
Sound and Deidable Type Inferene forFuntional DependeniesGregory J. Duk1, Simon Peyton-Jones2, Peter J. Stukey1 and MartinSulzmann31 Department of Computer Siene and Software EngineeringThe University of Melbourne, Vi. 3010, Australiafgjd,pjsg�s.mu.oz.au2 Mirosoft Researh Ltd7 JJ Thomson Avenue, Cambridge CB3 0FB, Englandsimonpj�mirosoft.om3 Shool of Computing, National University of SingaporeS16 Level 5, 3 Siene Drive 2, Singapore 117543sulzmann�omp.nus.edu.sgAbstrat. Funtional dependenies are a popular and useful exten-sion to Haskell style type lasses. In this paper, we give a reformula-tion of funtional dependenies in terms of Constraint Handling Rules(CHRs). In previous work, CHRs have been employed for desribinguser-programmable type extensions in the ontext of Haskell style typelasses. Here, we make use of CHRs to provide for the �rst time a on-ise result that under some suÆient onditions, funtional dependeniesallow for sound and deidable type inferene. The suÆient onditionsimposed on funtional dependenies an be very limiting. We show howto safely relax these onditions.1 IntrodutionFuntional dependenies, introdued by Mark Jones [Jon00℄, have proved tobe a very attrative extension to multi-parameter type lasses in Haskell. Forexample, onsider a lass intended to desribe a olletion of type  ontainingvalues of type e:lass Coll  e |  -> e whereempty :: insert ::  -> e -> member ::  -> e -> BoolThe part \| ->e" is a funtional dependeny, and indiates that �xing theolletion type  should �x the element type e. These funtional dependenieshave proved very useful, beause they allow the programmer to ontrol the typeinferene proess more preisely. We elaborate in Setion 2.The purpose of this paper is to explore and onsolidate the design spae offuntional dependenies (FDs). The main tool we use in this exploration is the re-formulation of FDs in terms of Constraint Handling Rules (CHRs) [Fr�u95,SS02℄,an idea that we review in Setion 3. This reformulation allows us to make severalnew ontributions:



{ Despite their popularity, funtional dependenies have never been formalised,so far as we know. CHRs give us a language in whih to explain more preiselywhat funtional dependenies are. In partiular, we are able to make the so-alled \improvement rules" implied by FDs expliit in terms of CHRs.{ Based on this understanding, we provide the �rst onise proof that the re-stritions imposed by Jones on funtional dependenies [Jon00℄ ensure soundand deidable type inferene (Setion 3).{ Jones's restritions an be very limiting. We propose several useful extensions(Setion 4) suh as more liberal FDs (Setion 4.1). We establish some oniseonditions under whih liberal FDs are sound.Throughout, we provide various examples to support the usefulness of our im-provement strategies. Related work is disussed in Setion 5. We onlude inSetion 6.We refer the interested reader to [DPJSS03℄ for proofs and additional mate-rial.2 Bakground: Funtional Dependenies in HaskellWe begin by reviewing funtional dependenies, as introdued by Jones [Jon00℄,assuming some basi familiarity with Haskell-style type lasses.Example 1. Reall the olletion lasslass Coll  e |  -> e whereempty :: insert ::  -> e -> member ::  -> e -> Boolplus the followinginstane Eq a => Coll [a℄ a where ...ins2 xs a b = insert (insert xs a) bConsider the funtion ins2. In the absene of funtional dependenies, typeinferene would giveins2 :: (Coll  e1, Coll  e2) =>  -> e1 -> e2 -> whih is of ourse not what we want: we expet a and b to have the same type.The funtional dependeny ->e expresses the idea that the olletion type �xes the element type e, and hene that e1 and e2 must be the same type. Insuh a situation, we ommonly say that types are \improved" [Jon95℄.Funtional dependenies are useful in many di�erent ontexts. Here are somerepresentative examples.Example 2. Consider the following lass for representing state monads and twoinstanes



lass SM m r | m->r, r->m wherenew :: a -> m (r a)read :: r a -> m awrite :: r a -> a -> m ()instane SM IO IORef wherenew = newIORefread = readIORefwrite = writeIORefinstane SM (ST s) (STRef s) wherenew = newSTRefread = readSTRefwrite = writeSTRefThe part \| m->r, r->m" gives two funtional dependenies, and indiates that�xing the monad type m should �x the referene type r as well, and vie versa.Now onsider the odef x = do { r <- new x; print "Hello"; return r }The all to print, whose type is String -> IO (), makes it lear that f isin the IO monad, and hene, by the funtional dependeny, that r must be anIORef. So we infer the typef :: a -> IO (IORef a)From this example we an see the main purpose of funtional dependenies: theyallow the programmer to plae stronger onditions on the set of onstraints gen-erated during type inferene, and thus allow more aurate types to be inferred.In their absene, we would infer the typef :: (SM IO r) => IO (r a)whih is needlessly general. In other situations, ambiguity would be reported.For example:g :: a -> IO ag x = do { r <- new x ; read r }Without funtional dependenies, the type system annot work out whih refer-ene type to use, and so reports an ambiguous use of new and read.Example 3. Consider the following appliation allowing for (overloaded) multi-pliation among base types suh as Int and Float and user-de�nable types suhas vetors. For simpliity, we omit the obvious funtion bodies.lass Mul a b  | a b ->  where(*)::a->b->instane Mul Int Int Int where ...instane Mul Int Float Float where ...type Ve b = [b℄instane Mul a b  => Mul a (Ve b) (Ve ) where ...



The point here is that the argument types of (*) determine its result type. Inthe absene of this knowledge an expression suh as (a*b)* annot be typed,beause the type of the intermediate result, (a*b), is not determined. The typeheker would report type ambiguity, just as it does when faed with the lassiexample of ambiguity, (read (show x)).Example 4. Here is an another useful appliation of FDs to enode a family ofzip funtions.zip2 :: [a℄->[b℄->[(a,b)℄zip2 (a:as) (b:bs) = (a,b) : (zip2 as bs)zip2 _ _ = [℄lass Zip a b  | a  -> b, b  -> a wherezip :: [a℄ -> [b℄ -> instane Zip a b [(a,b)℄ wherezip = zip2instane Zip (a,b)  e => Zip a b ([℄->e) wherezip as bs s = zip (zip2 as bs) sThese de�nitions make zip into an n-ary funtion. For example, we may writee1 :: (Bool,Char)e1 = head (zip [True,False℄ ['a','b',''℄)e2 :: ((Bool,Char),Int)e2 = head (zip [True,False℄ ['a','b',''℄ [1::Int,2℄)2.1 Funtional Dependenies are TrikyAs we have seen, funtional dependenies allow the programmer to exert ontrolover the type inferene proess. However, used unritially, this additional ontrolan have unexpeted onsequenes. Spei�ally: they may lead to inonsisteny,whereby the type inferene engine dedues nonsense suh as Int = Bool; andthey may lead to non-termination, whereby the type inferene engine goes intoan in�nite loop. We illustrate eah of these diÆulties with an example.Example 5. Suppose we add instane Mul Int Float Int to Example 3. Thatis, we have the following delarations:lass Mul a b  | a b -> instane Mul Int Float Float -- (I1)instane Mul Int Float Int -- (I2)Note that the �rst two parameters are meant to uniquely determine the thirdparameter. In ase type inferene enounters Mul Int Float a we an eitherargue that a=Int beause of instane delaration (I2). However, delaration(I1) would imply a=Float. These two answers are inonsistent, so allowingboth (I1) and (I2) makes the whole program inonsistent, whih endangerssoundness of type inferene.Example 6. Assume we add the following funtion to the lasses and instanesin Example 3.



f b x y = if b then (*) x [y℄ else yThe program text gives rise to the onstraint Mul a (Ve b) b. The improve-ment rules onneted to instane Mul a b  => Mul a (Ve b) (Ve ) im-ply that b=Ve  for some ; applying this substitution gives the onstraint Mula (Ve (Ve )) (Ve ). But this onstraint an be simpli�ed using the in-stane delaration, giving rise to the simpler onstraint Mul a (Ve ) . Un-fortunately, now the entire hain of reasoning simply repeats! We �nd that typeinferene beomes suddenly non-terminating. Note that the instanes (withoutthe funtional dependeny) are terminating.The bottom line is this. We want type inferene to be sound and deidable.Funtional dependenies threaten this happy situation. The obvious solutionis to plae restritions on how funtional dependenies are used, so that typeinferene remains well-behaved, and that is what we disuss next.2.2 Jones's Funtional Dependeny RestritionsWe assume that fv(t) takes a syntati term t and returns the set of free variablesin t. A substitution � = [t1=a1; : : : ; tn=an℄ simultaneously replaes eah ai by itsorresponding ti.In Jones's original paper [Jon00℄, the following restritions are imposed onfuntional dependenies.De�nition 1 (Haskell-FD Restritions). Consider a lass delarationlass C => TC a1 ::: an | fd1; :::; fdmwhere the ai are type variables and C is the lass ontext onsisting of a (possiblyempty) set of type lass onstraints. Eah fdi is a funtional dependeny of theform4 ai1 ; :::; aik -> ai0 where fi0; i1; :::; ikg � f1:::ng. We ommonly refer toai1 ; :::; aik as the domain and ai0 as the range.The following onditions must hold for funtional dependeny fdi:Consisteny. Consider every pair of instane delarationsinstane ::: => TC t1 ::: tninstane ::: => TC s1 ::: snfor a partiular type lass TC. Then, for any substitution � suh that�(ti1 ; :::; tik ) = �(si1 ; :::; sik )we must have that �(ti0) = �(si0 ).Termination. For eah instane ::: => TC t1 ::: tn we must have thatfv(ti0) � fv(ti1 ; : : : ; tik )4 Haskell systems that allow funtional dependenies usually allow dependenies ofthe form a -> b , with multiple type variables to the right of the arrow. But thisis equivalent to the form a -> b, a -> , so in the rest of the paper we only dealwith the ase where there is a single type variable to the right of the arrow.



The �rst of these onditions rules out inonsistent instane delarations (seeExample 5); and it turns out that the seond ensures termination, although theinformal argument in Jones's original paper does not mention termination asan issue. In partiular, the seond restrition makes illegal the reursive Veinstane in Example 3 (sine fv() 6� fv(a; b)), and hene prevents the divergeneof Example 6.To the best of our knowledge, no one has proved that the restritions givenabove ensure sound and deidable type inferene. We do so, for the �rst time,in Setion 3.While these two restritions make the system well-behaved, it is naturalto ask whether either ondition ould be weakened. The onsisteny onditionseems entirely reasonable, but we have seen many examples in whih the ter-mination restrition exludes entirely reasonable and useful programs. BesidesExamples 3 (whih appears in Jones's original paper) and 4, there are a num-ber of other examples in the literature whih break the termination ondition[Kar03,WW03,CK03℄. In Setion 4.1, we propose a more liberal form of FDswhih allows for breaking the termination ondition under some additional on-ditions.3 Funtional Dependenies expressed using CHRsIn this setion we explain how to translate funtional dependenies into a lower-level notation, alled Constraint Handling Rules (CHRs) [Fr�u98℄. This transla-tion has two bene�ts: it allows us to give a more preise aount of exatly whatfuntional dependenies mean; and it allows us to formally verify that Jones'sonditions are suÆient to ensure sound and deidable type inferene.Example 7. Let us return to the olletion example:lass Coll  e |  -> e whereempty :: insert ::  -> e -> member ::  -> e -> Boollass Eq a => Ord a where(>=) :: a -> a -> Boolinstane Ord a => Coll [a℄ a where ...From the funtional dependeny ->e we generate the two improvement ruleswhih we shall express using the following CHRs:rule Coll  e1, Coll  e2 ==> e1=e2rule Coll [a℄ b ==> a=bInformally, the �rst rule says that if the two onstraints (Coll  e1) and(Coll  e2) both hold, then it must be that e1 and e2 are the same type. Thisrule is generated from the lass delaration alone, and expresses the idea that uniquely determines e. The seond rule is generated from the instane delara-tion, together with the funtional dependeny, and states that if (Coll [a℄ b)



holds, then it follows that a = b. During type inferene, the inferene engine isrequired to solve sets of onstraints, and it an apply these improvement rulesto narrow its hoies.These CHRs have one or more type-lass onstraints on the left hand side,and one or more equality onstraints on the right. The logial interpretationof ==> is impliation. Its operational interpretation | that is, its e�et on thetype inferene proess | is this: when the type inferene engine sees onstraintsmathing the left hand side, it adds the onstraints found on the right-hand side.Superlass relations also generate CHR rules. The superlass relationshiplass Eq a => Ord a where... generates the CHRrule Ord a ==> Eq aInformally, the rule states that if the onstraint Ord a holds then also the on-straint Eq a holds. During typing this rule is used to hek that all superlassonstraints are also satis�ed.The instane delaration above also generates the following CHR rule, whihallows us to simplify sets of onstraints to remove lass onstraints whih areknown to hold.rule Coll [a℄ a <==> Ord aInformally, the rule states that the onstraint Coll [a℄ a holds if and only ifOrd a holds. The logial interpretation of the <==> is bi-impliation, while theoperational interpretation is to replae the onstraints on the left hand side bythose on the right hand side.Although not relevant to the ontent of this paper, the rule generated fromthe instane is also intimately onneted to the evidene translation for theprogram above, we refer readers to [SS02℄ for more details.3.1 Translation to CHRsFormalising the translation given above, lass and instane delarations aretranslated into CHRs as follows:De�nition 2 (CHR Translation). Consider a lass delarationlass C => TC a1 ::: an | fd1; :::; fdmwhere the ai are type variables and eah funtional dependeny fdi is of the formai1 ; :::; aik -> ai0 , where fi0; i1; :::; ikg � f1:::ng. From the lass delaration wegenerate the following CHRs:Class CHR: rule TC a1 : : : an ==> CFuntional dependeny CHR: for eah funtional dependeny fdi in thelass delaration, we generaterule TC a1 : : : an, TC �(b1) : : : �(bn) ==> ai0 = bi0where �(bij ) = aij , j > 0 and �(bl) = bl if :9j:l = ij .In addition, for eah instane delaration of the form



instane C => TC t1 : : : tnwe generate the following CHRs:Instane CHR: rule TC t1 : : : tn <==> C. In ase the ontext C is empty,we introdue the always-satis�able onstraint True on the right-hand side ofgenerated CHRs.Instane improvement CHR: for eah funtional dependeny fdi in thelass delaration,rule TC �(b1) : : : �(bn) ==> ti0 = bi0where �(bij ) = tij , j > 0 and �(bl) = bl if :9j:l = ij .If p is a set of lass and instane delarations, we de�ne Simp(p) to be theset of all instane CHRs generated from p; and Prop(p) to be the set of all lass,funtional-dependeny and instane-improvement CHRs generated from p5. Wede�ne Proplass(p) to be the set of all lass CHRs in Prop(p), and similarlyPropinst(p) to be the set of all instane improvement CHRs in Prop(p),The lass and instane CHRs, Proplass(p) [ Simp(p), are standard Haskell,while the funtional-dependeny and instane-improvement CHRs arise fromthe funtional-dependeny extension to Haskell.For onveniene, in the ase where the funtional dependeny ai1 ; :::; aik -> ai0imposed on TC is full, that is, when k = n � 1, we are able to ombine the in-stane improvement and instane rule into one rule. In suh a situation, for eahinstane C => TC t1 : : : tn and full funtional dependeny ai1 ; :::; aik -> ai0we generate the following CHR: rule TC �(b1) : : : �(bn) <==> ti0 = bi0, C where�(bij ) = tij , j > 0 and �(bl) = bl if :9j:l = ij .By having a uniform desription of (super) lass and instane relations andFDs in terms of CHRs, we an establish some important riteria (in terms ofCHRs) under whih type inferene is sound and deidable.3.2 Main ResultThe translation to CHRs allows us to phrase the entire type inferene proess asCHR solving. We know from earlier work that if a set of CHRs is (a) onuent,(b) terminating, and () range-restrited (all terms that we explain shortly) weahieve type inferene that is sound (all answers are orret), omplete (if thereis an answer then type inferene will provide us with an answer), and deidable(the type inferene engine always terminates) [SS02℄.Then our main result is as follows:Theorem 1 (Soundness and Deidability). Let p be a set of Haskell lassand instane delarations whih satis�es the Haskell-FD restritions (see De�-nition 1). Let Simp(p) and Prop(p) be the sets of CHRs de�ned by De�nition 2.If the set Proplass(p) [ Simp(p) of CHRs is onuent, terminating and range-restrited then Simp(p)[Prop(p) is onuent, terminating and range-restrited.5 \Simp" is short for \simpli�ation rule" and \Prop" for \propagation rule", termi-nology that omes from the CHR literature.



The design of Haskell 98 ensures that the CHRs Proplass(p) [ Simp(p), whihrepresent the Haskell type system with no FD extension, are indeed onuent,terminating and range-restrited. Hene, our theorem says that provide the FDssatisfy the Jones restritions, then type inferene is sound and deidable.To explain this result we need to say what we mean for a set of CHRs to beonuent, terminating, and range restrited.Conuene Reall Example 5 whose translation to CHRs is as follows (notethat the funtional dependeny is fully imposed).rule Mul a b , Mul a b d ==> =d -- (M1)rule Mul Int Float  <==> =Float -- (M2)rule Mul Int Float  <==> =Int -- (M3)We �nd two ontraditing CHR derivations. We write C �R D to denote theCHR derivation whih applies rule (R) to onstraint store C yielding store D.E.g. onsider Mul Int F loat �M2  = F loat and Mul Int F loat �M3  =Int. The problem with the ode of Example 5 manifests itself in the CHR rulesas non-onuene. That is there are two possible sequenes of applying rules,that lead to di�erent results. Just onsidering the rules as logial statements,the entire system is unsatis�able; that is, there are no models whih satisfy theabove set of rules.Non-onuene also arises in ase of \overlapping" instanes. Assume we addthe following delaration to the ode of Example 7.instane Eq a ==> Coll [a℄ a whereIn ase type inferene enounters Coll [t℄ t we an either redue this on-straint to Ord t (by making use of the original instane) or Eq t (by makinguse of the above instane). However, both derivations are non-joinable. In fat,a ommon assumption is that instanes must be non-overlapping, in whih asenon-onuene only ours due to \invalid" FDs.We note that the onsisteny ondition alone is not suÆient to guaranteeonuene (assuming that instanes and super lasses are already onuent ofourse).Example 8. The following ode fragment forms part of a type-direted evaluator.data Nil = Nildata Cons a b = Cons a bdata ExpAbs x a = ExpAbs x a-- env represents environment, exp expression-- and t is the type of the resulting valuelass Eval env exp t | env exp -> t whereeval :: env->exp->tinstane Eval (Cons (x,v1) env) exp v2=> Eval env (ExpAbs x exp) (v1->v2) whereeval env (ExpAbs x exp) = \v -> eval (Cons (x,v) env) expThe translation to CHRs yieldsrule Eval env exp t1, Eval env exp t2 ==> t1=t2 -- (E1)rule Eval env (ExpAbs x exp) v <==>v=(v1->v2), Eval (Cons (x,v1) env) exp v2 -- (E2)



Note that the termination ondition is violated but the onsisteny ondition istrivially ful�lled (there is only one instane). However, we �nd that CHRs areterminating but non-onuent. E.g. we �nd that (applying (E2) twie)Eval env (ExpAbs x exp) t1; Eval env (ExpAbs x exp) t2�� t1 = v1 ! v2; Eval (Cons (x; v1) env) exp v2;t2 = v3 ! v4; Eval (Cons (x; v3) env) exp v4Note that rule (E1) annot be applied on onstraints in the �nal store. But thereis also another non-joinable derivation (applying rule (E1) then (E2))Eval env (ExpAbs x exp) t1; Eval env (ExpAbs x exp) t2�� t1 = t2; t1 = v5 ! v6; Eval (Cons (x; v5) env) exp v6So the \termination ondition" is perhaps mis-named; in this example, its vio-lation leads to non-onuene rather than non-termination.Termination Reall Example 3. The translation to CHRs yields (among others)the following.rule Mul a (Ve b) d <==> d=Ve , Mul a b  -- (M4)The program text in Example 6 gives rise to Mul a (Ve b) b. We �nd thatMul a (V e b) b�M4 Mul a (V e ) ;  = V e b�M4 Mul a (V e d) d; d = V e ;  = V e b: : :That is, the CHR derivation, and hene type inferene, is non-terminating. Theimportant point here is that non-termination was introdued through the FD.For the purpose of this paper, we generally assume that instane CHRs areterminating. There exists some suÆient riteria to ensure that instane CHRsare terminating, e.g. onsider [Pey99℄. Clearly, we an possibly identify furtherlasses of terminating instane CHRs whih we plan to pursue in future work.Note that, when a set of CHRs are terminating, we an easily test for onueneby heking that all \ritial pairs" are joinable [Abd97℄.Range restrition Range-restritedness is the third ondition we impose onCHRs. We say a CHR is range-restrited i� grounding all variables on the left-hand side of a CHR, grounds all variables on the right-hand side.Example 9. Considerlass C a b lass D a binstane C a b  => D [a℄ [b℄Our translation to CHRs yieldsrule D [a℄ [b℄ <==> C a b  -- (D1)



Note that rule (D1) is not range-restrited. After grounding the left-hand side,we still �nd non-ground variable  on the right-hand side. Range-restritednessensures that no unonstrained variables are introdued during a derivation andis a neessary ondition for omplete type inferene. We refer readers to [SS02℄for more details.4 ExtensionsIn turn we disuss several extensions and variations of funtional dependenies.4.1 More Liberal Funtional DependeniesEarlier in the paper we argued that, while Jones's onsisteny ondition is rea-sonable, the termination ondition is more onerous than neessary, beause itexludes reasonable and useful programs (Setion 2.2). In this setion we sug-gest replaing the termination restrition with the following weaker one, withthe goal of making these useful programs legal.De�nition 3 (Liberal-FD). Consider a lass delarationlass C => TC a1 ::: an | fd1; :::; fdmwhere the ai are type variables and C is the lass ontext onsisting of a (possiblyempty) set of type lass onstraints. Eah fdi is a funtional dependeny of theform ai1 ; :::; aik -> ai0 where fi0; i1; :::; ikg � f1:::ng.In addition to the onsisteny ondition (see De�nition 1), the following on-dition must hold for more liberal funtional dependeny fdi:Context Consisteny. For eah instane C => TC t1 ::: tn we must have thatfv(ti0) � losure(C; fv(ti1; : : : ; tik)) wherelosure(C; vs) = STC t1 : : : tn 2 CTC a1 : : : an j ai1 ; :::; aik -> ai0ffv(ti0 ) j fv(ti1 ; : : : ; tik ) � vsgThe basi idea of the ontext onsisteny ondition is that the variables in therange are aptured by some FDs imposed on type lasses present in the ontext.Note that although the ontext onsisteny ondition resembles a more \lib-eral" version of the termination ondition, ontext onsisteny does not preventnon-termination. Example 3 satis�es both of the above onditions, however, re-sulting CHRs are non-terminating. More preisely, adding the improvement rulesProp(p) to a terminating set Simp(p) of instane CHRs yields a non-terminatingset Simp(p)[Prop(p). Hene, for the following result to hold we need to assumethat CHRs are terminating.Theorem 2 (More Liberal FDs Soundness). Let p be a set of Haskelllass and instane delarations whih satis�es the Liberal-FD restritions. LetSimp(p) and Prop(p) be de�ned by De�nition 2. If the set Simp(p)[Prop(p)lassis onuent and range-restrited and Simp(p) [ Prop(p) is terminating, thenSimp(p) [ Prop(p) is onuent and range-restrited.



Note that Example 4 also satis�es the more liberal FD onditions. Aordingto De�nition 2 we generate the following improvement rules. Note that the fun-tional dependeny imposed is full. For simpliity, we only fous on improvementrules.rule Zip a b , Zip a d  ==> b=d -- (Z1)rule Zip a b , Zip d b  ==> a=d -- (Z2)rule Zip a d [(a,b)℄ ==> d=b -- (Z3)rule Zip d b [(a,b)℄ ==> d=a -- (Z4)rule Zip a d ([℄->e) ==> d=b -- (Z5)rule Zip d b ([℄->e) ==> d=a -- (Z6)Rules (Z5) and (Z6) are generated from the seond instane. Note that bothrules introdue some new variables sine we violate the termination ondition.However, both rules are harmless. E�etively, we an replae them byrule Zip a d ([℄->e) ==> True -- (Z5')rule Zip d b ([℄->e) ==> True -- (Z6')whih makes them trivial. Hene, we an omit them altogether. We observe thatwe an \safely" violate the termination ondition (without breaking termination)in ase the improvement rules generated are trivial, i.e. the right-hand side ofCHRs an be replaed by the always true onstraint. This is always the ase ifthe range omponent of an instane is a variable.4.2 Stronger ImprovementThere are situations where FDs do not enfore suÆient improvement. Note thatthe inferred types of e1 and e2 in Example 4 aree1 :: Zip Bool Char [a℄ => ae2 :: Zip (Bool,Char) Int [a℄ => arather thane1 :: (Bool,Char)e2 :: ((Bool,Char),Int)For example rule (Z3) states that only if we see Zip a d [(a,b)℄we an improved by b. However, in ase of e1 we see Zip Bool Char [a℄, and we would like toimprove a to (Bool,Char). Indeed, in this ontext it is \safe" to replae rules(Z3) and (Z4) byrule Zip a b [℄ ==> =(a,b) -- (Z34)whih imposes stronger improvement to ahieve the desired typing of e1 ande2. Note that rule (Z34) respets the onsisteny and termination onditions(assuming we enfore these onditions for user-provided improvement rules).Hene, we retain onuene and termination of CHRs.Of ourse, if a user-provided improvement violates any of the suÆient on-ditions, it is the user's responsibility to ensure that resulting CHRs are onuentand terminating.



4.3 Instane Improvement OnlyInstead of stronger improvement it might sometimes be desirable to omit ertainimprovement rules. For example, in ase the ontext onsisteny ondition isviolated, we an reover onuene by dropping the funtional dependeny rule.Theorem 3 (Instane Improvement Soundness). Let p be a set of Haskelllass and instane delarations whih satis�es the Haskell-FD onsisteny re-strition. If the set Simp(p)[Proplass(p) is onuent and range-restrited andSimp[Proplass(p)[Propinst(p) is terminating, then Simp(p)[Proplass(p)[Propinst(p) is onuent and range-restrited.Here is a (onuent) variation of Example 8 where we only impose the in-stane improvement rule.data Nil = Nildata Cons a b = Cons a bdata ExpAbs x a = ExpAbs x a-- env represents environment, exp expression-- and t is the type of the resulting valuelass Eval env exp t where eval :: env->exp->t-- we only impose the instane improvement rule but NOT-- the lass FDrule Eval env (ExpAbs x exp) v ==> v=v1->v2instane Eval (Cons (x,v1) env) exp v2=> Eval env (ExpAbs x exp) (v1->v2) whereeval env (ExpAbs x exp) = \v -> eval (Cons (x,v) env) exp5 Related WorkThe idea of improving types in the ontext of Haskell type lasses is not new. Forexample, Chen, Hudak and Odersky [CHO92℄ introdue type lasses whih anbe parameterized by a spei� parameter. For example, the delaration lassSM m r | m->r from Example 2 an be expressed as the parametri delarationlass m::SM r. Interestingly, they impose onditions similar to Jones's onsis-teny and termination ondition to ahieve sound and deidable type inferene.However, their approah is more limited than ours. Funtional dependeniesmust be always of the form a->b where b is not allow to appear in the domainof any other funtional dependeny. Furthermore, they do not onsider any ex-tensions suh as more liberal FDs.In [Jon95℄, Jones introdues a general theory of simplifying and improvingtypes as a re�nement of his theory of quali�ed types [Jon92℄. However, he doesnot provide any formal results whih improvement strategies lead to sound anddeidable type inferene.Subsequently, Jones extends multi-parameter type lasses with funtionaldependenies [Jon00℄. He states some onditions (onsisteny and termination)whih in this paper we �nally verify as suÆient to ensure sound and deid-able type inferene. Surprisingly, he introdues Example 3 (whih breaks thetermination ondition) as a motivation for funtional dependenies.



Duggan and Ophel [DO02℄ desribe an improvement strategy, domain-drivenunifying overload resolution, whih is very similar to funtional dependenies.Indeed, they were the �rst to point out the potential problem of non-terminationof type inferene. However, they do not disuss any extensions suh as moreliberal FDs nor do they onsider how to ope with the termination problem.Stukey and Sulzmann [SS02℄ introdue a general CHR-based formulationfor type lasses. They establish some general onditions, e.g. termination andonuene, in terms of CHRs under whih type inferene is sound and deid-able. Here, we rephrase funtional dependenies as a partiular instane of theirframework.6 ConlusionWe have given a new perspetive on funtional dependenies by expressing theimprovement rules implied by FDs in terms of CHRs. We have veri�ed, for the�rst time, that the onditions (termination and onsisteny, see De�nition 1)stated by Jones are suÆient to guarantee sound and deidable type inferene(see Theorem 1).There are many examples whih demand dropping the termination ondition.For this purpose, we have introdued more liberal FDs in Setion 4.1. We haveidenti�ed an additional ondition (ontext onsisteny) whih guarantees onu-ene (see Theorem 2). We have also disussed further useful extensions suh asstronger improvement rules (Setion 4.2) and instane improvement rules only(Setion 4.3).For suh extensions it beomes muh harder to guarantee deidability (unlessthe generated improvement rules are trivial). For example, the more liberal FDonditions only ensure soundness but not deidability. We are already workingon identifying further deidable lasses of CHRs. We expet to report results onthis topi in the near future.In another line of future work we plan to investigate how to safely drop theonsisteny ondition. Considerlass Insert e e | e -> e where insert :: e->e->einstane Ord a => Insert [a℄ ainstane Insert [Float℄ IntOur intention is to insert elements into a olletion. The lass delaration statesthat the olletion type uniquely determines the element type. The �rst instanestates that we an insert elements into a list if the list elements enjoy an orderingrelation. The seond instane states that we have a speial treatment in ase weinsert Ints into a list of Floats (for example, we assume that Ints are internallyrepresented by Floats). This sounds reasonable, however, the above program isrejeted beause the onsisteny ondition is violated. To establish onuenewe seem to require a more ompliated set of improvement rules. We plan topursue this topi in future work.
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