
Observable Confluence for Constraint Handling

Rules

Gregory J. Duck1, Peter J. Stuckey1, and Martin Sulzmann2

1 NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

University of Melbourne, 3010, AUSTRALIA
{gjd,pjs}@cs.mu.oz.au

2 School of Computing, National University of Singapore
S16 Level 5, 3 Science Drive 2, Singapore 117543

sulzmann@comp.nus.edu.sg

Abstract. Constraint Handling Rules (CHRs) are a powerful rule based
language for specifying constraint solvers. Critical for any rule based lan-
guage is the notion of confluence, and for terminating CHRs there is a
decidable test for confluence. But many CHR programs that in practice
are confluent fail this confluence test. The problem is that the states that
illustrate non-confluence are not reachable in practice. In this paper we
introduce the notion of observable confluence, a weaker notion of conflu-
ence which takes into account whether states are observable. We show for
an important class of non-confluent programs arising from Haskell type
class programs with functional dependencies, that they are observable
confluent.

1 Introduction

Constraint Handling Rules [3] (CHRs) are a powerful rule based language for
specifying constraint solvers. Constraint handling rules operate on a global mul-
tiset (conjunction) of constraints. A constraint handling rule defines a rewriting
from one multiset of constraints to another. There are two kinds of rewriting
rules: simplification rules which replace one multiset of constraints by another,
and propagation rules which when seeing a multiset of constraints matching
some condition, add some more constraints to the global multiset.

Example 1. Consider the following CHR program:3

r1 @ f(int,bool,float) <=> true.
r2 @ f(A,B1,C), f(A,B2,D) ==> B1 = B2.
r3 @ f(int,B,C) ==> B = bool.

The first rule has name r1. It is a simplification rule. Whenever we see the
constraint f(int,bool,float) in the global multiset we can replace it by true
(representing the empty multiset). The second rule (named r2) is a propagation

3 CHRs follow Prolog like notation, where identifiers starting with a lower case letter
indicate predicates and function symbols, and identifiers starting with upper case
letters indicate variables.

rule: whenever there exists two f/3 constraints in the global multiset that share
the same first argument, we can add the constraint that the second arguments
must be identical. The third rule (r3) is another propagation rule, whenever
we see a f constraint with first argument int we can enforce that the second
argument is bool.

The program above results from the translation of type class constraints
in Haskell [7] involving functional dependencies [5] to CHRs [4, 8]. Here is the
original type class program.

class F x y z | x -> y
instance F Int Bool Float

Rule r1 encodes the instance for F, that is we can prove their is an instance for
Int Bool Float. Rule r2 encodes the functional dependency, it requires that
for any two F constraints if the first argument is the same, the second must also
be the same (since it is functionally defined by the first). Rule r3 encodes the
combination of the instance rule and the functional dependency.

Unlike other rewriting systems, constraint handling rules allow propagation
rules. Note that propagation rules do not delete anything from the global multiset
that makes them eligible to be executed, they simply add new constraints. For
this reason they would seem to trivially lead to non-termination. This is overcome
in constraint handling rules by keeping a history of propagation rule firings, and
preventing a second firing of a propagation rule on the same set of constraints.

A critical issue for any rule based language is the notion of confluence. Con-
fluence enforces that each different possible rewriting sequence leads eventually
to the same result. Confluent programs have a deterministic behaviour in terms
of an input goal will always lead to the same answer. For terminating CHR pro-
grams there is a decidable test for confluence [1]. Unfortunately there are many
(terminating) programs which are confluent in practice, but fail to pass the test.

The reason for this arises from the use of propagation rules and histories.
The confluence test examines critical states, which are minimal states where two
different rule firings are possible. In order to be minimal states, the propagation
history is assumed to be as strong as possible, that is, it disallows any propa-
gation rules that could possible fire except the two rules used to generate the
critical state itself.

Example 2. Consider the CHR program of Example 1, and a critical state arising
from rules r1 and r2.

f(int, bool, f loat), f(int, B2, D)

Both rules r1 and r2 are applicable to the state and to ensure that it is minimal,
we assume a propagation history which disallows the use of r3 on either of the
constraints appearing in the state.

The CHR program of Example 1 is not confluent, because this critical state
can lead to 2 different results, depending on which of r1 and r2 is first used.
This is illustrated by the derivations

f(int, bool, f loat), f(int, B2, D)
֌r1 f(int, B2, D)

2

and
f(int, bool, f loat), f(int, B2, D)

֌r2 f(int, bool, f loat), f(int, bool, D), B2 = bool
֌r1 f(int, bool, D), B2 = bool

Two different states result. In one we know that B2 = bool in the other we do
not. Note that we cannot apply the rule r3 to the state f(int, B2, D) because
the propagation history disallows this.

The above example illustrates that the program P of Example 1 is non-
confluent. But in practice it is not possible to write a goal G which leads to
two different answers using P . The reason is that goals always begin with an
empty history. The critical state used above to illustrate non-confluence cannot
actually occur in practice.

Example 3. Consider the state

f(int, bool, f loat), f(int, B2, D)

assuming that propagation history prevent r3 firing on the second constraint.
Thus r3 must have fired already on the second constraint. This cannot have
occurred since this would add the constraint B2 = bool to the store, and it does
not appear.

CHRs resulting from the translation of type class constraints in Haskell in-
volving functional dependencies are an important class of programs since the
soundness and completeness of type inference for Haskell with type classes and
functional dependencies depends on their confluent behaviour [4, 8].

In this paper, we make the following contributions:

– We introduce the notion of observable confluence which captures the notion
of programs where all the observable behaviour (derivations for goals with
originally empty propagation histories) is confluent (Section 2.3).

– We show that for a class of CHRs arising from Haskell type class programs
with functional dependencies the current notion of confluence is too limiting
(Section 3).

– We provide for a general observable confluence result based on a operational
correspondence condition between two sets of CHRs (Section 4).

– We verify that a certain class of non-confluent CHRs resulting from type
class programs with functional dependencies are in fact observable confluent
(Section 5).

In Section 2 we provide background material on CHRs and also introduce
the notion of observable confluence. We conclude in Section 6.

2 Preliminaries

In this paper we study confluence under the theoretical operational semantics ωt

of CHRs [2]. The theoretical semantics is equivalent to the original semantics
defined in [1] except that

3

– the original semantics treats simpagation rules as shorthand for a (logically)
equivalent simplification rule; and

– the treatment of propagation histories is different.

First we define numbered constraints.

Definition 1 (Numbered Constraints). A numbered constraint is a con-
straint c paired with an integer i. We write c#i to indicate a numbered constraint.
⊓⊔

Sometimes we refer to i as the identifier (or simply ID) of the numbered con-
straint. This numbering serves to differentiate among copies of the same con-
straint.

Now we define an execution state, as follows.

Definition 2 (Execution State). An execution state is a tuple of the form
〈G, S, B, T 〉Vn where G is a multiset of constraints, S is a set of numbered con-
straints, B is a conjunction of built-in constraints, T is a set of sequences of
integers, V is the set of variables and n is an integer. Throughout this paper we
use symbol ‘σ’ to represent an execution state. ⊓⊔

We call G the goal, which contains all constraints to be executed. The CHR
constraint store S is the set4 of numbered CHR constraints that can be matched
with rules in the program P . For convenience we introduce functions chr(c#i) =
c and id(c#i) = i, and extend them to sequences and sets of numbered CHR
constraints in the obvious manner.

The built-in constraint store B contains any built-in constraint that has been
passed to the built-in solver. Since we will usually have no information about
the internal representation of B, we treat it as a conjunction of constraints. The
propagation history T is a set of sequences, each recording the identities of the
CHR constraints which fired a rule, and the name of the rule itself (which may
be represented as a unique integer, but typically we just use the name of the rule
itself). This is necessary to prevent trivial nontermination for propagation rules:
a propagation rule is allowed to fire on a set of constraints only if the constraints
have not been used to fire the rule before. The set V contains all variables that
appeared in the initial goal. Throughout this paper we will usually omit V unless
it is explicitly required. Finally, the counter n represents the next free integer
which can be used to number a CHR constraint.

Throughout we let vars(A) return the variables occurring in any syntactic
object A. We use ∃AF to denote the formula ∃X1 · · · ∃XnF where {X1, . . . Xn} =
vars(A). We use ∃̄AF to denote the formula ∃X1 · · · ∃XnF where {X1, . . . Xn} =
vars(F) − vars(A).

We use [H] to construct a sequence of length 1 containing element H , ++
for sequence concatenation, and ⊎ for multiset union. We shall sometimes treat
multisets as sequences, in which case we nondeterministically choose an order
for the objects in the multiset. We use the notation p(s1, . . . , sn) = p(t1, . . . , tn)
as shorthand for the constraint s1 = t1 ∧ · · · ∧ sn = tn, and similarly S = T
where S and T are equal length sequences S ≡ s1 · · · sn and T = t1 · · · tn as
shorthand for s1 = t1 ∧ · · · ∧ sn = tn.

We define an initial state as follows.

4 Sometimes we treat the store as a multiset.

4

Definition 3 (Initial State). Given a goal G, which is a multiset of con-

straints, the initial state with respect to G is 〈G, ∅, true, ∅〉
vars(G)
1 . ⊓⊔

The theoretical operational semantics ωt is based on the following three tran-
sitions which map execution states to execution states:

Definition 4 (Theoretical Operational Semantics).
1. Solve

〈{c} ⊎ G, S, B, T 〉Vn ֌ 〈G, S, c ∧ B, T 〉Vn

where c is a built-in constraint.
2. Introduce

〈{c} ⊎ G, S, B, T 〉Vn ֌ 〈G, {c#n} ⊎ S, B, T 〉V(n+1)

where c is a CHR constraint.

3. Apply

〈G, H1 ⊎ H2 ⊎ S, B, T 〉Vn ֌ 〈C ⊎ G, H1 ⊎ S, B ∧ θ, T ′〉Vn

where there exists a (renamed apart) rule r in P of the form

H ′
1 \ H ′

2 ⇐⇒ g | C

and θ ≡ chr(H1) = H ′
1 ∧ chr(H2) = H ′

2 such that
{

D |= B → ∃r(θ ∧ g)
id(H1) ++ id(H2) ++ [r] 6∈ T

In the result T ′ = T ∪ {id(H1) ++ id(H2) ++ [r]}. ⊓⊔

A derivation is a sequence of states connected by ωt transitions. We use
notation σ0 ֌

∗ σ1 to represent a derivation from σ0 to σ1. We also define
complete derivation to be a derivation from an initial state to a final state (i.e.
a state where no transition is applicable).

2.1 Confluence

In this section we define confluence under the theoretical semantics ωt.
First we define an auxiliary function alive, which decides which part of the

propagation history is relevant for confluence.

Definition 5 (Live History). Function alive is a bijective mapping from a
CHR store S and a propagation history to a propagation history defined as fol-
lows.

alive(S, ∅) = ∅
alive(S, {t} ⊎ T) = alive(S, t) ⊎ alive(S, T)
alive(S, t ++ []) = ∅ if ∃i ∈ t such that ∀c(c#i 6∈ S)
alive(, t) = {t} otherwise

⊓⊔

5

In other words, alive(S, T) is propagation history T where all entries with num-
bers for deleted (i.e. not alive) constraints have been removed. Interestingly,
alive(S, T) can only have entries on propagation rules (otherwise one of the
numbers in the entry must be dead).

Definition 6 (Variants). Two states

σ1 = 〈G1, S1, B1, T1〉
V
i1

and σ2 = 〈G2, S2, B2, T2〉
V
i2

(from either semantics) are variants (i.e. σ1 ≈ σ2) if there exists a renaming ρ
on variables not in V and a mapping ̺ on constraint numbers such that

1. ρ ◦ ̺(G1) = G2

2. ρ ◦ ̺(S1) = S2;
3. D |= (∃̄Vρ(B1) ↔ ∃̄VB2); and
4. ̺ ◦ alive(S1, T1) = alive(S2, T2).

Otherwise the two states are variants if D |= ¬∃̄∅B1 and D |= ¬∃̄∅B2 (i.e. both
states are false). ⊓⊔

Definition 7 (Joinable). Two states σ1 and σ2 are joinable if there exists
states σ′

1 and σ′
2 such that σ1 ֌

∗ σ′
1 and σ2 ֌

∗ σ′
2 and σ′

1 and σ′
2 are variants.

⊓⊔

Definition 8 (Confluence). A CHR program P is confluent if the following
holds for all states σ0, σ1 and σ2: If σ0 ֌

∗ σ1 and σ0 ֌
∗ σ2 then σ1 and σ2

are joinable. ⊓⊔

2.2 Confluence Test

The confluence test for CHRs depends on calculating all critical pairs between
rules in the program.

Definition 9 (Critical Pair). Given two (renamed apart) rules r1 and r2 from
program P of the respective forms

H1r \ H1k ⇐⇒ g1 | B1.

H2r \ H2k ⇐⇒ g2 | B2.

Let H1 = H1r ⊎ H1k and H2 = H2r ⊎ H2k. Let H ′
1 ⊆ H1 and H ′

2 ⊆ H2, and
let θ be a most general unifier of multisets H ′

1 and H ′
2. Given θ(H1) ⊎ (H2 −

H ′
2) = {h1, ..., hm} (for some arbitrary ordering), let S = {h1#1, ..., hm#m}.

Also define S1k ⊆ S such that chr(S1k) = θ(H1k) and S2k ⊆ S such that
chr(S2k) = H2k. Let T∞ be a propagation history such that for all propagation
rules r ∈ P we have that [i1, ..., ik, r] ∈ T∞ for all permutations of all subsets
{i1, ..., ik} ∈ {1, .., n}. Then states

σ1 = 〈B1, S − S1k, g1 ∧ g2, T∞〉Vn

σ2 = 〈B2, S − S2k, g1 ∧ g2, T∞〉Vn

are a critical pair between rules r1 and r2. ⊓⊔

6

Definition 10 (Confluence Test). Given a terminating CHR program P , if
all critical pairs between all rules in P are joinable, then P is confluent. This is
known as the confluence test for CHRs. ⊓⊔

It has been shown that the confluence test decides confluence for terminating
CHR programs [1]. This relies on the fact that there are finitely many critical
pairs for a given program.

2.3 Observable Confluence

In this section we formally define observable confluence with respect to reacha-
bility.

Definition 11 (Reachability). An execution state σ is reachable if there ex-
ists an initial state σ0 = 〈G, ∅, true, ∅〉1 such that there exists a derivation
σ0 ֌

∗ σ. ⊓⊔

Definition 12 (Observable Confluence). A CHR program P is observable
confluent if the following holds for all states σ0, σ1 and σ2 where σ0 is a reachable
state: If σ0 ֌

∗
ω σ1 and σ0 ֌

∗
ω σ2 then σ1 and σ2 are joinable. ⊓⊔

Notice the differences between Definition 12 and Definition 8: we now require
that σ0 is a reachable state.

3 Observable Confluence: Examples

Confluence implies observable confluence, so if a CHR program P passes Abden-
nahder’s confluence test, then that program is also observable confluent. In the
introduction, we have seen that there exists CHR programs that are observable
confluent by Definition 12, yet are not confluent by Definition 8.

Example 4. Here is again the type class program from the introduction.

class F x y z | x -> y
instance F Int Bool Float

The corresponding CHR program, according to the translation given in [8], is

r1 @ f(int,bool,float) <=> true.
r2 @ f(A,B1,C), f(A,B2,D) ==> B1 = B2.
r3 @ f(int,B,C) ==> B = bool.

This program is not confluent, as we saw in Example 2. Here we illustrate this
formally using the full theoretical operational semantics. Consider the following
state applicable to rules r1 and r2. σ:

〈∅, {f(int, bool, f loat)#1, f(int, B2, D)#2}, true, {[1, r3], [2, r3]}〉3

The propagation history prevents rule r3 from firing on either constraint.
The state σ has two distinct derivations:

σ ֌
∗ 〈∅, {f(int, bool, D)#2}, B2 = bool, {[1, 2, r2], [1, r3], [2, r3]}〉3

σ ֌
∗ 〈∅, {f(int, B2, D)#2}, true, {[1, r3], [2, r3]}〉3

7

These two final states are non-variant, therefore the program is not confluent.
We claim this program is observable confluent. The state σ is not reach-

able since the propagation history indicates that rule r3 has fired on constraint
f(int, B2, T)#2. However, if that were the case then we would expect the built-
in constraint B2 = bool to appear in the built-in store. This is not the case
therefore the state σ cannot be reachable. ⊓⊔

We formally define the class of CHR programs arising from Haskell type class
declarations with functional dependencies.

Definition 13 (FD-CHR). A CHR program P is said to be in the FD-CHR
class of programs if it is of the form

r1 @ p(X1, ..., Xd, Xd+1, ..., Xr, ...), p(X1, ..., Xd, Yd+1, ..., Yr, ...) ==>
Xd+1 = Yd+1, ..., Xr = Yr.

r2 @ p(f1, ..., fn) <=> B.
r3 @ p(f1, ..., fd, Y1, ..., Yr, ...) ==> Y1 = fd+1, ..., Yr = fr.

where B is an arbitrary conjunction of built-in and CHR constraints and fi are
arbitrary terms such that vars(fd+1, ..., fr) ⊆ vars(f1, ..., fd) We also require
P to be terminating. Here the indices 1..d represent the domain and indices
(d + 1)..r represent the range of the functional dependency. Also note that r is
allowed to be less than n. ⊓⊔

4 Observable Confluence: Formal Result

In this section we present the main result that relates observable confluence to
ordinary confluence. These are related through an operational correspondence.

Definition 14 (Operational Correspondence). Let P and P ′ be a CHR
programs. An operational correspondence is a function α mapping complete
derivations in P to complete derivations in P ′, and the following conditions
for all derivations

D1 = (σi ֌
∗
P σ1f)

D2 = (σi ֌
∗
P σ2f)

α(D1) = (σ1i ֌
∗
P ′ σ′

1f)

α(D2) = (σ2i ֌
∗
P ′ σ′

2f)

are satisfied:

1. σ1i is an initial state;
2. σ1i = σ2i; and
3. If σ1f 6≈ σ2f then σ′

1f 6≈ σ′
2f .

⊓⊔

In other words, an operational correspondence preserves initial states, and pre-
serves non-variance on final states. We can use operational correspondence to
show observable confluence.

8

Theorem 1. Let P and P ′ be a CHR programs such that P ′ is confluent and
there exists an operational correspondence α from P to P ′, then P is observable
confluent.

Proof. By contradiction, assume P is not observable confluent. Therefore there
exists an initial state σi and two complete derivations

D1 = (σi ֌
∗
P σ1f)

D2 = (σi ֌
∗
P σ2f)

such that σ1f and σ2f are two non-variant final states. By the operational cor-
respondence we have that

α(D1) = (σ′
i ֌

∗
P ′ σ′

1f)

α(D2) = (σ′
i ֌

∗
P ′ σ′

2f)

for some initial state σ′
i and non-variant final states σ′

1f and σ′
2f . This contradicts

the confluence of P ′, since there exists an initial state σ′
i which can be reduced

to non-variant final states σ′
1f or σ′

2f . ⊓⊔

Example 5. Consider the following CHR program P

p(X), p(Y) ==> X = Y.
p(1) <=> true.
p(X) ==> X = 1

and the CHR program P ′

p(X) <=> X = 1.

Proposition 1. There exists an operational correspondence α from P to P ′ as
follows:

α(σ0 ֌
∗
P 〈∅, S, B, T 〉Vn) = σ0 ֌

∗
P 〈∅, S, B, ∅〉Vn

Note that there may be multiple possible derivations satisfying the RHS. If this
is the case then we simply choose one arbitrarily to find a suitable function α.

The program P ′ is trivially confluent. Assuming Proposition 1 holds, then
by Theorem 1 program P is observable confluent. ⊓⊔

5 Observable Confluence: FD-CHR

Using Theorem 1 we can reduce the problem of deciding observable confluence
to the problem of finding a suitable P ′, such that P ′ is confluent and there exists
a operational correspondence from P to P ′. In this section we examine the FD-
CHR class of programs, and use Theorem 1 to formally show they are observable
confluent.

First we define the target program P ′ as follows.

Definition 15. Given a program P ∈ FD-CHR, we define the correspondence
program C(P) for P as

9

r1 @ p(X1, ..., Xd, Xd+1, ..., Xr, ...), p(X1, ..., Xd, Yd+1, ..., Yr, ...) ==>
Xd+1 = Yd+1, ..., Xr = Yr.

r2’ @ p(f1, ..., fn) ==> B.
r3 @ p(f1, ..., fd, Y1, ..., Yr, ...) ==> Y1 = fd+1, ..., Yr = fr.

⊓⊔

The only difference is between rules r2 and r2’: r2 is a simplification rule and
r2’ is an equivalent propagation rule. The remaining structure of the program is
preserved. Note that C(P) is terminating since P is terminating.5

5.1 C(P) Confluence

In this section we establish that the class of C(P) is confluent.

Lemma 1. For all P ∈ FD-CHR, C(P) is confluent.

Proof. Direct proof. We apply the standard CHR confluence test. Since there are
only propagation rules in C(P), all critical pairs are trivially joinable. Therefore
C(P) is confluent. ⊓⊔

5.2 C(P) Operational Correspondence

In this section we establish an operational correspondence between P and C(P).
First we define two auxiliary tests to help make the proofs more concise.

Definition 16. We define a test InstB(p(F1, ...Fn)) that succeeds if there exists
a substitution θ such that

D |= B → (p(F1, ...Fn) = p(θ.f1, ..., θ.fn))

Similarly we define Inst
DOM
B (p(F1, ...Fn)) that succeeds if there exists a substitu-

tion θ such that

D |= B → (p(F1, ...Fn) = p(θ.f1, ..., θ.fd, Fd+1, ..., Fn)))

⊓⊔

Informally, InstB defines the set of all constraints that match r2 (or r2’), and

Inst
DOM
B defines the set of all constraints that match r3.

Lemma 2. If

σ0 ֌
∗
P 〈G, S, B, T 〉n

then

σ0 ֌
∗
C(P) 〈G, S ⊎ S′, B, T ∪ T ′〉n

where S′ is

{p(F 1
1 , ..., F 1

n)#i1, ..., p(Fm
1 , ..., Fm

n)#im}

for some set of constraint numbers i1, ..., im, InstB(p(F j
1 , ...F j

n)) holds for all
j ∈ 1, . . . , m. And for all t ∈ T ′, t is of the form [j, r2′] for some j ∈ i1, ..., im

5 We omit a formal proof for space reasons.

10

Proof. By induction over the derivation steps in P .
Base case: No derivation steps. Then S′ = ∅ and T ′ = ∅.
Induction step: Suppose for derivations Di of length i of the form

σ0 ֌
∗
P 〈Gi, Si, Bi, Ti〉ni

we have that there exists a derivation D′
i of the form

σ0 ֌
∗
C(P) 〈Gi, Si ⊎ S′

i, Bi, Ti ∪ T ′
i 〉ni

where S′
i and T ′

i satisfy the conditions on S′ and T ′ from above respectively.
Consider all derivations of length i + 1 constructed from applying an ωt

transition to the final state in Di. The possible transitions are:

– Solve. Then Gi = {c} ⊎ G′
i for some built-in constraint c. Thus

〈{c} ⊎ G′
i, Si, Bi, Ti〉ni

֌Solve 〈G′
i, Si, c ∧ Bi, Ti〉ni

and for C(P)

〈{c} ⊎ G′
i, Si ⊎ S′

i, Bi, Ti ∪ T ′
i 〉ni

֌Solve 〈G′
i, Si ⊎ S′

i, c ∧ Bi, Ti ∪ T ′
i 〉ni

Thus the induction hypothesis holds for i+1 with S′
i+1 = S′

i and T ′
i+1 = T ′

i .
– Introduce. Then Gi = {c} ⊎ G′

i for some CHR constraint c. Thus

〈{c} ⊎ G′
i, Si, Bi, Ti〉ni

֌Introduce 〈G′
i, {c#ni} ⊎ Si, Bi, Ti〉ni+1

and for C(P)

〈{c} ⊎ G′
i, Si ⊎ S′

i, Bi, Ti ∪ T ′
i 〉ni

֌Introduce 〈G′
i, {c#ni} ⊎ Si ⊎ S′

i, Bi, Ti ∪ T ′
i 〉ni+1

Thus the induction hypothesis holds for i+1 with S′
i+1 = S′

i and T ′
i+1 = T ′

i .
– Apply. We split this case into two smaller cases:

1. Apply r2. Then Si = {p(F1, ..., Fn)#j} ⊎S for some constraint number
j and CHR store S where InstBi

(p(F1, ..., Fn)). Thus

〈Gi, {p(F1, ..., Fn)#j} ⊎ S, Bi, Ti〉ni
֌Apply 〈B ∧ Gi, S, Bi ∧ θ, Ti〉ni

and

〈Gi, {p(F1, ..., Fn)#j} ⊎ S ⊎ S′
i, Bi, Ti ∪ T ′

i 〉ni
֌Apply

〈B ∧ Gi, {p(F1, ..., Fn)#j} ⊎ S ⊎ S′
i, Bi ∧ θ, Ti ∪ T ′

i ∪ {[j, r2′]}〉ni

Thus the induction hypothesis holds for i+1 with S′
i+1 = S′

i⊎{p(F1, ..., Fn)#j}
and T ′

i+1 = T ′
i ∪ {[j, r2′]}.

2. Apply r1 ∨ r3. Either r1 or r3 is applicable to the constraints in Si.
Thus

〈Gi, Si, Bi, Ti〉ni
֌Apply 〈C ⊎ Gi, Si, Bi ∧ θ, {t} ∪ Ti〉ni

and using C(P)

〈Gi, Si ⊎ S′
i, Ti ∪ T ′

i 〉ni
֌Apply 〈C ⊎ Gi, Si ⊎ S′

i, Bi ∧ θ, {t} ∪ Ti ∪ T ′
i 〉ni

for some θ, C and t. Thus the induction hypothesis holds for i + 1 with
S′

i+1 = S′
i and T ′

i+1 = T ′
i .

11

⊓⊔

Lemma 3. Given a complete derivation under P

σ0 ֌
∗
P 〈∅, S, B, T 〉Vn = σf

and the corresponding derivation under C(P) (given by Lemma 2)

σ0 ֌
∗
C(P) 〈∅, S ∪ S′, B, T ∪ T ′〉Vn = σ1

suppose that σ1 ֌
∗
C(P) σi then σi is of the form

〈Gi, S ∪ S′, Bi, T ∪ T ′ ∪ Ti〉
V
n

such that

1. D |= ∃̄VB ↔ ∃̄VBi;
2. for all c ∈ Gi, c is built-in and D |= Bi → c;
3. for all t ∈ Ti we have that id(t) ∩ id(S′) 6= ∅.

Proof. By induction over the derivation steps in σ1 ֌
∗
C(P) σi

Base case: i = 1, thus Gi = ∅, Bi = B and Ti = ∅ satisfies the conditions.
Induction step: Suppose that for i − 1 we have that

σi−1 = 〈Gi−1, S ∪ S′, Bi−1, T ∪ T ′ ∪ Ti−1〉
V
n

is of the required form.
We consider all ωt transition steps applicable to σi−1.

– Solve. Then Gi−1 = c ∧ G′
i−1 for some built-in constraint c, thus

σi−1 ֌Solve 〈G′
i−1, S ∪ S′, c ∧ Bi−1, T ∪ T ′ ∪ Ti−1〉

V
n

We see that Gi = G′
i−1 ⊂ Gi−1 and Ti = Ti−1 satisfies conditions (2) and (3)

respectively. For condition (1): Since D |= ∃̄VB ↔ ∃̄VBi−1 and D |= B → c
we have that Bi = (c ∧ Bi−1) satisfies D |= ∃̄VB ↔ ∃̄VBi. Thus condition
(1) is satisfied.

– Introduce. This transition is not applicable since there are no CHR con-
straints in Gi−1.

– Apply. A rule is applied to the constraints in S ⊎ S′. Thus

σi−1 ֌Apply 〈C ⊎ Gi−1, S ∪ S′, Bi−1 ∧ θ, T ∪ Ti−1 ∪ {t}〉n

for some entry t, rule body C and matching substitution θ.
Now D |= B → ∃rθ and D |= ∃̄VB ↔ ∃̄VBi−1 hence D |= ∃̄VB ↔ ∃̄V(Bi−1∧
θ) satisfying condition (1). Let M ⊆ S⊎S′ be the matching, then M∩S′ 6= ∅
otherwise σf is not a final state. Thus id(t) ∩ id(S′) 6= ∅ and hence Ti =
Ti−1 ∪ {t} satisfies condition (3).
Next consider Gi = C⊎Gi−1. For condition (2) to hold, we need to show that
for all c ∈ C we have that c is a built-in constraint, and D |= Bi−1 ∧ θ → c.
There are three cases to consider:

12

1. Apply r1. Then M = {p(F1, ..., Fn)#j, p(T1, ..., Tn)#k}, for some con-
straint numbers j, k. C is of the form:

{Xd+1 = Yd+1, ..., Xr = Yr} (1)

Obviously C is all built-in constraints as required. Also, θ ≡ (
∧n

l=1 Fl =

Xl) ∧ (
∧d

l=1 Tl = Xl) ∧ (
∧n

l=d+1 Tl = Yl) and D |= Bi−1 → ∃X̄∃Ȳ θ.
Since M ∩S′ 6= ∅ we can assume w.l.o.g. p(F1, ..., Fn)#k ∈ S′. Therefore
InstBi−1

(p(F1, ..., Fn)) holds.
From D |= Bi−1 → ∃X̄∃Ȳ θ we project out X̄ and Ȳ to derive

D |= Bi−1 →
d

∧

l=1

Fl = Tl (2)

I.e. the domain arguments must coincide. Therefore Inst
DOM
Bi−1

(p(T1, ..., Tn))
must hold, and r3 is applicable to this rule. Since σf is a final state, rule
r3 must have already been applied to this constraint, and thus we can
conclude InstBi−1

(p(T1, ..., Tn)) holds.
Since vars(fd+1, ..., fr) ⊆ vars(f1, ..., fd), and by (2) we have that

D |= Bi−1 →
r

∧

l=d+1

Fl = Tl

Therefore

D |= (Bi−1 ∧ θ) →
r

∧

l=d+1

Xl = Yl

I.e. the equations of C are already implied by Bi = (Bi−1 ∧ θ) and thus
condition (2) is satisfied.

2. Apply r2’. Then M = {p(F1, ..., Fn)#j} ⊆ S′ (since M ∩ S′ 6= ∅) for
some constraint number j,
Since M ∩ S′ 6= ∅ then by Lemma 2 there exists an entry [j, r2′] ∈ T ′,
thus Apply is not applicable so we can exclude this case.

3. Apply r3. Then M = {p(F1, ..., Fn)#j} ⊆ S′ (since M ∩ S′ 6= ∅) for
some constraint number j, and hence InstBi−1

(p(F1, ..., Fn)) holds.

Now θ ≡ (
∧d

l=1 Fl = fl) ∧ (
∧n

l=d+1 Fl = Yl) and C is of the form

{Yd+1 = fd+1, ..., Yr = fr}

Since vars(fd+1, ..., fr) ⊆ vars(f1, ..., fd), we have that clearly D |=
(Bi−1 ∧ θ) → c for all c ∈ C and thus condition (2) holds.

In either case the state σi satisfies the required conditions.

⊓⊔

Lemma 4. There exists an operational correspondence between P ∈ FD-CHR
and C(P).

13

Proof. Direct proof. By Lemma 3 and termination of C(P), for a complete deriva-
tion D in P

σ0 ֌
∗
P σf = 〈∅, S, B, T 〉Vn

there exists a complete derivation D′ in C(P)

σ0 ֌
∗
C(P)= 〈∅, S ⊎ S′, Bi, T ∪ T ′ ∪ Ti〉

V
n

where S′, Bi, T ′ and Ti satisfy the conditions of Lemmas 2 and 3.
Define α(D) = D′. Next we check that α satisfies the conditions for Defini-

tion 14. Given the complete derivations

D1 = (σ0 ֌
∗
P σ1f)

D2 = (σ0 ֌
∗
P σ2f)

α(D1) = (σ1i ֌
∗
P ′ σ′

1f)

α(D2) = (σ2i ֌
∗
P ′ σ′

2f)

we have that

1. σ1i is an initial state since σ1i = σ0;
2. σ1i = σ2i since also σ2i = σ0; and
3. if σ1f 6≈ σ2f then σ′

1f 6≈ σ′
2f . We show this condition is satisfied by contra-

diction. Assume that σ1f 6≈ σ2f but σ′
1f ≈ σ′

2f .
Let

σ1f = 〈∅, S1, B1, T1〉
V
n

σ2f = 〈∅, S2, B2, T2〉
V
m

σ′
1f = 〈∅, S1 ⊎ S′

1, B1i, T1 ∪ T ′
1 ∪ T1i〉

V
n

σ′
2f = 〈∅, S2 ⊎ S′

2, B2i, T2 ∪ T ′
2 ∪ T2i〉

V
m

where S′
1, S′

2, B1i, B2i, T ′
1, T ′

2, T1i and T2i satisfy the conditions of Lemmas 2
and 3 in the obvious manner.
Given Definition 6, for all renamings ρ on variables not in V and mappings
̺ on constraint numbers, there are four cases the consider:

(a) Goals: ρ ◦ ̺(∅) 6= ∅ gives an immediate contradiction.
(b) CHR Stores: Given that ρ ◦ ̺(S1) 6= S2 then, w.l.o.g., there exists a

numbered constraint c#j ∈ ρ ◦ ̺(S1) such that c#j 6∈ S2.
Thus if ρ ◦ ̺(S1 ⊎S′

1) = (S2 ⊎ S′
2) we have that c#j ∈ S2 ⊎ S′

2, therefore
c#j ∈ S′

2. Thus c must satisfy InstB2i
(c), and hence rule r2 is applicable

to c#j in state σ1f . Therefore σ1f cannot be a final state which is a
contradiction.

(c) Built-in Stores: Given that D |= (∃̄Vρ(B1) 6↔ ∃̄VB2) assume that D |=
(∃̄Vρ(B1i) ↔ ∃̄VB2i).
We immediately arrive at a contradiction since D |= ∃̄VB1 ↔ ∃̄VB1i and
D |= ∃̄VB2 ↔ ∃̄VB2i.

14

(d) Histories: Let T1a = ̺ ◦ alive(S1, T1) and T2a = alive(S2, T2). Given
that T1a 6= T2a, w.l.o.g., there exists a propagation history entry t such
that t ∈ T1a but t 6∈ T2a.
Let

T ′
1a = ̺ ◦ alive(S1 ⊎ S′

1, T1 ⊎ T ′
1 ⊎ T1i)

T ′
2a = alive(S2 ⊎ S′

2, T2 ⊎ T ′
2 ⊎ T2i)

By assumption, T ′
1a = T ′

2a. By Definition 5 we see that T1a ⊆ T ′
1a, thus

t ∈ T ′
1a. Since T ′

1a = T ′
2a we have that t ∈ T ′

2a.
Expanding out the shorthand notation, the above is equivalent to

t ∈ ̺ ◦ alive(S1, T1)

t 6∈ alive(S2, T2)

t ∈ alive(S2 ⊎ S′
2, T2 ⊎ T ′

2 ⊎ T2i)

There are three cases to consider:
i. t ∈ T ′

2. Then t = [j, r2′] for some j. We immediately arrive at a
contradiction since rule r2’ is not present in program P , yet the
propagation history for σ1f (namely T1) mentions it.

ii. t ∈ T ′
2i. Then by Lemma 3 we have that id(t) ∩ id(S′

2) 6= ∅. Thus
there exists a c#j ∈ S′

2 such that j ∈ t. Therefore InstB2i
(c) holds.

Since t ∈ ̺ ◦ alive(S1, T1) we have that c#j′ ∈ S1 where ̺(j′) = j.
Since D |= ∃̄VB1i ↔ ∃̄VB2i we have that InstB1i

(c) also holds, thus
constraint c is applicable to rule r2, therefore σ1f is not a final state.
This is a contradiction.

iii. t ∈ T2. If id(t) ⊂ id(S2) we instantly reach a contradiction, since this
implies t ∈ alive(S2, T2). Therefore id(t) ∩ id(S′

2) 6= ∅, however this
leads to the same contradiction as preceding case.

Each case leads to a contradiction, therefore if σ1f 6≈ σ2f then σ′
1f 6≈ σ′

2f .

Therefore α is an operational correspondence between P and C(P). ⊓⊔

5.3 Main result

Corollary 1. All programs P ∈ FD-CHR are observable confluent.

Proof. Directly follows from Theorem 1 and Lemmas 1 and 4. ⊓⊔

6 Conclusion and Future Work

We have investigated observable confluence for a class of non-confluent CHRs
which arise when building type inferencer for type class programs with func-
tional dependencies [8]. Our results guarantee that all reachable states during
the type class inference process are confluent. Thus, we obtain completeness of
inference for a larger set of type class programs. For simplicity we considered
the cases arising from one instance and one functional dependency, the results
extend straightforwardly for program arising from many instance declarations

15

and functional dependencies (assuming the instances satisfy the functional de-
pendencies).

In future work, we plan to consider further classes of CHRs which are ob-
servable confluent. There are a number of other situations where weaker notions
of observable confluence are also important. We briefly sketch one of these cases.

Lam and Sulzmann [6] are using CHRs for agent-oriented programming.
These CHRs fail the confluence test. However, in practice CHRs are only ap-
plied to constraint stores which satisfy certain invariants of the agent world.
CHR applications maintain these invariants. Hence, we should obtain observ-
able confluence for all initial states which satisfy a certain condition. For ex-
ample, consider the following two simplified CHRs modelling the block world, a
standard example of an agent world.

g1 @ get(X), empty <=> rhs1

g2 @ get(X), hold(Y) <=> rhs2

The critical pair get(X), empty, hold(Y) is not be joinable depending on the
right-hand sides. Hence, the above CHRs are non-confluent. However, we know
that the CHRs for the block world obey the invariant that empty and hold(Y)
will never appear in any constraint store at the same time. Hence, we argue that
the CHRs are observable confluent with respect to the condition that initial
constraint store does not contain empty and hold(Y).

References

1. S. Abdennadher. Operational semantics and confluence of constraint propagation
rules. In Proc. of CP’97, LNCS, pages 252–266. Springer-Verlag, 1997.

2. G.J. Duck, M. Garćıa de la Banda, P.J. Stuckey, and C. Holzbaur. The refined
operational semantics for constraint handling rules. In B. Demoen and V. Lifschitz,
editors, Proceedings of the 20th International Conference on Logic Programming,
LNCS, pages 120–136. Springer-Verlag, 2004.

3. T. Frühwirth. Constraint handling rules. In Constraint Programming: Basics and

Trends, LNCS. Springer-Verlag, 1995.
4. P. J. Stuckey G. J. Duck, S. Peyton-Jones and M. Sulzmann. Sound and decidable

type inference for functional dependencies. In Proc. of ESOP’04, volume 2986 of
LNCS, pages 49–63. Springer-Verlag, 2004.

5. M. P. Jones. Type classes with functional dependencies. In Proc. of ESOP’00,
volume 1782 of LNCS. Springer-Verlag, 2000.

6. E. S. L. Lam and M. Sulzmann. Representing linear logic agents in CHR.
http://www.comp.nus.edu.sg/˜ sulzmann, May 2006.

7. S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

8. M. Sulzmann, G. J. Duck, S. Peyton Jones, and P. J. Stuckey. Understanding
functional dependencies via constraint handling rules. J. Funct. Program., 17(1):83–
129, 2007.

16

