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Abstract. Quorum systems are commonly used to maintain the con-
sistency of replicated data in a distributed system. Much research has
been devoted to developing quorum systems with good theoretical prop-
erties, such as fault tolerance and high availability. However, even given
a theoretically good quorum system, it is not obvious how to efficiently
deploy such a system in a real network. This paper introduces a new
combinatorial optimization problem, the Quorum Deployment Problem,
and studies its complexity. We demonstrate that it is NP-hard to approx-
imate the Quorum Deployment Problem within any factor of nδ, where
n is the number of nodes in the distributed network and δ > 0. The
problem is NP-hard in even the simplest possible distributed network: a
one-dimensional line with metric cost. We begin to study algorithms for
variants of the problem. Some variants can be solved optimally in poly-
nomial time and some NP-hard variants can be approximated to within
a constant factor.
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1 Introduction

The most common technique for ensuring fault-tolerance in a distributed system
is replication: the data or code is replicated at a large number of nodes in the
network, thus ensuring that no small number of failures can derail the compu-
tation. The primary difficulty with this approach is ensuring the consistency of
replicas, without increasing the cost of accessing the data too much. There is
a fundamental trade-off between the fault-tolerance of the data and the cost of
maintaining consistency.
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Quorum systems have long been used (e.g., [10, 26, 8, 14]) to solve the problem
of replica consistency. A quorum, q, is a set of nodes in the network, and a
quorum system is a set of quorums, Q, such that every two quorums in Q share
at least one node. That is, given two quorums, q, q′ ∈ Q, there exists some node
i ∈ q ∩ q′; the intersection of these two quorums is non-empty.

In order to ensure the consistency of the data, when a node chooses to modify
the data, it notifies some quorum, say, q ∈ Q, of the modification; when a node
wants to access the data, it contacts some quorum, say, q′ ∈ Q. Since the two
quorums, q and q′, intersect at some node, we can be sure that the read operation
that accesses the data learns about the earlier modification. Variations on this
technique are frequently used to implement data replication (e.g., [1, 3, 6, 5]).
For example, Attiya et al. use this technique to construct a read/write shared
memory ([2]), and this is later extended to construct a reconfigurable read/write
shared memory ([16, 11]). A similar technique has been used for mutual exclusion
protocols (e.g., [8, 17]) and secure access protocols (e.g., [19]).

Much of the original work on quorum systems assumes that each quorum
consists of a majority of the nodes in the network. In this way, the intersection
property is immediately guaranteed, and optimal fault-tolerance is achieved.
(See, for example, [29, 10, 30].) More recently, however, there has been much re-
search developing more complicated quorum systems with a variety of interesting
properties, such as improved availability, faster responses, and more flexibility
to respond to dynamic systems. (See, for example, [4, 23, 18, 21, 20].)

Typically, an algorithm designer first constructs quorums with these types of
good properties, and only then decides which network node will use which quo-
rum so as to achieve low cost of network communication. Tsuchiya et al. [28] and
Fu [7], on the other hand, have taken a different approach; their algorithms begin
with a network, and determine a quorum system that is optimized under cer-
tain performance metrics. Unfortunately, the resulting quorum systems do not
necessarily guarantee good fault tolerance, availability, etc. By first designing
the quorum system, and then determining a good deployment, it seems possi-
ble to obtain both good network performance as well as good quorum system
properties.

Let us illustrate this process in an example. Consider the quorum system in
Figure 1(a) (originally described in [4]). The nodes in the network are arranged in
a grid with

√
n nodes in each row and column. Each quorum consists of one row

and one column. Any two quorums, then, intersect at two nodes; for example,
in Figure 1(a) quorums q and q′ intersect at node i. Figure 1(b) represents an
arbitrary network embedded in a two-dimensional plane in which the cost of
communication between any two nodes is proportional to the distance between
the nodes. In order to use the quorum system, each node in the real network
must be mapped to a node in the grid, as in Figure 1(c). Then, each node chooses
one of the quorums to use. For example, node i might choose to use quorum q,
while node j might choose to use quorum q′. In an optimal world, each node is
close to all the nodes in the quorum that is chooses.



iq

q’

(a) Grid quorum system (b) Network of
real nodes

(1, 1)

(1, 2)

(1, 4)

(2, 2) (2, 3) (2, 4)

(2, 1)

(3, 1)

(4, 3)
(4, 2)

(1, 3)

(3, 3)

q

i

q’

j

(4, 4)
(4, 1)

(3, 4)

(3, 2)

(c) Mapping of real
nodes to quorum system

Fig. 1. Figure 1(a) represents an abstract quorum system of 16 nodes, where q and
q′ are two possible quorums, and i is a node in the intersection. Figure 1(b) is an
example of a network of nodes, embedded in a two-dimensional plane; communication
time between two nodes is proportional to their distance. Figure 1(c) is a mapping of
the real nodes in the network onto the abstract nodes in the quorum system.

If the quorum system is badly deployed, the cost of maintaining consistent
replicas may be prohibitively expensive. It turns out that for completely natural
quorum systems – and real world networks – the difference between an optimal
deployment and a sub-optimal deployment can be quite large. In fact, we can
show that for every non-trivial quorum system, there is some network in which
an optimal deployment is much better than a bad deployment. If there are two
nodes connected by an expensive communication link (for example, the network
is occasionally partitioned), a sub-optimal deployment may require the nodes to
communicate while an optimal deployment may not.

In this paper, we introduce the Quorum Deployment Problem, the problem
of using a quorum system optimally. We assume that the set of quorums is
fixed, and that the cost of sending a message between any two nodes is known
in advance. The cost for some node, i, of using a quorum system is defined to
be the cost of sending a message to every node in some quorum. Our goal is to
determine the mapping from the real nodes in the network to the abstract nodes
in the quorum specification, and the choice of which quorum each node should
use during an operation. We present the problem more formally in Section 2.

Summary of Results

Our goal in this paper is to determine when the Quorum Deployment Problem
can and cannot be efficiently solved. We first notice that a more constrained ver-
sion of the problem, the Partial Deployment Problem, is solvable in polynomial
time (see Section 3). The general version of the Quorum Deployment Problem,



though, is quite hard. Even in the simplest possible distributed network – where
the nodes are arranged in a line – the problem is NP-hard.

The natural question, then, is whether it is possible to determine an ap-
proximately optimal deployment. We show in Section 4 that it is NP-hard to
approximate an optimal deployment within any constant factor. In fact, it is
hard to approximate an optimal deployment within any factor of nδ for any
δ > 0, where n is the number of nodes in the network.

Finally, in Section 5, we explore special cases (that are still NP-hard) in
which the problem can be approximately solved, and in Section 6, we conclude
and discuss future work.

2 The Quorum Deployment Problem

In this section, we formally define the Quorum Deployment Problem. The goal of
the Quorum Deployment Problem is to determine, given a quorum system and
a distributed network, how best to make use of that quorum system.

More formally, assume we are given a distributed network consisting of n
nodes, connected by a message-passing network. We are given an n by n matrix,
C, that specifies the cost of sending a message from node i to node j: Ci,j is
assumed to be the latency of the network connecting i and j. In this paper, we
assume that the communication network is fixed. Anytime the network changes,
the deployment must be recalculated, resulting in a quorum reconfiguration.

We are also given a quorum system, Q. For concreteness, we assume that Q
consists of exactly n quorums, one for each node in the network. While quorum
systems with more – and fewer – quorums may be interesting, we discover that
the problem is quite hard even with this restriction. We assume that the quorum
system is specified as an n by n matrix, where the columns represent the nodes
in the quorums and the rows represent the quorums. Each entry in the matrix
is either a 0 or a 1. Quorum p contains node j if (and only if) Qp,j = 1. (See
Figure 3(b) for an example of a quorum system in matrix form.)

Recall that the original notion of a quorum system assumes that every pair
of quorums intersect. Occasionally in this paper, we relax this restriction, and
allow the matrix Q to contain quorums that do not share a node. It turns out
that the relaxed version of the problem is polynomially equivalent to the strict
version of the problem.

A quorum deployment, then consists of two components. First, recall that
each column in the quorum matrix represents a node; therefore each column in
the quorum matrix must be assigned to a node in the network. This determines
which real nodes are in each quorum. If node i is assigned to column j, then Qp,j

determines whether node i is in quorum p. (Recall that each row of Q represents
a quorum.)

Second, each node is assigned a quorum to use. Typically when using a quo-
rum system, a node performing an operation must send a message to every node
in some quorum, or receive a message from every node in some quorum. If, for
example, node i is assigned quorum p, then whenever an operation occurs at



node i, it first attempts to contact quorum p. If this fails (due to the failure of
nodes in quorum p, for example), then node i may contact other quorums. (It is
a separate – and harder – problem to determine a sequence of quorums to con-
tact.) In this paper, we attempt to optimize for the common case, where quorum
p has not failed. For each node i, the cost of the deployment is determined by
the cost of accessing each node in its assigned quorum. For example, if node i is
assigned quorum p, then the cost of the quorum deployment for i is:

∑

j∈p

Ci,j

We express each of the two components of quorum deployment as a permu-
tation on [1, n]. We refer to the first component, the assignment of a node to a
column in the quorum matrix, as the permutation β. That is, node i is assigned
to column j if β(i) = j. Therefore, if node i is assigned quorum p, then the cost
of the quorum deployment for i is:

n
∑

j=1

Ci,j · Qp,β(j)

The first term determines the cost of accessing node j, and the second term
determines whether node j is in quorum p: the term Qp,β(j) is 1 if the column
assigned to j is part of quorum p.

We refer to the second component of the quorum deployment, the assignment
of a quorum to each node, as the permutation α. Node i is assigned quorum p if
α(i) = p. Therefore, the cost of quorum deployment for node i is:

n
∑

j=1

Ci,j · Qα(i),β(j)

The total cost of a quorum deployment is the total cost of deployment for all
the nodes in the network. Therefore, the total cost of deployment, D(C,Q, α, β)
is:

D(C,Q, α, β) =
n

∑

i=1

n
∑

j=1

Ci,j · Qα(i),β(j)

Our goal is to minimize this cost: given matrices C and Q, find two permu-
tations α and β on {1, . . . , n} that minimize D(C,Q, α, β) across all possible
choices for α and β. We call this optimization problem the Quorum Deployment
Problem.

Throughout the paper, we occasionally consider variants and restricted ver-
sions of the Quorum Deployment Problem. We describe these in more detail as
they arise. The following is a brief preview of the variants:



– Relaxed Quorum Deployment : In this variant, the “quorums” are not re-
quired to intersect3. We may at times refer to the original problem as the
strict deployment problem.

– Partial Quorum Deployment : In this variant, one of the two permutations,
α or β, is given in advance as part of the problem instance.

– Linear Quorum Deployment : In this variant, the communication network is
restricted to be a linear network. That is, all the nodes in the distributed
network are embedded on a line.

– Metric Cost Quorum Deployment : In this variant, the cost matrix defines a
metric. In particular, the distances between the nodes satisfies the triangle
inequality.

3 Partial Quorum Deployment

We first consider the restricted problem of Partial Quorum Deployment. In the
general Quorum Deployment Problem, we are given a quorum, Q, and a dis-
tributed network, C, and our goal is to determine a deployment, 〈α, β〉, that
has optimal cost. In the Partial Quorum Deployment problem, we assume that
one of the two permutations in the deployment is fixed. That is, we assume that
either α or β is given.

In one case, the permutation α may be fixed in advance. For example, α may
be fixed as the identity: node 1 uses quorum 1, node 2 uses quorum 2, etc. The
goal is to determine the permutation β, the assignment of nodes to the columns
of the quorum matrix.

In the second case, the permutation β is fixed in advance. The goal, then,
is to determine the permutation α, the assignment of which quorum each node
should use.

Both cases of the Partial Deployment Problem can be reduced to the As-
signment Problem, which has been well studied and can be solved in polynomial
time (see, for example, [25]).

In the Assignment Problem, we are given a weighted bipartite graph, consist-
ing of 2n nodes – n left nodes, L, and n right nodes, R – and a weight function
wi,j ≥ 0 for all i ∈ L and j ∈ R. The goal is to choose a matching consisting of
n edges with minimum weight.

Theorem 1. Given an instance of the Partial Deployment Problem, consisting
of C, Q, and α, we can determine an instance of the Assignment Problem (in
O(n2) time) where the solution to the Assignment Problem is the permutation β
that minimizes the cost of the deployment. The same holds if the Partial Deploy-
ment Problem is specified to include β; the solution to the resulting Assignment
Problem is the permutation α that minimizes the cost of the deployment.

3 In this case, referring to the sets as “quorums” is a misuse of terminology, since the
defining features of a set of quorums is that they intersect. For simplicity, however,
we continue to use this term.
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Fig. 2. Example instance of the Balanced Complete Bipartite Subgraph problem, where
k = 2.

Proof. Assume that the permutation α is given. We construct a bipartite graph
for the Assignment Problem where the left nodes, L, represent the nodes and
the right nodes, R, repesent the columns in the quorum matrix, Q. The weight
of an edge connecting i ∈ L and j ∈ R is the cost of assigning i to column j in
Q. That is:

wi,j =
n

∑

`=1

C`,i · Qα(`),j .

The Assignment Problem results in a permutation that minimizes the cost of
the weights. The resulting permutation minimizes the cost of the quorum de-
ployment.

Equivalently, if the permutation β is given, the left nodes in the bipartite
graph represent the nodes and the right nodes represent the quorums; the weight
of an edge represents the cost of a node using a given quorum. In this case:

wi,j =
n

∑

`=1

Ci,` · Qj,β(`) .

Again, the Assignment Problem minimizes the weights, resulting in a permuta-
tion that minimizes the cost of the quorum deployment. ut

4 Hardness of the Quorum Deployment Problem

While the Partial Deployment Problem is readily solvable, the general Quorum
Deployment Problem is quite hard. In this section, we first show in Section 4
that it is NP-hard to approximate the general Quorum Deployment Problem
within any constant factor. In fact, for any δ > 0, it is hard to approximate
within a factor of nδ, where n is the number of nodes in the network. We then
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Fig. 3. An example of a reduction from the Balanced Complete Bipartite Subgraph
problem in Figure 2 to the Quorum Deployment Problem.

show that another variant, the Metric Cost Deployment problem, is NP-hard,
and that the relaxed version (where the quorums are not required to intersect)
is also NP-hard to approximate.

Hardness of Approximation

Our main hardness result is derived from a gap-creating reduction from the
Balanced Complete Bipartite Subgraph (BCBS) Problem (see [9] for a statement
of the problem, and [22] for recent results). In this problem, we are given a
bipartite graph, G = (V,E), consisting of left nodes, L, and right nodes, R. We
are also given a constant, k. The goal is to find a balanced complete bipartite
subgraph of size 2k, with k left nodes and k right nodes.

Throughout this section, we use the bipartite graph in Figure 2 as an example.
Notice that this graph has a balanced, complete subgraph of size two, consisting
of nodes 2 and 3 on the left (in L) and nodes 5 and 8 on the right (in R).
However, there is no such subgraph of size three.

In our reduction, we produce an instance of the Quorum Deployment Problem
that has an efficient deployment if and only if the graph G contains a balanced
complete bipartite subgraph of size k.

First, we define the reduction, Cost(G, k) = C and Quorums(G, k) = Q, that
transforms an instance of the BCBS problem into an instance of the Quorum
Deployment Problem. We choose n = |V |+1. The first n−1 columns encode the
original BCBS problem; the last column ensures that all the quorums intersect.

The cost matrix, C, is related to the “complement” of the incidence matrix
for the graph, G: each edge in the matrix G results in a cheap link in the matrix
C, while two disconnected nodes in G are connected by an expensive link in the
matrix C. For the purposes of the reduction, we fix x so that nx is sufficiently
large. The size of x depends on the desired value of δ. (That is, x = O(δ).)



Formally:

Cost(G, k)i,j =







1 if (i, j) ∈ E and i, j < n
nx if (i, j) /∈ E and i, j < n
1 if i = n or j = n

Consider the example in Figure 3(a). The submatrix delimited by the first four
rows and first four columns represents the edges between nodes in L. Notice
that because there are no edges between nodes in L, all the entries are nx. The
submatrix delimited by rows five through eight and columns five through eight
represents edges between nodes in R, and therefore consists only of entries nx.
The last row and the last column contain the value 1. The remaining entries
represent the edges between nodes in L and nodes in R. For example, the entry
at (3, 5) represents the edge between node 3 and node 5. Observe that the cost
matrix is symmetric.

Notice that the existence of high-cost links is important in the reduction. If
the ratio of the maximum communication cost to the minimum cost is bounded
by a constant, then any deployment approximates optimal to within a constant
factor. Therefore, any inapproximability result must allow the ratio to grow as
n grows.

The quorum matrix, Q, consists of k quorums containing the first k nodes,
and the extra node, n. It also contains a single quorum that contains all the
nodes. The rest of the quorums contain only node n. Formally:

Quorums(G, k)i,j =















1 if i, j ≤ k
1 if i = n
1 if j = n
0 otherwise

Consider again the example in Figure 3(b). The first two rows and two columns
contains the value 1, representing the complete bipartite graph of size two. The
last row and the last column contain the value 1, as well.

We show that if the original bipartite graph contains a balanced, complete
bipartite subgraph of size k, then the derived Quorum Deployment Problem has
a small cost. Alternatively, if the original bipartite graph does not contain such a
subgraph, then the derived Quorum Deployment Problem results in a high cost
deployment. A full proof is contained in the full version [12].

Lemma 1. Fix any x > 1. Let G = (V,E) be a bipartite graph, and let 1 ≤ k ≤
|V |. Let C = Cost(G, k) and Q = Quorums(Q, k). Then the following holds:

(G, k) ∈ BCBS ⇒ ∃α,∃β, D(C,Q, α, β) ≤ n2

(G, k) /∈ BCBS ⇒ ∀α,∀β, D(C,Q, α, β) > nx

That is, if there is a size k balanced, complete, bipartite subgraph in G, then the
minimum cost of the resulting deployment is less then or equal to n2. If there is
not a size k balanced, complete, bipartite subgraph in G, then the minimum cost
of the resulting deployment is greater than nx.

Proof (sketch). The proof consists of two parts. In the first, we assume that
(G, k) ∈ BCBS. In the second, we assume that (G, k) /∈ BCBS.



Case 1 – (G, k) ∈ BCBS: First, suppose that there is a balanced complete
bipartite subgraph on 2k nodes in G. We determine a deployment, (α, β) that
has a small cost. Let L′ ⊆ L be the left partition of the subgraph and R′ ⊆ R
the right partition of the subgraph. Choose α to map the nodes in L′ to the first
k rows, and choose β to map the nodes in R′ to the first k columns. Node n is
mapped to row n and column n. Then each of the quorum entries in the first
k rows and k columns is mapped to one of the edges in the complete bipartite
subgraph, and as a result, has cost 1. Each of the quorum entries in row n and
column n is mapped to an entry in the cost matrix of cost 1. Therefore, the total
cost of the deployment is k2 + 2n − 1 ≤ n2, as desired.

Case 2 – (G, k) 6∈ BCBS: On the other hand, suppose that there is no complete
bipartite subgraph on 2k nodes in G. We shall see that any deployment has
cost larger than nx. In particular, every deployment must include at least one
expensive edge. It is clear that node n can, without loss of generality, be mapped
to row n and column n: given an optimal assignment where this is not the case, it
is possible to permute the assignment so that this is the case, without increasing
the cost. Then notice that if there is a deployment that does not include any
entry of nx, then this implies that there exists a complete bipartite subgraph of
size k, which we assumed was not the case. ut

We conclude that the Quorum Deployment Problem is hard to approximate:

Theorem 2. For any δ > 0, it is NP-hard to approximate the Quorum Deploy-
ment problem with factor nδ.

Hardness of Metric Cost Quorum Deployment

In the Metric Cost Quorum Deployment Problem, the cost matrix is restricted
to be symmetric and satisfy the triangle inequality. In this case, the cost of i
sending a message to j is the same as the cost of j sending a message to i, and
the cost of sending a message from i to j is no larger than the cost of sending a
message from i to k and from k to j. It is clear from the reduction in Lemma 1
that this version of the problem is NP-hard:

Theorem 3. The Metric Cost Quorum Deployment Problem is NP-hard.

Proof. We use the same reduction as in Lemma 1, except instead of constructing
the matrix Cost(G, k) by setting non-edge costs to nx, we set non-edge costs to 2.
The matrix immediately satisfies the requirements of a metric. The correctness
follows by the same argument as in Lemma 1, where if (G, k) ∈ BCBS then the
optimal cost of deployment is k2 + 2n − 1; otherwise, if (G, k) /∈ BCBS, then
cost of any deployment is at least k2 + 2n. ut

Hardness of Relaxed Metric Quorum Deployment

If we do not require that the “quorums” intersect, then we can show that such
relaxed deployment problem is inapproximable even when the cost matrix is



symmetric and satisfies the triangle inequality. The proof is inspired by the
reduction from a strongly NP-complete 3-Partition Problem (see [9], SP15) to the
Quadratic Assignment Problem (QAP) (see [9], ND43) given by Queyranne [24].
Our reduction extends the result of Queyranne. Since the deployment algorithm
allows two degrees of freedom, α and β, as compared to QAP that has only one
degree of freedom (α = β in QAP), we construct an instance of the deployment
problem that reduces this flexibility, ensuring that when there is no 3-partition
the cost of deployment is high. The proof is presented in the full version [12].

Theorem 4. The Relaxed Metric Quorum Deployment Problem (with symmet-
ric cost matrix that satisfies the triangle inequality and quorums that do not have
to intersect) is NP-hard to approximate to within any constant factor.

We note that the proof of this theorem implies that when the quorum matrix
is a block diagonal matrix (ones inside blocks and zeros everywhere else) and
the number of blocks can be as large as a polynomial fraction of n, then the
deployment problem is inapproximable to within any constant factor. We also
note that if the quorum matrix contains just one block, then it is NP-hard to
optimally solve the problem. This follows from the proof of Theorem 3, where
the bottom row and right column are trimmed from the matrices.

5 Approximation Algorithms for Metric Costs and
Restricted Quorums

We have seen that if we allow arbitrary relaxed quorum matrix, then there is no
constant factor approximation algorithm for the deployment problem even if we
assume that the cost matrix is symmetric and satisfies the triangle inequality.
It seems that the intricacy of the quorum matrix plays an important role in
the ability to approximate the problem. Therefore, in this section, we establish
a family of somewhat contrived quorum matrices that admit constant factor
approximation for metric cost networks. Solving deployment optimally for this
family, however, is still NP-hard.

We give a constant factor approximation algorithm for the Quorum Deploy-
ment Problem with a block diagonal hyperbolic quorum matrix and a symmetric
cost matrix that satisfies the triangle inequality. The quorum matrix is com-
posed of a constant number p of hyperbolas placed on the diagonal. Each hyper-
bola i is contained inside a constant number ki of nested squares (see Figure 4,
and a formal definition in the full version [12]). The approximation factor is
c = 4 · max1≤r≤p kr. The algorithm runs in O(nk1+...+kp+3p) time.

Theorem 5. There is a c-approximation algorithm for the Quorum Deployment
Problem with a block diagonal hyperbolic quorum matrix and symmetric cost
matrix that satisfies the triangle inequality, where c = 4 · max1≤r≤p kr. The
algorithm runs in O(nk1+...+kp+3p) time.

The proof sketch that follows presents an overview of the approximation al-
gorithm and our key observations. A detailed proof of the theorem is given in



Fig. 4. Left: example of a hyperbola contained in k = 3 nested squares. Middle: exam-
ple of a block diagonal hyperbolic quorum matrix with p = 3 hyperbolas with k1 = 1,
k2 = 3 and k3 = 2 nested squares respectively. Right: a quorum matrix composed
of a part, called vertical telescope, of a single hyperbola. Note that any two quorums
intersect in this matrix.

the full version [12]. For convenience of the presentation, we specify the permu-
tations α and β to rearrange rows and columns of the cost matrix rather than
the quorum matrix. This of course yields an equivalent optimization problem.

Proof (sketch). Suppose for a moment that the quorum matrix has ones inside
a submatrix U ×U , and zeros everywhere else. Let m = |U |. An optimal deploy-
ment will place some rows Ũ ′ and some columns Ṽ ′ of the cost matrix inside
U ×U . When we pick a row i and m columns V , that minimize the sum of costs
at the intersection of the row and the columns, then by the triangle inequality
and symmetricity of the cost matrix, we can conclude that the sum of costs
inside the submatrix V ×V is at most twice the cost of the optimal deployment.
We notice that the conclusion is true even though the optimal deployment may
have Ũ ′ 6= Ṽ ′, i.e., may indeed take advantage of two degrees of freedom to lower
the cost. This observation extends the technique of Krumke et al. [15] developed
for the Quadratic Assignment Problem where we would have Ũ ′ = Ṽ ′ (in QAP
rows and columns are permuted in the same way).

Now suppose that the quorum matrix has the richer structure of a single
hyperbola. Then an optimal deployment has extra ability to avoid high costs
due to “holes” in the quorum matrix, as compared to the U × U case just
discussed. We can show, however, how to effectively deal with these holes by
appropriately rearranging rows and columns to “push” low costs to the areas
occupied by the hyperbola, and leave high costs behind. The hyperbola is con-
tained in k nested squares. The square h has size mh by mh and the hyperbola
has thickness ah at the edge of the square (cf. Figure 4). For each h, we can
find a row ih and mh columns Vh that minimize the sum of costs at the inter-
section of this row and the columns. Since we have selected a row and columns
that minimize the sum, clearly, the cost of any optimal deployment is at least
1/k

∑

1≤h≤k ah

∑

j∈Vh
Cih,j . This simplistic bound leaves too big a freedom in

the choice of subsets Vh, and so the submatrices Vh × Vh would not be useful
for approximation because the submatrices would not have to be nested. Re-
call that the k squares are nested in the optimal deployment, so we can still



bound from below the cost of the deployment if we introduce a constraint that
V1 ⊂ V2 ⊂ . . . ⊂ Vk. With this constraint though, there are dependencies be-
tween Vh’s. Hence we cannot perform the minimization of the sum

∑

j∈Vh
Cih,j

across the choices of ih and Vh independent from the minimization of the cor-
responding sums across other rows and other subsets of columns because we
could get stuck in a local minimum. What we need to do instead, is to min-
imize the value of the entire bound across all possible choices under the con-
straint. We can find the nested subsets Vh and rows ih that minimize the bound
∑

1≤h≤k ah

∑

j∈Vh
Cih,j using an appropriately adjusted polynomial time algo-

rithm of Tokuyama and Nakano [27], in a fashion resembling the method used
by Guttmann-Beck and Hassin [13]. After Vh’s and ih’s have been found, we re-
arrange rows and columns. Using the triangle inequality and symmetricity of the
cost matrix, we conclude that the costs inside submatrix Vh×Vh can be bounded
from above by 2mh times the costs at the intersection of row ih and columns Vh.
If we move the ah lowest cost rows to the top part of the submatrix, then the
sum of costs accumulated there is proportionally reduced, and so it is at most
a ah/mh fraction of the sum of costs inside the entire submatrix. We rearrange
rows of the submatrix V1×V1, then rows of V2×V2 and so on, and then columns.
When rearrangements are done carefully, we can ensure that one rearrangement
does not destroy the upper bounds on costs created by the prior rearrangements.
After the rearrangements, the sum of costs inside the parabola will be at most
4
∑

1≤h≤k ah

∑

j∈Vh
Cih,j . This completes approximation argument for a single

parabola.
Finally, assume that the quorum matrix is a block diagonal hyperbolic quo-

rum matrix composed of p hyperbolas. We modify the algorithm for finding
nested subsets of columns, so that now the algorithm minimizes across p collec-
tions of nested subsets of columns. After we have found the collections, we apply,
to each of the p collections of nested submatrices, the algorithm for rearranging
rows and columns. This yields the desired approximation result and completes
the proof. ut

We contrast our approximation results with the inapproximability results
from the previous section. When the number of hyperbolas can be as big as
a polynomial fraction of n, then the deployment problem is inapproximable to
within any constant factor, even when each hyperbola i is just a single square
completely filled in with ones. However, we can approximate the problem to
within a constant factor when the number of hyperbolas is constant, and even
if each hyperbola is contained in more than one square.

6 Conclusions and Future Work

In this paper, we have introduced the Quorum Deployment problem, a natural
problem that arises when attempting to efficiently replicate data. We have ex-
amined the complexity of a number of variants of the problem, showing that the
Partial Deployment Problem can be solved in polynomial time, while the general



Quorum Deployment Problem and the Relaxed Metric Deployment problem are
inapproximable. Finally, we presented some special NP-hard cases in which the
problem can be approximated and other cases that admit optimal polynomial
time solution.

While many of the results presented in this paper are negative, we believe it
is important to continue examining cases for which quorums may be efficiently
deployed, as the problem has significant practical import. Most previous research
has focused on developing quorum systems that have good robustness to var-
ious failure modes; future research should also take into account the difficulty
of deploying the quorums. While we conjecture that most currently developed
quorum systems (such as the grid quorum system) cannot be deployed efficiently,
we would like to develop families of quorum systems that are both robust and
can be deployed efficiently.
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