
Distributed Agreement with Optimal Communication Complexity

Seth Gilbert
EPFL

seth.gilbet@epfl.ch

Dariusz R. Kowalski
University of Liverpool

D.Kowalski@liverpool.ac.uk

Abstract

We consider the problem of fault-tolerant agreement in
a crash-prone synchronous system. We present a new
randomized consensus algorithm that achieves optimal
communication efficiency, using only O(n) bits of com-
munication, and terminates in (almost optimal) time
O(log n), with high probability. The same protocol,
with minor modifications, can also be used in partially
synchronous networks, guaranteeing correct behavior
even in asynchronous executions, while maintaining ef-
ficient performance in synchronous executions. Finally,
the same techniques also yield a randomized, fault-
tolerant gossip protocol that terminates in O(log∗ n)
rounds using O(n) messages (with bit complexity that
depends on the data being gossiped).

1 Introduction

Fault-tolerant agreement, also known as consensus, is
perhaps one of the most fundamental problems in
distributed computing. The problem of consensus,
first introduced in 1980 [25, 22], is formally defined as
follows:

Definition 1. (Consensus) Given n processes, at
most t of which may crash: each process pi begins with
initial value vi ∈ {0, 1} and decides on an output sat-
isfying: (1) Agreement: every process decides the same
value; (2) Validity: if a process decides v, then v is some
process’s initial value; (3) Termination: every correct
process eventually decides, with probability 1.

In this paper, we assume that the decision is binary;
generalizations for any input value domain are straight-
forward, though the communication cost scales with the
size of the input values.

The Question of Efficiency. In this paper, we ad-
dress the question of how efficiently agreement can be
achieved. There are two basic metrics: time complexity
and communication complexity. Many existing proto-
cols achieve optimal time complexity. For example, the
FloodSet algorithm [12, 23] terminates in t+1 rounds,
which is optimal for deterministic algorithms. Chor
et al. [11] develop a randomized algorithm that takes

O(log n) rounds, with high probability, which is almost
optimal (under an oblivious adversary); they also show
a lower bound of Ω(log n/ log log n) rounds to achieve
agreement, with high probability.

Unfortunately, these protocols have relatively high
communication complexity, as in each round, each pro-
cess broadcasts a message to every other process, re-
sulting in Θ(n2) messages per round. By contrast, solv-
ing consensus requires at least Ω(n) bits of communi-
cation, as every process needs to either send or receive
one message. In fact, Amdur et al. [1] showed that even
in a failure-free execution, Ω(n) message complexity is
needed. This leaves a significant gap between the upper
and lower bounds.

There has been significant progress in addressing
this longstanding question (see Figure 1 for key results).
Dwork et al. [13] made an important breakthrough: a
deterministic consensus protocol with O(n log n) mes-
sage complexity and exponential time complexity. Galil
et al. [15] improved on this with an algorithm using
O(n) messages and superlinear time O(n1+ε), for any
0 < ε < 1. The best linear-time deterministic algo-
rithm to-date is by Chlebus and Kowalski [6, 7], and
has O(n logO(1) n) message complexity, but Ω(n2) com-
munication complexity. Chlebus et al. [10] have recently
improved on this, developing a linear-time deterministic
algorithm with O(n log4 n) communication complexity.

Chlebus and Kowalski [8] have also recently devel-
oped a new randomized algorithm that, with high prob-
ability, takes O(log n) time and O(n log n) communica-
tion complexity (subject to an oblivious adversary). A
key novelty of this protocol is that it is local, i.e., no
process sends more than O(log n) bits (using entirely
different techniques than in this paper).

Main Result. In this paper, we present the first con-
sensus protocol to achieve both optimal communication
complexity and almost optimal time complexity, while
tolerating up to f < n/2 crash failures. Specifically, we
present a randomized consensus protocol that, with high
probability, has both O(n) communication complexity
and O(log n) round complexity.

Surprisingly, our algorithm is, perhaps, simpler
than many earlier algorithms, relying on the technique
of universe reduction to eliminate much of the com-
plexity while still achieving efficient performance. (See
discussion below for earlier papers on universe reduc-
tion.) Instead of solving consensus among all n nodes,
which is potentially expensive, we delegate the work of
agreement to Θ(log n) special coordinators, chosen at
random. These coordinators then execute an existing
consensus protocol, and distribute the results. Select-
ing these coordinators, maintaining their consistency,
and managing the data dissemination are the main chal-
lenges that arise in implementing this approach:
Coordinator discovery: Once the coordinators have
been randomly selected, each must efficiently discover
the others, without sending too many messages. (The
trivial solution in which each of the Θ(logn) coordina-
tors sends a message to every other process announcing
its selection requires Θ(n log n) messages.) Moreover,
there is some (perhaps small) probability that the dis-
covery process fails, resulting in several disconnected
cliques of coordinators. The discovery protocol is engi-
neered to cope with these problems.
Coordinator consistency: As the protocol proceeds,
some of the coordinators may fail, by crashing. The
protocol must maintain the consistency of the coordi-
nators, ensuring that they have a similar (though not
necessarily identical) view of the system as they progress
through the protocol.
Data dissemination: The coordinators must efficiently
work together to disseminate the decision to the other
processes. (Again, the trivial solution in which each co-
ordinator sends the decision to every process requires
Θ(n log n) messages.) In addition, some of the coor-
dinators may fail during the protocol. We rely on a
fault-tolerant work-sharing paradigm in which the co-
ordinators repeatedly exchange information to prevent
wasted work. The resulting simple randomized process
takes only O(log∗ n) rounds and O(n) messages to dis-
seminate a piece of information.

These challenges must be overcome with a minimum
of communication. Since we are attempting to achieve
O(n) communication complexity, messages must be kept
to a minimum. For example, many consensus protocol
rely on leader election; however, we cannot even afford
to distribute the identity of a leader to every process in
the system as that would require O(n) messages each of
size log n bits.

Secondary Results. A natural question is whether
agreement can also be efficiently achieved in a partially
synchronous network, i.e., a network that is almost al-
ways synchronous, but occasionally suffers from unpre-
dictable message delays. Previously [17], we showed

how to transform protocols for synchronous systems into
protocols for partially synchronous systems. A similar
idea can be used here. Our techniques yield a protocol
that achieves O(n) communication complexity when the
network is synchronous, and yet still operates correctly
even when the network is asynchronous.

Another problem of significant recent interest in
distributed computing is gossip: each process in the
system starts with a rumor ; the goal, in the end, is for
every process to learn every rumor. It is well-known
that in a synchronous system, a simple randomized
rumor-spreading process completes in O(log n) rounds
with O(n log n) message complexity. In an important
paper, Karp et al. [19] studied a more intricate “push-
pull” randomized process which achieves O(n log log n)
message complexity in O(log n) rounds (and showed
that among a certain class of algorithms, this was
optimal). Using the universe reduction technique,
along with the coordinator protocols described in this
paper, we show how to achieve fault-tolerant gossip in
a synchronous network in only O(log∗ n) rounds, using
only O(n) messages, with high probability1.

Other Related Work. There has been much im-
portant research developing consensus protocols (and
lower bounds) for other adversarial models, including
asynchronous networks and networks subject to Byzan-
tine (malicious) failures (see [2] for further references).
Of note, recent work by Attiya et al. [4, 3] has (effec-
tively) resolved the question of work-optimal consensus
in an asynchronous shared memory. Also of note, Geor-
giou et al. [16] developed the first consensus algorithm
for asynchronous networks that achieved sub-quadratic
(but super-linear) message complexity.

The technique of universe reduction has been an
important tool in developing distributed algorithms;
we focus here on prior work related to consensus.
Particularly notable are randomized algorithms by Ben-
Or et al. [5] and Kapron et al. [18] that use universe
reduction to solve Byzantine agreement (i.e., in the
presence of malicious participants) in O(log n) expected
time, but with relatively high message complexity (of
Ω(n2)). Using similar ideas, King et al. [21] show how
to elect an honest leader using only O(n logO(1) n) bits
of communication. Quite recently, King and Saia [20]
have built on their leader election protocol to solve
Byzantine agreement (with a probabilistic agreement
guarantee) using only Õ(n3/2) bits of communication;

1The communication complexity, however, depends on the size
of the rumors. Often, however, the goal of gossip is to calculate

some aggregate information, for example, the average of all the
rumors. In this case, the bit complexity can be kept small. Notice
that the same problem of message size arises in all random rumor
spreading protocols.

Message/Bit
Complexity

Round
Complexity

Randomized?

FloodSet O(n3) bits O(n) No

Optimized FloodSet O(n2) bits O(n) No

GMY’95 [15] O(n) messages O(n1+ε) No

GMY’95 [15] O(n) bits 2O(n) No

CK’02,CK’06 [6, 7] O(n logO(1) n) messages O(n) No

CKS’09 [10] O(n logO(1) n) bits O(n) No

CMS’89 [11] O(n2 log n) messages O(log n) Yes

CK’09 [8] O(n log n) bits O(log n) Yes

Section 3 O(n) bits O(log n) Yes

Figure 1: Summary of communication complexity and round complexity of existing consensus protocols compared
to the new algorithm presented in this paper. The randomized bounds hold with high probability.

this is the first such protocol that breaks the quadratic
communication complexity barrier!

In this paper, we apply the technique of universe re-
duction to a system subject to crash failures, not Byzan-
tine failures. Thus some aspects of our protocol are sim-
pler, since there is no need to prevent Byzantine partic-
ipants from hijacking the selected sub-universe. On the
other hand, some aspects are more complicated as care-
ful coordination is needed to reach O(n) communication
complexity. As one example of the challenges, we can-
not even afford the cost of informing everyone as to who
is in the selected sub-universe.

2 Model

We consider a system consisting of n processes Π =
p1, p2, . . . , pn. Up to f < n/2 processes may fail by
crashing. An execution is divided into synchronous
rounds, and processes communicate by exchanging mes-
sages in each round. If a process does not fail by the
end of a round, then all of the messages that it sends
in that round are delivered. On the other hand, if a
process fails during a round, then an arbitrary subset
(possibly all) of its messages for that round are lost, as
determined by the adversary. The message complexity
of an execution is the total number of messages sent by
all processes during the entire execution. The commu-
nication complexity of an execution is the total number
of bits for all messages.

Each process has access to an arbitrary number of
random bits. We assume that the round in which a
process fails is independent of the random bits, i.e., the
adversary is oblivious. Formally, the oblivious adversary

chooses, prior to every execution: (i) a function F : Π→
Z∪{⊥} specifying in which round each process fails, and
(ii) a function M : Π → P(Π) specifying which subset
of messages are delivered by a process in the round in
which it fails. If a process p never fails, i.e., if F (p) = ⊥,
we say that it is correct. We say that a process p is non-
failed in round r if it is either correct or F (p) > r. If a
message is sent by a faulty process p in round F (p) to
a process q ∈ M(p), then it is delivered; if it is sent to
a process q′ /∈M(p) then it is not delivered2

3 Communication-Optimal Consensus

In this section, we present a randomized algorithm for
solving consensus using only O(n) messages and O(n)
bits of communication. We begin with an overview
of the basic structure of the algorithm. We then
describe the individual building blocks, and discuss how
to assemble them into an efficient solution.

The first step, described in Section 3.1, is to choose
a set of Θ(log n) coordinators that are responsible for
determining the eventual decision. The coordinators
are selected at random, and then participate in a simple
discovery process to find the other coordinators. (This
discovery process can be viewed as an example of
probabilistic quorum systems [24].) The second step,
described in Section 3.2, is for the coordinators to run
a consensus protocol amongst themselves; we refer to
this as a limited universe consensus protocol, as only

2Note that the protocols in this paper can in fact tolerate a
somewhat stronger adversary, in that it is only necessary that

the adversary decide in advance which processes will fail; it can
adaptively choose when and how they fail.

the coordinators participate. Since there are very few
coordinators, this can be implemented quite efficiently.
The third step, described in Section 3.3., is for the
coordinators to disseminate the decision value to the
remaining processes. If something goes wrong during
any of these steps, the processes abort and execute a
fall-back consensus protocol that is less efficient. We
now describe each of the components of the protocol in
more detail. Throughout, we fix a constant c that is
used in the probabilistic analysis.

3.1 Choosing Coordinators. The ChooseC sub-
protocol is responsible for selecting a set of coordinators.
It is a probabilistic protocol that guarantees, with high
probability, that when the protocol completes there are
Θ(log n) coordinators, each aware of the entire set of
coordinators. More specifically, for each process pi,
the sub-protocol returns two outputs: (1) a boolean
flag isC i indicating whether process pi is a coordinator,
and (2) a list coordsi of other coordinators. The sub-
protocol guarantees the following properties at the end
of the execution:

• Self-InclusionCC : For every process pi, if isC i =
true, then pi ∈ coordsi.
• Probabilistic UniformityCC : With high probability,

there exists a subset S such that: (i) every process
pi ∈ S is a coordinator (isC i = True); (ii) every
non-failed coordinator at the end of the ChooseC
protocol is a member of S; (iii) for each non-failed
coordinator pi ∈ S, coordsi ⊆ S; (iv) for each
non-failed coordinator pi ∈ S, for each process
pj ∈ S\coordsi, process pj fails by the end of the
ChooseC protocol.
• Coordinator Set SizeCC : With high probability,

when the protocol completes, the set of correct
coordinators has size Θ(log n).
• TerminationCC : The protocol completes in O(1)

rounds.

The probabilistic uniformity condition captures the in-
tuition that the set coordsi at process pi reflects exactly
the set of coordinators; however different processes may
have slightly different views of which processes are co-
ordinators, due to the fact that some candidate “co-
ordinators” may fail during the protocol. Notice that
both the probabilistic uniformity and coordinator set
size properties hold with high probability. By contrast,
the self-inclusion and termination properties hold with
probability 1.

Sub-protocol description. The ChooseC sub-
protocol consists of the following steps:

Round 0. Initially, each process pi independently sets
isC i to true with probability 8c log n/n. From this
point on, we refer to the processes that set isC to
true in this step as coordinators.

Round 1. Each coordinator chooses a set of
Θ(
√
n log n) intermediaries (specifically,

2c
√
n log n intermediaries, for some constant

c). Coordinator pi sends a message to each se-
lected intermediary containing the identifier “pi.”
Each such message is of size log n bits.

Round 2. Each intermediary sends a single response
to each message that it received in round 1. The
response of an intermediary pj contains all the mes-
sages received by pj in round 1. Each coordinator
pi combines the responses it receives from interme-
diaries, along with its own identifier, to form the
list coordsi.

Analysis. We first bound the size of the set of
coordinators, showing that with high probability, the
set of correct coordinators is Θ(log n). Let C0 be the
set of processes that set isC = True in Round 0. Let
Correct be the set of correct processes that never fail
(even after the ChooseC protocol completes).

Lemma 3.1. (Coordinator-Set Size) With proba-
bility at least 1 − 1/nc: (i) |C0| ≤ 16c log n; and (ii)
c log n ≤ |C0 ∩Correct|.

Proof. Let Xi be a 0/1 variable indicating whether
isC i = true, and recall that |Correct| > n/2. Since
the adversary is oblivious, Xi is independent of whether
process pi ∈ Correct.

Since Pr(Xi) = 8c log n/n, we conclude that
E(|C0|) = 8c log n, and E(|C0 ∩ Correct|) ≥ 4c log n.
Thus, by a straightforward Chernoff bound, Pr(|C0| ≥
16c log n) ≤ 1/nc, and Pr(|C0 ∩Correct| ≤ c log n) ≤
1/nc. �

Next, we show that the ChooseC protocol satisfies
probabilistic uniformity, i.e., that, every pair of coordi-
nators has approximately the same list of coordinators,
with high probability. This follows by a straightforward
birthday-paradox style analysis.

Lemma 3.2. (Probabilistic Uniformity) With
probability at least 1 − 1/nc, there exists a subset S
such that: (i) every process pi ∈ S is a coordinator
(isC i = True); (ii) every non-failed coordinator at the
end of the ChooseC protocol is a member of S; (iii)
for each non-failed coordinator pi ∈ S, coordsi ⊆ S;
(iv) for each non-failed coordinator pi ∈ S, for each

process pj ∈ S\coordsi, process pj fails by the end of
the ChooseC protocol.

Proof. Let S be the set of processes that set isC =
True in Round 0. It follows that every process pi ∈ S
is a coordinator, and that every non-failed coordinator
is a member of S. Moreover, it is easy to see that for
each coordinator pi ∈ S, coordsi ⊆ S, as pi only adds to
coordsi processes that send messages to intermediaries
in Round 1, i.e., pi only adds other coordinators to
coordsi. It remains to show the final property.

Fix some non-failed coordinators pi and pj . In
Round 1, both pi and pj send messages to Θ(

√
n log n)

intermediaries. Let I be the set of intermediaries chosen
by pi in Round 1. The probability that pj does not
choose an intermediary in the set I is at most:(

1− |I|
n

)2c
√
n logn

≤
(

1− 2c
√
n log n
n

)2c
√
n logn

≤
(

1
2

)4c2 log2 n

≤
(

1
n

)c+2

This implies that pj ∈ coordsi with probability at least
1−1/nc+2. Taking a union bound over all

(
n
2

)
pairs of pi

and pj , the probability that there exists some non-failed
pi and pj such that pj /∈ coordsi by the end of Round 2
is no greater than 1/nc. From this we conclude that,
with high probability, for every coordinator pi, for every
pj ∈ S\coordsi, pj fails by the end of the ChooseC
protocol. �

Finally, we conclude that the ChooseC protocol satis-
fies the requisite properties:

Lemma 3.3. The ChooseC protocol guarantees self-
inclusionCC , probabilistic uniformityCC , coordinator-
set sizeCC , and terminationCC .

Proof. The self-inclusion property follows immediately
from the protocol, as every coordinator pi adds itself
to coordsi in Round 2. The probabilistic uniformity
property follows immediately from Lemma 3.2. The
coordinator-set size property follows from Lemma 3.1.
Termination is immediate by inspection. �

We bound the communication complexity of ChooseC
by simply summing the message costs:

Lemma 3.4. With probability at least 1 − 1/nc, the
ChooseC protocol has communication complexity
O(
√
n log4 n).

Proof. By Lemma 3.1, there are at most 16c log n co-
ordinators with probability at least 1 − 1/nc. In this
case: In Round 1, there are at most 16c log n coordi-
nators, each of which sends 2c

√
n log n messages of size

log n bits. In Round 2, there are at most 32c2
√
n log2 n

responses that result from the Round 1 messages, and
each response contains at most 16c log n identifiers of
size log n bits. Summing the bit complexities leads to
the desired bound. �

3.2 Limited Universe Consensus. The goal of
the second sub-protocol, LUConsensus, is to achieve
agreement among the coordinators. The protocol itself
is a simple implementation of deterministic consensus,
as described in [23]. The only difference here is that the
protocol is executed only on the coordinators, and with
some (small) probability, the coordinators have different
views of the world.

Each process pi begins with three inputs: (1) an
initial value vi, (2) a boolean flag isC i indicating
whether process pi is a coordinator, and (3) a list
coordsi of other coordinators. We assume that the isC
indicator and the coordinator lists coords satisfy self-
inclusion, probabilistic uniformity, and coordinator-set
size, as per the ChooseC protocol. Each process with
isC = True returns one output: a value vo. The sub-
protocol guarantees the following properties at the end
of the execution:

• Probabilistic AgreementLUC : With high probabil-
ity, every process that outputs a value chooses the
same value.

• ValidityLUC : If process pi outputs value voi , then
there is some process pj with initial value vj = voi .

• TerminationLUC : The protocol terminates in
O(log n) rounds. Every non-failed process with in-
put isC = True produces an output.

Note that unlike the classical requirements of consensus,
the LUConsensus protocol only ensures that agree-
ment is reached with high probability ; with some small
probability, the coordinators may disagree. This sim-
plifies the LUConsensus sub-protocol, compensating
for the fact that with some small probability, the set of
coordinators provided as part of the input may itself be
inconsistent.

Sub-protocol description. Each process pi main-
tains an estimate ei. Initially, ei = vi. The LUCon-
sensus sub-protocol consists of the following, repeated
for Θ(log n) rounds, specifically for at least 16c log n+1
rounds:

• Each coordinator pi with isC i = true sends its
estimate ei to every process in coordsi.

• Each coordinator pi with isC = true updates its
estimate with the minimum estimate received in
that round.

After Θ(log n) rounds, each coordinator pi with isC =
true outputs its estimate ei.

Analysis. The LUConsensus is, essentially, an im-
plementation of the classical FloodSet algorithm (as
presented in [23]) on a limited universe. The key com-
ponent of the proof is showing that the probabilistic uni-
formity property is sufficient to ensure that the coordi-
nators correctly execute consensus.

Lemma 3.5. The LUConsensus protocol satis-
fies probabilistic agreementLUC , validityLUC , and
terminationLUC , assuming the inputs isC and coords
satisfy self-inclusionCC , probabilistic uniformityCC ,
and coordinator-set sizeCC .

Proof. ValidityLUC and terminationLUC follow immedi-
ately, by inspection. In order to see that agreementLUC

holds, recall that probabilistic uniformityCC and coor-
dinator set sizeCC hold with respect to the inputs (isC
and coords). In particular, with high probability, there
exists a subset S of size Θ(log n) such that: (i) every
process pi ∈ S is a coordinator; (ii) every non-failed
coordinator is a member of S; (iii) for each non-failed
coordinator pi ∈ S, coordsi ⊆ S; (iv) for each non-failed
coordinator pi ∈ S, for each process pj ∈ S\coordsi,
process pj fails by the end of the ChooseC protocol.

From this we conclude, by the pigeon-hole principle,
that there is some round r during the Θ(log n) rounds
of the LUConsensus protocol in which no process in
the subset S fails; fix such a round r. From the set of
processes in S that do not fail by the end of round r,
choose pi to be a process with the minimum estimate.
In round r, process pi sends its estimate to every process
in coordsi.

Let pj be some other coordinator that does not fail
by the end of round r. By probabilistic uniformity,
we know that pj ∈ coordsi, with high probability;
otherwise, pj ∈ S\coordsi, implying that it fails by the
end of the ChooseC protocol, i.e., prior to round r.
Thus pj receives a message from pi containing ei;
since ei is the minimum estimate among non-failed
coordinators, pj adopts estimate ei. From this we
conclude that at the end of round r, every non-failed
coordinator has adopted estimate ei. This immediately
implies the agreement property, as desired. �

The communication complexity can be calculated by
summing the various message costs:

Lemma 3.6. With high probability, the communication
complexity of LUConsensus is O(log3 n), assuming the

inputs isC and coords satisfy self-inclusionCC , proba-
bilistic uniformityCC , and coordinator-set sizeCC .

Proof. As per the coordinator-set size property, with
high probability there are at most O(log n) coordina-
tors. In each round, each coordinator sends a constant-
sized message to every other coordinator, and this con-
tinues for O(log n) rounds, leading to the desired bound.
�

3.3 Coordinator Data Dissemination. The goal
of the third sub-protocol, Disseminate, is to efficiently
disseminate data from the set of coordinators to all
the other processes. Each process pi begins with three
inputs: (1) an initial value vi, (2) a boolean flag
isC i indicating whether process pi is a coordinator,
and (3) a list coordsi of other coordinators, where
the initial values vi satisfy probabilistic agreement,
and isC i and coordsi satisfy self-inclusion, probabilistic
uniformity, and coordinator-set size. Each process
pi outputs a set of values Vi; each coordinator pi
outputs a flag dsi indicating whether its initial value was
successfully disseminated. The sub-protocol guarantees
the following properties at the end of the execution:

• DisseminationD: For every non-failed coordinator
pi, the initial value vi is sent to every process, i.e.,
for every non-failed pj , vi ∈ Vj .
• ValidityD: If, for some process pi, there is some

value v ∈ Vi, then some coordinator pj initiated
Disseminate with value vj , i.e., there exists a pj
where isC j = True and vj = v.
• ConsistencyD: If, for some pair of processes pi, pj ,

the flag dsi = True and dsj = True, then initial
values vi = vj .
• TerminationD: The protocol terminates in
O(log∗ n) rounds. With high probability, every cor-
rect coordinator pi returns dsi = True.

Sub-protocol description. Partition the processes
in Π into log n log∗ n groups G1, G2, . . . , Glogn log∗ n each
of size n/(log n log∗ n). Each process pi maintains a list
of unnotified groups Li and a count ci of the number
of notified processes. Initially, Li contains every group,
and ci = 0. The protocol proceeds in Θ(log∗ n) triples
of rounds; the constant factor follows from the analysis.
Each triple of rounds proceeds as follows:

Round 1. Each coordinator pi chooses a group g at
random from the list Li, and sends its value vi to
every process in group g.

Round 2. Each process pj that received exactly one
value v in Round 1, and that did not previously

receive a different value v′ 6= v in a previous
round, adds v to the set Vj and sends a response.
(Note that if pj received the same value v in a
previous round, then it still sends a response.)
Each coordinator, on receiving the responses from
processes in group g, counts the number ng of
responses received.

Round 3. Each coordinator pi sends 〈g, ng, vi〉 to every
other coordinator in coordsi. When a coordinator
pj receives a message containing 〈g′, n′g, v′〉, it
proceeds as follows: if g′ ∈ Lj and v′ = vj , then
coordinator pj removes g′ from Lj and adds n′g
to cj .

These three rounds are repeated Θ(log∗ n) times. At
this point, if, for some coordinator pi, the list Li is not
empty, then pi proceedings as follows:

• Coordinator pi sends the value vi directly to every
process in Π.

• Every process that receives such a message sends
a response according to the same conditions as
before, i.e., only if it has not received a different
value in an earlier round.

• The coordinator pi sets the count ci to the number
of responses received (overwriting any earlier value
of ci).

At this point, every coordinator is ensured that its
initial value has been disseminated, either directly or
indirectly. If count ci > n/2, then the coordinator
pi returns dsi = True; if count ci ≤ n/2, then the
coordinator pi returns dsi = False. Every process
pj ∈ Π returns Vj .

Analysis. We now show that the Disseminate proto-
col satisfies the requisite properties. The disseminateD

property follows from the simple fact that a process pi
only removes a group g from its list if it sends a message
to every process in g, or if another coordinator with the
same initial value sends a message to every process in g:

Lemma 3.7. (Dissemination) For every non-failed
coordinator pi, the initial value vi is sent to every pro-
cess, i.e., for every non-failed pj, vi ∈ Vj.

Proof. We first argue that if a group g is removed from
the list Li by a process pi, then every process in g has
been sent the value vi. There are two reasons a group
may be removed from Li. First, it might be the case
that pi directly sends value vi to every process in g.
Second, it might be the case that pi receives a message
from some other process pj indicating that pj has sent

message vj = vi to every process in g. In both cases,
the removal of g clearly implies that every process in g
has been sent the value vi. At the end of the protocol,
either Li is empty, in which case vi has been sent to
every process in Π, or process pi proceeds to send vi
directly to every process. �

We next argue that the Disseminate protocol satisfies
the consistencyD property:

Lemma 3.8. (Consistency) If, for some pair of pro-
cesses pi, pj, the flag dsi = True and dsj = True,
then initial values vi = vj.

Proof. We first argue that for every coordinator pi, the
count ci is a lower bound on the number of processes
that received value vi before receiving any other values.
If pi broadcasts a message directly to every process
(after Θ(log n) triples of rounds), then the count ci is set
to exactly the number of responses received; every such
response indicates a process that received no value other
than vi in a prior round. Consider the case where pi
does not broadcast a message directly to every process.
Observe that for each group g, a process pi adds count
ng to ci only once, i.e., when g is removed from Li; and
the count ng reflects the number of responses received by
some coordinator pk that sent vk = vi to every process
in the group g. Thus again we conclude that there are
at least ci processes that received no value other than
vi prior to receiving value vi.

Now, we conclude the proof. Fix two processes
pi and pj such that dsi = dsj = True when the
protocol completes. This implies that ci > n/2 and
cj > n/2. Thus there is some process p` that is included
in both counts, i.e., that received a message containing
vi prior to (and not concurrently with) receiving any
other value, and that also received a message containing
vj prior to (and not concurrently with) receiving any
other value; this implies that vi = vj , as desired. �

We conclude that the Disseminate protocol satisfies
the requisite properties:

Lemma 3.9. The Disseminate protocol satis-
fies disseminationD, validityD, consistencyD, and
terminationD, assuming the inputs isC and coords
satisfy self-inclusionCC , probabilistic uniformityCC ,
and coordinator-set sizeCC , and assuming the input
initial values satisfy probabilistic agreementLUC .

Proof. The dissemination and consistency properties
follow from Lemma 3.7 and Lemma 3.8, respectively.
Validity follows from simple inspection, as a process
only returns values received directly from coordinators.

Similarly, it is immediately clear that the protocol
terminates in O(log∗ n) rounds. Finally, since the initial
values agree, with high probability, then every process
responds to every dissemination message from every
coordinator; since a majority of processes are correct,
the successful dissemination implies that every non-
failed coordinator pi outputs dsi = True. �

We now show that the Disseminate protocol has com-
munication complexity O(n), with high probability.
The key claim is as follows: if the set of coordinators
contains Θ(log n) correct processes, then after Θ(log∗ n)
rounds, every group has been sent the initial value by
some coordinator, without resorting to the final round
in which coordinators send their value directly to every-
one. In this case, the total communication incurred is
Θ(log∗ n) triples of rounds in which Θ(log n) processes
send (and receive as responses) Θ(n/(log n log∗ n) bits
each, along with a small amount of inter-coordinator
communication.

We say that a group is notified (with respect to
S) if it has been selected, and its processes have been
sent a message, by some coordinator in S. Otherwise,
it is unnotified. We model the process of notifying
groups as a classic balls-and-bins game: each of the
log n log∗ n groups is a bin, and in each round, each
coordinators throws one “ball” into one “bin,” notifying
a particular group. After each round, every “bin” that
has received at least one “ball” is removed from the
game (via coordination among the coordinators). We
refer to this as the process of clearing bins.

We first establish that, for a given group of coordi-
nators S of size at least log n, within O(log∗ n) rounds,
there are at most 2 log n unnotified groups. This follows
from the observation that in each round, each coordi-
nator has a probability of at least 1/2 of selecting a
previously unnotified group, resulting in a reduction of
the number of unnotified groups by Θ(log n):

Lemma 3.10. If subset S contains at least log n correct
coordinators, then within O(log∗ n) rounds there are
at most 2 log n groups that are unnotified, with high
probability.

Proof. Assume for the sake of contradiction that for
c log∗ n triples of rounds, there are at least 2 log n un-
notified groups. We focus on the behavior of exactly
log n coordinators (ignoring the notifications by addi-
tional coordinators). Observe that in each such triple of
rounds, each of the log n coordinators in S notifies a new
group with probability at least logn

2 logn = 1
2 , independent

of the choices made by the other coordinators. For log n
coordinators, over c log∗ n rounds, this implies that in

expectation there are at least c log n log∗ n groups no-
tified. Thus by a Chernoff bound3, we observe that
the probability of notifying less than (c/4) log n log∗ n
groups is no greater than e−c logn log∗ n/4 ≤ (1/n)c/4.
When c ≥ 4, this is a contradiction (as there are ini-
tially log n log∗ n groups). �

We now examine the bin-clearing process when there are
at least log n coordinators and at most 2 log n remaining
groups. This random process has been previously
studied in [9]4:

Lemma 3.11. ([9], Theorem 2) The process of clear-
ing b bins with ` balls, for ` ≥ b/2, terminates within
log∗(b log `/`) + O(1) rounds with probability at least
1− 2e−`

1/5
.

From this, we derive the straightforward corollary,
applying this to our situation:

Corollary 3.1. If, for some subset S, there are at
most 2 log n unnotified groups, and at least log n correct
coordinators, then within O(log∗ n) rounds, every group
has been notified, with high probability.

Proof. Applying Lemma 3.11, where b ≤ 2 log n and ` =
log n, we observe that after log∗ (2 log log n) ≤ log∗ n
rounds, with probability at least 1−(1/n)(1/5) ln 2, every
group has been notified. Thus after some O(c log∗ n)
rounds, every group has been notified with probability
polynomially small in n. �

Putting together Lemma 3.10 and Corollary 3.1, we
conclude the following:

Lemma 3.12. The communication complexity of
Disseminate is O(n), with high probability, assuming
the inputs isC and coords satisfy self-inclusionCC , prob-
abilistic uniformityCC , and coordinator-set sizeCC , and
assuming the input initial values satisfy probabilistic
agreementLUC .

Proof. With high probability, there is a subset S that
satisfies probabilistic uniformity and coordinator set
size, by assumption; and with high probability, the
initial values are all the same, by assumption. By

3Formally, the events are not independent, however due to

the property that notification of a new group happens with
probability at least 1/2 independently of other choices, we can

stochastically estimate the number of notified groups by the sum

of independent variables with expected value 1/2.
4In fact, Lemma 3.11 is a slight generalization of the theorem

in [9], as we assume ` ≥ b/2, rather than ` > b. Adding only a

constant number of rounds in the beginning of the process ensures
that the number of bins drops down to at most b/2.

Corollary 3.1, with high probability, within O(log∗ n)
rounds, every group has been notified by a non-failed
coordinator in S. Consider the case where these high
probability events occur.

We now argue that every non-failed coordinator pi
removes every group from its list L. Let g be a group
notified by a non-failed coordinator pj ∈ S, and let
pi be another non-failed coordinator. If pi /∈ coordsj ,
then pi ∈ S\coordsj , and hence we conclude that pi
has failed. Thus, since pi is non-failed, we know that
pi ∈ coordsj , and hence receives the update from pj
that g was notified. Since all coordinators agree on the
same value, we know that vj = vi, and hence pi removes
g from Li. By the end of the protocol, every coordinator
has an empty group list, and hence no coordinator sends
its value directly to every process in Π.

The communication complexity can be divided into
three parts: sending messages to notify groups, sending
responses, and sending messages among coordinators.
In each round, each coordinator sends n/ log n log∗ n
messages (i.e., one message to each process in a group),
and each message is of size O(1), containing only the
value to be disseminated. Each such message leads
to a single response of size O(1). There are at most
O(log∗ n) rounds, and at most O(log n) coordinators,
and thus the total bit complexity of such messages
is O(n). Communication among coordinators consists
of O(log2 n) messages in each round, each of size ≤
log (log n log∗ n) + 1 + log n—i.e., containing the name
of the most recently notified group, the value to be
disseminated, and a count of processes. Thus, the total
communication complexity is O(n+ log3 n). �

3.4 Complete Consensus Protocol. We now
present the complete protocol. Each process pi begins
with initial value vi, and maintains an estimate ei;
initially ei = vi. Process pi executes the following steps:

Communication-Optimal Consensus Protocol

1. ChooseC()i → 〈isC i, coordsi〉

2. LUConsensus(vi, isC i, coordsi)i → v

• Set ei = v.

3. Disseminate(ei, isC i, coordsi)i → 〈Vi, dsi〉

• If isC i = True and dsi = False, then set
isC i = False.

4. Disseminate(ei, isC i, coordsi)i → 〈Vi, dsi〉

• If isC i = True and dsi = False, then set
isC i = False.

• If isC i = False and Vi is not empty, then set
ei to the unique value in V . (We will show
that there is always at most one value in the
set V .)

5. Disseminate(ei, isC i, coordsi)i → 〈Vi, dsi〉

• If there is a value v ∈ Vi and v = ei, then
decide v.

6. Each undecided process sends a message containing
a “fallback request” to every other process request-
ing that they begin the fallback protocol.

7. Every process that has not decided, or that receives
a “fallback request” in Step 6 executes a classi-
cal consensus protocol (e.g., the FloodSet Pro-
tocol [23]), using value ei as its initial value. Every
process that has not yet decided adopts the value
returned and decides.

We now argue that the resulting protocol is correct.

Theorem 3.1. (Correctness) The communication-
optimal consensus protocol satisfies agreement, validity,
and termination.

Proof. We begin by showing that the protocol sat-
isfies validity. Specifically, validity follows from
the validityLUC property of LUConsensus and the
validityD property of the Disseminate protocol: every
value ei that is eventually decided is either delivered by
the Disseminate protocol or output by the LUCon-
sensus protocol; every value distributed by the Dis-
seminate protocol was previously output by the LU-
Consensus protocol; and every value output by the
LUConsensus protocol was previously the initial value
of some process.

It is also easy to see that the protocol sat-
isfies termination, as every sub-protocol terminates.
More specifically, termination follows immediately
from the terminationCC property of ChooseC,
the terminationLUC property of LUConsensus, the
terminationD property of the Disseminate protocol,
and the termination property of the fallback consensus
protocol.

We now consider the agreement property. We
first argue that at the end of Step 3, every non-failed
coordinator has the same value. Assume that, at the end
of Step 3, there exist two non-failed coordinators pi and
pj such that: isC i = True and isC j = True. From
this we conclude that both pi and pj completed the
Disseminate protocol successfully in Step 3, i.e., dsi =
True and dsj = True. By the consistency property of
Disseminate, we conclude that ei = ej . Thus, every

non-failed coordinator has the same candidate value at
the end of Step 3.

Assume for the sake of contradiction that there are
two distinct values v and w decided by the end of the
protocol. By the agreement property of the fallback
consensus protocol, we know that only one value is
decided in Step 7. Thus either v or w is decided in
Step 5. Assume, without loss of generality, that value v
is decided in Step 5 by some process.

From this we conclude that the Disseminate pro-
tocol in Step 5 returned value v in the set Vk for some
process pk, and hence (by validityD), some coordinator
pj initiated the Disseminate protocol in Step 5 with
ej = v and isC j = True. Thus, in Step 4, process pj
disseminated value v, i.e., the dissemination property
implies that every process received value v in Step 4.
As every coordinator has the same candidate value at
the end of Step 3, we conclude that v is the only value
received in Step 4, and hence every non-failed process
pi adopts v, setting ei = v.

This leads us to two conclusions. First, in Step 5,
since every non-failed process pi has ei = v, no process
can decide w in Step 5. Second, every non-failed process
pi still has ei = v at the beginning of Step 7, and hence
by validity of the fallback consensus protocol, every non-
failed process outputs v in Step 7. Thus no process
decides w, which is a contradiction. �

Finally, we conclude that the protocol achieves good bit
complexity:

Theorem 3.2. (Efficiency) The communication-
optimal consensus protocol has O(n) communication
complexity and O(log n) round complexity, with high
probability.

Proof. With high probability, the set of coordina-
tors (and the set of correct coordinators) chosen by
ChooseC is of size Θ(log n); that is, in every round af-
ter ChooseC completes, there are Θ(log n) non-failed
coordinators. In addition, the set of coordinators sat-
isfies probabilistic uniformity, as per the properties of
the ChooseC sub-protocol. Moreover, with high prob-
ability, every process agrees on the same estimate v
in Step 2, as per the properties of the LUConsensus
sub-protocol. And, with high probability, every correct
coordinator returns ds = True in Step 3, as per the
properties of the Disseminate protocol. Every process
receives and adopts value v in Step 4, and decides v in
Step 5, as per the properties of the Disseminate proto-
col. From this we conclude that no process proceeds to
the fallback phase, skipping Steps 6–7. Thus, the total
bit complexity is the cost of ChooseC (Lemma 3.4),
plus the cost of LUConsensus (Lemma 3.6), plus the

cost of three invocations of Disseminate (Lemma 3.12),
which totals O(n). �

4 Partially Synchronous Systems

While networks are typically synchronous, delivering
messages in a timely fashion, real protocols must cope
with occasional asynchrony, i.e., unpredictable message
delays. Thus it is considered good computing practice to
plan for the worst and hope for the best. In the context
of distributed computing, this translates into devising
algorithms that, on the one hand tolerate asynchrony,
while on the other hand, operate efficiently when the
network is synchronous.

We refer to systems that are typically synchronous,
but occasionally asynchronous, as partially synchronous
systems. In this section, we show how to modify
the algorithm described in Section 3 so that it can
be safely deployed in a partially synchronous network,
maintaining its high level of efficiency whenever the
network is, in fact, synchronous.

4.1 Model. In this section we formally define a par-
tially synchronous system, following the basic model
in [14]. The system is parameterized by three variables:
n, the number of processes, δ a synchronous bound on
clock skew, and d a synchronous bound on message de-
lay. We assume that n, δ and d are known a priori.

As before, we consider a set Π of crash-prone
processes p1, . . . , pn, a majority of which are correct.
Each process has its own local clock that proceeds at
an arbitrary rate. As before, processes communicate
directly with each other; however, we do not assume
that communication proceeds in rounds. Instead, a
message may be arbitrarily delayed. Every message sent
by a correct process to some other correct process is
eventually delivered.

We say that an execution is synchronous when the
following conditions hold: (i) the clock skew of every
process is bounded by δ, i.e., the ratio of the rates of
two processes’ clocks is at most δ; and (ii) every message
is delivered within d time. Otherwise, we say that an
execution is asynchronous.

4.2 Protocol Modifications. We now describe how
to modify the communication-optimal consensus proto-
col presented in Section 3 in order to operate safely in a
partially synchronous system, while remaining efficient
in synchronous executions.

First, each process simulates synchronous rounds
based on message delay d and clock skew δ. Observe
that in a synchronous execution, at time τ the clock
at every process i is in the range [(1 − δ)τ, (1 + δ)τ].

Let ρ = (1 + δ)/(1− δ). The first simulated round r1 is
defined, for process pi, to end at time d/(1−δ) according
to the local clock at process pi. Simulated round r
is defined for process pi to end at time: d

1−δ
∑r−1
j=0 ρ

j

according to the local clock of process pi.
Since the clocks of two processes pi and pj may

advance at different rates, there is no guarantee that
both processes begin and end their rounds at the same
time. However, in a synchronous execution, the clock
skew is bounded by δ, and hence every message sent
by pi to pj at the beginning of round r, according
to the local clock of pi, is received by the end of
round r according to the local clock of process pj . In
an asynchronous execution, however, the simulation of
synchronous rounds may, of course, fail completely.

Second, each process pi that sends a fallback request
message in Step 6 of the protocol acts as follows: if
pi received a value in Step 4, then it attaches its
current estimate ei to the fallback message. When a
process pj receives a fallback message, it immediately
aborts the ongoing protocol, jumping immediately to
fallback Step 6. (Of particular note, pj sends no further
responses as part of the Disseminate protocol.)

Third, a process pi does not begin the fallback con-
sensus protocol in Step 7 until it has received fallback
request messages from at least a majority of the pro-
cesses. When process pi receives a fallback request mes-
sage from some process pj with estimate ej , it adopts
that estimate, setting ei = ej .

Finally, when choosing a fallback consensus proto-
col for Step 7, we focus only on protocols that operate
correctly in asynchronous networks. For example, we
might use the asynchronous consensus protocol in [16],
which guarantees expected sub-quadratic message com-
plexity in asynchronous executions.

4.3 Analysis. In this section, we first observe that
the modified communication-optimal consensus proto-
col still guarantees good performance in synchronous
executions:

Theorem 4.1. In a synchronous execution, the mod-
ified communication-optimal consensus protocol has
O(n) communication complexity and O(log n) simulated
round complexity, with high probability.

Proof. When the execution is synchronous, the simula-
tion of synchronous rounds is correct, delivering every
message from a non-failed process in the round in which
it was sent. Thus, the protocol proceeds exactly as in
a synchronous execution and the communication/time
complexity are exactly as in Theorem 3.2. �

It remains to argue that the protocol is correct, even in
asynchronous executions:

Theorem 4.2. The modified communication-optimal
consensus protocol guarantees agreement, validity, and
termination.

Proof. As before, validity follows immediately by in-
spection. Termination is also straightforward: any cor-
rect process that does not terminate eventually sends
out a fallback request message; eventually every non-
failed process receives this message and sends a fallback
request message; since a majority of processes are cor-
rect, eventually every non-failed process receives enough
fallback request messages and begins the asynchronous
fallback consensus protocol; eventually, the fallback con-
sensus protocol terminates, allowing every correct pro-
cess to decide.

Agreement follows from the observation that the
safety of the Disseminate protocol does not depend
on synchrony. As before, the disseminationD property
follows from the fact that a non-failed coordinator pi
always sends its initial value vi directly to every pro-
cess that has not already been sent the value vi. The
consistencyD property follows from the fact that a co-
ordinator pi returns dsi = True only if a majority
of processes receive value vi prior to any other value.
The validityD and terminationD properties are similarly
unaffected by asynchrony (notably, the protocol termi-
nates when all the rounds of the protocol have been
simulated, according to the local clock).

Thus, as before, every non-failed coordinator (that
still has isC = True) has the same estimate by the
end of Step 3. This ensures that at most one value
is decided in Step 5. The agreement property of the
fallback consensus protocol ensures that at most one
value is decided in Step 7. It remains to consider
the case where some value v is decided in Step 5.
This implies that a majority of processes received (and
responded, confirming reception of) that estimate in
Step 4. Thus, any process that begins the fallback
protocol receives that estimate from at least one process
during the fallback request phase. The validity of the
fallback consensus protocol ensures that v is the only
possible decision in Step 7. �

5 Gossip

In this section, we provide a brief overview of how to
adapt the techniques presented thus far to solve the
problem of gossip.

Assume each process pi begins with a rumor ri. The
goal is for every process to learn the rumor of every
other correct process. The same techniques described in

Section 3 yield a synchronous (or partially synchronous)
protocol that can solve this problem of gossip. The
key observation is that the Disseminate routine can
be used just as well to collect data as to distribute it.

Specifically, we modify the Disseminate routine as
follows. We refer to the modified protocol as Collect.

• First, when executed at process pi, it takes three
parameters: (i) ri, a rumor to collect, (ii) isC i, a
flag indicating whether pi is a coordinator, and (iii)
coordsi, the set of coordinators. It returns to each
coordinator pi a set Ri of rumors and a flag dsi; it
does not return anything to non-coordinators.

• Second, every process attaches its rumor ri to the
response sent to the coordinators during Round 2
in each triple of rounds. Each coordinator attaches
the set of newly learned rumors to every message
sent to the other coordinators during Round 3 in
each triple of rumors. (Note that if the coordinators
are attempting to aggregate data as it is collected,
they may send some aggregate or compressed ver-
sion of the newly discovered rumors.)

The Collect protocol has essentially the same prop-
erties (of validity, consistency, and termination) as
the Disseminate protocol, with the exception of the
disseminationD property which is now replaced by the
collectionC property: For every non-failed coordinator
pi, for every non-failed process pj , the rumor rj is re-
turned to pi, i.e., rj ∈ Ri.
The gossip protocol, then, proceeds as follows:

Communication-Efficient Gossip

1. ChooseC()→ 〈isC i, coordsi〉

2. Collect(ri, isC i, coordsi)→ 〈Ri, dsi〉

3. Disseminate(Ri, isC i, coordsi)→ 〈Vi, dsi〉

4. Disseminate(Done, isC i, coordsi)→ 〈Vi, dsi〉

5. If process pi has not received the flag Done, then
it sends a fallback request to every other process.
Every process, on receiving such a request, sends
its rumor in response.

The resulting protocol ensures that every rumor origi-
nating at a correct process is distributed to every non-
failed process: if there are no non-failed coordinators
that complete Step 4, then no process receives the Done
message and every process sends its rumor to all other
process during the fallback Step 5; if there is even one
non-failed coordinator, then by the collection property

it retrieves all the rumors in Step 2, and by the dissem-
ination property it distributes all the rumors in Step
3.

It is also easy to see that the resulting protocol
terminates in O(log∗ n) rounds, as each individual step
completes in at most O(log∗ n) rounds.

Finally, with high probability, the gossip protocol
uses no more than O(n) messages. This follows from the
probabilistic uniformity and coordinator-set size proper-
ties of the ChooseC protocol, along with the message-
complexity analysis of the Collect/Disseminate pro-
tocols.

While the protocol sends at most O(n) message,
with high probability, the communication complexity
depends on the size of the rumors and their capacity to
be efficiently aggregated. (This is, of course, inherent to
all gossip protocols.) Even so, there are a wide variety
of examples in which the data being collected can be
efficiently aggregated (or summarized). For example, a
common problem in distributed computing is verifying
whether there is one or more than one non-failed leader
in a system; such a problem can be solved using this
gossip protocol with only O(n) bits of communication.

6 Conclusion

In this paper, we have developed a new consensus al-
gorithm that achieves optimal communication complex-
ity and almost optimal time complexity. We have also
shown how to modify the algorithm so that it can tol-
erate asynchronous executions, while maintaining good
performance if the network is synchronous. The tech-
niques we have used are quite general, and can be used
to solve a variety of other problems. As an example,
we have shown how to use this technique of universe
reduction to efficiently gossip rumors.

One of the important open questions regards the
property of locality, i.e., where no process sends more
than O(logO(1) n) bits. (In the communication-optimal
consensus protocol in this paper, each of the coordina-
tors may send Θ(n/ log n) messages.) We conjecture
that the same techniques in this paper can be used to
achieve locality; however straightforward modifications
lead to larger communication and time complexity. In
fact, there may well be an inherent trade-off between
locality and communication/time complexity. The nat-
ural question, then, is what is the optimal communica-
tion complexity for a local algorithm?

The other major open question is resolving the op-
timal communication complexity for deterministic con-
sensus algorithms with linear time complexity. (Recall
that [15] achieves optimal O(n) message complexity, but
requires super-linear round complexity.) We conjecture
that it is impossible to achieve both O(n) communica-

tion complexity and O(n) time complexity with a de-
terministic algorithm.

Acknowledgments

We would like to thank Valerie King for several helpful
conversations, and especially her insights regarding the
technique of universe reduction. We would also like
to thank Dan Alistarh for many discussions regarding
how to reduce the message complexity of distributed
algorithms.

References

[1] S. Amdur, S. Weber, and V. Hadzilacos. On the
message complexity of binary agreement under crash
failures. Distributed Computing, 5(4):175–186, 1992.

[2] J. Aspnes. Randomized protocols for asynchronous
consensus. Distributed Computing, 16(2-3):165–175,
2003.

[3] H. Attiya and K. Censor. Lower bounds for random-
ized consensus under a weak adversary. In Proceedings
of the Twenty-Seventh Symposium on Principles of
Distributed Computing (PODC), pages 315–324. ACM,
2008.

[4] H. Attiya and K. Censor. Tight bounds for asyn-
chronous randomized consensus. J.of the ACM,
55(5):1–26, 2008.

[5] M. Ben-Or, E. Pavlov, and V. Vaikuntanathan. Byzan-
tine agreement in the full-information model in o(log
n) rounds. In Proceedings of the Thirty-Eighth Sympo-
sium on Theory of Computing (STOC), pages 179–186.
ACM, 2006.

[6] B. Chlebus and D. Kowalski. Gossiping to reach
consensus. In Proceedings of 14th Symposium on
Parallel Algorithms and Architectures (SPAA), pages
220–229, 2002.

[7] B. Chlebus and D. Kowalski. Robust gossiping with
an application to consensus. Journal of Computer and
System Science, 72(8):1262–1281, 2006.

[8] B. Chlebus and D. Kowalski. Locally scalable random-
ized consensus for synchronous crash failures. In Pro-
ceedings of 21st Symposium on Parallel Algorithms and
Architectures (SPAA), 2009.

[9] B. S. Chlebus and D. R. Kowalski. Randomization
helps to perform independent tasks reliably. Random
Struct. Algorithms, 24(1):11–41, 2004.

[10] B. S. Chlebus, D. R. Kowalski, and M. Strojnowski.
Fast scalable deterministic consensus for crash failures.
In Proceedings of the 28th Symposium on Principles of
Distributed Computing (PODC), 2009.

[11] B. Chor, M. Merritt, and D. B. Shmoys. Simple
constant-time consensus protocols in realistic failure
models. J. of the ACM, 36(3):591–614, 1989.

[12] D. Dolev and H. Strong. Requirements for agreement
in a distributed system. Technical Report RJ 3418,
IBM Research, San Jose, CA, Mar. 1982.

[13] C. Dwork, J. Halpern, and O. Waarts. Performing
work efficiently in the presence of faults. SIAM Journal
on Computing, 27(5):1457–1491, 1998.

[14] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2):288–323, 1988.

[15] Z. Galil, A. Mayer, and M. Yung. Resolving message
complexity of byzantine agreement and beyond. In
Proceedings of the 36th Symposium on Foundations of
Computer Science (FOCS), pages 724–733, 1995.

[16] C. Georgiou, S. Gilbert, R. Guerraoui, and D. Kowal-
ski. On the complexity of asynchronous gossip. In
Proceeding of the 27th Symposium on Principles of Dis-
tributed Computing (PODC), 2008.

[17] S. Gilbert, R. Guerraoui, and D. Kowalski. On
the message complexity of indulgent consensus. In
Proceedings of the the 21st International Symposium
on Distributed Computing (DISC), 2007.

[18] B. M. Kapron, D. Kempe, V. King, J. Saia, and V. San-
walani. Fast asynchronous byzantine agreement and
leader election with full information. In Proceedings of
the Nineteenth Annual Symposium on Discrete Algo-
rithms (SODA), pages 1038–1047, 2008.

[19] R. M. Karp, C. Schindelhauer, S. Shenker, and B. Vck-
ing. Randomized rumor spreading. In Proceedings of
the 41st Symposium on Foundations of Computer Sci-
ence (FOCS), 2000.

[20] V. King and J. Saia. Fast, scalable byzantine agree-
ment in the full information model with a nonadap-
tive adversary. In Proceedings of the 23rd International
Symposium on Distributed Computing (DISC), 2009.

[21] V. King, J. Saia, V. Sanwalani, and E. Vee. Scalable
leader election. In Proceedings of the Seventeenth
Annual Symposium on Discrete Algorithms (SODA),
pages 990–999, 2006.

[22] L. Lamport, R. Shostak, and M. Pease. The byzantine
generals problem. ToPLaS, 4(3):382–401, 1982.

[23] N. Lynch. Distributed Algorithms. Morgan Kaufman,
1996.

[24] D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright.
Probabilistic quorum systems. Information and Com-
putation, 170(2):184–206, 2001.

[25] M. Pease, R. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. Journal of the
ACM, 27(2):228–234, 1980.

