
Optimizing Compilation of CHR

with Rule Priorities

Leslie De Koninck1⋆, Peter J. Stuckey2, and Gregory J. Duck2

1 Department of Computer Science, K.U.Leuven, Belgium
Leslie.DeKoninck@cs.kuleuven.be

2 NICTA Victoria Laboratory
University of Melbourne, 3010, Australia

{pjs,gjd}@cs.mu.oz.au

Abstract Constraint Handling Rules were recently extended with user-
definable rule priorities. This paper shows how this extended language
can be efficiently compiled into the underlying host language. It extends
previous work by supporting rules with dynamic priorities and by intro-
ducing various optimizations. The effects of the optimizations are empir-
ically evaluated and the new compiler is compared with the state-of-the-
art K.U.Leuven CHR system.

1 Introduction

Constraint Handling Rules (CHR) [7] is a rule based language, originally de-
signed for the implementation of constraint programming systems, but also in-
creasingly used as a general purpose programming language [11,15]. CHR is very
flexible with respect to the specification of program logic, but it lacks high-level
facilities for execution control. In particular, the control flow is most often fixed
by the call-stack based refined operational semantics of CHR [5]. In [2], CHR
is extended with user-definable rule priorities. This extended language, called
CHRrp, supports more high-level and flexible execution control than previously
available while retaining the expressive power needed for the implementation of
general purpose algorithms. An example of CHR with rule priorities is:

Example 1 (Less-or-Equal). The less-or-equal (leq) program is a classic CHR
example. It implements a less-than-or-equal constraint by eventually translating
it into equality constraints. Below is a CHRrp version of the leq program.

1 :: reflexivity @ leq(X,X) <=> true.

1 :: antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.

1 :: idempotence @ leq(X,Y) \ leq(X,Y) <=> true.

2 :: transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

⋆ Research funded by a Ph.D. grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen).

The first rule has priority 1 (before ::) and name reflexivity (before @).
It is a simplification rule that states that any constraint of the form leq(a,a)
should be “simplified” to (i.e. replaced by) true. The second rule antisymmetry

states that two constraints leq(a,b) and leq(b,a) should be replaced with a = b,
constraining the arguments to be equal. The third rule is a simpagation rule
that says that given two constraints of the form leq(a,b) we should replace the
second one (after the \) by true. The fourth rule is a propagation rule, which
says given constraints leq(a,b) and leq(b,c) we should add a new constraint
leq(a,c) without deleting anything. We have given the transitivity rule a lower
priority (2), because we should only apply it if other rules do not apply. ⊓⊔
Dynamic rule priorities allow the priority of a rule to depend on the variables
occurring on the left hand side of the rule.

Example 2 (Dijkstra’s Shortest Path). Dijkstra’s single source shortest path al-
gorithm can be implemented in CHRrp as follows:

1 :: source(V) ==> dist(V,0).

1 :: dist(V,D1) \ dist(V,D2) <=> D1 =< D2 | true.

D+2 :: dist(V,D), edge(V,C,U) ==> dist(U,D+C).

The input consists of a set of directed weighted edges, represented as edge/3
constraints where the first and last arguments respectively denote the begin and
end nodes, and the middle argument represents the weight. The source node
is given by the source/1 constraint. The first rule initiates the algorithm by
creating the distance to the source node. The second rule introduces a guard D1

=< D2 which must hold before the rule can fire. It ensures only the shortest path
to node V is kept in the store. The last rule has a dynamic priority that orders
the updates of distances as required by Dijkstra’s algorithm. ⊓⊔

In the paper defining CHRrp [2], its theoretical operational semantics as well as
an implementation based on a source-to-source transformation were presented.
In this paper, we show how CHRrp programs can be efficiently compiled into the
host language. We present the compilation process based on a refined version
of the CHRrp operational semantics, which is similar in concept to the refined
operational semantics of CHR [5]. This semantics requires that every active
constraint determines the priorities of all the rules in which it may participate.
The compilation of rules with a dynamic priority is therefore handled by first
applying a pseudo code source-to-source transformation which ensures that this
condition holds. Next, it is shown how the generated code can be made more
efficient by introducing optimizations that prevent unnecessary indexing and
operations on the schedule. These optimizations are evaluated on benchmarks
and the optimized system’s performance is compared (with respect to equivalent
programs in regular CHR) with the state-of-the-art K.U.Leuven CHR system [13]
as well as with the result of the source-to-source transformation presented in [2].

This paper presents the first implementation of CHRrp with dynamic priori-
ties. It is about an order of magnitude faster than the one of [2] which is limited
to programs with static priorities only, and is already almost as fast as the highly

optimized K.U.Leuven CHR system while offering a much more high level form
of execution control.1 The rest of this paper is organized as follows. Section 2
reviews the syntax and semantics of CHRrp. A basic compilation schema is pre-
sented in Section 3 and optimizations for this schema are given in Section 4. The
resulting system is evaluated in Section 5. We conclude in Section 6.

2 Preliminaries

This section reviews the syntax and semantics of Constraint Handling Rules with
Rule Priorities (CHRrp). For a more thorough introduction into CHR, see [7] or
[12]. See [2] for more information about CHRrp.

Syntax A constraint c(t1, . . . , tn) is an atom of predicate c/n with ti a host
language value (e.g., a Herbrand term in Prolog) for 1 ≤ i ≤ n. There are
two types of constraints: built-in constraints and CHR constraints (also called
user-defined constraints). The CHR constraints are solved by the CHR program
whereas the built-in constraints are solved by an underlying constraint solver
(e.g., the Prolog unification algorithm).

There are three types of Constraint Handling Rules: simplification rules,
propagation rules and simpagation rules. They have the following form:

Simplification p :: r @ Hr ⇐⇒ g | B
Propagation p :: r @ Hk =⇒ g | B
Simpagation p :: r @ Hk \ Hr ⇐⇒ g | B

where p is the rule priority, r is the rule name, Hk and Hr are non-empty
sequences of CHR constraints and are called the heads of the rule. The rule
guard g is a sequence of built-in constraints and the rule body B is a sequence
of both CHR and built-in constraints. The rule priority is either a number in
which case the rule is called a static priority rule, or an arithmetic expression
whose variables appear in the heads Hk and/or Hr in which case the rule is
called a dynamic priority rule. We say that priority p is higher than priority p′

if p < p′. For simplicity, we sometimes assume priorities are integers and the
highest priority is 1. Finally, a program P is a set of CHR rules.

Operational Semantics Operationally, CHR constraints have a multi-set se-
mantics. To distinguish between different occurrences of syntactically equal con-
straints, CHR constraints are extended with a unique identifier. An identified
CHR constraint is denoted by c#i with c a CHR constraint and i the identifier.
We write chr(c#i) = c and id(c#i) = i. We extend these to map sequences in
the obvious manner. We use ++ for sequence concatenation.

The operational semantics of CHRrp, called the priority semantics and de-
noted by ωp, is given in [2] as a state transition system, similar to the approach

1 When benchmarked on operationally equivalent programs.

of [5] for the theoretical and refined operational semantics of CHR. A CHR ex-
ecution state σ is represented as a tuple 〈G, S, B, T 〉n where G is the goal, a
multi-set of constraints to be solved; S is the CHR constraint store, a set of
identified CHR constraints; B is the built-in store, a conjunction of built-in con-
straints; T is the propagation history, a set of tuples denoting the rule instances
that have already fired; and n is the next free identifier, used to identify new CHR
constraints. The transitions of ωp are shown in Table 1. They are exhaustively
applied starting from the state 〈G, ∅, true, ∅〉1 with G the initial goal.

Example 3. And example derivation for the leq program given in Example 1
and initial goal G = {leq(A, B), leq(B, C), leq(B, A)} is shown below:

〈{leq(A, B), leq(B, C), leq(B, A)}, ∅, true, ∅〉1
Introduce

ωp

P 〈{leq(B, C), leq(B, A)}, {leq(A, B)#1}, true, ∅〉2
Introduce

ωp

P 〈{leq(B, A)}, {leq(A, B)#1, leq(B, C)#2}, true, ∅〉3
Introduce

ωp

P 〈∅, {leq(A, B)#1, leq(B, C)#2, leq(B, A)#3}, true, ∅〉4
Apply antisymmetry θ = {X/A, Y/B}

ωp

P 〈{A = B}, {leq(B, C)#2}, true, ∅〉4
Solve

ωp

P 〈∅, {leq(B, C)#2}, A = B, ∅〉4
For termination, the antisymmetry rule must fire before the transitivity rule. ⊓⊔

3 Basic Compilation Schema

This section gives an overview of the basic compilation schema for CHRrp pro-
grams. First, in Section 3.1, we present a refinement of the ωp semantics that
follows the actual implementation more closely. This refinement, called the re-
fined priority semantics and denoted by ωrp, is based on the refined operational
semantics ωr of (regular) CHR and is thus also based on lazy matching and the
concept of active constraints. The ωrp semantics requires that each active con-
straint determines the actual (ground) priorities of all rules in which they may
participate. In Section 3.2, we show how dynamic priority rules can be trans-
formed so that this property holds for all active constraints. Finally, Section 3.3
gives an abstract version of the code generated for each of the ωrp transitions.

3.1 The Refined Priority Semantics ωrp

The refined priority semantics ωrp is given as a state transition system. Its states
are represented by tuples of the form 〈A, Q, S, B, T 〉n, where S, B, T and n are
as in the ωp semantics, A is a sequence of constraints, called the activation stack,
and Q is a priority queue. In the ωrp semantics, constraints are scheduled for
activation at a given priority. By c#i : j @ p we denote the identified constraint
c#i being tried at its jth occurrence of fixed priority p. In what follows, the
priority queue is considered a set supporting the operation find min which returns
one of its highest priority elements.

The transitions of the ωrp semantics are shown in Table 2. The main differ-
ences compared to the ωr semantics are the following. Instead of adding new or

1. Solve 〈{c}⊎G, S, B, T 〉n
ωp

P 〈G, S, c∧B, T 〉n where c is a built-in constraint.

2. Introduce 〈{c} ⊎ G, S, B,T 〉n
ωp

P 〈G, {c#n} ∪ S, B, T 〉n+1 where c is a CHR
constraint.

3. Apply 〈∅, H1∪H2∪S, B, T 〉n
ωp

P 〈C,H1∪S, θ∧B,T ∪{t}〉n where P contains
a rule of priority p of the form

p :: r @ H ′

1\H
′

2 ⇐⇒ g | C

and a matching substitution θ such that chr(H1) = θ(H ′

1), chr(H2) = θ(H ′

2),
D |= B → ∃̄B(θ∧g), θ(p) is a ground arithmetic expression and t = id(H1) ++
id(H2) ++ [r] /∈ T . Furthermore, no rule of priority p′ and substitution θ′

exists with θ′(p′) < θ(p) for which the above conditions hold.

Table1. Transitions of ωp

1. Solve 〈[c|A], Q, S0 ∪ S1, B, T 〉n
ωrp

 P 〈A, Q′, S0 ∪ S1, c ∧ B, T 〉n where c is a
built-in constraint, vars(S0) ⊆ fixed(B) is the set of variables fixed by B,
and Q′ = Q∪ {c#i @ p | c#i ∈ S1 ∧ c has an occurrence in a priority p rule}.
This reschedules constraints whose matches might be affected by c.

2. Schedule 〈[c|A], Q, S, B, T 〉n
ωrp

 P 〈A, Q′, {c#n} ∪ S, B, T 〉n+1 with c a CHR
constraint and Q′ = Q∪{c#n @ p | c has an occurrence in a priority p rule}.

3. Activate 〈A, Q,S, B, T 〉n
ωrp

 P 〈[c#i : 1 @ p|A], Q\{c#i @ p}, S, B, T 〉n where
c#i @ p = find min(Q), and A = [c′#i′ : j′ @ p′|A′] with p < p′ or A = ǫ.

4. Drop 〈[c#i : j @ p|A], Q, S, B, T 〉n
ωrp

 P 〈A,Q, S, B, T 〉n if there is no jth

priority p occurrence of c in P .

5. Simplify 〈[c#i : j @ p|A], Q, {c#i} ∪ H1 ∪ H2 ∪ H3 ∪ S, B, T 〉n
ωrp

 P 〈C ++
A, Q,H1 ∪ S, θ ∧ B, T 〉n where the jth priority p occurrence of c is dj in rule

p′ :: r @ H ′

1\H
′

2, dj , H
′

3 ⇐⇒ g | C

and there exists a matching substitution θ such that c = θ(dj), p = θ(p′),
chr(H1) = θ(H ′

1), chr(H2) = θ(H ′

2), chr(H3) = θ(H ′

3) and D |= B → ∃̄B(θ∧g).
This transition only applies if the Activate transition does not.

6. Propagate 〈[c#i : j @ p|A], Q, {c#i} ∪ H1 ∪ H2 ∪ H3 ∪ S, B, T 〉n
ωrp

 P 〈C ++
[c#i : j @ p | A], Q, H1∪S, θ∧B,T ∪{t}〉n where the jth priority p occurrence
of c is dj in

p′ :: r @ H ′

1, dj , H
′

2\H
′

3 ⇐⇒ g | C

and there exists a matching substitution θ such that c = θ(dj), p = θ(p′),
chr(H1) = θ(H ′

1), chr(H2) = θ(H ′

2), chr(H3) = θ(H ′

3), D |= B → ∃̄B(θ ∧ g),
and t = id(H1) ++ [i] ++ id(H2) ++ [r] /∈ T . This transition only applies if
the Activate transition does not.

7. Default 〈[c#i : j @ p|A], Q, S, B, T 〉n
ωrp

 P 〈[c#i : j + 1 @ p|A], Q, S, B, T 〉n if
the current state cannot fire any other transition.

Table2. Transitions of ωrp

reactivated constraints to the activation stack, the Solve and Schedule2 tran-
sitions schedule them for activation, once for each priority at which they have
occurrences. The Activate transition activates the highest priority scheduled
constraint if it has a higher priority than the current active constraint (if any).
This transition only applies if the Solve and Schedule transitions are not ap-
plicable, i.e., after processing the initial goal or a rule body. Noteworthy is that
once a constraint is active at a given priority, it remains so at least until a rule
fires or it is made passive by the Drop transition. Hence we should only check
the priority queue for a higher priority scheduled constraint at these program
points. Again, the transitions are exhaustively applied starting from an initial
state 〈G, ∅, ∅, true, ∅〉1 with G the goal, given as a sequence.

Example 4. The ωrp state corresponding to the ωp state after the 3 Introduce

transitions in Example 3 is:3

〈[], {leq(A, B)#1@{1, 2}, leq(B, C)#2@{1, 2}, leq(B, A)#3@{1, 2}},
{leq(A, B)#1, leq(B, C)#2, leq(B, A)#3}, true, ∅〉4

If leq(B, C)#2@1 is activated first then it finds no matching partners and is
eventually dropped. If leq(A, B)#1@1 is activated next, then we have

〈[leq(A, B)#1 : 1@1], {leq(A, B)#1@2, leq(B, C)#2@2, leq(B, A)#3@{1, 2}},
{leq(A, B)#1, leq(B, C)#2, leq(B, A)#3}, true, ∅〉4

ωrp

P (Default)
〈[leq(A, B)#1 : 2@1], {leq(A, B)#1@2, leq(B, C)#2@2, leq(B, A)#3@{1, 2}},

{leq(A, B)#1, leq(B, C)#2, leq(B, A)#3}, true, ∅〉4
ωrp

P (Simplify)
〈[A = B], {leq(A, B)#1@2, leq(B, C)#2@2, leq(B, A)#3@{1, 2}},

{leq(B, C)#2}, true, ∅〉4
ωrp

P (Solve)
〈[], {leq(A, B)#1@2, leq(B, C)#2@{1, 2}, leq(B, A)#3@{1, 2}},

{leq(B, C)#2}, A = B, ∅〉4

This last transition reschedules the leq(B, C)#2 constraint at priorities 1 and 2.
None of the remaining constraints in the schedule lead to a rule firing. ⊓⊔

3.2 Transforming Dynamic Priority Rules

In the description of the ωrp semantics, we have assumed that every constraint
knows the priorities of all rules in which it may participate. For rules with a
dynamic priority, this is obviously not always the case.

Example 5. Consider the rule

X+Y :: r @ a(X,Z) \ b(Y,Z), c(X,Y) <=> d(X).

2 The Schedule transition corresponds to the Activate transition in ωr.
3 We use the notation c#i @ {p1, . . . , pn} to denote {c#i @ p1, . . . , c#i @ pn}.

In this rule the c/2 constraint with ground arguments X and Y knows the
priority of the rule, but neither the a/2 nor the b/2 constraints do. Given the
a/2 constraint, we need to combine (join) it with either the b/2 or c/2 constraint
to determine the actual priority. ⊓⊔
In this section, we present a pseudo code source-to-source transformation to
transform a program such that this property is satisfied. In what follows, we
refer to the join order for a given constraint occurrence, which is the order
in which the partner constraints for this occurrence are retrieved (by nested
loops). We consider a join order Θ to be a permutation of {1, . . . , n} where n is
the number of heads of the rule. Now, consider a dynamic priority rule

p :: r @ C1, . . . , Ci\Ci+1, . . . , Cn ⇐⇒ g | B

an active head Cj , a join order Θ with Θ(1) = j and a number k, 1 ≤ k ≤ n such
that the first k heads, starting with Cj and following join order Θ, determine
the rule priority. We rewrite rule r as follows (for every j, 1 ≤ j ≤ n):

1 :: rj @ CΘ(1)#Id1, . . . , CΘ(k)#Idk =⇒
r-matchj(Id1, . . . , Idk,Vars) pragma passive(Id2), . . . , passive(Idk)

1 :: r′j @ r-matchj(Id1, . . . , Idk,Vars) ⇐⇒
ground(p) | r-match′

j(Id1, . . . , Idk,Vars)
p :: r′′j @ r-match′

j(Id1, . . . , Idk,Vars), CΘ(k+1)#Idk+1, . . . , CΘ(n)#Idn =⇒
alive(Id1), . . . , alive(Idk), g | kill(IdΘ−1(i+1)), . . . , kill(IdΘ−1(n)), B
pragma passive(Idk+1), . . . , passive(Idn),

history([IdΘ−1(1), . . . , IdΘ−1(n), r])

where Vars are the variables shared by the first k heads on the one hand, and the
remaining heads, the guard, the body and the priority expression on the other,
i.e., Vars =

(

∪k
i=1vars(CΘ(i))

)

∩
((

∪n
i=k+1vars(CΘ(i))

)

∪ vars(g ∧ B ∧ p)
)

. The
first rule generates a partial match that knows its priority once the necessary
arguments are ground (fixed). It runs at the highest possible value of the dy-
namic priority expression.4 The second rule ensures that the priority expression
is ground before the partial match is scheduled at its dynamic priority. The rule
runs at the same priority as the first one. Finally, the third rule extends the
partial match (with ground priority) into a full match. There we check whether
all constraints in the partial match are still alive (calls to alive/1), and delete
the removed heads (calls to kill/1). The pragma5 passive/1 denotes that a
given head is passive, i.e., no occurrence code is generated for it (see further in
Section 3.3). The pragma history/1 states the tuple layout for the propagation
history. All rule copies share the same history which ensures that each instance
of the original rule can fire only once.

Example 6. Given the rule r of Example 5 and join orders Θ1 = [1, 2, 3], Θ2 =
[2, 3, 1] and Θ3 = [3, 2, 1].6 Furthermore assuming we schedule at a dynamic
priority as soon as we know it, we generate the following rules:

4 We assume 1 is an upperbound. A tighter one can be used instead if such is known.
5 Most CHR systems support compiler directives by using the keyword pragma.
6 By slight abuse of syntax, we denote Θ(1) = θ1, . . . , Θ(n) = θn by Θ = [θ1, . . . , θn].

1 :: r1 @ a(X,Z) #Id1, b(Y,Z) #Id2 ==>

r-match1(Id1,Id2,X,Y) pragma passive(Id2).

1 :: r′1 @ r-match1(Id1,Id2,X,Y) <=>

ground(X+Y) | r-match′1(Id1,Id2,X,Y).

X+Y :: r′′1 @ r-match′1(Id1,Id2,X,Y), c(X,Y) #Id3 ==>

alive(Id1), alive(Id2) | kill(Id2), kill(Id3), d(X)

pragma passive(Id3), history([Id1,Id2,Id3],r).

1 :: r2 @ b(Y,Z) #Id1, c(X,Y) #Id2 ==>

r-match2(Id1,Id2,X,Y,Z) pragma passive(Id2).

1 :: r′2 @ r-match2(Id1,Id2,X,Y,Z) <=>

ground(X+Y) | r-match′2(Id1,Id2,X,Y,Z).

X+Y :: r′′2 @ r-match′2(Id1,Id2,X,Y,Z), a(X,Z) #Id3 ==>

alive(Id1), alive(Id2) | kill(Id1), kill(Id2), d(X)

pragma passive(Id3), history([Id3,Id1,Id2,r]).

1 :: r3 @ c(X,Y) #Id1 ==> r-match3(Id1,X,Y).

1 :: r′3 @ r-match3(Id1,X,Y) <=> ground(X+Y) | r-match′3(Id1,X,Y).

X+Y :: r′′3 @ r-match′3(Id1,X,Y), b(Y,Z) #Id2, a(X,Z) #Id3 ==> alive(Id1) |

kill(Id1), kill(Id2), d(X) pragma history([Id3,Id2,Id1,r]).

Note that since this is a simpagation rule, a propagation history is not necessary.
We only show it for illustrative purposes. ⊓⊔

The proposed translation schema implements a form of eager matching: all
r-matchj constraints are generated eagerly at the highest priority before one
is fired. This approach resembles the TREAT matching algorithm [10]. Also
similar to the TREAT algorithm and unlike the RETE algorithm [6], we allow
different join orders for each active head.

3.3 Compilation

Now that we have shown how a program can be transformed such that each con-
straint knows the priorities of all rules in which it may participate, we are ready
to present the compilation schema. The generated code follows the ωrp semantics
closely. In what follows, we assume the host language is Prolog, although the
compilation process easily translates to other host languages as well. We note
that the generated code presented in this section, much resembles that of regular
CHR under the refined operational semantics, as described in for example [12].
The differences correspond to those between ωr and ωrp as given in Section 3.1.

CHR Constraints Whenever a new CHR constraint is asserted, it is scheduled
at all priorities at which it may fire (Schedule transition). Furthermore, it is
attached to its variables for the purpose of facilitating the Solve transition. In
Prolog this is done using attributed variables. The idea is similar to that of
subscribing to event notifiers. Finally, the constraint is inserted into all indexes
on its arguments. Schematically, the generated code looks as follows:

c(X1,...,Xn) :- GenerateSuspension, S = Suspension,

schedule(p1,c/n_prio_p1_occ_1_1(S)),

...

schedule(pm,c/n_prio_pm_occ_1_1(S)),

AttachToVariables, InsertIntoIndexes.

The GenerateSuspension code creates a data structure (called the suspension
term in CHR terminology) for representing the constraint in the constraint store.
It has amongst others fields for the constraint identifier, its state (dead or alive),
its propagation history,7 its arguments, and pointers for index management. The
scheduling code consists of insertions of calls to the code for the first occurrence
of each priority pi (1 ≤ i ≤ m) into the priority queue. With respect to the usual
code for CHR constraints under the ωr semantics, we have added the schedule/2
calls and removed the call to the code of the first occurrence of the constraint.

Built-in Constraints Built-in constraints are dealt with by the underlying
constraint solver, in this case the Prolog Herbrand solver. Whenever this solver
binds a variable to another variable or a term (during unification), a so-called
unification hook is called. In this hook, the CHR part of the Solve transition
is implemented. It consists of reattaching the affected constraints, updating the
indexes, and scheduling the affected constraints again at each priority for which
they have occurrences.

Occurrence Code For each constraint occurrence, a separate predicate is gen-
erated, implementing the Simplify and Propagate transitions. Its clauses are
shown below. The approach is very similar to how occurrences are compiled
under the refined operational semantics of CHR. The differences are that only
the occurrences of the same priority are linked, where occurrences with a dy-
namic priority are assumed to run at different priorities, and the priority queue
is checked (check activation/1) after each rule firing. The code below is for
the jth priority p occurrence of the c/n constraint which is in an m-headed rule.
The indices r(1), . . . , r(i) refer to the removed heads.

c/n_prio_p_occ_j_1(S1) :-

(alive(S1), HeadMatch, LookupNext(S2)

-> c/n_prio_p_occ_j_2(S2,S1).

; c/n_prio_p_occ_j + 1_1(S1)

).

c/n_prio_p_occ_j_2([S2|S2],S1) :-

(alive(S2), S2 \= S1, HeadMatch, LookupNext(S3)

-> c/n_prio_p_occ_j_3(S3,S2,S2,S1)

; c/n_prio_p_occ_j_2(S2,S1)

).

7 We use a distributed propagation history, like in the K.U.Leuven CHR system [12].

c/n_prio_p_occ_j_2([],S1) :- c/n_prio_p_occ_j + 1_1(S1).

...

c/n_prio_p_occ_j_m([Sm|Sm],Sm−1,...,S1) :-

(alive(Sm), Sm \= S1, ..., Sm \= Sm−1,

HeadMatch, RemainingGuard, HistoryCheck

-> AddToHistory, kill(Sr(1)), ..., kill(Sr(i)),

Body, check_activation(p),
(alive(S1)

-> (...

... (alive(Sm−1)

-> c/n_prio_p_occ_j_m(Sm,...,S1)

; c/n_prio_p_occ_j_m − 1(Sm−1,...,S1)

)

...

; true

)

; c/n_prio_p_occ_j_m(Sm,Sm−1,...,S1)

).

c/n_prio_p_occ_j_m([],_,Sm−1,...,S1) :-

c/n_prio_p_occ_j_m − 1(Sm−1,...,S1).

The HeadMatch call checks whether the newly looked up head matches with
the rule and with the previous heads. A list of all candidates for the next
head is returned by LookupNext/1. RemainingGuard is the part of the guard
that has not already been tested by the HeadMatch calls. Propagation history
checking and extending is handled by respectively HistoryCheck and AddToHis-
tory. After having gone through all rule instances for the given occurrence, the
next occurrence is tried (Default) or the activation call returns (Drop). The
check activation/1 call in the occurrence code checks whether a constraint
occurrence is scheduled at a higher priority than the current one. It implements
the Activate transition.

4 Optimization

We now present the main optimizations implemented in the CHRrp compiler. We
start with optimizations that reduce the number of priority queue operations.

4.1 Reducing Priority Queue Operations

A first optimization consists of only scheduling the highest priority occurrence
of every new constraint. Only when the constraint has been activated at this
priority and has gone through all of its occurrences without being deleted, it is
scheduled for the next priority. This is a simple extension of the continuation
based approach we already applied for constraint occurrences at equal priority.

In the basic compilation scheme, it is checked whether a higher priority sched-
uled constraint exists after each rule firing. In a number of cases, this is not

needed. If the active constraint is removed, it is popped from the top of the ac-
tivation stack and the activation check that caused it to be activated in the first
place, checks again to see if other constraints are ready for activation. So, since a
priority queue check will take place anyway, there is no need to do this twice. If
the body of a rule does not contain CHR constraints with a priority higher than
the current one, nor built-in constraints that can trigger any CHR constraints to
be scheduled at a higher priority, then after processing the rule body, the active
constraint remains active and we do not need to check the priority queue. We
denote the above optimizations by reduced activation checking.

Building further on this idea, we note that by analyzing the body, we can
sometimes determine which constraint will be activated next. Instead of schedul-
ing it first and then checking the priority queue, we can activate it directly at its
highest priority. We call this inline activation. Inline activation is not limited to
one constraint: we can directly activate all constraints that have the same high-
est priority. Indeed, when the first of these constraints returns from activation,
the priority queue cannot contain any constraint scheduled at a higher priority,
because such a constraint would have been activated before returning.

Example 7. We illustrate the applicability of the proposed optimizations on the
leq program given in Example 1. The leq/2 constraint has 5 occurrences at
priority 1 and 2 at priority 2. New leq/2 constraints are only scheduled at pri-
ority 1. Only if an activated constraint has passed the 5th priority 1 occurrence,
it is scheduled at priority 2. For the first three priority 1 occurrences, as well
as for the removed occurrence in the idempotence rule, the active constraint is
removed and so there is no need to check the priority queue after firing the rule
body. Since the body of the remaining priority 1 occurrence equals true, no
higher priority constraint is scheduled and so we do not need to check the queue
here either. Finally, for the transitivity rule we have that the only constraint in
the body has a higher priority occurrence than the current active occurrence,
and so we can apply inline activation there. ⊓⊔

4.2 Late Indexing

Similar to an optimization from regular CHR, we can often postpone storage of
constraints, reducing cost if the constraint is removed before these operations
are be applied. We extend the late storage concept of [9] to late indexing, where
we split up the task of storing a constraint into the subtasks of inserting it
into different indexes. The main idea is that an active constraint can only lose
activation to another constraint in rules of a higher priority. This implies that
when a constraint is active at a given current priority, it should only be stored
in those indexes that are used by higher priority rules.

Example 8. In the leq program (Example 1), the leq/2 constraints are indexed

– on the combination of both arguments (antisymmetry and idempotence);
– on the first argument and on the second argument (transitivity);
– on the constraint symbol for the purpose of showing the constraint store.

By using late indexing, new leq/2 constraints are not indexed at the moment
they are asserted, but only scheduled (only at priority 1). When an active leq/2
constraint ‘survives’ the 5th priority 1 occurrence, it is indexed on the combi-
nation of both arguments and rescheduled at priority 2. We can postpone the
indexing this long because only one constraint can be on the execution stack for
each priority and hence all partner constraints have either been indexed already,
or still need to be activated. Only after a reactivated leq/2 constraint has passed
the second priority 2 occurrence, it is stored in the remaining indexes. Note that
our approach potentially changes the execution order of the program, which can
sometimes contribute to changes in the running time (in either direction). ⊓⊔

4.3 Passive Occurrences

In [4] we give a criterion to decide whether a given constraint occurrence can be
made passive. Passive occurrences allow us to avoid the overhead of looking up
partner constraints, and sometimes also the overhead related to scheduling and
indexing. Due to space considerations, we do not go into detail here.

5 Evaluation

Less-or-Equal The leq benchmark uses the program of Example 1 and for
given n, the initial goal G = G1 ∪ G2 with

G1 = {leq(X1,X2), . . . , leq(Xn−1, Xn)} ∧ G2 = {leq(Xn,X1)}

From the goal G, a final state is derived in which X1 = X2 = . . . = Xn−1 = Xn.
In [2], it was shown that the benchmark scales better using priorities and

batch processing of the goal, because of the order in which constraints are acti-
vated (i.e., more recently added constraints are preferred). Using this order, the
leq(X1,Xn) constraint that causes the loop to be detected, is asserted after a
linear number of firings of the transitivity rule. Interestingly, by using the late
indexing optimization, we get a higher complexity because the necessary part-
ner constraints for the optimal firing order are not yet stored. However, when
we first assert subgoal G1, wait for a fixpoint, and then assert G2, then both the
versions with and without late indexing behave the same.

Optimizations The following table shows benchmark results for various pro-
grams where the effect of each of the optimizations is measured. The loop bench-
mark consists of the following two rules (and does not rely on priorities):

1 :: a(X) <=> X > 0 | a(X-1). 1 :: a(0) <=> true.

and initial goal {a(220)}; the leq benchmark is the same as in the previous
subsection, with n = 80; the dijkstra benchmark uses the program of Example
2 with a graph of 215 nodes and 3·215 edges; the union-find benchmark is based

on the naive union-find program given in [15] and uses 212 random union/2
constraints over an equal number of elements (see also [4]). Finally, the sudoku

benchmark uses an adapted version of the Sudoku solver from the CHR website
[14] (see also [2]) and solves a puzzle in which initially 16 cells have a value. The
benchmarks are executed with the late indexing (LI), inline activation (IA) and
reduced activation checking (RAC) optimizations switched on and off.

LI IA RAC loop leq dijkstra union-find sudoku

100% 100% 100% 100% 100%√
88% 99% 98% 93% 98%√
73% 97% 97% 82% 99%√
46% 63% 97% 40% 112%√ √ √
8% 56% 92% 17% 109%

The inline activation analysis assumes that dynamic priority rules run at the
highest possible value of the priority expression. It currently assumes this value
is 1, but a bounds analysis or a user declaration can give a tighter upperbound.
In the dijkstra and sudoku benchmarks, we have used a tight upperbound of 2
for the dynamic priority rules. The passive analysis applied to the union-find

benchmark cuts off another 2% and reduces the runtime with full optimization to
about 15% of the runtime without optimization. The late indexing optimization
can change the execution order. We have already shown how this affects the leq
benchmark. Similarly, it also affects the sudoku benchmark which has (amongst
others) 11% more rule firings, hence the increase in runtime. Moreover, late
indexing only reduces the amount of index insertions with 3% in this benchmark.

We also compare CHRrp against the K.U.Leuven CHR system under the ωr

semantics. For leq, loop and union-find, we execute the same code ignoring
priorities (though sometimes relying on rule order). For dijkstra and sudoku

the K.U.Leuven CHR code encodes equivalent behavior obtained using priorities
by other methods. Hence the rules are more involved. The leq benchmark takes
about 4% less time on our system, the loop benchmark takes about 5.3 times
more, and the union-find benchmark takes 53% more time. Comparison for
the sudoku benchmark is difficult because the search trees are different. In this
particular case, K.U.Leuven CHR is about 10% faster than our CHRrp system
(without late indexing), but also has 5% less rule firings.

For the dijkstra benchmark, we compared with the CHR program given
in [16].8 Our implementation runs about 2.4 times slower than the (regular)
CHR implementation, but it is also arguably more high level. Noteworthy is the
following optimization, implemented in [16] and reformulated here in terms of
our CHRrp implementation. The rule

1 :: dist(V,D1) \ dist(V,D2) <=> D1 =< D2 | true.

removes the dist(V,D2) constraint which might still be scheduled at priority
D2 + 2. After firing the rule, the dist(V,D1) constraint is scheduled at priority

8 For a fair comparison, we use a combination of Fibonacci heaps for the dynamic
priorities, and an array for static priorities 1 and 2, as priority queue.

D1 + 2. Instead of first (lazily) deleting a scheduled item, and then inserting a
new one, the cheaper decrease key operation can be used instead (because D1 ≤
D2). Compared to an altered version of the original CHR implementation in
which this optimization is turned off, our code remains (only) 13% slower. The
results are for the described problem instances and vary somewhat over different
problem sizes. Nonetheless, the asymptotic time complexities are the same in
both CHR and CHRrp versions and so the results are sufficiently generalizable.

Finally, we compare to the source-to-source transformation given in [2]: the
leq benchmark runs about 4.7 times faster on our system; the loop benchmark
about 39 times, and the union-find benchmark about 19 times. The remaining
benchmarks could not run because they contain rules with a dynamic priority
which are not supported by the source-to-source transformation.

6 Concluding Remarks

This paper presents a compilation schema for CHRrp: CHR with rule priorities.
We have shown the feasibility of implementing rules with both static and dy-
namic rule priorities using a lazy matching approach, in contrast with the eager
matching as implemented by the RETE algorithm and derivatives. We have pro-
posed various ways to optimize the generated code and shown their effectiveness
on benchmarks. Our benchmark results furthermore indicate that our imple-
mentation already comes close to the state-of-the-art K.U.Leuven CHR system
(and sometimes even surpasses it), while offering a much more high level form of
execution control. Compared to the implementation given in [2], our system is
about an order of magnitude faster on the benchmarks. This work extends [2] by
introducing the refined priority semantics, offering support for dynamic priority
rules, presenting the first compiler for CHRrp, and by proposing several opti-
mizations for the generated code. The optimizations consist of both completely
new optimizations (those related to reducing priority queue operations), as well
as refinements of previously known optimizations for (regular) CHR (i.e., late
indexing and the passive analysis).

Related Work Rule priorities (sometimes called salience) are found in many
rule based languages, including production rule systems and active database sys-
tems. Priority based execution control is also found in many Constraint (Logic)
Programming systems. We refer to [2] for a deeper discussion. The implementa-
tion presented here is based on lazy matching and hence has the advantage of
low memory requirements compared to RETE style eager matching. In [8], a rule
based language with prioritized rules is presented, and an implementation based
on a form of eager matching is proposed. [1] shows this language easily trans-
lates into CHRrp. CHRrp goes beyond earlier priority based rewriting systems
by interacting with an underlying solver and supporting propagation rules.

Future Work The late indexing and passive occurrence optimizations were
inspired by similar optimizations in the K.U.Leuven CHR system (and earlier

systems). Some other optimizations could easily be transferred to the CHRrp

compiler. The analyses implemented so far are very ad hoc and a more general
approach based on abstract interpretation could be worthwhile. Finally, we
have not taken advantage of some of the nondeterminism introduced by the ωp

semantics. In particular this concerns reordering or merging rules with equal
priority. An extension of the join ordering cost model of [3] could help us choose
a more optimal rule order within the boundaries imposed by the priorities.

References

1. L. De Koninck, T. Schrijvers, and B. Demoen. The correspondence between the
Logical Algorithms language and CHR. In 23rd Intl. Conf. on Logic Programming,
volume 4670 of LNCS, pages 209–223, 2007.

2. L. De Koninck, T. Schrijvers, and B. Demoen. User-definable rule priorities for
CHR. In 9th ACM SIGPLAN Symp. on Principles and Practice of Declarative

Programming, pages 25–36, 2007.
3. L. De Koninck and J. Sneyers. Join ordering for Constraint Handling Rules. In

4th Workshop on Constraint Handling Rules, pages 107–121, 2007.
4. L. De Koninck, P. J. Stuckey, and G. J. Duck. Optimized compilation of CHRrp.

Technical Report CW 499, K.U.Leuven, Belgium, 2007.
5. G. J. Duck, P. J. Stuckey, M. Garćıa de la Banda, and C. Holzbaur. The refined

operational semantics of Constraint Handling Rules. In 20th Intl. Conf. on Logic

Programming, volume 3132 of LNCS, pages 90–104, 2004.
6. C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern

match problem. Artif. Intell., 19(1):17–37, 1982.
7. T. Frühwirth. Theory and practice of Constraint Handling Rules. J. Log. Program.,

37(1-3):95–138, 1998.
8. H. Ganzinger and D. A. McAllester. Logical algorithms. In 18th Intl. Conf. on

Logic Programming, volume 2401 of LNCS, pages 209–223, 2002.
9. C. Holzbaur, M. Garćıa de la Banda, P. J. Stuckey, and G. J. Duck. Optimizing

compilation of Constraint Handling Rules in HAL. Theory and Practice of Logic

Programming: Special Issue on Constraint Handling Rules, 5(4 & 5):503–531, 2005.
10. D. P. Miranker. TREAT: A better match algorithm for AI production system

matching. In 6th National Conf. on Artificial Intelligence, pages 42–47. AAAI
Press, 1987.

11. F. Morawietz. Chart parsing and constraint programming. In 18th Intl. Conf.

Computational Linguistics, pages 551–557. Morgan Kaufmann, 2000.
12. T. Schrijvers. Analyses, Optimizations and Extensions of Constraint Handling

Rules. PhD thesis, K.U.Leuven, Leuven, Belgium, 2005.
13. T. Schrijvers and B. Demoen. The K.U.Leuven CHR system: Implementation and

application. In 1st Workshop on CHR, Selected Contributions, Ulmer Informatik-
Berichte 2004-01, pages 1–5. Universität Ulm, Germany, 2004.

14. T. Schrijvers et al. The Constraint Handling Rules home page, 2007.
http://www.cs.kuleuven.be/˜dtai/projects/CHR/.

15. T. Schrijvers and T. Frühwirth. Optimal union-find in Constraint Handling Rules.
Theory and Practice of Logic Programming, 6(1&2), 2006.

16. J. Sneyers, T. Schrijvers, and B. Demoen. Dijkstra’s algorithm with Fibonacci
heaps: An executable description in CHR. In 20th Workshop on Logic Program-

ming, INFSYS Research Report 1843-06-02, pages 182–191. TU Wien, 2006.

