
Automatic Implication Checking for CHR
Constraints

Tom Schrijvers a,⋆ Bart Demoen a Gregory Duck b

Peter Stuckey b,c Thom Frühwirth d

a Department of Computer Science, K.U.Leuven, Belgium

b Department of Computer Science, University of Melbourne, Australia
c NICTA Victoria Laboratory, Australia

d Faculty of Computer Science, University of Ulm, Germany

Abstract

Constraint Handling Rules (CHRs) are a high-level rule-based programming lan-
guage commonly used to define constraint solvers. We present a method for au-
tomatic implication checking between constraints of CHR solvers. Supporting im-
plication is important for implementing extensible solvers and reification, and for
building hierarchical CHR constraint solvers. Our method does not copy the entire
constraint store, but performs the check in place using a trailing mechanism. The
necessary code enhancements can be done by automatic program transformation
based on the rules of the solver. We extend our method to work for hierarchically
organized modular CHR solvers. We show the soundness of our method and its
completeness for a restricted class of canonical solver as well as for specific existing
non-canonical CHR solvers. We evaluate our trailing method experimentally by
comparing with the copy approach: runtime is almost halved.

Key words: Constraint Handling Rules, implication checking,
program transformation, constraint solver hierarchy

1 Introduction

Constraint handling rules [7] (CHRs) are a very flexible formalism for writ-
ing incremental constraint solvers and other reactive systems. In effect, the
rules define transitions from one constraint set to an equivalent constraint set.
Transitions serve to simplify constraints and detect satisfiability and unsatis-
fiability. CHRs have been used extensively (see e.g. [9]). Efficient implemen-

⋆ Research Assistant of the fund for Scientific Research - Flanders (Belgium)(F.W.O. -
Vlaanderen)

c©2005 Published by Elsevier Science B. V.

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

tations are already available for the languages SICStus Prolog and Eclipse
Prolog, SWI-Prolog, HAL and Java. CHRs provide the best mechanism to
date for creating executable user-defined constraint solvers.

In this paper we investigate how to automatically extend a CHR con-
straint solver to not only answer questions of satisfiability, but also to answer
questions about implication. A constraint solver that supports implication
can be used model more expressive constraints such as complex constraints
formulas involving negation, conjunction and disjunction through reification.
Many popular constraint solvers provide implication checking in one form or
another, e.g. the conditional constraint combinator of Mozart [14] and the
reified constraints of the clp(FD) library in SICStus [2]. Similarly implication
allows the construction of hierarchical CHR solvers, where guards are defined
by an underlying constraint solver implemented in CHRs, since an essential
step in a CHR solver is to determine whether a guard in implied by the current
store. Implication is also useful for building multiple cooperating solvers.

In this paper we extend a CHR solver to be able to answer implication

checks, that is for a basic constraint c, is it implied by the current CHR
constraint store. Implication checking for CHRs is an essential part of the
Chameleon programming language [16], which uses CHRs for type class over-
loading (see [15]). We improve on the basic version of implication checking
used by Chameleon.

Previously, it was already shown how to extend built-in solvers with im-
plication checks to support CHR solvers in [4]. In this paper we have added a
means to extend CHR solvers with other CHR solvers.

In [3] a general technique is presented for extending implication checks
on basic constraints to implication checks of arbitrary logic formulas. The
CHR implication checks presented in this paper can be extended to arbitrary
formulas in that way.

The first related technique for CHR was already sketched in [6]. However,
that technique does not represent an implication check, but rather a reified
constraint: implication may not only succeed or fail but it may also delay
until it can be decided. However, since higher level constraints are not re-
moved, termination problems can be caused by the automatically generated
rules. In that case the user has to modify the rules, which may cause more
incompleteness.

2 CHR Solvers

2.1 CHR Syntax and Operational Semantics

In this subsection we briefly introduce the syntax and semantics of CHR pro-
grams or solvers. The other relevant aspects of CHR solvers are covered in
the rest of this section. For a more extensive introduction and survey of CHR
we refer the reader to [7].

2

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

Syntax: A CHR solver CS consists of a sequence of CHR rules. There
are three kinds of CHR rules. We introduce them with an example.

Example 2.1 The following four CHR rules define an equality solver eq , with
eq/2 the equality constraint:

reflexive @ eq(X,Y) <=> X == Y | true.

redundant @ eq(X1,Y1) \ eq(X2,Y2) <=> X1 == X2, Y1 == Y2 | true.

symmetric @ eq(X,Y) ==> eq(Y,X).

transitive @ eq(X1,Y1), eq(X2,Y2) ==> Y1 == X2 | eq(X1,Y2).

with the arguments of eq/2 variable identifiers and ==/2 is a built in check
for syntactic identity.

The reflexive rule is an example of a simplification rule. It states that
we can replace the left hand side eq(x, y) by the right hand side true if the
guard x ≡ y holds, that is we can eliminate things of the form eq(v, v). The
symmetric rule is an example of a propagation rule. It states that when we
have something matching the left hand side eq(x, y) we should add the right
hand side eq(y, x). The redundant rule is an example of a simpagation (sim-
plification and propagation) rule, it says if we have two constraints matching
the left hand side eq(x1, y1) and eq(x2, y2) that satisfy the guard x1 ≡ x2 and
y1 ≡ y2 we can eliminate the part matching after the \, that is, eq(x2, y2).
In other words we can eliminate duplicate eq constraints. The final rule is
another propagation rule, which defines that equality is transitively closed.

The part before the @ symbol is the name of the rule, it is optional. The
part before the arrow is called the head of the rule. The part between the
arrow and the pipe symbol (|) is called the guard of the rule (optional). The
part after the pipe symbol is the body of the rule.

The head of a rule is a sequence of CHR constraints. The guard is a
sequence of given built-in constraints. The body is a sequence of both CHR
and built-in constraints.

A rule partially defines the constraints in the head. Built-in constraints
are undefined, they are implemented in an already existing solver.

In general we can think of every CHR rule as a simpagation rule
Hk \ Hr <=> G | B, where Hk and Hr are the sequences of head constraints,
G is the guard and B is the body of the rule. If Hk is empty, the rule is a
simplification rule and if Hr is empty, the rule is a propagation rule.

Operational Semantics: The operational semantics of CHR can be
described as a state transition system [1]. Execution starts from an initial
state σ0 comprising the initial multi-set of constraints (also query or constraint
store). A CHR rule application corresponds with a state transition σi CS

σi+1 and updates the multi-set of constraints. A rule is applicable if there are
distinct constraints in the current state that match the head of the rule and
if—under this matching—the guard is implied by the built-in constraints of
the current state.

3

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

A terminating CHR derivation d is one that starts from an initial state
σ0 and reaches, after a finite number of transition steps, a final state σ. A
final state σ is one in which no more transition step is possible. In general
for the same initial state many different final states may be reached through
many different derivations. We denote a particular derivation d from σ0 to σ

as σ0
d

CS
σ. Also, we denote the final state obtained through a derivation d

from an initial state σ0 as solved(σ0). Note that CHR is a committed-choice
language, i.e. rule applications cannot be undone. So a particular execution
of a query will involve exactly one of the possible derivations.

In this paper we will use a particular instance of the semantics. The refined
operational semantics [5] is the actual operational semantics implemented by
most CHR systems, such as those in SICStus [8], HAL [10] and the K.U.Leuven
CHR system [11]. These semantics describe a particular execution strategy
that considerably reduces the number of different possible derivations for any
initial state. CHR rules are applied in a top-to-bottom manner. The state is
separated into two parts: a sequence of goals to be processed from left to right,
and a multiset of constraints used for matching. Rules are applied using the
notion of an active constraint, the last constraint added, which is exhaustively
used in a matching before becoming inactive. For more details see [5].

Example 2.2 The following example informally describes a derivation under
the refined operational semantics.

Consider the execution of the goal eq(a,b), eq(b,c) for the eq/2 solver
defined in Example 2.1.

Adding eq(a, b) the reflexive rule is not applicable because a ==b does
not hold, the redundant rule misses a second constraint, the symmetric rule
adds eq(b, a). This constraint adds eq(a, b) using the symmetric rule, which
is then deleted by the redundant rule. The transitive rule now can match
(eq(a, b), eq(b, a)==>b == b|eq(a, a)) so adds eq(a, a) which is removed by the
reflexive rule. Similarly the transitive rule adds eq(b, b) which is deleted
by the reflexive rule. The store is currently {eq(a, b), eq(b, a)}.

The addition of eq(b, c) causes the addition of eq(c, b) using the symmetric
rule, and the transitive rule adds eq(b, b) and eq(c, c) which are immediately
deleted by the reflexive rule, as well as eq(c, a) (eq(c, b), eq(b, a)==>b ==
b|eq(c, a)) which adds eq(a, c) using the symmetric rule. Later the transitive
rule adds another copy of eq(a, c) (eq(a, b), eq(b, c)==>b == b|eq(a, c)) which is
deleted using the redundant rule. The final store is {eq(a, b), eq(b, a), eq(b, c),
eq(c, b), eq(a, c), eq(c, a)}

Part of the derivation is illustrated below, with the two parts of the state
shown as 〈Goal, Store〉 and the active constraint in bold, and matching con-
straints underlined.

〈[eq(a, b), eq(b, c)], ∅〉
CS 〈[eq(b, c)], {eq(a,b)}〉

symmetric CS 〈[eq(b, c)], {eq(a, b), eq(b, a)}〉

4

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

symmetric CS 〈[eq(b, c)], {eq(a, b), eq(b, a), eq(a,b)}〉

redundant CS 〈[eq(b, c)], {eq(a, b), eq(b, a)}〉

transitive CS 〈[eq(b, c)], {eq(a, b), eq(b, a), eq(b,b)}〉

reflexive CS 〈[eq(b, c)], {eq(a, b), eq(b, a)}〉

transitive CS 〈[eq(b, c)], {eq(a, b), eq(b, a), eq(a, a)}〉

reflexive CS 〈[eq(b, c)], {eq(a, b), eq(b, a)}〉
CS 〈[], {eq(a, b), eq(b, a), eq(b, c)}〉

symmetric CS 〈[], {eq(a, b), eq(b, a), eq(b, c), eq(c,b)}〉

symmetric CS 〈[], {eq(a, b), eq(b, a), eq(b, c), eq(c, b), eq(b, c)}〉

redundant CS 〈[], {eq(a, b), eq(b, a), eq(b, c), eq(c, b)}〉
...
CS 〈[], {eq(a, b), eq(b, a), eq(b, c), eq(c, b), eq(a, c), eq(c, a)}〉

Note that propagation rules are applied at most once to the same sequence
of constraints to avoid trivial non-termination.

2.2 Declarative Semantics

Constraints are special predicates of first order logic, their meaning is defined
by a constraint theory. A CHR constraint solver program CS has a logical

reading (meaning) [[CS]]. This theory [[CS]] contains the constraint theory for
the built-in constraints and one formula for each rule in the program CS .

Let vars(F) denote the set of free variables in formula F , let ∀F denote
the universal closure of a formula ∀vars(F) F , and ∃̄V F denote the formula
∃W F where W = vars(F) − V , called the projection of F onto V .

The logical reading of a simpagation rule Hk \ Hr <=> G | B is:

∀(G → (Hk → (Hr ↔ ∃ȳ B))).

where ȳ are the variables that appear only in the body B, i.e. vars(B) −
(vars(G) ∪ vars(Hk) ∪ vars(Hr)). If any of Hk, Hr, G or B are empty, they
are considered true in the formula.

Typically the intention of the solver writer is for [[CS]] to approximate some
constraint theory D, i.e. [[CS]] covers only the part of D that is relevant for a
particular use. For correctness of the approximation, we require that [[CS]] is
a model of a constraint theory D, i.e. D |= [[CS]] (but typically [[CS]] 6|= D).

Because of the logical reading [[CS]], logical equivalence between successive
states is preserved.

Example 2.3 The logical reading [[eq]] of the eq solver of Example 2.1 is the
following set of formulas (where we use ≡ for syntactic identity):

5

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

reflexive x ≡ y → (eq(x, y) ↔ true)

redundant x1 ≡ x2 ∧ y1 ≡ y2 → (eq(x1, y1) → (eq(x2, y2) ↔ true)

symmetric eq(x, y) → eq(y, x)

transitive y1 ≡ x2 → (eq(x1, y1) ∧ eq(x2, y2) → eq(x1, y2))

Clearly the above rules describe the classical properties of equality.

2.3 Solver Program Properties

A highly useful property of constraint solvers is confluence, which ensures that
each possible derivation for a goal leads to the same result.

Definition 2.4 [Confluent Solver] A CHR constraint solver CS is confluent

if:

∀C, d, d′ : C1 = solved(C) ∧ C2 = solved′(C) ⇒|= (∃̄vars(C)C1) ↔ (∃̄vars(C)C2)

See [1] for a decidable, necessary and sufficient condition for confluence of
terminating CHR programs under the general operational semantics.

We typically do not mention the specific derivation d for confluent solvers,
if we are not interested in intermediate states and write C

∗ C1 or simply
C1 = solve(C).

Example 2.5 The equality solver eq is a confluent solver. For example, for
the query eq(a,a) a single application of the reflexive rule or one appli-
cation of the symmetric and two of the reflexive rule both yield an empty
constraint store.

A property that combines confluence with the declarative semantics is
canonicity. It requires that semantically equivalent goals yield the same result.

Definition 2.6 [Canonical Solver] A confluent CHR constraint solver CS is
canonical if:

∀C, C ′, d, d′ : ([[CS]] |= C ↔ C ′) ∧ (C1 = solved(C)) ∧ (C2 = solved′(C
′)) ⇒

|= (∃̄vars(C∧C′)C1) ↔ (∃̄vars(C∧C′)C2)

In [15] a sufficient, but not necessary, condition for canonical solvers is
given. A CHR solver which is confluent, range-restricted and where all sim-
plification rules are single-headed, gives a canonical solver. A CHR solver is
range-restricted if all variables appearing in the guard and body of the rule
appear in the head. In general, it may be non-trivial to show that a solver is
canonical.

6

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

Example 2.7 The equality solver eq is a canonical range-restricted solver. It
is obvious that it is range-restricted. Showing it is canonical relies on showing
that it returns a store {eq(x, y), eq(y, x) | x and y are connected in the graph
created by all the eq constraints in the goal }.

3 Basic Implication Checking

Based on the properties of logical implication and conjunction, we can use the
following technique to verify whether a constraint c is implied by a conjunction
of constraints.

D |= C → c ⇔ D |= (C ∧ c) ↔ C

Namely we can use the equivalence of the conjunctions to conclude implication.

In principle, we will verify equivalence in the following way. The solved
forms solve(C) and solve(C ∧ c) are computed along some derivations. These
solved forms are then projected on the variables of C ∧ c and checked for
syntactical equivalence.

This approach is not necessarily complete, but sound, i.e. if the projections
of the solved forms are syntactically identical, then c is implied by C.

Theorem 3.1 (Soundness) For any CHR solver CS:

∀C, c :|= ∃̄vars(C∧c)solve(C) ↔ ∃̄vars(C∧c)solve(C ∧ c) ⇒ [[CS]] |= (C → c)

Proof. We have that CS |= C ↔ ∃̄vars(C∧c)solve(C) and CS |= C ∧ c ↔
∃̄vars(C∧c)solve(C) from Theorem 4.2 of [7]. Hence if |= ∃̄vars(C∧c)solve(C) ↔
∃̄vars(C∧c)solve(C ∧ c) we have that CS |= C ↔ (C ∧ c) and hence CS |= C →
c. 2

In practical implementations, logical equivalence testing of projected con-
straint is restricted to syntactic equivalence of multisets (solve(C) ≡ solve(C∧
c)). For range-restricted CHRs the two tests are equivalent since vars(solve(C))
⊆ vars(C ∧ c) and vars(solve(C ∧ c)) ⊆ vars(C ∧ c).

The straightforward implementation approach for implication checking is
to make a copy C ′ of C, compute both C C ′′ and C ′ ∧ c

∗ C ′′′ and then
check equivalence of C ′′ with C ′′′. We call this approach the copy approach,
and it is the implication check currently used by Chameleon [16]. In practice
C is already in solved form so C ≡ C ′′.

However, the above copying approach may be quite expensive. C may
consist of two parts C = C1 ∧ C2 such that C1 is a minimal set of constraints
that imply c. By copying C in its entirety C2 is copied unnecessarily and
causes unnecessary overhead in the final equivalence test.

We propose the trailing approach for CHR solvers. It only looks at a
minimal set of constraints: the conjunction C ∧ c is solved in place and a trail
of changes is maintained. Analysis of the trail afterward tells us whether the
resulting store is equivalent to the original. If that is the case, the updates

7

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

to the store may remain. Otherwise, the trail is used to revert to the original
situation.

Example 3.2 The following CHR rule conceptually represents the above
strategy. Keep in mind the refined semantics with sequential left-to-right
execution of the constraints and top to bottom trial of rules.

implication @ check_eq(X,Y) <=> eq(X,Y), analyse_trail.

The check eq/2 constraint represents the implication check. Calling this
constraint will either succeed or fail, since analyse trail/0 succeeds if the
resulting store is equivalent and fails if it is not.

Our trail analysis has to look at the addition and removal of constraints to
decide equivalence. Roughly, if any constraint is added or deleted during the
implication checking, the resulting store will not be equivalent to the original.
More precisely, stores are also equivalent if a constraint is only temporarily

added or deleted, since addition and deletion of the same constraint cancel
each other out.

The following set of CHR rules reflect this approach for analyse trail/0:

temporary @ analyse_trail \ added(C), removed(C) <=> true.

addition @ analyse_trail \ added(C) <=> fail.

removal @ analyse_trail \ removed(C) <=> fail.

success @ analyse_trail <=> true.

Here added/1 and removed/1 represent trail entries of added and deleted
constraints.

The code above makes use of the refined semantics [5] to work correctly.
A call to analyse trail looks for matching added/1 and removed/1 con-
straints, and removes them using the first rule. If any (unmatched) added/1

and removed/1 constraints remain, the second or third rule causes it to fail.
Otherwise it reaches the fourth rule which simply succeeds.

In general the original solver is transformed by the rules given in the table
below to maintain information about changes.

Entity New Rule

p p(x̄) ==> added(p(x̄))

add to front of program

Hk \ Hr <=> G | B Hk \ Hr <=> G |

removed(p1(x̄1)), . . . , removed(pn(x̄n)), B

replace old rule

Example 3.3 The eq/2 solver is transformed as follows to explicitly generate
the necessary added/1 and removed/1 constraints.

new @ eq(X,Y) ==> added(eq(X,Y)).

8

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

reflexive @ eq(X,Y) <=> X == Y | removed(eq(X,Y)).

redundant @ eq(X1,Y1) \ eq(X2,Y2) <=>

X1 == X2, Y1 == Y2 | removed(eq(X2,Y2)).

symmetric @ eq(X,Y) ==> eq(Y,X).

transitive @ eq(X1,Y1), eq(X2,Y2) ==> Y1 == X2 | eq(X1,Y2).

We want to check whether eq(a, c) is implied by eq(a, b) ∧ eq(b, c). We call
the goal eq(a,b), eq(b,c), check eq(a,c). The first two constraints lead
to a store eq(a, b), eq(b, c), eq(a, c), eq(b, a), eq(c, b), eq(c, a) as shown in Exam-
ple 2.2. The constraint check eq(a, c) first adds added(eq(a, c)) using the new

rule, then the redundant rule succeeds adding removed(eq(a,c)). The call to
analyse trail removes both of these using the temporary rule, then succeeds
using the success rule.

The transformed solver program above has the disadvantage that it always
trails. The following set of rules only enable explicit trailing during implication
checking. These rules require trail off to be in the constraint store initially.

implication @ check_eq(X,Y) <=> enable_trail,

eq(X,Y), analyse_trail,

disable_trail.

enable @ trail_off, enable_trail <=> trail_on.

disable @ trail_on, disable_trail <=> trail_off.

filter_add @ trail_off \ added(C) <=> true.

filter_remove @ trail_off \ removed(C) <=> true.

Our method of implication checking is complete for canonical range-
restricted CHR-only solvers.

Theorem 3.4 (Completeness) If CS is a canonical range-restricted solver,

then implication checking is complete. That is

∀C, c : ([[CS]] |= C ⇒ c) ⇒ solve(C) ≡ solve(C ∧ c)

Proof. From Definition 2.6 we have that

∀C, c : ([[CS]] |= C ↔ (C ∧ c) ⇒ ∃̄vars(C∧c)solve(C) ↔ ∃̄vars(C∧c)solve(C ∧ c)

Since CS is range-restricted vars(solve(C)) ⊆ vars(C ∧ c) and vars(solve(C ∧
c)) ⊆ vars(C ∧ c). Hence solve(C) ≡ solve(C ∧ c). 2

Note that in the special case that C ∧c fails, c is not implied by C as C ∧c

is not satisfiable. This case is correctly covered by our approach.

A constraint solver need not be canonical for our implication checking to
be complete. In Section 5 we will show that our method is also complete for
several non-canonical, even non-confluent, CHR solvers.

9

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

4 Implication Checking for Modular Solver Hierarchies

In this section we extend the implication checking technique of the previous
section to modular CHR solver hierarchies. Constraint solvers may be nested
hierarchically: one solver depends on some solvers that on their turn depend on
other solvers. We say a solver depends on another solver if it uses constraints
that are defined in the other solver. In particular a CHR solver can uses
constraints of other solvers in guards and bodies of CHR rules.

Previously it was only possible to use constraints of builtin solvers in
guards [4]. Here we show how to construct CHR solver hierarchies where
CHR constraints can be used in guards. In a CHR solver hierarchy the de-
pendency graph is acyclic. We will use parent solver and child solver to refer
to one solver that depends on the other.

A modular CHR solver is a CHR solver that can be compiled using the
interface of its dependencies only. In particular, no knowledge of dependents
is required.

Example 4.1 The following less-than-or-equal-to solver leq depends on the
eq solver:

leq_new @ leq(X,Y) <=> check_eq(X,Y) | true.

leq_antisymmetric @ leq(X1,Y1), leq(X2,Y2) <=>

check_eq(X1,Y2), check_eq(X2,Y1) | eq(X1,Y1).

leq_redundant @ leq(X1,Y1) \ leq(X2,Y2) <=>

check_eq(X1,X2), check_eq(Y1,Y2) | true.

leq_transitive @ leq(X1,Y1), leq(X2,Y2) ==>

check_eq(Y1,X2) | leq(X1,Y1).

This leq solver depends on the eq solver in two ways. Firstly, it calls eq/2
constraints in the body of the leq antisymmetric rule. Secondly, it also uses
the check eq/2 implication check in the guard of all its rules. As both the
constraint and the implication check can easily be exported from the eq solver
this does not violate modularity.

There is a part of the operational semantics of the guard that we have not
addressed yet. We call an event the addition of a constraint to the child solver
or one of the solvers it depends on, such that the guard may be satisfied. A
CHR rule application may not succeed immediately because a guard is not
satisfied, but an event may cause it to be satisfied at a later point.

The semantics of CHR require that CHR constraints of the parent solver
are re-activated in case of an event that now satisfies a previously unsatisfied
guard. In practice, CHR implementations overestimate the impact of events,
i.e. re-activate more than necessary. Typically for builtin solvers, relevant
events are provided in the solver interface by the solver programmer together
with a mechanism to notify interested parties.

The following rules describe the necessary operations for such a mechanism
of events and notifications for the eq solver:

10

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

new_event @ eq(X,Y) ==> touched(X), touched(Y).

trigger @ touched(X), delayed(X,Goal,ID) ==> call(Goal).

end_event @ touched(X) <=> true.

kill_goal @ kill(ID) \ delayed(X,Goal,ID) <=> true.

kill_end @ kill(ID) <=> true.

The eq solver provides a touched(X) event in its interface, without know-
ing anything about particular uses. The new event rule generates the touched
event for every variable involved in a new eq/2 constraint. Users of the in-
terface, such as the leq solver will be notified of these events by calling the
delayed/3 constraint. This constraint supplies a callback goal, that is called
when the appropriate touched/1 event fires and allows the notified party to
take due action. The kill/1 constraint allows for the removal of one or more
delayed callbacks, based on an identifier and allows the notified party to no
longer receive any events.

The following pseudo-code shows how the leq solver subscribes itself to
touched events. It is pseudo-code because it accesses some internals of the
CHR implementation.

listen @ leq(X,Y) # CID ==> new_delay_id(ID),

delay(X,reactivate(CID),ID),

delay(Y,reactivate(CID),ID),

listening(CID,ID).

Here CID is an internal identifier of the CHR constraint. This pseudo-rule
is executed when the leq(X,Y) constraint is first activated. The call to
new delay id/1 generates a new notification identifier. With the two calls
to delay the ≤ solver will be notified of the relevant events. Upon noti-
fication the internal goal reactivate(CID) is called which reactivates the
corresponding constraint. The call to listening internally associates the no-
tification identifier with the corresponding leq/2 constraint. When the leq/2
constraint with identifier CID is removed, internally the kill/1 constraint is
called on all associated notification identifiers. This avoids reactivation of
removed constraints.

However, several modifications to the implication checking are now neces-
sary to the original scheme, to accommodate both the hierarchy and the modu-
larity. In the following we explain how to do trailing for multiple CHR solvers,
how to distinguish between trails of recursively called implication checks and
how implication checking should interact with the event mechanism.

Trailing Interface: Firstly, because of the hierarchy, during an implica-
tion check on a parent solver, constraints in the child solver may be added and
deleted. Hence, the parent solver trail mechanism has to recursively rely on
the child solver trail mechanism. The child solver has to export the necessary
trail operations for this.

Example 4.2 The following set of rules encode the trailing dependency of

11

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

the leq/2 solver on the eq/2 solver:

rec_analysis @ leq_analyse_trail ==> eq_analyse_trail.

rec_enable @ leq_enable_trail ==> eq_enable_trail.

rec_disable @ leq_disable_trail ==> eq_disable_trail.

Implication Strata: Secondly, because of the hierarchy, implication
checking may be recursive as well. For example, an implication check of a
leq/2 constraint may require the implication check of a eq/2 constraint. Our
shallow trailing approach does not cover this any more. Indeed, it does not dis-
tinguish between those eq/2 constraints added and deleted during the recur-
sive eq/2 implication check and those during the top level leq/2 implication
check. A more involved trailing mechanism is needed.

Our solution is to associate with each implication stratum (i.e. level of
implication check nesting) a stratum identifier. The top level which is not
inside any implication check has stratum identifier 0, an implication check
called from top level has identifier −1, etc.

Every constraint is labeled with the stratum it is called in. For example,
eq(X,Y) becomes eq(X,Y,S) if it is called in stratum S.

Constraints called in the top-level query are assigned stratum 0. Con-
straints called in the body of a rule inherit the lowest stratum of any con-
straints in the head and the implication checking lowers the stratum by one.

Example 4.3 For example, the leq/2 solver is transformed as follows:

leq_new @ leq(X,Y,S) <=> check_eq(X,Y,S-1) | true.

leq_antisymmetric @ leq(X1,Y1,S1), leq(X2,Y2,S2) <=>

check_eq(X1,Y2,min(S1,S2)-1), check_eq(X2,Y1,min(S1,S2)-1)

| eq(X1,Y1,min(S1,S2)).

leq_redundant @ leq(X1,Y1,S1) \ leq(X2,Y2,S2) <=>

check_eq(X1,X2,min(S1,S2)-1), check_eq(Y1,Y2,min(S1,S2)-1)

| true.

leq_transitive @ leq(X1,Y1,S1), leq(X2,Y2,S2) ==>

check_eq(Y1,X2,min(S1,S2)-1) | leq(X1,Y1,min(S1,S2)).

Now it is possible for the implication trailing operations to work on a single
stratum by looking at the stratum identifiers: all the related constraints are
extended with their stratum’s identifier.

However, the implication checking is weakened, if the trailing operations
are confined within a stratum. The reason is the temporary rule:

temporary @ analyse_trail(S) \ added(C,S), removed(C,S) <=> true.

This rule only cancels out additions and deletions in the same stratum.
What is no longer canceled out, is a constraint added in a higher stratum that
is removed in a lower stratum and re-added in that lower stratum.

It is possible to recapture this possibility as follows. With every deletion
both the stratum of the deleted constraint and the lowest stratum of any of

12

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

the head constraints is recorded. The latter is the cause of the removal. For
example, the leq2 rule then looks like:

leq2 @ leq(X1,Y1,S1), leq(X2,Y2,S2) <=>

check_eq(X1,Y2,min(S1,S2)-1), check_eq(X2,Y1,min(S1,S2)-1)

| removed(leq(X1,Y1),S1,min(S1,S2)),

removed(leq(X2,Y2),S2,min(S1,S2)),

eq(X1,Y1,min(S1,S2)).

The following rules deal with this new removed/3 constraint.

temporary @ analyse_trail(S) \ added(leq(X,Y),S),

removed(leq(X,Y),S,S)

<=> true.

promotion @ analyse_trail(S) \ added(leq(X,Y),S), leq(X,Y,S),

removed(leq(X,Y),Sr,S)

<=> S < Sr | leq(X,Y,Sr).

The temporary rule still cancels out addition and deletion within the same
stratum, but the promotion rule promotes a new constraint to the stratum
of the previously deleted constraint. In this way the full power of the basic
implication checking is retained for solver hierarchies.

The definition of check eq/3 becomes the following. We can get rid of
explicit trail enabling and disabling now that we have the implication strata:
stratum 0 never requires trailing and the other strata always do.

toplevel_add @ added(_,0) <=> true.

toplevel_rem @ removed(_,_,0) <=> true.

implication @ check_eq(X,Y,S) <=> eq(X,Y,S),

eq_analyse_trail(S).

Inter-stratum Events: During an implication check which takes place
in the child solver an event may be fired waking some parent solver constraints
that cause some parent solver constraints to be added or deleted in a higher
stratum.

However, it is not necessary for these events to travel across strata. An
implication check can safely be resolved without propagating any information
to the parent solver in the higher stratum: as a child solver does not depend
on the parent solver the outcome of an implication check on the child solver
should not require interaction with the parent solver.

The other way around, a higher stratum will never generate any event in
the presence of a lower stratum, since it is temporarily suspended while exe-
cution goes on in the lower stratum and only disappears after the implication
check in the lower stratum has finished and thus the lower stratum is gone
altogether.

Hence, is safe and cheaper for events to only trigger callbacks within the
same stratum. The following modified event code reflects this.

13

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

new_event @ eq(X,Y,S) ==> touched(X,S), touched(Y,S).

trigger @ touched(X,S), delayed(X,Goal,S,ID) ==> call(Goal).

end_event @ touched(X,S) <=> true.

listen @ leq(X,Y,S) # CID ==> new_delay_id(ID),

delay(X,reactivate(CID),S,ID),

delay(Y,reactivate(CID),S,ID),

listening(CID,ID).

5 Case Studies: Non-Canonical Solvers

We have shown in Section 3 that our CHR implication checking is complete
for canonical solvers. In this section we investigate the completeness for some
classical, non-canonical solvers.

It will turn out that the implication checking is still complete in many
cases, or can be made complete with a little customization in particular cases.

5.1 Naive Union-Find Equality Solver

In [13] a CHR implementation of the naive union-find algorithm is presented
(see Appendix A for the source code). The union/2 constraint in that imple-
mentation may serve as an equality constraint.

The naive union-find represents equal variables as nodes in the same tree.
Any tree with the same variables in it represents the equality of its elements.
There is not one preferred, canonical form. For this reason it is even non-
confluent: the order of the union/2 constraints, decides the shape of the tree.

If two variables are unioned that are already equal, their common tree is
not modified, nor are any other constraints deleted or added. However, if two
variables are not yet equal, a union will merge their trees into one.

Hence, our implication check is complete for this union-find equality solver.

5.2 Optimal Union-Find Equality Solver

Next to the naive algorithm also a CHR implementation of an optimal union-
find algorithm is given in [12] (see Appendix B for the source code). This
algorithm combines path compression with union-by-rank.

Again, when two variables are not equal, their respective trees are merged
(by-rank) and this is detected by our implication method. However, in case
the variables are already equal, path compression may still modify the tree by
shortening paths from nodes to the root. Because the compressed tree is not
syntactically identical to the initial tree, our implication method will reject it.

Nevertheless it is possible to customize the trail analysis/0 rules to
overcome this problem and safely allow path compression, while rejecting truly
new equalities. Namely, instead of these general rules:

14

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

addition @ analyse_trail(S) \ added(C,S) <=> fail.

removal @ analyse_trail(S) \ removed(C,_,S) <=> fail.

only the detection of the removal of a root constraint is required to detect
the linking of two trees:

removal @ analyse_trail(S) \ removed(root(_,_),_,S) <=> fail.

cleanup1 @ analyse_trail(S) \ added(_,S) <=> true.

cleanup2 @ analyse_trail(S) \ removed(_,_,S) <=> true.

cleanup3 @ analyse_trail(S) \ ’~>’(X,Y,S) <=> ’~>’(X,Y,S+1).

Since these rules do not consider path compression as possible non-equivalence
of trees. Indeed, they even will not undo the path compression after the impli-
cation check, but promote newly created edges to the higher stratum. Hence
the compacter tree representation is retained after a succeeding implication
check, making future operations cheaper.

6 Experimental Evaluation

We compare our trailing approach with the naive copy approach to validate
it. For this reason we consider a particular benchmark for the eq solver.
n − 1 constraints eq(Vi,Vi+1) are imposed for 1 ≤ i < n. This conjunction
of equality constraints we call C. The constraint we test for, c, is eq(V1,Vn)

in one case and eq(V1,Vn+1) in the other. The former test succeeds and the
latter fails.

Table 1 lists the experimental results in seconds obtained for this bench-
mark with n = 20 using the K.U.Leuven CHR system in SWI-Prolog on an
Intel Pentium 4 2.0GHz with 512MB of RAM. The total time to perform im-
plication checking for the copy approach is equal to the sum of the times for
solve(C) and solve(C ∧ c) 1 . With our trailing approach, the time to compute
C =⇒ c corresponds with the time for solve(C∧c). While there is about 16%
overhead for ordinary use (solve(C)), the trailing approach is clearly superior
to the copy approach for implication testing: it is almost twice as fast for our
benchmark. The succeeding test performs a little better than the failing one.

The table also lists the results for a similar benchmark using the naive
union-find program. The trailing version has been specialized to not trail
additions and removals of constraints that are never stored. The results are
similar as for the eq solver.

7 Conclusion

In this paper we have presented a new approach for automatic implication
checking in CHR solvers. We have established the soundness of our trailing
approach as well as its completeness for the class of canonical CHR solvers. In

1 The time to compare the constraint stores is negligible for this benchmark.

15

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

Approach solve(C) solve(C ∧ c) C =⇒ c

c = eq(V1,Vn)
copy 4.34 4.42 9.16 100.0%
trailing 5.02 5.07 5.07 55.2%

c = eq(V1,Vn+1)
copy 4.34 5.61 9.95 100.0%
trailing 5.02 6.53 6.53 65.6%

c = union(V1,Vn)
copy 2.78 2.80 5.58 100.0%
trailing 3.75 3.77 3.77 67.6%

c = union(V1,Vn+1)
copy 2.78 2.79 5.57 100.0%
trailing 3.75 3.78 3.78 67.9%

Table 1
Experimental Results

addition we have studied the completeness for several existing CHR solvers.
Experimental evaluation supports our claim that the trailing approach is more
efficient than a naive copying approach. In addition we have extended our
trailing approach to CHR solver hierarchies. We can now use CHR constraints
of one solver in the guards of rules of another solver.

Acknowledgments

We would like to thank Marc Meister for commenting on a preliminary version
of this paper. Part of this research was conducted while Tom Schrijvers was
visiting the University of Melbourne in July 2004 and the Universität Ulm in
November 2004.

References

[1] Abdennadher, S., Operational Semantics and Confluence of Constraint
Propagation Rules, in: G. Smolka, editor, Proceedings of the Third International
Conference on Principles and Practice of Constraint Programming, 1997, pp.
252–266.

[2] Carlsson, M., G. Ottosson and B. Carlson, An Open-Ended Finite Domain
Constraint Solver, in: H. Glaser, P. H. Hartel and H. Kuchen, editors, PLILP’97:
Proceedings of the 9th International Symposium on Programming Languages:
Implementations, Logics, and Programs, Lecture Notes in Computer Science
1292 (1997), pp. 191–206.

[3] Duck, G. J., M. Garcia de la Banda and P. J. Stuckey, Compiling Ask
Constraints, in: B. Demoen and V. Lifschitz, editors, Proceedings of the 20th
International Conference on Logic Programming, LNCS (2004), pp. 105–119.

[4] Duck, G. J., P. J. Stuckey, M. Garcia de la Banda and C. Holzbaur, Extending
Arbitrary Solvers with Constraint Handling Rules, in: Proceedings of the
5th ACM SIGPLAN international conference on Principles and practice of
declaritive programming (2003), pp. 79–90.

16

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

[5] Duck, G. J., P. J. Stuckey, M. Garcia de la Banda and C. Holzbaur, The Refined
Operational Semantics of Constraint Handling Rules, in: 20th International
Conference on Logic Programming (ICLP’04), Saint-Malo, France, 2004, pp.
90–104.

[6] Frühwirth, T., Entailment Simplification and Constraint Constructors for User-
Defined Constraints, in: 3rd Workshop on Constraint Logic Programming
(WCLP 93), Marseille, France, 1993.

[7] Frühwirth, T., Theory and Practice of Constraint Handling Rules, Journal of
Logic Programming 37 (1998), pp. 95–138.

[8] Holzbaur, C. and T. Frühwirth, Compiling Constraint Handling Rules into
Prolog with Attributed Variables, in: G. Nadathur, editor, Proceedings of
the International Conference on Principles and Practice of Declarative
Programming, number 1702 in LNCS (1999), pp. 117–133.

[9] Holzbaur, C. and T. Frühwirth, Constraint Handling Rules, Special Issue,
Journal of Applied Artificial Intelligence 14 (2000).

[10] Holzbaur, C., M. Garćıa de la Banda, P. J. Stuckey and G. J. Duck, Optimizing
Compilation of Constraint Handling Rules in HAL, Special Issue of Theory
and Practice of Logic Programming on Constraint Handling Rules (2005), to
appear.

[11] Schrijvers, T. and B. Demoen, The K.U.Leuven CHR system: Implementation
and application, in: T. Frühwirth and M. Meister, editors, First workshop on
constraint handling rules: selected contributions, 2004, pp. 1–5.

[12] Schrijvers, T. and T. Frühwirth, Implementing and Analysing Union-Find in
CHR, Report CW 389, K.U.Leuven, Department of Computer Science (2004).

[13] Schrijvers, T. and T. Frühwirth, Optimal Union-Find in Constraint Handling
Rules, Theory and Practice of Logic Programming (2005), to appear.

[14] Schulte, C., Programming Deep Concurrent Constraint Combinators, in:
E. Pontelli and V. S. Costa, editors, PADL’00: 2nd International Workhop of
Practical Aspects of Declarative Languages, Lecture Notes in Computer Science
1753 (2000), pp. 215–229.

[15] Stuckey, P. J. and M. Sulzmann, A Theory of Overloading, in: Proceedings of the
seventh ACM SIGPLAN international conference on Functional programming
(2002), pp. 167–178.

[16] Stuckey, P. J., M. Sulzmann and J. Wazny, The Chameleon System, in:
T. Frühwirth and M. Meister, editors, First workshop on constraint handling
rules: selected contributions, 2004, pp. 13–32.

17

Schrijvers, Demoen, Duck, Stuckey, Frühwirth

A Source Code: Naive Union-Find
Naive Union-Find

make @ make(X) <=> root(X).

union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

findNode @ X ~> PX \ find(X,R) <=> find(PX,R).

findRoot @ root(X) \ find(X,R) <=> R=X.

linkEq @ link(X,X) <=> true.

link @ link(X,Y), root(X), root(Y) <=> Y ~> X, root(X).

B Source Code: Optimal Union-Find
ufd rank

make @ make(X) <=> root(X,0).

findNode @ X ~> PX , find(X,R) <=> find(PX,R), X ~> R.

findRoot @ root(X,_) \ find(X,R) <=> R=X.

linkEq @ link(X,X) <=> true.

linkLeft @ link(X,Y), root(X,RX) root(Y,RY) <=> RX >= RY |

Y ~> X, NRX is max(RX,RY+1), root(X,NRX).

linkRight @ link(X,Y), root(Y,RY), root(X,RX) <=> RY >= RX |

X ~> Y, NRY is max(RY,RX+1), root(Y,NRY).

18

	Introduction
	CHR Solvers
	CHR Syntax and Operational Semantics
	Declarative Semantics
	Solver Program Properties

	Basic Implication Checking
	Implication Checking for Modular Solver Hierarchies
	Case Studies: Non-Canonical Solvers
	Naive Union-Find Equality Solver
	Optimal Union-Find Equality Solver

	Experimental Evaluation
	Conclusion
	References
	Source Code: Naive Union-Find
	Source Code: Optimal Union-Find

