Structuring Unreliable Radio Networks

. *

Keren Censor-Hillel
Computer Science and Department of
Artificial Intelligence Lab, MIT Science, National

ckeren@csail.mit.edu

Seth Gilbert'

Singapore

Fabian Kuhn
Faculty of Informatics,
University of Lugano

fabian.kuhn@usi.ch

Computer
University of

gilbert@comp.nus.edu.sg

I
Nancy Lynch
Computer Science and
Artificial Intelligence Lab, MIT

lynch@csail.mit.edu

ABSTRACT

In this paper we study the problem of building a connectedidom
nating set with constant degree (CCDS) in the dual graplo raeti-
work model [4,9,10]. This model includes two types of linkeli-
able which always deliver messages, amteliable which some-
times fail to deliver messages. Real networks compensathifo
differing quality by deploying low-layer detection protas to fil-

ter unreliable from reliable links. With this in mind, we bedy
presenting an algorithm that solves the CCDS problem in tizé d
graph model under the assumption that every progésgrovided

a locallink detectorset consisting of every neighbor connected to
u by a reliable link. The algorithm solves the CCDS problem in
O(A“’ngn + log®n) rounds, with high probability, wherg is

the maximum degree in the reliable link graphjs the network
size, and is an upper bound in bits on the message size. The al-
gorithm works by first building a Maximal Independent Set g\l

in log® n time, and then leveraging the local topology knowledge
to efficiently connect nearby MIS processes. A natural folip
question is whether the link detector must be perfectlyalbddi to
solve the CCDS problem. With this in mind, we first describe an
algorithm that builds a CCDS i®(Apolylog(n)) time under the
assumption oD (1) unreliable links included in each link detector
set. We then prove this algorithm to be (almost) tight by shgw
that the possible inclusion of only a single unreliable linleach
process’s local link detector set is sufficient to req@il(e\) rounds

to solve the CCDS problem, regardless of message size. We con

*Supported by the Simons Postdoctoral Fellows Program.
TPartially supported by NUS (FRC) R-252-000-443-133.

iSupported by AFOSR award number FA9550-08-1-0159, NSF
award numbers CCF-0726514, CCF-0937274, and NSF-Purdue-
STC award number 0939370-CCF.

§Supported by Mobile Mesh Networks (Ford-MIT Alliance Agree
ment January 2008).

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PODC’11,June 6-8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0719-2/11/06 ...$10.00.

. §
Calvin Newport
Computer Science and

Artificial Intelligence Lab, MIT
cnewport@csail.mit.edu

clude by discussing how to apply our algorithm in the settitgre
the topology of reliable and unreliable links can change tivee.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problemssemputations on discrete struc-
tures G.2.2 Discrete Mathematics]: Graph Theory—graph algo-
rithms G.2.2 Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords

unreliable networks, dual graphs, maximal independentcset-
nected dominating set

1. INTRODUCTION

In this paper we study the problem of constructing a conigecte
dominating set with constant degree (CCDS) in a radio nétwor
The CCDS problem is important in this setting as it provides a
routing backbone that can be used to efficiently move infeiona
through the network [15, 19]. In more detail, we study thisigbem
in the dual graph network model, which describes static adrae
dio networks. The dual graph model, previously studied ja,[40],
includes two types of linksreliable, which in the absence of col-
lisions always deliver messages, amteliable which sometimes
fail to deliver messages. This model was inspired by therobse
tion that in real radio network deployments unreliable $irgice an
unavoidable (and much cursed) feature; c.f., [1, 2, 5-718&0].

To mitigate the difficulties introduced by such links, mosidarn
ad hoc radio network deployments use low-level link detepto-
tocols (e.g., [2,5-7, 20]) or sometimes even specializedviare
(e.g., [1]) that attempt to isolate reliable from unrel@bhks. We
capture this strategy in our model with the némk detectorab-
straction, which provides each processat the beginning of each
execution, a set of ids that represent an estimate of whicjfnbers
are reliable (i.e., connected toby a reliable link).

Using this abstraction, we are able to explore two important
questions: (1) How can we leverage the link detection inferm
tion commonly assumed in practice to build efficient solusido
the CCDS problem? (2) How reliable must these link detedters

for their information to be useful? Our answers potentiakyend
beyond the realm of theoretical interest and into the redlpraxc-
tice, where the optimal use of link detection is considenmedpen
problem.

Results.

In this paper, we study the-complete link detectod < 7 < n.
A 7-complete link detector, for a given processcontains the id
of every reliable neighbor of and potentially up ta- additional

ids. In other wordsr bounds the number of classification mistakes

made by the detector, witb-complete indicating perfect knowl-
edge of reliable neighbor's.Notice, however, that assuming0a
complete link detector is different than assuming a netweitk
only reliable edges: the completeness of the link deteaityr de-
scribes the quality of knowledge about the network topalduyt
one still must grapple with the uncertainty caused by thegmee
of unreliable edges.

As mentioned, practical network deployments seek to atelyra
filter reliable from unreliable links; i.e., implementtacomplete
link detector [2,5-7, 20]. With this in mind, in Section 5 we-d
scribe a randomized upper bound that usesamplete link detec-
tor to construct a CCDS. In more detail, the algorithm cartt a
CCDS inO(%gQ" +log® n) rounds, with high probability, where
A is the maximum degree in the reliable link graphs an upper
bound in bits on the message size, ani$ the network size. For
reasonably large messagés=£ Q(A)), this algorithm terminates
in polylogarithmic time. The algorithm works by first buitdj a
Maximal Independent Set (MIS) i®(log® n) rounds (the algo-
rithm for which is presented separately, in Section 4), dmht
leveraging the link detector information to execute a nqueth
finding procedure to identify paths to nearby MIS processes.

A natural follow-up question is whether such accuracy inlimkr
detector is necessary. In other words, can we find efficidatisas
to the CCDS problem for some> 0? To answer this question, we
start by describing, in Section 6, an algorithm that solhesGCDS
problem inO(Apolylog(n)) rounds, given a-complete detector
foranyT = O(1). We then prove in Section 7 that this bound is (al-
most) tight by showing that with &complete link detector, every
algorithm that solves the CCDS problem requit¥s\) rounds, re-
gardless of message size. This bound not only defines a separa
with the classic radio network model, which assumes oniwlioé
links, but also defines a separation with the= 0 case. Concur-

rent work has identified a CCDS algorithm for the classic nhode

that uses no topology knowledge and requires @n(polylog(n))
rounds [17].

We conclude by discussing, in Section 8, how to apply our-algo

rithm in the setting where the topology of reliable and uiatgke
links can change over time.

Related Work.
The dual graph model was introduced in [4], where it was dalle
the dynamic fault model, and then later studied in [9, 10]aurith

current name. These papers show, among other results hthat t

canonical problem of multihop broadcast is strictly hariatethe
presence of unreliable links. There are some similaritets/ben

the dual graph model and the quasi-unit disk graph model, [13]

which includes a gray zone distance at which two nodes inia rad
network may or may not have a link. Unlike the dual graph model

!Notice, these detectors never misclassify reliable neighas un-
reliable. In practice, we suspect such misclassificatiomslavnot

affect our algorithms’ correctness, provided that theextty clas-
sified reliable edges still describe a connected graph. Wethia

variant for the sake of conciseness.

however, the quasi-unit disk graph model features unceytanly
in the definition of the topology; once the links have beeridkst,
they behave reliably.
The CCDS problem, along with related coordination problems
have been extensively studied in general graph models 18¢&f
a good overview). In the context of radio networks withoutain
liable links (what we call thelassic radio network modgl[19]
describes arO(n) time CCDS algorithm, and [15] describes an
O(log? n) time algorithm. The latter algorithm, however, requires
that processes know their multihop local neighborhooddeptan
construct collision-free broadcast schedules. In our hdde a
process to learn itéh + 1)-hop neighborhood (of reliable links)
would require2(A™) time, and even then the broadcast schedules
constructed in [15] could be thwarted by unreliable linkssiag
collisions. As with our paper, both [19] and [15] assume syn-
chronous starts (i.e., processes start during the same)toGon-
current work has identified @(polylog(n))-time CCDS solution
in the classic radio network modeithout synchronous starf&7].
The MIS problem, which we use as a step in our construction of
a CCDS, was studied in the classic radio network model withou
synchronous starts in [11], which provide®#log® n) time solu-
tion. This was later improved in [14] t©(log n). The MIS algo-
rithm presented in the main body of this paper requidékg® n)
rounds, and it assumes synchronous starts afidt@mplete link
detector. In the full version of this paper, however, we désc
a minor variation to the algorithm that works in the same mgn
time in the classic radio network model, without synchranstarts
or any topology information. This algorithm is a factor@flog n)
slower than the result of [14], but trades this decreaseddsfer
increased simplicity in both the algorithm description grdof
structure.

2. MODEL

Fix somen > 2. We define a networkG, G') to consist of two
undirected graphs; = (V, E) andG’ = (V, E’), whereV is a set
of n wireless nodes anf C E’. We assumé& is connected. For
eachu € V, we use the notatioWVg (u) to describe the neighbors
of v in E, and the notatioVs- (u) to describe the neighbors aof
in E’. Let A be the maximum size d¥; over all nodes and\’ be
the maximum size olNg. over all nodes. To simplify notation we
assume in this paper that = w(log n). We assume that each node
in V is embedded in a two-dimensional plane, and diseé(u, v)
to denote the distance between nodeandwv in the plane. We
assume there existscanstantdistanced > 1 = O(1), such that
for all u,v € V wheredist(u,v) < 1, (u,v) € E, and for all
(v',v") € E’, dist(u',v") < d. Notice, this is a generalization of
the unit disk graph model that now captures the (potenjidiige
gray zoneof unpredictable connectivity observed in real wireless
networks.

We next define an algorithtd to be a collection of. processes.
An execution of an algorithna on network(G, G”) first fixes some
bijection proc from processes ofl to V. This bijection represents
the assignment of processes to graph nodes. We assume an ad-
versary controls the definition gfroc. We also assume that each
process ind has a unique identifier from the rangy¢o n. We use
the notatiorid(v), v € V, with respect to an execution, to indicate
the unique identifier oproc(v). For simplicity, throughout this pa-
per we sometimes use the notatjmocessu, for someu € V, to
refer toproc(u) in the execution in question. We also sometimes
use the notatioprocessi, for somei € [n], to refer to the process
with id 4.

An execution proceeds in synchronous rourds, . . ., with all
nodes starting in the first round. At the beginning of eacmdou

r, every nodev decides whether or not to send a message, as indi-
cated by its procesgroc(v). Next, the adversary chooseseach
setof edges that consists & and some subset, potentially empty,
of edges inE’ but not E. This set describes the links that will
behave reliably in this rountl.Let B, .. be the set of nodes that
broadcast in round and are connected ioby an edge in the reach
set for this round. The messages received loepend on the size
of B, . If nodev broadcasts im then it receives only its own mes-
sage. If node does not broadcast and,,-| = 1, then it receives
the message sent by the single broadcastés.in. Otherwise, it
receivesl; i.e., we assume no collision detection.

We sometimes use the notatipih, for positive integer, to in-
dicate the sequencfl, ...,i}. Furthermore, we use the notation
w.h.p. (i.e.,with high probability to indicate a probability at least
1- % for some positive constamt For simplicity we omit the
specific constants used in our proofs, and assume only thgt th
are large enough such that the union bounds applied to olaugar
w.h.p. results produce a final probability that is also astéa- %

Link Detectors.

As described in the introduction, real wireless networkldgp
ments compensate for unreliability by using low-level pomtls
and special hardware to differentiate reliable from uatgh links.
Because these link detection strategies often make uséoofria-
tion not described in our network model (e.g., propertieshef
received physical layer signal) we introduce thk detectorab-
straction to capture the functionality of these services.

In more detail, this abstraction provides each progese(u)

a link detector set., C [n]. This set, fixed through the entire
execution, is an estimate of which neighbors are conneotedy
areliable link. In this paper we study thecompletelink detector,

0 < 7 < n. In more detail, we say a link detector skf, is
T-complete if and only if L, = {id(v) : v € Ng(u)} U Wy,
whereW, C {id(w) : w € V \ Ng(u)}, and|W,| < 7. That

is, the detector contains the id of every neighborafonnected
by a reliable link, plus up to an additionaladditional neighbors.
This makesr a bound on the number of links that are mistakenly
classified as reliable.

3. PROBLEM DEFINITIONS

We define the maximal independent set and constant-bounded
connected dominating set problems. In both definitions, efers
ence the graptif = (V, En), defined with respect to a specific
execution, wheré/ is the vertex set fron¢z andG’, and Ex is
the edge set consisting of every edge v) such that:u € L,
andv € L, (thatis,u andv are in each other’s link detector set).
Notice, for ar-complete link detector, for any value of G is a
subgraph of, and forr = 0, H = G.

Maximal Independent Set.

A maximal independent set (MIS) algorithm has every process
eventually output & or a1, where al indicates the process is in
the MIS, and & indicates it is not. We say an execution of an MIS
algorithm hassolved the MIS problerby roundr, if and only if
the following three conditions hold: (I¥ermination] every pro-

2This behavior might seem to constrain the adversary, agirmes
reliability to be symmetric. In practice, however, thistregion has

no noticeable effect. In more detail, the only way to learoudltthe
reliability of a directed link(u, v) is for proc(u) to broadcast and
proc(v) to receive (as broadcasters receive only their own mes-
sages). Therefore, even if the adversary could speciferitif) re-
liability on (u, v) versus(v, u), only the reliability of one of these
directions could be assessed in any given round.

cess output$ or 1 by the end of round:; (2) [Independence] if
processes. andv both outputl, then(u,v) ¢ E; and (3)[Max-
imality] if processu outputs0, then there exists a processuch
thatv outputsl and(u,v) € Ex.

Constant-Bounded Connected Dominating Set.

A constant-bounded connected dominating set (CCDS) dlhgori
has every process eventually outptt ar a1, where al indicates
the process is in the CCDS, anddandicates it is not. We say
an execution of a CCDS algorithm haslved the CCDS problem
by roundr, if and only if the following four conditions hold: (1)
[Termination] every process outputsor 1 by the end of round;
(2) [Connectivity] the set of processes that outfuis connected
in H; (3) [Domination] if a processu outputs0, then there ex-
ists a process such that outputsl and (u,v) € Eg; and (4)
[Constant-Bounded] there exists a constanf such that for every
processa:, no more thard neighbors of in G’ output1.

4. MISALGORITHM

In this section, we present an algorithm that solves the M&®p
lem in O(log® n) rounds, w.h.p. We assume the processes have
access to 8-complete link detector and that the message &ise
Q(log n) bits. In Section 5, we use this algorithm as a subroutine in
our solution to the CCDS problem. Recall that havirig@omplete
link detector is not equivalent to having a network modehvaitly
reliable edges. The completeness of the link detector itescthe
quality of information about the topology; it does not elivate the
negative impact of unreliable edges. In particular, aslfggted by
the proofs in this section and the next, one of the main diffies
presented by unreliable edges is that their unpredictadenior
can thwart standard contention-reduction techniqued) siscthe
exponential increase of broadcasting probability.

Algorithm Description.

The algorithm has processes discard messages receivedafrom
process not in its link detector set. Therefore, in the foilg de-
scription, when we say that a processeives a messagee imply
that itis a message sent from a neighbaEinEach process main-
tains a sef\/,, of MIS process ids (initially empty). The execution
is divided intolg = ©(logn) groups of consecutive rounds that
we call epochs and which we index, ..., ¢g. At the beginning
of each epocli, each process declares itselfctiveif and only if
its MIS setM,, does not include its own id or the id of a process
in its link detector set. Only active processes will pagite in the
epoch.

In more detail, the epoch is divided infdog n] competition
phaseseach of length/p O(logn), followed by a singlean-
nouncement phase the same length. During the first competition
phase, in each round, each active process broadcasts adente
message, labeled with its id, with probabilityn. If an active
processu receives a contender message from another process, pro-
cessu is knocked out: it sets its status to non-active and does no
further broadcasting during this epoch. At each successiuge-
tition phase, the remaining active processes double theadzast
probabilities. In the second competition phase they brastdwith
2/n, in the third4/n, and so on, up to probability/2 in the final
competition phase.

An active process: that makes it through alllog n] competi-
tion phases without being knocked out adds itself to the MkSIs
outputsl, adds its own id ta\/,,, and broadcasts an MIS message
labeled with its id, with probabilityl /2, in every round of the an-
nouncement phase. Every procedhat receives an MIS message
from a process addsu to its MIS setM,,.

Correctness Proof.

As with the MIS solutions presented in [11,14], which areveid
for the standard radio model whe€@ = G’, we begin by cov-
ering the plane with an overlay of disks of radiug2, arranged
on an hexagonal lattice to minimize overlap. We index th&gdis
Dy, (Notice, because our graph is connected, no moresthan
disks are required to cover all occupied portions of theglpAlso
following [11, 14], we use the notatioR; to reference the disk of
radiusr centered at dislD;. We introduce the new notatiaf' to
reference the maximum number of overlay disks that candater
a disk of radiug'. The following fact concerning this overlay, also
used in [11, 14], will prove useful:

FACT 4.1. Foranyc = O(1): I° = O(1).

In the following, letP;(r) = >=, c4.(,), where A;(r)
is the set of active processes in at the Leglnnlng of the epoch
that contains rouna, andp(u,r) is the broadcast probability of
processu in roundr. The following standard probability facts will

prove useful:

FACT 4.2. For anyp < 1/2 it holds that(1 — p)
and for anyp > 0 it holds that(1 — p) < e .

> (1/4),

We continue with an important lemma that bounds the broadcas
probability in the network.

LEMMA 4.3. Fix some epoch. During every roundof this
epoch, and every disk indexP;(r) < 1, w.h.p.

PROOF. Fix some diskD;. We begin by bounding the proba-
bility that D; is the first disk to have its broadcast syf;) ex-
ceedl. For P; to exceedl, there must be some roum¢gsuch that
r is the first round in whichD;’s broadcast probability is greater
than1. Roundr must be the first round of a competition phase, as
these are the only rounds in which processes increase tiogidb
cast probabilities. Furthermore,cannot be the first round of the
first competition phase, as the broadcast sum of the firseptes
never exceed, as it has each process broadcasting with probability
1/n. Combining these observations with fact that broadcadt-pro
abilities double between each phase, it follows: theretexsull
competition phase before such that during every round of this
preceding phaset/2 < P;(r’") < 1. Furthermore, by assumption,

r was the first round in whichnydisk exceeds a broadcast sum of
1, so we also know that for all disks# 4, during every round-’
of this preceding competition phas®;(r’) < 1.

We will now use these two observations to prove that there is a
high probability that a single processiin broadcasts alone among
nearby disks, and therefore knocks out all other activegsses in
D;: reducing its broadcast probability 192 for the remainder of
the epoch. To start, fix any round of the phase preceding Let
p1 be the probability of a single process broadcastingjrduring
this round. Using Fact 4.2 and our our bounds on disk broadcas
sums from above, we can boupd as follows: First, note that

Pr= Puea o (P T (1 = p(0,7'))), which
is greater than or equal to

>

u€A;(r’)

p(v,r")
1 >

I1

vEA;(r),vFu

/ 1 1
p(u,r’) 51

Next, let D; be a disk that contains @’ neighbor of a node in
D;, and let probabilityp2 be the probability that no process vy
broadcasts in’. By the same approach used above, we can bound
po = HueAj(r,)(l — p(u,r")), which we know is greater than

or equal to:T] ¢ 4. () iple > 1. Lety = I*t'/2 describe

the total number of disks potentially containiig/ neighbors of
nodes inD; (recall thatd = O(1) is the maximum distance at
which aG’ edge exists), and let; be the probability that a single
process inD; broadcasts in’, and this message is received by all
processes iD; (an event we call anncontestedroadcast). We
know: ps > p1p3 = 1 - i(”“) = (3)"*15. (Notice, by Fact 4.1,
~v = O(1), thereforeps is also constant.)

To conclude the proof, we note that the probability thatfaié
to achieve an uncontested broadcast®jrin all /p rounds of this
phase is no more thafi — p3)‘P. By Fact 4.2 this is less than
e~P3tP For sufficiently large constant factors in our definition of
{p, this evaluates tg};, with a sufficiently large constantthat we
retain high probability even after we perform a union bourdro
all O(n) occupied disks. The result, is that w.h.p no disk is the first
to exceed! during this epoch. I

The following lemma leverages the observation that if thealr
cast probability in the system is low (as established by Lami8),
then a process about to enter the MIS will have a good prababil
of both knocking out it neighbors and announcing to them its
new status, during th@(logn) round final competition phase and
subsequent announcement phase.

LEMMA 4.4. (Independence) For every pair of nodesind v,
(u,v) € E, itis not the case that both outputw.h.p.

PrROOF Fix any epoch in which neithernor v has yet output.
Such an epoch must exist in any execution wheendv proceed
to both outputl. Assume that Lemma 4.3 holds in this epoch. Un-
der this assumption, we will show that with high probabjl&ither
neither process joins the MIS in this epoch, or one process jo
and the other outputd Assume that at least one process makes it
through the final competition phase (otherwise, we are doféh-
out loss of generality, assume thiisProcess. broadcasts in this
phase with probabilitpy; = 1/2. Let D; be the disk containing,
and letp2 be the probability that no process other thaim a disk
intersectingF2 -5 broadcasts irr. (This is sufficient to ensure
thatv would receive any message sentd)yasEf* 15 contains all
G’ neighbors ofv.) Under the assumption that Lemma 4.3 holds,
we can use Fact 4.2 in a similar manner as in Lemma 4.3 to bound
p2 > }1” whereny’ = I9t1%, Let ps be the probability that
receives a message framduring this final competition phase, and
is therefore knocked out and does not join the MIS. We combine

p1 andp, to yieldps > 1 - %7,. (By Fact 4.15" = O(1), there-
fore ps is also constant.) We note thatffails to knockwv in all £p
rounds of the phase with probability no more than- p3)“~. By
Fact 4.2 this is less thasT P3P, For sufficiently large constant fac-
tors in our definition oftp, this evaluates te, for any constant

c. We can use the same argument to show thdils deliver its
MIS message to during the subsequent announcement phase with
a similarly low probability. For sufficiently large constdiactors

in our definition of¢p, these probabilities are small enough to re-
tain high probability even after we perform a union boundraie
O(n?) pairs of processes and &(log n) epochs, combined with a
union bound establishing that Lemma 4.3 holds in each epdch.

This next lemma, whose proof is deferred to the full version
of this paper, leverages the observation that a progess each
epoch, either joins the MIS or is knocked out bgaeighboruv. If
the latter occurs, due to the low amount of contention preaidy
Lemma 4.3p has a constant probability of knocking aalt of its
G neighbors, and then continuing uncontested to join the Nik6 a
announce this ta. Over®(log n) epochs, thereforey will either
outputl or 0, w.h.p.

LEMMA 4.5. (Termination) By the end of the last epoch, every Subroutine Descriptions.

process has outputtetior 1, w.h.p. We start by describing the two subroutines used by our CCDS
algorithm. The first subroutindgounded-broadcasis used by a

THEOREM 4.6. Using 0-complete link detectors, our MIS al- process to broadcast a message tditseighbors, given a known
gorithm generates an execution that solves the MIS problem i bound on contention for this message. The second subroutine
O(log® n) rounds, w.h.p. directed-decayassumes an MIS and that each MIS process has
a subset of its covered neighbors wanting to send it a mes$age
subroutine efficiently delivers at least one message to &H&h
process.

PROOF. By definition, the algorithm require8(log® n) rounds:
O(log n) epochs each consisting Oflog n) phases each of length
O(logn). To satisfy termination, we note that by Lemma 4.5, ev-
ery process outputs or 1 by the end of the algorithm, w.h.p. To bounded-broadcast(d, m): This subroutine, when called by a pro-
satisfy independence, we note that by Lemma 4.4, notwo psese cessu with messagen, attempts to delivem to u’s G neighbors.
who are neighbors iy both outputl, w.h.p. And finally, to sat- The subroutine works as followsA process calling bounded-
isfy maximality, we note that by the definition of the algbrit, a broadcag®, m) broadcastsn with probability 1/2 for £55(6) =
process does not outpatunless it receives an MIS message from ©(2° log n) consecutive rounds.

a neighbor inE, and any process that sends an MIS message, out- The following lemma, whose proof is deferred to the full vens
puts1. To achieve our final high probability we simply use a union of this paper, states the property that the above subrogtiaean-

bound to combine the two high probability results from aboviel tees.

This corollary about the density of the resulting MIS follow LEMMA 5.1. Assume processcalls bounded-broadcat, m),
from the definition of independence which allows no more than and that during every round of the subroutine, no more thather
a single MIS node in any disk. processes within distanag+ 1 of » are running the subroutine

. o)) concurrently. It follows that: deliversm to all of its G neighbors,
COROLLARY 4.7. Fixan execution in which the MIS algorithm \ p .

solves the MIS problem. For any procassnd distancer, there

are no more thad™ MIS processes within distanceof w.]))
directed-decay({m1,m2, ...)): This subroutine assumes that the

processes have already solved the MIS problem. We will use th

5. CCDSALGORITHM terminology covered processe® describe the processes that are

In this section, we present an algorithm that solves the CCDS not in the MIS. It also assumes that all processes call theosiib
problem in O(% + log®n) rounds, w.h.p., wheré is the tine during the same round. Covered processes pass theisgobro
bound on message size in bits. This algorithm uses the Mk& alg a vector containing the messages they want to attempt te-sand
rithm from Section 4 as a subroutine. As in that previousigect most one message per neighboring MIS process. We assume each
we assume thdt = Q(logn). Without loss of generality, we also message is labeled with the id of its destination. All otheccpsses
assume that = O(Alogn) (as our algorithm never sends mes- pass an empty vector to the subroutine. The subroutine pitseim
sages of any larger size). Finally, we assume that processes ensure that for every covered procesaith a message to send to
provided ab-complete link detector. MIS neighboru, u will receive at least one message from one of its

At a high-level, the algorithm proceeds in two phases. Fitst neighbors with a message to send:to
has processes build an MIS, placing each MIS node in the CCDS. The subroutine works as follow&he subroutine divides time

Next, it connects all MIS nodes withi hops inG with a path into [logn] phasesof length/pp = O(logn), each associated
consisting of CCDS nodes. Standard techniques show thaethe with an exponentially increasing broadcast probabiligrteng with
sulting structure satisfies the definition of a CCDS. The tecé- 1/n and ending withl /2. Every covered process with a message
nical novelty of the algorithm is its efficient method for disering to send simulates a unique covered process for each of its mes

and connecting nearby MIS nodes. In more detail, the simple a sages. Initially all simulated covered processesamtéve. If a
proach would be to have each MIS node give each of its neighbor simulated covered process with a message starts a phase #cti

a chance to explore whether it is on a path to a nearby MIS node. broadcasts its message with the corresponding probadilityng
This would require, howeve)(A) explorations. This is too slow every round of the phase. If a process has multiple simujated
given that there are onl§(1) nearby MIS nodes to be discovered cesses broadcast during the same round, it combines thagesss
(a property that follows from Corollary 4.7, which bounds tten- (No process has more than a constant number of neighborg in th
sity of our MIS). The algorithm presented here, by contnastkes MIS, therefore these messages are of €iéogn) bits, match-
use of abanned lisdata structure to ensure that an MIS node gives ing our assumption thdt = Q(log n).) At the end of each phase,
a neighbor a chance to explore only if that neighbor ison it p every MIS process that received a message during the phase ru
to a nearby MIS node that has not yet been discovered. This re-bounded-broadcast + 2,m) to send its neighbors stop order
duces the required number of explorations fraA) to O(1). m, labeled with its id. On receiving a stop order from its mgsssa
TheO(Alobgz ") term in the time bound expression describes the destination, a simulated covered process sets its stainadtve

time required to for an MIS node to communicate its banneddis for the remainder of the subroutine.
its neighbors. For large message size (i.e., lajgthis is fast, and

the time to build the MIS and explore dominates the time cexpl LEMMA 5.2, Assume that in some round after the processes

ity. For small message size, however, this banned list canicau have solved the MIS problem, they run the directed-decasogub

tion time dominates the time complexity and yields an alanino tine. It follows that by the end of the subroutine, for evesyared

faster than the simple approach of giving each neighbor aggha processv that has a message to send to MIS neighbpw will

to explore. receive at least one message intended for it from a neighgori
For clarity, we start by presenting and proving the corressof covered process, w.h.p.

the subroutines before moving on to the main algorithm.

Main Algorithm Description.

Having described our subroutines we continue by descrithiag
main CCDS algorithm that makes use of these subroutines. Our
algorithm begins with the processes executing the MIS dlgar
from Section 4. We assume every process not in the MIS knows
the ids of the MIS processes that neighbor i€rfthe algorithm in
Section 4 provides this information). After building the $Ithe
algorithm adds every MIS process to the CCDS, then atteropts t
discover, and add to CCDS, a constant-length path betwesy ev
pair of MIS processes that are wittirhops inG.

At a high-level, this path-finding procedure works as fokow
Each MIS process maintains éanned list initially set to con-
tain its id and the id of the processes in its link detecto(iset, its
neighbors inG). Throughout the path-finding procedure, process
u will add to its banned lisB3,, the MIS processes that it discovers
as well as the&& neighbors of these discovered processes. When a
given MIS process asks its neighbors to a nominate a neaddy pr
cess to explore (i.e., to see if its connected to an MIS),asukis
banned list to prevent exploration of processes that leattéady
discovered MIS processes. In other words, an MIS procesastil
processes to report any neighbors thatrerealready in its banned
list.

We divide the search procedure irdearch epochsDuring the
first phase of each epoch, processvill transmit its banned list
to its neighbors using bounded-broadcast. The time redjtirelo
this depends o#: this is the source of thé /b term in the final
time complexity.

During the second phase, procesasks its reliable neighbors to
use directed-decay to nominate one of their reliable neighfor
further exploration (recall, “reliable neighbor” refesd neighbor
connected by areliable link). The restriction for such a imation,
however, is that the nominated process cannot be in the Hdishe
Notice, these nominations require that each process krisveei
of reliable neighbors: this is where the assumptio)-abmplete
link detectors proves useful. By the definition of the bantist]
any such nominated process must either be an MIS process that
does not know about, or be a neighbor of an MIS process:that
does not know about. In both cases, we find a new MIS process
within 3 hops if such an MIS process exists.

In the third phase, bounded broadcast is used to talk to ttme no
inated process, find out if it is in the MIS, or if it is a neightud a
process in the MIS, and then transmit the necessary newniafor
tion tow to add to its banned list.

This path findingprocess, which ensures thahever explores a
path that leads to an MIS process it already knows, is whaiges
our efficient running time (as long as the message size ig)atfy
we instead had. explore every reliable neighbor, and in turn had
these neighbors explore eachtbéir neighbors, the running time
would beO(Apolylog(n)), regardless of the message size.

We continue by describing more details of this path findingy pr
cedure: Each MIS process maintainisamned listB,, and adeliv-
ered banned lisD,,. B,, is initially set tou’s link detector set and
D, is empty. Each non-MIS processmaintains aeplica banned
list B;, and aprimary replica banned lisP;, both initially empty,
for each MIS procesa that neighbors it irG. The algorithm pro-
ceeds by dividing groups of consecutive rounds dg = O(1)
search epochsEach search epoch is divided irBsearch phases
which we describe below.

Phase 1: Each MIS process dividesB,, \ D., into messages of
sizeb — log n bits, whereb is the maximum message size. It then
includes its own id with each message so recipients knowitss.
Processu sends these messages to its non-MIS neighbors using

bounded-broadcast m), with 6 = 7%t = O(1). Let process

v be a non-MIS process that neighbarsn G. This process adds
the values received from to B;,. If this is the first search epoch,
it also adds these values . At the end of the phase; sets
D, = B,. The phase is of a fixed length, long enough for the
maximum number of calls to bounded-broadcast that mighd teee
be made. As will be clear by the description of subsequensgsha
the setB,, \ D, never contains more thah ids, therefore we can
bound the number of calls by (2108™).

Total Length:O(21952) rounds.

Phase 2: Let N,, be the subset of processes that neighbor MIS
process: in G, where eacl € N,, has a neighbow in its link de-
tector set such that ¢ B,. We sayw is the neighbonominated
for uw by v. To do so, the processes run directed-decay to report their
nominations to their neighbor MIS processes. With high phib
ity, each MIS process will hear from one process ifV,,, if the set
is non-empty. The fixed length of this process is number ofidsu
required to run directed-decay.

Total Length:O(log? n) rounds.

Phase 3: Let u be an MIS process that heard from a process
v € N, during the previous phase. Letbe the process nominated
for w by v. During this phasey will initiate an exploration ofw.

In more detail, using bounded-broadcast, with the samenpteas

as phasé, u tellsv that it has been selected. Nextises bounded-
broadcast with these same parameters tatétat it wants to find

out more about it. lfw is in the MIS, it sends: its neighbor set. If

w is not in the MIS, it chooses a neighhothat is in the MIS, and
sends tou the id ofx and P, (i.e., z’s neighbor set). Finallyy
uses bounded-broadcast to pass this information alongwdnich
adds the new values to its banned $8t, Process andw add
themselves to CCDS by outputtingf they have not already done
so. The fixed length of this phase is set to the number of rounds
required for the maximum number of calls that might need to be
made to bounded-broadcast, which, as in phase 1, is boursded a

O(Alzgn).

Total Length:O(219522) rounds.
The total running time for the MIS algorithm i©(log® n)
rounds, and the time required to rud(1) search epochs is

O(mam{Alngz’Z log?n}). Combined this provides our final run-

ning time of O(1% | 10g® 1) rounds.
We conclude with our main theorem:

THEOREM 5.3. Using0-complete link detectors, our CCDS al-
gorithm generates an execution that solves the CCDS prolriem

O(&leg’n 103 1) rounds, w.h.p.

PROOF Our CCDS algorithm first constructs an MIS using the
algorithm presented in 4. It then executes; search epochs, each
consisting of three phases. The MIS algorithm and the segroth
phases are of fixed length, so the running time of the algurith
follows directly from its definition.

For the remainder of the proof, assume that the MIS algorithm
called by the CCDS algorithm solves the MIS problem, and that
all O(n) calls to bounded-broadcast and directed-decay during the
search epochs satisfy the guarantees of Lemmas 5.1 andyp&. B
union bound, these assumptions hold w.h.p.

Useful Notation. We begin by defining some useful notation: (a)
We say a process is coveredby an MIS process if v andu are
neighbors inG. (b) we say an MIS process hasdiscoveredan
MIS processv (u # v) if w learned about andv's G neighbors
during phases of a search epoch; (c) we say an MIS process
connectedo an MIS process (u # v) if there exists a path in the
CCDS of length hops or less betweemandv in G; and (d) we

defineU,,, for MIS processu, to be the set of MIS processes (not neitherv, w, nor any process on their connecting path are within
includingu) that are within3 hops ofu and that areot connected hop ofu. By Corollary 4.7, there are at mast= ¢ = O(1) MIS

to u. processes within distandé of «, and therefore at mosf = O(1)

Useful Claims. Our goal will be to show that this séf,, be- pairs of MIS processes, each contributing no more tharocesses
comes empty by the end of the algorithm. To aid this task, we to the CCDS, for a total of no more than? = O(1) CCDS pro-
define the following useful claims: cesses withinl hop ofu, as needed. [J

Claim 1: If MIS processu discovers MIS process, then by the
end of the same search epoch it adds a path of length no meretha g, CCDSALGORITHM FOR

3 hops between andv to the CCDS. INCOMPLETE LINK DETECTORS

Proof. This claim follows from the definition of the algorithm. i)))
Claim2: Letu be an MIS process. Assume that during phase !N the previous section, we described an algorithm that obues

2 of some search epoch at least one process coveredhas a the CCDS problem with &-complete link detector. In this section
neighbor to nominate ta. It follows thatu will discover a new ~ We consider whether we can still solve the problem withraom-
MIS process during this epoch. pletellnk detector (i.e., g-complete !lnk detector for some > 0).
Proof. Letw’ be the process covered byassumed by the claim. !N particular, we describe an algorithm that solves the ferokin
Assumeu’ is nominating a neighbar’ for . By definition of the O(Apolylog(n)) rounds, when combined with &-complete link
algorithm,v’ is not in the banned set,, for this epoch. It follows ~ detector for anyr = O(1).” In the next section, we will show
that eithery’ is an MIS process that has not been discovered,by ~ the gap between this algorithm and the algorithmfaromplete
or none of the MIS neighbors ef have been discovered by At detectors is inherent.)
least one such’ succeeds in its call to directed decay. In either The algorithm follows the same strategy as the CCDS algarith
caseu discovers a MIS process during phasef this epoch. presented in Section 5—i.e., build a dominating structuee con-
Main Proof Argument. By repeated application of Claimy it nect nearby dominating process.es—bu.t differs in its detalilo
follows thatw will keep discovering processes withtrhops until start, notice that the MIS we get in Section 4 guarantees the m
its neighbors run out of nominations far There are two things ~ imality condition only in H. For7 > 0, however,H \ G can
to note here: first, banned sets are monotonically incrgasio be non-empty: potentially resulting in a process that isfifam

once a process runs out of nominations it will never agairehav any other MIS process in terms 6f edges. Such an event would
nominations; second, by Corollary 4.7, we know there are arem ~ thwart attempts to connect nearby MIS process—i.e., tiaegly
than7*¢ = O(1) MIS processes withi hops ofu, so if we set used in Section 5—as a lack of a short patid:ican prevent com-
sy = I*?, we have enough search epochs to reach the point wheremMunication between two such processes.

We run out of nominations. To compensate for this unreliability, we instead use a mioce
We will now consider the sel/, of processes that are in the that sequentially executes—+ 1 iterations of the MIS algorithm
MIS, are within3 hops ofu, but are still undiscovered by after from Section 4. A process that outputsn any of these iterations

the point where its neighbors have run out of nominationsr Ou d0€s not participate in subsequent iterations. To ensuitethie
goal is to show that a constant length path in the CCDS between Maximality of each iteration is defined fdf, we also have pro-

and these processes will exist by the end of algorithm. Werfirte cesses label t_h(_eir messages with their local _Iink deteetts. SA
that every process € U, must be exactly hops fromu: if some processu receivinga message from proqesswlll keep the mes-
v was within2 hops, it would have been nominated by its common Sage if and only ifv € L, andu € L, (i.e., the two processes
neighbor withu until discovered. Lew, «’, v/, v be a3 hop path are con_nected il). This procedure provides the following useful
from u to somev € U,,. Because we assume that no neighbor of Properties:

u has nominations for at this point,y” must be in the banned set LEMMA 6.1. Using ar-complete link detectors, for any =

].3u—o.therwise;u’ could nominate it. By the definition of the algo- ()(1), the above procedure require(log®) rounds, and w.h.p.
rithm, it follows that thatu must have previously discovered some it satisfies that (a) every process either outpits has aG neigh-

MIS processw such thatw neighborsy’. This, in turn, puts MIS oy that outputsl; and (b) there are no more thaf(1) processes
processw within 2 hops ofv, on the pathw, v’, v. As we argued that outputl within G’ range of any process.

above, however, any MIS processes witBihops will eventually
discover each other. It follows that by the end of the aldonitv
will discoverv.

We now have a path from to w and fromw to v. By claim1,
because each path was from a discovery, each is of |&rutips or
less. We can combine these two paths to get a single patmgihle
6 hops or less, from to v.

Assuming our assumptions from the beginning of the proad hol
which occurs w.h.p., we have shown that the algorithm cantgra
CCDS consisting of all MIS processes, plus a constant-tepgth
between every pair of MIS processes witlBimops. By the stan-
dard argument (See sectidré.1 of [8]), this yields a valid CCDS.
We are left to show that the CCDS is constant-bounded. Toeprov
this, fix a process:. By Corollary 4.7, there are only a constant
number of MIS processes withinhop of u in G’. We must also
bound, however, the CCDS processes added by connectinigynear
MIS processes with a path. Consider every pair of MIS pragess >Solving the problem for larger remains an open problem, though

(v, w) such thaw discoveredv and added a path of lengttor 3 to our intuition is that the problem will become impossible erthe

; 7 grows larger than the bound on neighboring CCDS processes al
the CCDS. Ifv andw are both more than distande from v, then lowed by the constant-bounded condition of the CCDS problem

PROOF The number of rounds is easily derived: we run the
O(log® n) time procedure of Section 4,4- 1 = O(1) times. The-
orem 4.6, when combined with our above modification to the MIS
algorithm that has processes discard messages frontinoeigh-
bors, proves that a single iteration of our modified MIS aikipon
satisfies maximality ind. For a process taeveroutput0 in the
iterated procedure, it has to receive- 1 such MIS messages from
an H neighbor, one in each iteration. These must be sent by dis-
tinct processes, since a process that outputisome iteration does
not participate in the subsequent iterations. It follownat tha pro-
cess output$ for the entire iterated procedure, then it has- 1
neighbors inH that outputted.. Since we are using &complete
link detector, at most of these neighbors can be i \ G, imply-
ing that this process must have at le@sheighbor that outputs:
providing property (a) of our lemma.

To prove (b), we can apply the same argument as in Corol-

lary 4.7. In more detail, we know, w.h.p., that each iteratod

the MIS has at most one process per disk (in the disk overlagt us
in Section 4) output. Overr + 1 iterations, therefore, no more
7+ 1 = O(1) processes outpdt in each disk. Finally, because
there are at most a constant number of disks withinrange of
any process, there are at most a constant number of prodbsses
output1 within G’ of any process. [J

Given the structure obtained by our iterated procedure, ave ¢
now build a CCDS. As in our previous algorithm, we want each
process that outputsin the procedure to connect to all other such
processes that outpitand are withird hops inG. Property (a) of
Lemma 6.1 promises that this will create a connected doinigat
set. To satisfy the constant-bounded property of the CCOB de
nition, we rely on property (b). We are left, therefore, tacect
nearby processes that outdutThe CCDS algorithm of Section 5,

are two playersA and B, represented by the synchronous prob-
abilistic automataP4 andPs. At the beginning of the game, an
adversary chooses two target valugsis € [3]. It then provides

tp as input toP4 andta as input toPg. The automata execute
in rounds. In each round each automaton can output a guass fro
[8]. Notice, however, other than the inputs provided by the ad-
versary at the beginning of the execution, these automaia ia
communication with each other. That is, their execution®ldn
independently. The players solve the game when eftheoutputs

ta or Pp outputstz. We continue with the transformation lemma:

LEMMA 7.2. Let A be a CCDS algorithm such thad, com-
bined with al-complete link detector, guarantees, w.h.p., to gener-
ate an execution that solves the CCDS problerh {i\, n) rounds,
where A is the maximum degree i& and n is the network size.
There exists a pair of probabilistic automat®.4, Pr) that solve
the 5-double hitting game irf2(8,n) = f1(8,n) + O(1) rounds,

which uses a banned list approach to make this process more efy h . wheres is any positive integer.

ficient, does not work in this settifigWe replace this banned list
approach with something much simpler (and slower): eachef t
processes that outpuitdedicates time for each of its link detector
neighbors to announce its id and master, using the bounaedi-br
cast subroutines of Section 5. Call this phasdn phase2, each
of these processes gets another turn, this time announcerg-e
thing it learned in the previous phase. After these two phaessch
process that output knows about every other such process that is
within 3 hops inG, and a path inH. (It might also learn about
a constant number of such processes connectédl but notG.)
This is sufficient to build the CCDS structure. With(A) link de-
tector neighbors, each requiriig(polylog(n)) rounds for each of
their two phases, the total running time 9{Apolylog(n)). We
formalize this below:

THEOREM 6.2. Using 7-complete link detectors, for any =

Notice, with this transformation we shift from the world &dio
network algorithms to the world of abstract games, wherggra
are represented by probabilistic automata. We maintas a pa-
rameter in the running time function, however, so we canifpec
“w.h.p.” in a consistent manner.

PROOF Our transformation requires that we construct two
player automataP4 andPg, given a CCDS algorithmd. Our
strategy is to design our player automata to cooperatiieiylate
an execution of4 running on a dual graph network of si2g,
whereG consists of two cliques, each of sigethat are connected
by a single link, and>" is fully connected. Call the two cliques in
this networkA and B. AutomataP4 simulates processdsto /3
assigned to nodes in cliqug andPp simulates processgst 1 to
23 assigned to nodes in clique. Thus we haveg processes to-

O(1), the CCDS algorithm described above generates an executiontal, each assigned a unique id frg2B], as required by our network

that solves the CCDS problem @ Apolylog(n)) rounds, w.h.p.

7. LOWER BOUND

In Section 6, we described an algorithm that solved the CCDS
problem inO(Apolylog(n)) rounds, given a-complete detector,
for 7 > 0. In this section we show the bound to be nearly tight
by proving that even with a-complete link detectors, construct-
ing a CCDS require§2(A) rounds. This bound holds regardless
of message size. Notice that this represents a clear siepeabat
tween the algorithms for-complete detectors with > 0, and0-
complete detectors, which for sufficiently large messagessolve
the CCDS problem i (polylog(n)) rounds. Formally:

THEOREM 7.1. Let A be a randomized CCDS algorithm such
that A combined with al-complete link detector guarantees,
w.h.p., to generate an execution that solves the CCDS probie
fi(A,n) rounds, whereA is the maximum degree i andn is
the network size. It follows thgt (A, n) = Q(A).

Our proof strategy is to reduce an easily boundable gameeto th
CCDS problem. This reduction requires a pair of transfoiomat

First Transformation.
The first transformation is from a CCDS algorithm to a solatio
to the S-double hitting gamewhich is defined as follows: There

“In this setting, withr > 0, it may be possible, for example, that
the banned list of an MIS node includes a neighbaHif G. This
neighbor will therefore not be nominated, even though ithige
on the path to a nearby MIS process.

model.

In this simulation, we want the two target ids, andtg from
the hitting game to correspond to the ids of the procességnass
to the endpoints of the link connecting the two cliques (Whice
will call the bridge). To do so, we must be careful about how we
simulate thel-complete link detectors used by the broadcast al-
gorithm. In more detail, we hav@4 give each of its simulated
processes a link detector set consisting of the[Sptaind the id
tg + /3, and we havéPs give its simulated processes the set con-
sisting of {3+ 1, ..., 23} and the idt 4. It follows, that each player
is simulating their processes receivind @omplete link detector
set that is compatible with a process assignment that ha®gso
ta (in clique A) andts + 3 (in clique B) as the endpoints of the
bridge.

We have each of the two player automata simulate each round of
the CCDS algorithm as follows: if two or more simulated pieses
broadcast, or no simulated process broadcasts, then akgses
simulated by the automata receive Notice, here we leverage the
fact that we are in the dual graph model. Assume, for exartide,
ta and one other process, broadcast in cliquel. In the classic
radio network model{ 4’s message would be received by process
tp + B because is not connected tos + S. In the dual graph
model, however, the adversary can choose in this round teedel
a message oils G’ edge tots + 3, causing a collision witht 4's
message.

On the other hand, if only one simulated process broaddhsts,
all processes simulated by that automata receive the nessag
the automata makes a guess at the end of the round. The guessin
works as follows: if processsimulated byP 4 broadcasts alone in

a simulated round4 guesses during this round of the game, and
if 7 simulated byPgz broadcasts alond? guesseg — .

Finally, if the simulated processes in cligue(resp. B) termi-
nate (i.e., they have all outputt@cr 1), thenP (resp.Pg), halts
its simulation and guessegresp.i — /), for each simulated pro-
cess; from its clique that output. Because players can only output
one value per round, but multiple simulated processes froliae
might join the CCDS, completing this guessing might requirg-
tiple rounds. Due to the constant-bounded property of th®EC
however, no more tha®(1) rounds will be needed to complete
this guessing.

To conclude this proof, we must now show that this simulation
strategy solves the double hitting game. We first notice theat
simulations conducted B4 andPs will remain valid so long as
there is no communication required between the cliques. By o
model definition, the only scenario in which a messagsestpass
between the cliques is if process or ts + [(i.e., the processes
at the endpoints of the bridge) broadcasts alone. In this, tesv-
ever, the player responsible for the solo broadcaster wgueds its
target, solving the double hitting game.

We now consider the case where the algorithm terminates with
out communication between the cliques. Assume that thexérec
under consideration solves the CCDS problem (an event that o
curs, by assumption, w.h.p.). Consider the gréphsed in the def-
inition of the CCDS problem. In our simulated network, thiagh
matcheg7: i.e., cliguesA and B connected by a single bridge link.
By the domination and connectivity properties of the CCD&bpr
lem, the endpoints of this bridge must be included in the CCDS
The processes corresponding to these endpointsardt s + 5.
Therefore, when the respective players in the double bitjiame
output the guesses corresponding to their CCDS procedsss, t
will output their targets, solving the game[]

Second Transformation.

Our next transformation is from th8-double hitting game to
the B-single hitting gamewhich is defined the same as double hit-
ting game, except there is now only one player and targett i§ha
the adversary chooses a value fr§#h, and then the synchronous
probabilistic automat& 4,5 guesses one value per round until it
guesses the target value. In the proof of our main theorete-sta
ment, we will show that the single hitting game is easily aeoh
Note the reason we require a non-trivial transformatiomfithe
double hitting game to the single hitting game is becauseexhe
change of input values at the beginning of the double hitjiaugne,
allows for subtle cooperative strategies that prevent o fjust
using one of the automatB4 or Pp as our solution to the sin-
gle player variant. We detail this transformation with tb#dwing
lemma:

LEMMA 7.3. Let(Pa, Pg) be a pair of automata that solve the
B-double hitting game irf2 (3, n) rounds, w.h.p., for any positive
integer 3. We can construct a probabilistic automafu, s that
solves thes-single hitting game infs(8,n) = f2(253,n) rounds,
w.h.p., also for any positive integér

PROOF We are given a pair of automafu andPp that solve
the23-double hitting game irf2 (23, n) rounds, w.h.p. Unwinding
the definition of the problem we get the following: for evergip
of targetst4,ts € [28], Pa andPp will solve the double hitting
game for these targets in no more thaii23, n) rounds, w.h.p.

Let us now unwind even more: if we rgP4 with targett 4 and
input ¢, and runPp with targettg and inputt 4, at least one of
these two automata will output their target ja(23,n) rounds,

w.h.p. To make this argument we must proceed carefully. Reca
we define w.h.p. to be — -1 for some constant that is suffi-
ciently large for our needs. In this case, assume it is at lgfas
size2. Let pa be the probability thafP fails to outputta in
f2(28,n) rounds given inputg. And let pp be the probability
thatPp fails to outputtz in f2(23,n) rounds given input 4. No-
tice, these two probabilities are independent as the pay®mata
execute independently once provided their respectivetsnpBy
our assumption that at least one player succeeds with higtapr
bility, we knowpapp < ;. To satisfy this inequality, at least one
of these probabilities is no larger thgﬁ/—z. The player automata
with this probability therefore solves the game fast, whemwith
(ta,ts), with probability at least — ﬁ which still qualifies
as “w.h.p.” Call this automata the “winner” for this pair afrgets
(if both output in the required time with the required proiigh
default to call automat® 4 as the winner).

With this in mind, we can calculate @3 x 203)-sized table,
where each positiofiz, y) contains eitherd or B depending on
which corresponding automata is the winner for targats= =
andtp = y. (Notice, this table is not something constructed by
Pa,B, itis instead something that can be calculated offline tp hel
constructP4,g.) By a simple counting argument, there must exist
either: (a) a column with at leagtA's; or (b) a row with a least
B’s.

For the remainder of this construction, assume we find soilre co
umny such that this column contains at le@sA's. The case for
a row with 8 B’s is symmetric. Given this colump, we know
that there is a subsét, C [23] of size 8, such that if we rurP4
with targett4 € Sy, and inputtg = y, it will output the target in
f3(28,n) rounds, w.h.p. (e.g., we can defigg to be the first3
rows in columny that contain A.) Let) be bijection fromS, to
[8].

We now defineéP 4, g as follows: have the automata simuldg
being passed inpuj. If the simulatedP 4 outputs a guess in a
round, ande € Sy, P4, outputsy(x).

We now argue thaP 4, solves thes-single hitting game. Let
ta,p € [0] be the target chosen f@ 4, 5 at the beginning of some
execution of the single hitting game. By definition, therésexan
x € Sy such thaty(x) = ta,p. By the definition of our table,
we know P4 will output targetta = =z, given inputtg = y, in
f2(28,n) rounds, w.h.p. It follows tha®P 4,z simulatingP4 with
this input will therefore outpud(x) = t 4, 5 in this same time with
this same high probability, as needed.]

Main Proof.
We can now pull together these pieces to prove Theorem 7.1:

PROOF(OF THEOREM7.1). Starting with the CCDS algorithm
A provided by the theorem statement, we apply Lemmas 7.2
and 7.3, to produce a solution to tlfesingle hitting game that
solves the game irfs(8,n) rounds. We next note that the-
single hitting game, which requires a player to identify ahia
trary element from among elements, requiref(5) rounds to
solve w.h.p. (We formalize this intuitive probability faas part of
the proof for our lower bound on randomized broadcast, ptese
in [9].) This yields: f3(8,n) = Q(B). Finally, substituting the
running time functions generated by our transformations,get:
fa(B,n) = f2(28,n) = fi1(28,n) + O(1). It follows from our
bound onfs that f1 (28, n)4+0O(1) = Q(3). There exists a graph in
which A = 23, and thereforg1 (A, n) = Q(A), as needed. [J

8. DYNAMICLINK DETECTORS

This paper has considered building a CCDS as a one-shot prob-
lem: processes are provided a static estimate of theibteliseigh-
bors, formalized as a link detector set, and then attemptitd the
desired structure as quickly as possible. In long-liveckigss net-
works, however, link status is not necessarily stable. joissible
for a link that has behaved reliably for a long period to sunigle
degrade into unreliability (this could happen, for examplige to a
change in the multipath environment). We can capture thtsge
with a dynamic definition of link detector as a service thatmles
a set to each process the beginning of every roun@ definition
more aligned with the classfailure detectorabstraction [3]). We
say a dynamic link detectatabilizesat some round, if in every
execution its output matches the definition of the corredpmn
static link detector at and never again changes in future rounds.

Given the efficiency of our CCDS solution (at least, under the
assumption of large messages), a simple approach to dewilimg
changing link detector output is to rerun the CCDS algoritvery

Scps = Q(A1E2n 4 1og®n) rounds. Call this theontinuous
CCDS algorithm We can assume that when we rerun the algo-
rithm, processes wait to change their outputs until the \arg

of the algorithm, so they can transition from the old CDS te th
new CCDS all at once. We say that the continuous CCDS algo-
rithm solves the CCDS problem by some roundf for any round

r’ > r, the output solves the CCDS problem, w.h.p. The following
theorem follows directly:

THEOREM 8.1. In any execution of the continuous CCDS al-
gorithm with a0-complete dynamic link detector that stabilizes
by roundr, the algorithm solves the CCDS problem by round
r+20cps.

9. FUTURE WORK

This work motivates a collection of related open problems: F
example, our CCDS algorithm for tliecomplete link detector set-
ting requires large messages in order to terminate faseniams
open whether this is fundamental, or if there exist fasttgmis for
the small message case. It is also interesting to considetheh
there exist CCDS algorithms for non-constant Finally, our 7-
complete link detector abstraction is only one possiblendtéin
from many different approaches to defining this style of merv
We leave the exploration of different definitions as addisiiofu-
ture work.

In addition, it remains an interesting open question to @l
the dynamic case in more detail. For example, we might want to
redefine what it means to solve problems like MIS and CCDS$ wit
respect to the current output of the link detector. We midéd a
want to design efficientepair protocols that can fix breaks in the
structure in a localized fashion, rather than reusing theespro-
tocol.

10. REFERENCES
[1] M. Abusubaih. A New Approach for Interference

Measurement in 802.11 WLANSs. Proceedings of the

International Symposium on Personal Indoor and Mobile

Radio Communication2010.

D. Aguayo, J. Bicket, S. Biswas, R. Morris, B. Chambers,

and D. De Couto. MIT Roofnet. IRroceedings of the

International Conference on Mobile Computing and

Networking 2003.

[3] T. D. Chandra and S. Toueg. Unreliable failure detecfors
reliable distributed systemdournal of the ACM
43(2):225-267, 1996.

(2]

[4] A. Clementi, A. Monti, and R. Silvestri. Round robin is

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

optimal for fault-tolerant broadcasting on wireless natgo
Journal of Parallel Distributed Computing4:89-96, 2004.
D. De Couto, D. Aguayo, J. Bicket, and R. Morris. A
High-Throughput Path Metric for Multi-Hop Wireless
Routing.Wireless Networksl 1(4):419-434, 2005.

D. De Couto, D. Aguayo, B. Chambers, and R. Morris.
Performance of Multihop Wireless Networks: Shortest Path
is Not EnoughACM SIGCOMM Computer Communication
Review 33(1):83-88, 2003.

K. Kim and K. Shin. On Accurate Measurement of Link
Quality in Multi-Hop Wireless Mesh Networks. In
Proceedings of the Annual International Conference on
Mobile Computing and Networking006.

F. Kuhn.The Price of Locality: Exploring the Complexity of
Distributed Coordination PrimitivesPhD thesis, ETH
Zurich, 2005.

F. Kuhn, N. Lynch, and C. Newport. Brief Announcement:
Hardness of Broadcasting in Wireless Networks with
Unreliable Communication. IRroceedings of the
International Symposium on Principles of Distributed
Computing 2009.

F. Kuhn, N. Lynch, C. Newport, R. Oshman, and A. Richa.
Broadcasting in Unreliable Radio Networks.RPmoceedings
of the International Symposium on Principles of Distrilalite
Computing 2010.

F. Kuhn, T. Moscibroda, and R. Wattenhofer. Initiatigi
Newly Deployed Ad Hoc and Sensor Networks. In
Proceedings of the Annual International Conference on
Mobile Computing and Networking004.

F. Kuhn and R. Wattenhofer. Constant-Time Distributed
Dominating Set ApproximatiorDistributed Computing
17(4):303-310, 2005.

F. Kuhn and A. Zollinger. Ad-Hoc Networks Beyond Unit
Disk Graphs. IrProceedings of the Workshop on the
Foundations of Mobile Computing003.

T. Moscibroda and R. Wattenhofer. Maximal independent
sets in radio networks. IRroceedings of the International
Symposium on Principles of Distributed Computigg05.

S. Parthasarathy and R. Gandhi. Distributed AlgorgHor
Coloring and Domination in Wireless Ad Hoc Networks. In
Proceedings of the Conference on the Foundations of
Software Technology and Theoretical Computer Science
2005.

K. Ramachandran, |. Sheriff, E. Belding, and K. Almérot
Routing Stability in Static Wireless Mesh Networlassive
and Active Network Measuremepages 73-82, 2007.

J. Schneider. Personal Communication, ETH Zurich, Jan
2011.

K. Srinivasan, M. Kazandjieva, S. Agarwal, and P. Levis
The -Factor: Measuring Wireless Link Burstiness. In
Proceedings of the Conference on Embedded Networked
Sensor Systen2008.

P. Wan, K. Alzoubi, and O. Frieder. Distributed Constian
of Connected Dominating Sets in Wireless Ad Hoc
Networks. InProceedings of the IEEE Conference on
Computer Communnication2002.

M. Yarvis, W. Conner, L. Krishnamurthy, J. Chhabra,

B. Elliott, and A. Mainwaring. Real-World Experiences with
an Interactive Ad Hoc Sensor Network. Rtoceedings of the
International Conference of Parallel Processji&p02.

