
Accurate Functional Dependency Analysis for

Constraint Handling Rules

Gregory J. Duck1 and Tom Schrijvers2⋆

1 Department of Computer Science, University of Melbourne, Australia
2 Department of Computer Science, K.U.Leuven, Belgium

Abstract. Information about functional dependencies is used by mod-
ern CHR compilers for both optimisation and for further program anal-
ysis (e.g. confluence analysis). Before this work, CHR compilers relied
on an ad hoc analysis for functional dependencies based on searching for
rules of a particular form and the results from late storage analysis.
We present a more formal functional dependency analysis of CHRs based
on abstract interpretation. We show, by example, that the new analysis
is more accurate than the existing ad hoc analysis.

1 Introduction

The recent appearance of new optimising CHR systems [3, 5] has given rise to the
need to communicate and compare between different CHR systems, which has
led to the formulation of the more deterministic refined operational semantics
[2] shared among CHR compilers.

Apart from the common formal semantics, there is also a need to commu-
nicate and compare program analyses. As the complexity of CHR compilers in-
creases we need a better understanding of current analyses and ways to extend
and combine them. Most of the currently existing analyses have been formulated
in an ad hoc way and no formal proofs of correctness exist.

In [6] a formal framework for program analysis of CHR, based on abstract
interpretation [1], has been presented. This framework provides a remedy for
the current difficulties in correctly analysing CHR programs, and should enable
optimising CHR compilers to reach a new level of complexity and correctness.

In this paper we apply the abstract interpretation framework of CHR to
the ad hoc analysis of the functional dependency property presented in [4]. The
functional dependency property is useful for program optimisations such as join
ordering, index selection and never-stored optimisation. Moreover, functional
dependency information allows for more accurate confluence analysis [2] with
respect to the refined operational semantics.

The new functional dependency analysis is an improvement over the ad hoc
version for several reasons. Firstly, it provides a formal description of the analy-
sis, as an abstraction of the refined operational semantics. This allows for better

⋆ Research Assistant of the Fund for Scientific Research - Flanders (Belgium)(F.W.O.
- Vlaanderen)

insight into the analysis, its correctness, possible improvements and integration
with other analyses. Secondly, functional dependency information is associated
with every “program point”, rather than for the program as a whole. This allows
for more localised optimisations. Thirdly, the analysis keeps track of constraint
multiplicity information for the constraint store. This allows for more accurate
approximation of the actual control flow.

Overview First, in Section 2 we summarize the operational semantics that the
functional dependency property is based on. Then Section 3 formally defines the
property itself and illustrates it on a number of practical examples. Next, Section
4 briefly explains the existing ad hoc analysis. In Section 5 the new analysis, its
abstract domain and abstract semantics function are presented and illustrated.
We discuss the implementation and evaluation of our new analysis in Section 6.
Finally, Section 7 concludes.

2 Operational Semantics of Constraint Handling Rules

Functional dependency analysis relies on the refined call-based operational se-
mantics of CHRs, which we briefly introduce here. Although this paper assumes
strong familiarity with the call-based semantics of CHRs, we must omit a proper
introduction for space reasons. We direct the reader to [6, 2] for an extensive
treatment.

The call-based semantics for CHRs is defined as a transition system between
execution states. An execution state is a tuple 〈G, A, S, B, T 〉n, where G is the
goal, A is the activation stack, S is the CHR store, B is the built-in store, T
is the propagation history and n the next free constraint identifier. Execution
states are represented by the symbol σ, and Σ is the set of all execution states.

The goal G is either a built-in constraint, CHR constraint, identified con-
straint or active constraint. Built-in constraints are handled by an underlying
built-in solver, whereas the other kinds of constraints are handled by the CHR
execution algorithm. A CHR constraint c may be associated with a (unique) inte-
ger identifier i to become an identified constraint c#i. Furthermore, c#i may be
associated with an occurrence number j to become an active constraint c#i : j.
The identifier i distinguishes multiple copies of c, and the occurrence number j
is essentially a program counter (which decides the rule to match against).

The CHR store S is a set of identified constraints. The built-in store B is an
accumulated conjunction of the built-in constraints passed to the built-in solver
during solving. The meaning of the built-in constraints is decided by a constraint
domain D. For example, if D |= B → (x = y), then x and y are equal w.r.t. the
constraints in B.

Operationally, a constraint c is called by making it the goal in an execution
state. If c is a built-in constraint, then c is added to the built-in store (i.e. passed
to the built-in solver). Otherwise, if c is a CHR constraint, then it is activated to
become c#i : 1 (for new number i) and c#i is added to S. An active constraint
will search through all occurrences (by incrementing the occurrence number)

2

until it is either deleted by a rule, or all occurrences and matchings have been
already been tried.

3 The Functional Dependency Property

In this section we formally define the functional dependency property.

A functional dependency is a relationship between the arguments of a CHR
constraint. The notation we use for functional dependencies is

p(x1, . . . , xn) :: {xi0 , . . . , xil
} {xj0 , . . . , xjm

}

which indicates that the arguments {xi0 , . . . , xil
} functionally determine the

value of arguments {xj0 , . . . , xjm
}, where both {xi0 , . . . , xil

} and {xj0 , . . . , xjm
}

are subsets of {x1, . . . , xn}. We sometimes refer the domain {xi0 , . . . , xil
} as the

key for the functional dependency.

The key to detecting functional dependencies is the following utility function,
which counts the number of constraints satisfying a particular form in the given
CHR store.

Definition 1. Given a functor/arity of a constraint p/n, a set of positive in-
tegers {i0, . . . , ij}, CHR store S and a built-in store B, we define function
count(p, n, {i0, . . . , ij}, S, B) to be the following. Let S′ ⊆ S be the maximal
subset of S such that all p(x1, . . . , xn)#i ∈ S′ and p(y1, . . . , yn)#i′ ∈ S′ satisfy

D |= B → (xi0 = yi0 ∧ . . . ∧ xij
= yij

)

Then count(p, n, {i0, . . . , ij}, S, B) = |S′|.

Example 1. For example, given the following CHR store

S = {p(1, 2)#1, p(1, 3)#2, p(1, 4)#3}

then count(p, 2, {1}, S, true) = 3 since there is at most three constraints which
share the same first argument. Similarly, count(p, 2, {2}, S, true) = 1 since there
is at most one constraint which share the same second argument. ⊓⊔

We can formally define a functional dependency in terms of the count function
as follows.

Definition 2 (Set Semantic Functional Dependency). Given a CHR store
S, and built-in store B, we say constraint p/n has a set semantic functional
dependency

p(x1, . . . , xn) :: {xi0 , . . . , xij
} {x1, . . . , xn}

if count(p, n, {i0, . . . , ij}, S, B) ≤ 1.

3

Example 2. Consider the CHR store S from Example 1. Then the set semantic
functional dependency p(x, y) :: {y} {x, y} holds since each possible value of
y is associated with at most one value of {x, y} in the store. For example, y = 3
is only associated with {1, 3} from the constraint p(1, 3)#2, etc.

On the other hand, the set semantic functional dependency p(x, y) :: {x}
{x, y} does not hold since there exists a value for x, namely x = 1, which is
associated with multiple values for {x, y}, i.e., {1, 2}, {1, 3}, etc. ⊓⊔

This definition is only concerned with full functional dependencies, i.e. the
domain of the functional dependency determines all other arguments. A more
general functional dependency only needs to determine some subset of all argu-
ments greater than the domain, e.g., p(x, y, z) :: {x} {x, y} is a non-full func-
tional dependency. Currently, we only analyse for full functional dependencies.
Some optimisations, such as indexing [4], require full functional dependencies.

Also, our definition differs from the usual mathematical definition of a func-
tional dependency. Strictly speaking, a functional dependency is a relationship
between arguments of constraints, namely what arguments determine the values
of other arguments. In a set semantic functional dependency, we require both a
traditional functional dependency, and the requirement that there is at most one
copy of a constraint with the same key in the CHR store. For example, the CHR
store {p(1, 2)#1, p(1, 2)#2} has a functional dependency between the first and
second arguments of the p constraint, because given the value to the first argu-
ment we can determine the value of the second. However, there is no set semantic
functional dependency, because two constraints with the same first argument si-
multaneously appear in the store at once. Set semantic functional dependencies
are stronger than the traditional functional dependencies. CHR optimisations
specifically rely on set semantic functional dependencies, hence the distinction.
For brevity, we will often refer “set semantic functional dependencies” as simply
“functional dependencies” from now on.

3.1 Examples of Functional Dependency

Example 3. Our first example is based on using CHRs as a queryable data struc-
ture. This is a common CHR idiom. It supports insertion and lookups of key-
value (K − V) pairs.

insert(K,V) <=> entry(K,V).

entry(K,_) \ entry(K,_) <=> true.

entry(K,V) \ lookup(K,V0) <=> V0 = V.

lookup(_,_) <=> fail.

The second rule ensures that a functional dependency exists between the key
and value for a given entry constraint in the store. This means that the key K
determines the value V for any entry(K,V) appearing in the store. Essentially,
if two entries exist with the same key, then one will be deleted, thus preserving
the functional dependency.

4

The other constraints, namely insert and lookup are both never-stored.
This is because these constraints are always deleted by either the first or fourth
rule. ⊓⊔

The ad hoc analysis detects all functional dependencies and never-stored
constraints for the database program. However there are examples of programs
where such information cannot be detected by current implementations.

Example 4. The following CHR program sorts the list [x1, x2, x3, . . . , xn] repre-
sented as the CHR constraints link(x1, x2), link(x2, x3), . . . , link(xn−1, xn).

link(X,Y) <=> X > Y | link(Y,X).

link(X,Y) \ link(X,Z) <=> Y =< Z | link(Y,Z).

link(X,Y) \ link(T,Y) <=> X >= T | link(T,X).

For example, the goal link(9, 5), link(5, 7), link(7, 6), link(6, 8) representing the
list ‘[9, 5, 7, 6, 8]’ results in link(5, 6), link(6, 7), link(7, 8), link(8, 9) representing
the list ‘[5, 6, 7, 8, 9]’. ⊓⊔

Both the second and third rule enforce functional dependencies between argu-
ments. For example, the second rule enforces that the first argument determines
the value of the second in a link/2 constraint.

Under current implementations of functional dependency analysis, neither
functional dependency will be detected. This is because the compiler’s analysis
is too weak to decide the meaning of inequalities in either guard. One solution
is to strengthen the existing analysis by allowing the compiler to reason about
inequalities, as is done in [8] to detect redundant code. However, in some sys-
tems such as HAL there are no guarantees about the meaning of the inequality
predicate (e.g. =</2 could be an arbitrarily defined user predicate in HAL).

Another solution is for the programmer to add redundant rules to “declare”
the functional dependency. In this case the programmer will define the following
rules.

link(X,_) \ link(X,_) <=> true.

link(_,Y) \ link(_,Y) <=> true.

Note that the operational behaviour of the rules are not important, since the
programmer never intends for the rules to be executed anyway. The question
remains of where to insert the rules into the program such that the rules are
never executed. Clearly, the rules must be inserted after the first three rules in
Example 4.

Unfortunately, under the ad hoc functional dependency analysis the new rules
provide no additional benefit. The reason is because the ad hoc analysis relies
on the results of late storage analysis [4, 6]. Although rules 4 and 5 are of the
appropriate form for functional dependencies, an active link/2 constraint will
have already been stored thanks to rules 2 and 3.

Our new functional dependency analysis is independent of late storage anal-
ysis. As a result, we will show that we can still derive benefit from the addition
of the new rules for this program.

5

4 Ad Hoc Functional Dependency Analysis

In this section we give a brief overview of the ad hoc functional dependency
analysis in [4].

Essentially, the analysis relies on detecting rules of the following form in the
program.

p(x1, . . . , xn)[\,]p(y1, . . . , yn)j ⇐⇒ xi0 = yi0 ∧ . . . ∧ xim
= yim

| C

Here x1, . . . , xn, y1, . . . , yn are distinct variables. For example, the following rule
from Example 3 fits the required form.

entry(K,_) \ entry(K,_) <=> true.

Note that shared variables in the rule head indicate equation guards, e.g., the
above rule is equivalent to

entry(K1,_) \ entry(K2,_) <=> K1 = K2 | true.

If such a rule exists, then generally the functional dependency p(x1, . . . , xn) ::
{xi0 , . . . , xim

} {x1, . . . , xn} holds. To see this, assume that for a given key, e.g.
K = cat, there already exists a constraint, say entry(cat,dog) in the store. If a
new constraint with the same key, e.g. entry(cat,pig), becomes active, then we
can statically determine that the above mentioned rule will always fire, deleting
the new constraint with the same key. Thus we maintain the invariant that only
one constraint exists in the store per key

There is a slight complication, the refined semantics requires that the new
constraint be immediately stored when it first becomes active, before any rules
can fire. This means that until the rule fires, the functional dependency is being
violated. Thus the ad hoc functional dependency analysis relies on late stor-
age analysis [4, 6], which determines the latest point in the program where a
constraint needs to be added into the store. If the rule enforcing the functional
dependency appears before this point, then the functional dependency is valid,
otherwise the analysis cannot infer any functional dependency.

In addition to functional dependencies, there is an ad hoc never-stored anal-
ysis [4], which determines if a CHR constraint is never present in the CHR store.
This analysis is similar to the previous, except this time we look for rules of the
from

p(x1, ..., xn) ⇐⇒ C

where x1, ..., xn are distinct variables. If such a rule appears before an active
p/n is stored, then we say that p/n is never-stored. For example, insert and
lookup from Example 3 are all never-stored.

5 Accurate Functional Dependency Analysis

In this section we present the more accurate functional dependency analysis for
CHRs based on the abstract interpretation framework for CHRs [6]. In par-
ticular we formulate our analysis in terms of the denotational semantics-based
formulation of the framework [7].

6

5.1 Abstract Domain Σa

In this section we describe the abstract domain Σa for functional dependency
analysis. In our abstraction we preserve information about two components: the
goal and the constraint store.

The abstraction of the former retains the necessary information about the
program point as required by the abstract interpretation framework. We define
function αfd−c that abstracts the goal component of a state.

αfd−c(�) = �
αfd−c(c) = builtin (c built-in)
αfd−c(p(x1, . . . , xn)) = p
αfd−c(p(x1, . . . , xn)#i) = p#
αfd−c(p(x1, . . . , xn)#i :j) = p :j
αfd−c([c|G]) = [αfd−c(c)|αfd−c(G)]

The abstraction of the latter captures patterns in the constraint store S that are
essential for the analysis. Therefore, the abstract store is a set of lookups, which
are defined by the following lookup function.

Definition 3 (Lookup function). We define the lookup function lookup(p, n, K),
where p is a predicate symbol, n is the arity of p and K ⊆ {1, . . . , n} a set of
integers, as follows.

lookup(p, n, K) = p(lookup(1, K), . . . , lookup(n, K))
lookup(i, K) = ∗ i ∈ K
lookup(i, K) = i 6∈ K

Consider the constraint p/2, then the set of possible lookups are

{p(∗, ∗), p(∗,), p(, ∗), p(,)}

Note that lookup(p, n, K) is isomorphic to K, and its usage is mainly syntactic.
The concept of a lookup will become relevant to CHR optimisation. The set of
arguments represented by the ∗s are referred to as the key of the lookup.

We can now define an abstraction function αfd−S over the CHR store.

Definition 4. Let S be a CHR store, and let p/n be the functor/arity of a
CHR constraint of interest (e.g. any CHR constraint appearing in program P).
Let K ⊆ {1, . . . , n} be a set of integers, let c = lookup(p, n, K), let count =
count(p, n, K, S, B) and let count′ = count(p, n, K, S′, B) where S′ is defined as
follows. Let p(x1, . . . , xn)#i :j be the first active constraint in A with predicate p,
then S′ = S − {p(x1, . . . , xn)#i}, otherwise (if no such active constraint exists)
S′ = S. Then

count = 0 ⇒ c0 ∈ αfd−S(A, S, B)
count = 1 ∧ count′ = 0 ⇒ c1a ∈ αfd−S(A, S, B)
count = 1 ∧ count′ = 1 ⇒ c1 ∈ αfd−S(A, S, B)
count = 2 ∧ count′ = 1 ⇒ c2a ∈ αfd−S(A, S, B)
count = 2 ∧ count′ = 2 ⇒ c∗ ∈ αfd−S(A, S, B)
count ≥ 2 ⇒ c∗ ∈ αfd−S(A, S, B)

7

We define αfd−S(A, S, B) to be the smallest possible set satisfying the above
conditions.

We refer the superscript associated with each lookup as the counter for that
lookup. The counters 0, 1 and ∗ are fairly intuitive, as they mean that there is at
most 0, 1 or many constraints in the CHR store with the same key as the lookup.
The special counters, 1a and 2a are slightly more complicated. The counter 1a is
equivalent to 1 except that if we were to remove the top-most active constraint
of the same functor/arity from the concrete store, then the new counter will be
0. Similarly, the counter 2a is equivalent to 2 (although we treat 2 the same
as ∗), but if the top-most active constraint were to be removed, then the counter
will be 1. We shall refer to these special counters as marked counters, and other
counters as unmarked counters. Marked counters are necessary since functional
dependency analysis relies on improving the counters (i.e. moving to a lower
counter) if possible.

Example 5. Consider the following CHR store from the database program from
Example 3.

S = {entry(key, cat)#2, entry(key, dog)#1}

Assume that the built-in store is trivial, i.e. B = true, and the given execution
stack is A = [entry(key, cat)#2:1], then

S′ = {entry(key, dog)#1}

hence

αfd−S(A, S, B) = {entry(∗, ∗)1, entry(∗,)2a, entry(, ∗)1, entry(,)2a}

Both entry(∗, ∗) and entry(, ∗) have the counter 1, since there is at most
one entry that shares the same key {1, 2} or {2}. One the other hand, both
entry(∗,) and entry(,) are have the marked counter 2a. This is because
there are two entry constraints that share the same key {1} or ∅, however there
would be only one such constraint if we were to remove entry(key, cat) (the
current active constraint) from consideration.

If the given activation stack had been empty, i.e. A = [], then S = S′ hence

αfd−S(A, S, B) = {entry(∗, ∗)1, entry(∗,)∗, entry(, ∗)1, entry(,)∗}

There are still 2 constraints sharing the same key {1} or ∅. However there is
no current active constraint to remove from consideration, thus the counter for
entry(∗,) and entry(,) is now ∗. ⊓⊔

Example 6. Consider the following execution state σ for the database program
in Example 3.

〈entry(key, cat)#2:1, [], {entry(key, cat)#2, entry(key, dog)#1}true, ∅〉3

The CHR and built-in stores are the same as in Example 5. Then

αfd (σ) = 〈entry :1, {entry(∗, ∗)1, entry(∗,)2a, entry(, ∗)1, entry(,)∗}〉

⊓⊔

8

Finally, abstraction function αfd that maps concrete states σ = 〈c, A, S, B, T 〉n
of the concrete domain Σ onto abstract states.

Definition 5 (Abstraction Function). We define function αfd as follows

αfd (〈c, A, S, B, T 〉n) = 〈αfd−c(c), αfd−S([c|A], S, B)〉

For any given abstract state σ we can easily determine which functional
dependencies exist by interpreting the counts on the lookups. In general, a lookup
with a count of 1 represents a functional dependency. For example, the lookup
p(∗,)1 indicates the functional dependency p(x, y) :: {x} {x, y} holds for the
given abstract state, and hence all corresponding program points.

The abstract interpretation framework requires a partial order to be defined
over abstract states.

Definition 6 (Partial Ordering). Let s0 = 〈G0, S0〉 and s1 = 〈G1, S1〉, then
s0 �fd s1 iff G0 = G1 and S0 �fdS

S1. The partial order �fdS
over abstract

CHR stores is defined as follows. If for all cn ∈ S0, there exists a cm ∈ S1 (with
the same c), and cn � cm, then S0 �fdS

S1. Here we define

c0 ≺ c1a ≺ c1 ≺ c2a ≺ c∗

if S0 and S1 contain different lookups, �fdS
is undefined .3

We can use the definition of the partial ordering to define the concretisation
function of this abstract domain as γfd (s) = {σ | αfd (σ) �fd s}. For the sake of
completeness4, we add a top element ⊤fd to the abstract domain, with γ(⊤fd) =
Σ and ∀s ∈ Σa : s �fd ⊤fd .

Clearly the abstract domain forms a lattice with the ordering relation �fd .
The least upper bound operation over abstract stores is defined as follows.

Definition 7 (Least Upper Bound). Let s0 = 〈G0, S0〉 and s1 = 〈G1, S1〉,
then s0 ⊔fd s1 = 〈G0, S0 ⊔fd−S S1〉 if G0 = G1 and S0 and S1 contain the same
lookups, otherwise it is ⊤fd . The operator ⊔fd−S over abstract CHR stores is de-
fined as follows. If for all cn ∈ S0, there exists a cm ∈ S1 (with the same c), then
max�fd−S

(cn, cm) ∈ S0 ⊔fd−S S1. The set S0 ⊔fd−S S1 must be the minimal set
satisfying the above condition. Here, function max�fd−S

is a maximum function
using the ordering �fd−S given in Definition 6. Otherwise ⊔fd−S is undefined
if S0 and S1 contain different lookups.

5.2 Abstract Semantic Function AS

The abstract semantic function AS for the functional dependency analysis is
defined below.

3 In the abstract interpretation, S0 and S1 will always have the same set of lookups.
4 Our analysis never produces ⊤fd .

9

Definition 8 (Abstract Semantic Function).
1. AbstractSolve

AS[[P]](〈builtin, S〉) = 〈�, Sk〉

Let Sg be the maximal subset of S such that for all p(x1, . . . , xn)c ∈ Sg we
have that p is ground5. Let Sng = S \ Sg, then

S0 = Sg ⊎ multi(Sng)
sj = 〈�, Sj〉 = ⊔fd{si

j | AS[[P]](〈pi#, Sj−1〉) = si
j ∧ 1 ≤ i ≤ n}, j ≥ 1

where pi are predicates of all potentially nonground constraints. Let k be the
smallest positive integer such that sk = sk−1.

Adding a built-in constraint, e.g. an equation to the built-in store has the
potential to increase the counts of lookups for nonground constraints arbitrarily.
Therefore, we use function multi on the nonground lookups, which overwrites
any count by ∗.

multi(S) = {c∗ | ci ∈ S}

In effect, we are assuming the weakest possible information for these lookups.
2. AbstractActivate

AS[[P]](〈p, S〉) = 〈p :1, increase(p, S)〉

A new constraint is added to the store, hence we must increase the counts for
p. Here we define

increase(p, S) =

{

c′
∣

∣

∣

∣

c ∈ S ∧
if functor(c) = p then c′ = increase(c)
else c′ = c

}

where

increase(c0) = c1a increase(c1) = c2a increase(c∗) = c∗

increase(c1a) = c2a increase(c2a) = c∗

Notice that the resulting counts are always marked (except for ∗).
3. AbstractReactivate

AS[[P]](〈p#, S〉) = 〈p :1, S〉

Unlike AbstractActivate, the new active constraint is already present in the
store, hence there is no need to call function increase on the abstract store.
4. AbstractDrop

AS[[P]](〈p :j, S〉) = 〈�, unmark(p, S)〉

There is no occurrence j for predicate p.
Because the active constraint for p no longer exists, we must unmark all of

the counters for p.

unmark(p, S) =

{

c′
∣

∣

∣

∣

c ∈ S ∧
if functor(c) = p then c′ = unmark(c)
else c′ = c

}

5 This information may either be derived through groundness analysis [6] or mode
declarations.

10

where

unmark(c0) = c0 unmark(c1) = c1 unmark(c∗) = c∗

unmark(c1a) = c1 unmark(c2a) = c∗

In effect, the (former) active constraint is now treated the same as any other
constraint in the store.
5. AbstractSimplify

AS[[P]](〈p :j, S〉) = s

Let r be the rule which contains the jth occurrence of predicate p. If we
assume that the rule fired, then

AS[[P]](〈αfd−c(C), decrease(p, S)〉) = 〈�, S1〉 = s1

Because the active constraint has been deleted, we must decrease all of the
counters for p.

decrease(p, S) =

{

c′
∣

∣

∣

∣

c ∈ S ∧
if functor(c) = p then c′ = decrease(c)
else c′ = c

}

where

decrease(c0) = c0 decrease(c1) = c1 decrease(c∗) = c∗

decrease(c1a) = c0 decrease(c2a) = c1

Note that we can only alter the marked counters. Also, the resulting counts are
unmarked, since the active constraint has been deleted.

We consider the following three cases for deriving the resulting state s.

1. If rule r is of the form

p(x1, . . . , xn)[\,]p(y1, . . . , yn)j ⇐⇒ xi0 = yi0 ∧ . . . ∧ xim
= yim

| C

(where occurrence j is shown).
If we assume the rule did not fire, then the resulting state is

AS[[P]](〈p : (j + 1), decrease 2a(p, n, {i0, . . . , im}, S)〉) = s2

We use function decrease 2a to improve the counts of lookups which contain
key {i0, . . . , im}, where

decrease 2a(p, n, K, S) =

c′

∣

∣

∣

∣

∣

∣

∣

∣

c ∈ S ∧
if ∃K ′ ⊇ K such that c = lookup(p, n, K ′)

then c′ = decrease 2a(c)
else c′ = c

and

decrease 2a(c0) = c0 decrease 2a(c1) = c1 decrease 2a(c∗) = c∗

decrease 2a(c1a) = c1a decrease 2a(c2a) = c1

11

We can make this improvement since if c2a were in the abstract store for
some lookup c with a key containing {i0, . . . , im}, then the rule must have
fired. This kind of improvement is the essential part of functional dependency
analysis.

For the resulting state we have s = s1 ⊔fd s2.

2. If rule r is an unconditional simplification rule (i.e. the guard is true) of the
form

p(x1, . . . , xn)j ⇐⇒ C

then s = s1.

3. Otherwise (r is not in any of the above forms), then

s = s1 ⊔fd AS[[P]](〈p : (j + 1), S〉)

6. AbstractPropagate

AS[[P]](〈p :j, S〉) = AS[[P]](〈p : (j + 1), Sk〉)

1. If the following conditions hold:

– Rule r is of the form

p(x1, . . . , xn)j [\,]p(y1, . . . , yn) ⇐⇒ xi0 = yi0 ∧ . . . ∧ xim
= yim

∧ g | C

(where occurrence j is shown). Here g represents an arbitrary guard.6

– For c = lookup(p, n, {i0, ..., im}) we have that c2a ∈ S.

Then

AS[[P]](〈αfd−c(C), decrease 2a(p, n, {i0, . . . , im}, S)〉) = 〈�, Sk〉

defines Sk.

2. Otherwise, let

S0 = S
sj = 〈�, Sj〉 = AS[[P]](〈αfd−c(C), Sj−1〉)

and let k be the smallest positive integer such that sk = sk−1.

7. AbstractGoal

AS[[P]](〈�, S〉) = 〈�, S′〉
AS[[P]](〈[c|G], S〉) = AS[[P]](〈G, S′〉)

where

AS[[P]](〈c, S〉) = 〈�, S′〉

6 Ideally g contains (nor entails) no equations of the from xk = yk for 1 ≤ k ≤ n. If g

does entail such an equation, then the analysis will be weaker than it could be.

12

5.3 Example Analysis

Consider the following rule on the entry constraint from Example 3.

entry(K,_) \ entry(K,_) <=> true.

The abstract derivations for executing a single entry constraint are shown in
Figure 1. For brevity, we have abbreviated entry to e, and we have omitted the
subcomputations for AbstractPropagate. In each instance, the AbstractPropagate

does not change the abstract store. We are assuming that the entry constraint
is a ground constraint.

After three iterations we arrive at a fixed point for the final state. The re-
sulting abstract store is

{entry(∗, ∗)1, entry(∗,)1, entry(, ∗)∗, entry(, ∗)∗}

This indicates that after an entry constraint has finished being active, the set se-
mantic functional dependencies entry(X, Y) :: {X} {X, Y } and entry(X, Y) ::
{X, Y } {X, Y } hold.

6 Implementation and Evaluation

Information about functional dependencies and never-stored is used in further
program analysis (e.g. confluence analysis [2]) and for join ordering, index selec-
tion and never-stored optimisations. We have implemented a simple prototype
functional dependency analysis in SWI-Prolog, and use the results of the anal-
ysis to improve the compilation of HAL CHR programs. Note that currently
the analysis is not integrated in the HAL compiler itself, so (in some cases)
the optimisations have been performed by hand. Full integration remains future
work.

In Table 1 we compare several CHR programs with/without functional de-
pendency (and never-stored) optimisations. The source code and description of
the programs can be downloaded from http://www.cs.mu.oz.au/~gjd/chr05/.
The −fd (+fd) version has the optimisation disabled (enabled). Overall we see a
17% improvement for the +fd version, which shows that functional dependency
analysis is beneficial.

For most of the programs the ad hoc analysis gives equivalent results to the
new analysis. The exceptions are the sort example (as explained in Section 3.1)
and the game program, where one of the CHR constraints is locally never-stored
for some occurrences (rather than all occurrences as required by the ad hoc
analysis). In both of these programs, the ad hoc analysis is equivalent to the
−fd no analysis version. This shows that the new analysis is an improvement
over the ad hoc version.

7 Conclusion

In this paper we have replaced the old ad hoc functional dependency analysis of
[4] with a more powerful analysis. We have provided a full formal specification of

13

AS [[P]](〈e, {e(∗, ∗)0, e(∗,)0, e(, ∗)0, e(,)0}〉)
=AS [[P]](〈e :1, {e(∗, ∗)1a, e(∗,)1a, e(, ∗)1ae(,)1a}〉) (Activate)
=AS [[P]](〈�, {e(∗, ∗)0, e(∗,)0, e(, ∗)0e(,)0}〉)
⊔fdAS [[P]](〈e :2, {e(∗, ∗)1a, e(∗,)1a, e(, ∗)1ae(,)1a}〉) (Simplify)

=〈�, {e(∗, ∗)0, e(∗,)0, e(, ∗)0e(,)0}〉 ⊔fd 〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)1e(,)1}〉
=〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)1e(,)1}〉

AS [[P]](〈e :2, {e(∗, ∗)1a, e(∗,)1a, e(, ∗)1ae(,)1a}〉)
=AS [[P]](〈e :3, {e(∗, ∗)1a, e(∗,)1a, e(, ∗)1ae(,)1a}〉) (Propagate)
=〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)1e(,)1}〉 (Drop)

AS [[P]](〈e, {e(∗, ∗)1, e(∗,)1, e(, ∗)1, e(,)1}〉)
=AS [[P]](〈e :1, {e(∗, ∗)2a, e(∗,)2a, e(, ∗)2ae(,)2a}〉) (Activate)
=AS [[P]](〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)1e(,)1}〉)
⊔fdAS [[P]](〈e :2, {e(∗, ∗)1, e(∗,)1, e(, ∗)2ae(,)2a}〉) (Simplify)

=〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)1e(,)1}〉 ⊔fd 〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗e(,)∗}〉
=〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗e(,)∗}〉

AS [[P]](〈e :2, {e(∗, ∗)1, e(∗,)1, e(, ∗)2ae(,)2a}〉)
=AS [[P]](〈e :3, {e(∗, ∗)1, e(∗,)1, e(, ∗)2ae(,)2a}〉) (Propagate)
=〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗e(,)∗}〉 (Drop)

AS [[P]](〈e, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗, e(,)∗}〉)
=AS [[P]](〈e :1, {e(∗, ∗)2a, e(∗,)2a, e(, ∗)∗e(,)∗}〉) (Activate)
=AS [[P]](〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗e(,)∗}〉)
⊔fdAS [[P]](〈e :2, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗e(,)∗}〉) (Simplify)

=〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗e(,)∗}〉 ⊔fd 〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗e(,)∗}〉
=〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗e(,)∗}〉

AS [[P]](〈e :2, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗e(,)∗}〉)
=AS [[P]](〈e :3, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗e(,)∗}〉) (Propagate)
=〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗e(,)∗}〉 (Drop)

Fig. 1. Example abstract execution

14

Table 1. Timings (ms) showing the benefit of functional dependency based optimisa-
tions

Program −fd +fd

database(100000,5) 1694 1518
union(160) 1583 853
cycle(14) 664 595
queue(100000) 1204 1006
queens(15) 1117 914
game(30000) 1887 1761
sort(100000) 2624 2486

geom. mean 1424 83%

our analysis, in terms of an instantiation of the abstract interpretation framework
for CHR of [6]. Even though the formulation of our analysis is relatively simple,
evaluation shows that fairly strong results are obtained.

7.1 Future Work

In future work we would like to investigate a number of improvements of the
functional dependency analysis, on account of both its efficiency and strength.
Firstly, we would like to experiment with more compact representations of the
abstract domain. If lookup(p, n, K)i ∈ S with S an abstract constraint store,
then ∀K ⊂ K ′ : lookup(p, n, K ′)j ∈ S ∧ j ≤ i. If i = j for some K, K ′, then we
could simply omit lookup(p, n, K ′)j from S. When looking for the counter of a
K ′, we take minK⊂K′ lookup(p, n, K).

Secondly, there is some information in the abstract domain that is currently
not exploited in the abstract transition function. Namely, if the counter of a
particular lookup(p, n, K)j is smaller than the number of copies of a constraints
p/n in a CHR rule, then this rule cannot be applied. This provides richer control
flow information.

Thirdly, the approach of reasoning about guards, as done in [8], could prove
a useful improvement to the current analysis domain.

In addition we would also like to combine the functional dependency analysis
with other analyses formulated in terms of the abstract interpretation framework.
In particular, the late storage analysis of [6] provides relevant information con-
cerning the storage of the active constraint. The other way around, the functional
dependency abstract domain provides useful information about the constraint
store and the number of candidates for the active constraint.

References

1. Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unifed Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints. In

15

POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Princi-
ples of programming languages, pages 238–252, Los Angeles, California, 1977. ACM
Press.

2. G. Duck, P. Stuckey, M. Garcia de la Banda, and C. Holzbaur. The refined opera-
tional semantics of constraint handling rules. In 20th International Conference on
Logic Programming (ICLP’04), pages 90–104, Saint-Malo, France, September 2004.

3. C. Holzbaur, M. Garcia de la Banda, P. Stuckey, and G. Duck. Optimizing Compi-
lation of Constraint Handling Rules in HAL. Special Issue of Theory and Practice
of Logic Programming on Constraint Handling Rules, 2005. To appear.

4. C. Holzbaur, P. Stuckey, M. Garcia de la Banda, and D. Jeffery. Optimizing com-
pilation of constraint handling rules. In P. Codognet, editor, Logic Programming:
Proceedings of the 17th International Conference, LNCS, pages 74–89. Springer-
Verlag, 2001.

5. T. Schrijvers and B. Demoen. The K.U.Leuven CHR system: Implementation and
application. In First workshop on constraint handling rules: selected contributions,
2004. Published as technical report: Ulmer Informatik-Berichte Nr. 2004-01, ISSN
0939-5091, http://www/informatik.uni-ulm.de/epin/pw/10481.

6. T. Schrijvers, P. Stuckey, and G. Duck. Abstract Interpretation for Constraint Han-
dling Rules. In Proceedings of the Seventh ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming, 2005. (to appear).

7. Tom Schrijvers. Analyses, Optimizations and Extensions of Constraint Handling
Rules. PhD thesis, K.U.Leuven, Leuven, Belgium, June 2005.

8. Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard reasoning for CHR opti-
mization. Report CW 411, Department of Computer Science, K.U.Leuven, Leuven,
Belgium, May 2005.

16

