. Consider every pair of MIS processes
(v, w) such thatv discoveredw and added a path of length2 or 3 to
the CCDS. Ifv andw are both more than distance4d from u, then

neitherv, w, nor any process on their connecting path are within1
hop ofu. By Corollary 4.7, there are at mostx = I4d = O(1) MIS
processes within distance4d of u, and therefore at mostx2 = O(1)
pairs of MIS processes, each contributing no more than4 processes
to the CCDS, for a total of no more than4x2 = O(1) CCDS pro-
cesses within1 hop ofu, as needed.

6. CCDS ALGORITHM FOR
INCOMPLETE LINK DETECTORS

In the previous section, we described an algorithm that can solve
the CCDS problem with a0-complete link detector. In this section
we consider whether we can still solve the problem with anincom-
pletelink detector (i.e., aτ -complete link detector for someτ > 0).
In particular, we describe an algorithm that solves the problem in
O(∆polylog(n)) rounds, when combined with aτ -complete link
detector for anyτ = O(1).3 In the next section, we will show
the gap between this algorithm and the algorithm for0-complete
detectors is inherent.

The algorithm follows the same strategy as the CCDS algorithm
presented in Section 5—i.e., build a dominating structure then con-
nect nearby dominating processes—but differs in its details. To
start, notice that the MIS we get in Section 4 guarantees the max-
imality condition only inH . For τ > 0, however,H \ G can
be non-empty: potentially resulting in a process that is farfrom
any other MIS process in terms ofG edges. Such an event would
thwart attempts to connect nearby MIS process—i.e., the strategy
used in Section 5—as a lack of a short path inG can prevent com-
munication between two such processes.

To compensate for this unreliability, we instead use a procedure
that sequentially executesτ + 1 iterations of the MIS algorithm
from Section 4. A process that outputs1 in any of these iterations
does not participate in subsequent iterations. To ensure that the
maximality of each iteration is defined forH , we also have pro-
cesses label their messages with their local link detector sets. A
processu receivinga message from processv will keep the mes-
sage if and only ifv ∈ Lu andu ∈ Lv (i.e., the two processes
are connected inH). This procedure provides the following useful
properties:

LEMMA 6.1. Using aτ -complete link detectors, for anyτ =
O(1), the above procedure requiresO(log3 n) rounds, and w.h.p.
it satisfies that (a) every process either outputs1 or has aG neigh-
bor that outputs1; and (b) there are no more thanO(1) processes
that output1 withinG′ range of any process.

PROOF. The number of rounds is easily derived: we run the
O(log3 n) time procedure of Section 4,τ + 1 = O(1) times. The-
orem 4.6, when combined with our above modification to the MIS
algorithm that has processes discard messages from non-H neigh-
bors, proves that a single iteration of our modified MIS algorithm
satisfies maximality inH . For a process toneveroutput0 in the
iterated procedure, it has to receiveτ +1 such MIS messages from
anH neighbor, one in each iteration. These must be sent by dis-
tinct processes, since a process that outputs1 in some iteration does
not participate in the subsequent iterations. It follows that if a pro-
cess outputs0 for the entire iterated procedure, then it hasτ + 1
neighbors inH that outputted1. Since we are using aτ -complete
link detector, at mostτ of these neighbors can be inH \G, imply-
ing that this process must have at leastG neighbor that outputs1:
providing property (a) of our lemma.
3Solving the problem for largerτ remains an open problem, though
our intuition is that the problem will become impossible once the
τ grows larger than the bound on neighboring CCDS processes al-
lowed by the constant-bounded condition of the CCDS problem.



To prove (b), we can apply the same argument as in Corol-
lary 4.7. In more detail, we know, w.h.p., that each iteration of
the MIS has at most one process per disk (in the disk overlay used
in Section 4) output1. Overτ + 1 iterations, therefore, no more
τ + 1 = O(1) processes output1 in each disk. Finally, because
there are at most a constant number of disks withinG′ range of
any process, there are at most a constant number of processesthat
output1 within G′ of any process.

Given the structure obtained by our iterated procedure, we can
now build a CCDS. As in our previous algorithm, we want each
process that outputs1 in the procedure to connect to all other such
processes that output1 and are within3 hops inG. Property (a) of
Lemma 6.1 promises that this will create a connected dominating
set. To satisfy the constant-bounded property of the CCDS defi-
nition, we rely on property (b). We are left, therefore, to connect
nearby processes that output1. The CCDS algorithm of Section 5,
which uses a banned list approach to make this process more ef-
ficient, does not work in this setting.4 We replace this banned list
approach with something much simpler (and slower): each of the
processes that output1 dedicates time for each of its link detector
neighbors to announce its id and master, using the bounded broad-
cast subroutines of Section 5. Call this phase1. In phase2, each
of these processes gets another turn, this time announcing every-
thing it learned in the previous phase. After these two phases, each
process that output1 knows about every other such process that is
within 3 hops inG, and a path inH . (It might also learn about
a constant number of such processes connected inH but notG.)
This is sufficient to build the CCDS structure. WithO(∆) link de-
tector neighbors, each requiringO(polylog(n)) rounds for each of
their two phases, the total running time is:O(∆polylog(n)). We
formalize this below:

THEOREM 6.2. Using τ -complete link detectors, for anyτ =
O(1), the CCDS algorithm described above generates an execution
that solves the CCDS problem inO(∆polylog(n)) rounds, w.h.p.

7. LOWER BOUND
In Section 6, we described an algorithm that solved the CCDS

problem inO(∆polylog(n)) rounds, given aτ -complete detector,
for τ > 0. In this section we show the bound to be nearly tight
by proving that even with a1-complete link detectors, construct-
ing a CCDS requiresΩ(∆) rounds. This bound holds regardless
of message size. Notice that this represents a clear separation be-
tween the algorithms forτ -complete detectors withτ > 0, and0-
complete detectors, which for sufficiently large messages can solve
the CCDS problem inO(polylog(n)) rounds. Formally:

THEOREM 7.1. LetA be a randomized CCDS algorithm such
that A combined with a1-complete link detector guarantees,
w.h.p., to generate an execution that solves the CCDS problem in
f1(∆, n) rounds, where∆ is the maximum degree inG andn is
the network size. It follows thatf1(∆, n) = Ω(∆).

Our proof strategy is to reduce an easily boundable game to the
CCDS problem. This reduction requires a pair of transformations.

First Transformation.
The first transformation is from a CCDS algorithm to a solution

to theβ-double hitting game, which is defined as follows: There
4In this setting, withτ > 0, it may be possible, for example, that
the banned list of an MIS node includes a neighbor inH \G. This
neighbor will therefore not be nominated, even though it might be
on the path to a nearby MIS process.

are two players,A andB, represented by the synchronous prob-
abilistic automataPA andPB . At the beginning of the game, an
adversary chooses two target valuestA, tB ∈ [β]. It then provides
tB as input toPA and tA as input toPB . The automata execute
in rounds. In each round each automaton can output a guess from
[β]. Notice, however, other than the inputs provided by the ad-
versary at the beginning of the execution, these automata have no
communication with each other. That is, their executions unfold
independently. The players solve the game when eitherPA outputs
tA orPB outputstB. We continue with the transformation lemma:

LEMMA 7.2. Let A be a CCDS algorithm such thatA, com-
bined with a1-complete link detector, guarantees, w.h.p., to gener-
ate an execution that solves the CCDS problem inf1(∆, n) rounds,
where∆ is the maximum degree inG and n is the network size.
There exists a pair of probabilistic automata(PA,PB) that solve
theβ-double hitting game inf2(β, n) = f1(β, n) +O(1) rounds,
w.h.p., whereβ is any positive integer.

Notice, with this transformation we shift from the world of radio
network algorithms to the world of abstract games, where players
are represented by probabilistic automata. We maintainn as a pa-
rameter in the running time function, however, so we can specify
“w.h.p.” in a consistent manner.

PROOF. Our transformation requires that we construct two
player automata,PA andPB, given a CCDS algorithmA. Our
strategy is to design our player automata to cooperatively simulate
an execution ofA running on a dual graph network of size2β,
whereG consists of two cliques, each of sizeβ, that are connected
by a single link, andG′ is fully connected. Call the two cliques in
this networkA andB. AutomataPA simulates processes1 to β
assigned to nodes in cliqueA, andPB simulates processesβ+1 to
2β assigned to nodes in cliqueB. Thus we have2β processes to-
tal, each assigned a unique id from[2β], as required by our network
model.

In this simulation, we want the two target ids,tA andtB from
the hitting game to correspond to the ids of the processes assigned
to the endpoints of the link connecting the two cliques (which we
will call the bridge). To do so, we must be careful about how we
simulate the1-complete link detectors used by the broadcast al-
gorithm. In more detail, we havePA give each of its simulated
processes a link detector set consisting of the set[β] and the id
tB + β, and we havePB give its simulated processes the set con-
sisting of{β+1, ..., 2β} and the idtA. It follows, that each player
is simulating their processes receiving a1-complete link detector
set that is compatible with a process assignment that has process
tA (in cliqueA) andtB + β (in cliqueB) as the endpoints of the
bridge.

We have each of the two player automata simulate each round of
the CCDS algorithm as follows: if two or more simulated processes
broadcast, or no simulated process broadcasts, then all processes
simulated by the automata receive⊥. Notice, here we leverage the
fact that we are in the dual graph model. Assume, for example,that
tA and one other process,i, broadcast in cliqueA. In the classic
radio network model,tA’s message would be received by process
tB + β becausei is not connected totB + β. In the dual graph
model, however, the adversary can choose in this round to deliver
a message oni’s G′ edge totB + β, causing a collision withtA’s
message.

On the other hand, if only one simulated process broadcasts,then
all processes simulated by that automata receive the message, and
the automata makes a guess at the end of the round. The guessing
works as follows: if processi simulated byPA broadcasts alone in



a simulated round,A guessesi during this round of the game, and
if j simulated byPB broadcasts alone,B guessesj − β.

Finally, if the simulated processes in cliqueA (resp.B) termi-
nate (i.e., they have all outputted0 or 1), thenPA (resp.PB), halts
its simulation and guessesi (resp. i − β), for each simulated pro-
cessi from its clique that output1. Because players can only output
one value per round, but multiple simulated processes from aclique
might join the CCDS, completing this guessing might requiremul-
tiple rounds. Due to the constant-bounded property of the CCDS,
however, no more thanO(1) rounds will be needed to complete
this guessing.

To conclude this proof, we must now show that this simulation
strategy solves the double hitting game. We first notice thatthe
simulations conducted byPA andPB will remain valid so long as
there is no communication required between the cliques. By our
model definition, the only scenario in which a messagemustpass
between the cliques is if processtA or tB + β (i.e., the processes
at the endpoints of the bridge) broadcasts alone. In this case, how-
ever, the player responsible for the solo broadcaster wouldguess its
target, solving the double hitting game.

We now consider the case where the algorithm terminates with-
out communication between the cliques. Assume that the execution
under consideration solves the CCDS problem (an event that oc-
curs, by assumption, w.h.p.). Consider the graphH used in the def-
inition of the CCDS problem. In our simulated network, this graph
matchesG: i.e., cliquesA andB connected by a single bridge link.
By the domination and connectivity properties of the CCDS prob-
lem, the endpoints of this bridge must be included in the CCDS.
The processes corresponding to these endpoints aretA andtB +β.
Therefore, when the respective players in the double hitting game
output the guesses corresponding to their CCDS processes, they
will output their targets, solving the game.

Second Transformation.
Our next transformation is from theβ-double hitting game to

theβ-single hitting game, which is defined the same as double hit-
ting game, except there is now only one player and target. That is,
the adversary chooses a value from[β], and then the synchronous
probabilistic automataPA,B guesses one value per round until it
guesses the target value. In the proof of our main theorem state-
ment, we will show that the single hitting game is easily bounded.
Note the reason we require a non-trivial transformation from the
double hitting game to the single hitting game is because theex-
change of input values at the beginning of the double hittinggame,
allows for subtle cooperative strategies that prevent us from just
using one of the automataPA or PB as our solution to the sin-
gle player variant. We detail this transformation with the following
lemma:

LEMMA 7.3. Let(PA,PB) be a pair of automata that solve the
β-double hitting game inf2(β, n) rounds, w.h.p., for any positive
integerβ. We can construct a probabilistic automataPA,B that
solves theβ-single hitting game inf3(β, n) = f2(2β, n) rounds,
w.h.p., also for any positive integerβ.

PROOF. We are given a pair of automataPA andPB that solve
the2β-double hitting game inf2(2β, n) rounds, w.h.p. Unwinding
the definition of the problem we get the following: for every pair
of targetstA, tB ∈ [2β], PA andPB will solve the double hitting
game for these targets in no more thanf2(2β, n) rounds, w.h.p.

Let us now unwind even more: if we runPA with targettA and
input tB, and runPB with targettB and inputtA, at least one of
these two automata will output their target inf2(2β, n) rounds,

w.h.p. To make this argument we must proceed carefully. Recall,
we define w.h.p. to be1 − 1

nc for some constantc that is suffi-
ciently large for our needs. In this case, assume it is at least of
size 2. Let pA be the probability thatPA fails to outputtA in
f2(2β, n) rounds given inputtB. And let pB be the probability
thatPB fails to outputtB in f2(2β, n) rounds given inputtA. No-
tice, these two probabilities are independent as the playerautomata
execute independently once provided their respective inputs. By
our assumption that at least one player succeeds with high proba-
bility, we knowpApB ≤ 1

nc . To satisfy this inequality, at least one
of these probabilities is no larger than1

nc/2 . The player automata
with this probability therefore solves the game fast, when run with
(tA, tB), with probability at least1 − 1

nc/2 , which still qualifies
as “w.h.p.” Call this automata the “winner” for this pair of targets
(if both output in the required time with the required probability,
default to call automataPA as the winner).

With this in mind, we can calculate a(2β × 2β)-sized table,
where each position(x, y) contains eitherA or B depending on
which corresponding automata is the winner for targetstA = x
and tB = y. (Notice, this table is not something constructed by
PA,B, it is instead something that can be calculated offline to help
constructPA,B.) By a simple counting argument, there must exist
either: (a) a column with at leastβ A’s; or (b) a row with a leastβ
B’s.

For the remainder of this construction, assume we find some col-
umny such that this column contains at leastβ A’s. The case for
a row with β B’s is symmetric. Given this columny, we know
that there is a subsetSy ⊂ [2β] of sizeβ, such that if we runPA

with targettA ∈ Sy and inputtB = y, it will output the target in
f3(2β, n) rounds, w.h.p. (e.g., we can defineSy to be the firstβ
rows in columny that contain A.) Letψ be bijection fromSy to
[β].

We now definePA,B as follows: have the automata simulatePA

being passed inputy. If the simulatedPA outputs a guessx in a
round, andx ∈ Sy, PA,B outputsψ(x).

We now argue thatPA,B solves theβ-single hitting game. Let
tA,B ∈ [β] be the target chosen forPA,B at the beginning of some
execution of the single hitting game. By definition, there exists an
x ∈ Sy such thatψ(x) = tA,B. By the definition of our table,
we knowPA will output targettA = x, given inputtB = y, in
f2(2β, n) rounds, w.h.p. It follows thatPA,B simulatingPA with
this input will therefore outputψ(x) = tA,B in this same time with
this same high probability, as needed.

Main Proof.
We can now pull together these pieces to prove Theorem 7.1:

PROOF (OF THEOREM 7.1). Starting with the CCDS algorithm
A provided by the theorem statement, we apply Lemmas 7.2
and 7.3, to produce a solution to theβ-single hitting game that
solves the game inf3(β, n) rounds. We next note that theβ-
single hitting game, which requires a player to identify an arbi-
trary element from amongβ elements, requiresΩ(β) rounds to
solve w.h.p. (We formalize this intuitive probability factas part of
the proof for our lower bound on randomized broadcast, presented
in [9].) This yields: f3(β, n) = Ω(β). Finally, substituting the
running time functions generated by our transformations, we get:
f3(β, n) = f2(2β, n) = f1(2β, n) + O(1). It follows from our
bound onf3 thatf1(2β, n)+O(1) = Ω(β). There exists a graph in
which∆ = 2β, and thereforef1(∆, n) = Ω(∆), as needed.



8. DYNAMIC LINK DETECTORS
This paper has considered building a CCDS as a one-shot prob-

lem: processes are provided a static estimate of their reliable neigh-
bors, formalized as a link detector set, and then attempt to build the
desired structure as quickly as possible. In long-lived wireless net-
works, however, link status is not necessarily stable. It ispossible
for a link that has behaved reliably for a long period to suddenly
degrade into unreliability (this could happen, for example, due to a
change in the multipath environment). We can capture this setting
with a dynamic definition of link detector as a service that provides
a set to each processat the beginning of every round(a definition
more aligned with the classicfailure detectorabstraction [3]). We
say a dynamic link detectorstabilizesat some roundr, if in every
execution its output matches the definition of the corresponding
static link detector atr and never again changes in future rounds.

Given the efficiency of our CCDS solution (at least, under the
assumption of large messages), a simple approach to dealingwith
changing link detector output is to rerun the CCDS algorithmevery

δCDS = Ω(∆ log2 n
b

+ log3 n) rounds. Call this thecontinuous
CCDS algorithm. We can assume that when we rerun the algo-
rithm, processes wait to change their outputs until the veryend
of the algorithm, so they can transition from the old CDS to the
new CCDS all at once. We say that the continuous CCDS algo-
rithm solves the CCDS problem by some roundr, if for any round
r′ ≥ r, the output solves the CCDS problem, w.h.p. The following
theorem follows directly:

THEOREM 8.1. In any execution of the continuous CCDS al-
gorithm with a0-complete dynamic link detector that stabilizes
by round r, the algorithm solves the CCDS problem by round
r + 2δCDS .

9. FUTURE WORK
This work motivates a collection of related open problems. For

example, our CCDS algorithm for the0-complete link detector set-
ting requires large messages in order to terminate fast. It remains
open whether this is fundamental, or if there exist fast solutions for
the small message case. It is also interesting to consider whether
there exist CCDS algorithms for non-constantτ . Finally, our τ -
complete link detector abstraction is only one possible definition
from many different approaches to defining this style of service.
We leave the exploration of different definitions as additional fu-
ture work.

In addition, it remains an interesting open question to explore
the dynamic case in more detail. For example, we might want to
redefine what it means to solve problems like MIS and CCDS, with
respect to the current output of the link detector. We might also
want to design efficientrepair protocols that can fix breaks in the
structure in a localized fashion, rather than reusing the entire pro-
tocol.
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