
ACD Term Rewriting

Gregory J. Duck, Peter J. Stuckey, and Sebastian Brand

NICTA Victoria Laboratory
Department of Computer Science & Software Engineering,

University of Melbourne, Australia
{gjd,pjs,sbrand}@cs.mu.oz.au

Abstract. In this paper we introduce Associative Commutative Dis-
tributive Term Rewriting (ACDTR), a rewriting language for rewriting
logical formulae. ACDTR extends AC term rewriting by adding distribu-

tion of conjunction over other operators. Conjunction is vital for expres-
sive term rewriting systems since it allows us to require that multiple
conditions hold for a term rewriting rule to be used. ACDTR uses the
notion of a “conjunctive context”, which is the conjunction of constraints
that must hold in the context of a term, to enable the programmer to
write very expressive and targeted rewriting rules. ACDTR can be seen
as a general logic programming language that extends Constraint Han-
dling Rules and AC term rewriting. In this paper we define the semantics
of ACDTR and describe our prototype implementation.

1 Introduction

Term rewriting is a powerful instrument to specify computational processes. It is
the basis of functional languages; it is used to define the semantics of languages
and it is applied in automated theorem proving, to name only a few application
areas.

One difficulty faced by users of term rewriting systems is that term rewrite
rules are local, that is, the term to be rewritten occurs in a single place. This
means in order to write precise rewrite rules we need to gather all relevant
information in a single place.

Example 1. Imagine we wish to “program” an overloaded ordering relation for
integers variables, real variables and pair variables. In order to write this the
“type” of the variable must be encoded in the term1 as in:

int(x) ≤ int(y) → intleq(int(x), int(y))
real(x) ≤ real(y) → realleq(real(x), real(y))

pair(x1, x2) ≤ pair(y1, y2) → x1 ≤ y1 ∨ x1 = y1 ∧ x2 ≤ y2

In a more standard language, the type information for variables (and other
information) would be kept separate and “looked up” when required. ⊓⊔

1 Operator precedences used throughout this paper are: ∧ binds tighter than ∨, and
all other operators, e.g. ¬, =, bind tighter than ∧.

Term rewriting systems such as constraint handling rules (CHRs) [5] and
associative commutative (AC) term rewriting [3] allow “look up” to be managed
straightforwardly for a single conjunction.

Example 2. In AC term rewriting the above example could be expressed as:

int(x) ∧ int(y) ∧ x ≤ y → int(x) ∧ int(y) ∧ intleq(x, y)
real(x) ∧ real(y) ∧ x ≤ y → real(x) ∧ real(y) ∧ realleq(x, y)

pair (x, x1, x2) ∧ pair (y, y1, y2) ∧ x ≤ y → pair (x, x1, x2) ∧ pair (y, y1, y2)∧
(x1 ≤ y1 ∨ x1 = y1 ∧ x2 ≤ y2)

where each rule replaces the x ≤ y by an appropriate specialised version, in the
conjunction of constraints. The associativity and commutativity of ∧ is used to
easily collect the required type information from a conjunction. ⊓⊔

One difficulty remains with both AC term rewriting and CHRs. The “look
up” is restricted to be over a single large conjunction.

Example 3. Given the term int(x1) ∧ int(y1) ∧ pair (x, x1, x2) ∧ pair (y, y1, y2) ∧
x ≤ y. Then after rewriting x ≤ y to (x1 ≤ y1 ∨ x1 = y1 ∧ x2 ≤ y2) we could not
rewrite x1 ≤ y1 since the types for x1, y1 appear in a different level.

In order to push the type information inside the disjunction we need to
distribute conjunction over disjunction. ⊓⊔

Simply adding distribution rules like

A ∧ (B ∨ C) → A ∧ B ∨ A ∧ C (1)

A ∧ B ∨ A ∧ C → A ∧ (B ∨ C) (2)

does not solve the problem. Rule (1) creates two copies of term A, which increases
the size of the term being rewritten. Adding Rule (2) to counter this effect results
in a non-terminating rewriting system.

1.1 Conjunctive context

We address the non-termination vs. size explosion problem due to distributivity
rewrite rules in a similar way to how commutativity is dealt with: by handling
distributivity on the language level. We restrict ourselves to dealing with ex-
panding distributivity of conjunction ∧ over any other operator, and we account
for idempotence of conjunction.2 Thus we are concerned with distribution rules
of the form

P ∧ f(Q1, . . . , Qn) → P ∧ f(P ∧ Q1, . . . , P ∧ Qn). (3)

Let us introduce the conjunctive context of a term and its use in rewrite
rules, informally for now. Consider a term T and the conjunction C ∧ T modulo
idempotence of ∧ that would result from exhaustive application of rule (3) to
the superterm of T . By the conjunctive context of T we mean the conjunction C.

2 This means that conjunction is distributive over any function f in presence of a
redundant copy of P , i.e. P ∧ (P ∧ f(Q1, . . . , Qn)) → P ∧ f(P ∧ Q1, . . . , P ∧ Qn).
We use idempotence to simplify the RHS and derive (3).

2

Example 4. The conjunctive context of the boxed occurrence of x in the term

(x = 3) ∧ (x2 > y ∨ (x = 4) ∧ U ∨ V) ∧ W,

is (x = 3) ∧ U ∧ W . ⊓⊔

We allow a rewrite rule P → T to refer to the conjunctive context C of the rule
head P . We use the following notation:

C \ P ⇐⇒ T.

This facility provides ∧-distributivity without the undesirable effects of rule (3)
on the term size.

Example 5. We can express that an equality can be used anywhere “in its scope”
by viewing the equality as a conjunctive context:

x = a \ x ⇐⇒ a.

Using this rule on the term of Example 4 results in

(x = 3) ∧ (32 > y ∨ (3 = 4) ∧ U ∨ V) ∧ W

without dissolving the disjunction. ⊓⊔

1.2 Motivation and Applications

Constraint Model Simplification. Our concrete motivation behind asso-
ciative commutative distributive term rewriting (ACDTR) is constraint model
mapping as part of the G12 project [7]. A key aim of G12 is the mapping of solver
independent models to efficient solver dependent models. We see ACDTR as
the basis for writing these mappings. Since models are not flat conjunctions of
constraints we need to go beyond AC term rewriting or CHRs.

Example 6. Consider the following simple constraint model inspired by the So-
cial Golfers problem. For two groups g1 and g2 playing in the same week there
can be no overlap in players: maxOverlap(g1, g2, 0) The aim is to maximise the
number of times the overlap between two groups is less than 2; in other words
minimise the number of times two players play together in a group.

constraint
∧

∀w∈Weeks

∀g1,g2∈weeks[w]
g1<g2

maxOverlap(g1, g2, 0)

maximise
∑

∀w1,w2∈Weeks

∀g1∈weeks[w1]
∀g2∈weeks[w2]

g1<g2

holds(maxOverlap(g1, g2, 1))

3

Consider the following ACDTR program for optimising this constraint model.

maxOverlap(a, b, c1) \ maxOverlap(a, b, c2) ⇐⇒ c2 ≥ c1 | true
holds(true) ⇐⇒ 1
holds(false) ⇐⇒ 0

The first rule removes redundant maxOverlap constraints. The next two rules
implement partial evaluation of the holds auxiliary function which coerces a
Boolean to an integer.

By representing the constraint model as a giant term, we can optimise the
model by applying the ACDTR program. For example, consider the trivial case
with one week and two groups G1 and G2. The model becomes

maxOverlap(G1, G2, 0) ∧maximise(holds(maxOverlap(G1, G2, 1))).

The subterm holds(maxOverlap(G1, G2, 1)) simplifies to 1 using the conjunctive
context maxOverlap(G1, G2, 0). ⊓⊔

It is clear that pure CHRs are insufficient for constraint model mapping for
at least two reasons, namely

– a constraint model, e.g. Example 6, is typically not a flattened conjunction;

– some rules rewrite functions, e.g. rules (2) and (3) rewriting function holds ,
which is outside the scope of CHRs (which rewrite constraints only).

Global Definitions. As we have seen conjunctive context matching provides
a natural mechanism for making global information available. In a constraint
model, structured data and constraint definitions are typically global, i.e. on the
top level, while access to the data and the use of a defined constraint is local, e.g.
the type information from Example 1. Another example is partial evaluation.

Example 7. The solver independent modelling language has support for arrays.
Take a model having an array a of given values. It could be represented as the
top-level term array(a, [3, 1, 4, 1, 5, 9, 2, 7]). Deeper inside the model, accesses to
the array a occur, such as in the constraint x > y + lookup(a, 3). The following
rules expand such an array lookup:

array(A,Array) \ lookup(A, Index) ⇐⇒ list element(Array , Index)

list element([X |Xs], 0) ⇐⇒ X

list element([X |Xs], N) ⇐⇒ N > 0 | list element(Xs, N − 1)

Referring to the respective array of the lookup expression via its conjunctive
context allows us to ignore the direct context of the lookup, i.e. the concrete
constraint or expression in which it occurs. ⊓⊔

4

Propagation rules. When processing a logical formula, it is often useful to be
able to specify that a new formula Q can be derived from an existing formula
P without consuming P . In basic term rewriting, the obvious rule P ⇐⇒ P ∧Q

causes trivial non-termination. This issue is recognised in CHRs, which provide
support for inference or propagation rules. We account for this fact and use rules
of the form P =⇒ Q to express such circumstances.

Example 8. The following is the classic CHR leq program reimplemented for
ACD term rewriting (we omit the basic rules for logical connectives):

leq(X, X) ⇐⇒ true (reflexivity)
leq(X, Y) \ leq(Y, X) ⇐⇒ X = Y (antisymmetry)
leq(X, Y) \ leq(X, Y) ⇐⇒ true (idempotence)
leq(X, Y) ∧ leq(Y, Z) =⇒ leq(X, Z) (transitivity)

These rules are almost the same as the CHR version, with the exception of
the second and third rule (antisymmetry and idempotence) which generalise its
original by using conjunctive context matching. ⊓⊔

Propagation rules are also used for adding redundant information during model
mapping.

The rest of the paper is organised as follows. Section 2 covers the standard
syntax and notation of term rewriting. Section 3 defines the declarative and op-
erational semantics of ACDTR. Section 4 describes a prototype implementation
of ACDTR as part of the G12 project. Section 5 compares ACDTR with related
languages. Finally, in Section 6 we conclude.

2 Preliminaries

In this section we briefly introduce the notation and terminology used in this
paper. Much of this is borrowed from term rewriting [3].

We use T (Σ, X) to represent the set of all terms constructed from a set of
function symbols Σ and set of variables X (assumed to be countably infinite).
We use Σ(n) ⊆ Σ to represent the set of function symbols of arity n.

A position is a string (sequence) of integers that uniquely determines a sub-
term of a term T , where ǫ represents the empty string. We define function T |p,
which returns the subterm of T at position p as

T |ǫ = T

f(T1, . . . , Ti, . . . , Tn)|ip = Ti|p

We similarly define a function T [S]p which replaces the subterm of T at position
p with term S. We define the set Pos(T) to represent the set of all positions of
subterms in T .

An identity is a pair (s, t) ∈ T (Σ, X)×T (Σ, X), which is usually written as
s ≈ t. Given a set of identities E, we define ≈E to be the set of identities closed
under the axioms of equational logic [3], i.e. symmetry, transitivity, etc.

5

We define the congruence class [T]≈E
= {S ∈ T (Σ, X)|S ≈E T } as the set

of terms equal to T with respect to E.
Finally, we define function vars(T) to return the set of variables in T .

3 Syntax and Semantics

The syntax of ACDTR closely resembles that of CHRs. There are three types of
rules of the following form:

(simplification) r @ H ⇐⇒ g | B

(propagation) r @ H =⇒ g | B

(simpagation) r @ C \ H ⇐⇒ g | B

where r is a rule identifier, and head H , conjunctive context C, guard g and body
B are arbitrary terms. The rule identifier is assumed to uniquely determine the
rule. A program P is a set of rules.

We assume that vars(g) ⊆ vars(H) or vars(g) ⊆ vars(H) ∪ vars(C) (for
simpagation rules). The rule identifier can be omitted. If g = true then the guard
can be omitted.

We present the declarative semantics of ACDTR based on equational logic.
First we define the set of operators that ACDTR treats specially.

Definition 1 (Operators). We define the set of associate commutative oper-
ators as AC. The set AC must satisfy AC ⊆ Σ(2) and (∧) ∈ AC.

For our examples we assume that AC = {∧,∨, +,×}. We also treat the operator
∧ as distributive as explained below.

ACDTR supports a simple form of guards.

Definition 2 (Guards). A guard is a term. We denote the set of all “true”
guards as G, i.e. a guard g is said to hold iff g ∈ G. We assume that true ∈ G
and false 6∈ G.

We can now define the declarative semantics for ACDTR. In order to do so
we employ a special binary operator where to explicitly attach a conjunctive
context to a term. Intuitively, the meaning of T where C is equivalent to that of
T provided C is true, otherwise the meaning of T where C is unconstrained. For
Boolean expressions, it is useful to interpret where as conjunction ∧, therefore
where-distribution, i.e. identity (6) below, becomes equivalent to ∧-distribution
(3). The advantage of distinguishing where and ∧ is that we are not forced to
extend the definition of ∧ to arbitrary (non-Boolean) functions.

We denote by B the following set of built-in identities:

A ◦ B ≈ B ◦ A (1)

(A ◦ B) ◦ C ≈ A ◦ (B ◦ C) (2)

T ≈ (T where true) (3)

A ∧ B ≈ (A where B) ∧ B (4)

T where (W1 ∧ W2) ≈ (T where W1) where W2 (5)

f(A1, ..., Ai, ..., An) where W ≈ f(A1, ..., Ai where W, ..., An) where W (6)

6

for all ◦ ∈ AC, functions f ∈ Σ(n), and i ∈ {1, . . . , n}.

Definition 3 (Declarative Semantics for ACDTR). The declarative se-
mantics for an ACDTR program P (represented as a multiset of rules) is given
by the function JK defined as follows:

JP K = {Jθ(R)K | ∀R, θ . R ∈ P ∧ θ(guard(R)) ∈ G} ∪ B
JH ⇐⇒ g | BK = ∃vars(B)−vars(H)(H ≈ B)
JC \ H ⇐⇒ g | BK = ∃vars(B)−vars(C,H)(H where C ≈ B where C)
JH =⇒ g | BK = ∃vars(B)−vars(H)(H ≈ H ∧ B)

where function guard(R) returns the guard of a rule.

The function JK maps ACDTR rules to identities between the head and the
body terms, where body-only variables are existentially quantified.3 Note that
there is a new identity for each possible binding of guard(R) that holds in G.
A propagation rule is equivalent to a simplification rule that (re)introduces the
head H (in conjunction with the body B) in the RHS. This is analogous to
propagation rules under CHRs.

A simpagation rule is equivalent to a simplification rule provided the con-
junctive context is satisfied.

The built-in rules B from Definition 3 contain identities for creat-
ing/destroying (3) and (4), combining/splitting (5), and distributing down-
wards/upwards (6) a conjunctive context in terms of the where operator.

The set B also contains identities (1) and (2) for the associative/commutative
properties of the AC operators.

Example 9. Consider the following ACDTR rule and the corresponding identity.

JX = Y \ X ⇐⇒ Y K = (Y where X = Y) ≈ (X where X = Y) (7)

Under this identity and using the rules in B, we can show that f(A)∧(A = B) ≈
f(B) ∧ (A = B), as follows.

f(A) ∧ (A = B) ≈(4)

(f(A) where (A = B)) ∧ (A = B) ≈(6)

(f(A where (A = B)) where (A = B)) ∧ (A = B) ≈(7)

(f(B where (A = B)) where (A = B)) ∧ (A = B) ≈(6)

(f(B) where (A = B)) ∧ (A = B) ≈(4)

f(B) ∧ (A = B)

3.1 Operational Semantics

In this section we describe the operational semantics of ACDTR. It is based
on the theoretical operational semantics of CHRs [1, 4]. This includes support
for identifiers and propagation histories, and conjunctive context matching for
simpagation rules.

3 All other variables are implicitly universally quantified, where the universal quanti-
fiers appear outside the existential ones.

7

Propagation history. The CHR concept of a propagation history, which pre-
vents trivial non-termination of propagation rules, needs to be generalised over
arbitrary terms for ACDTR. A propagation history is essentially a record of all
propagation rule applications, which is checked to ensure a propagation rule is
not applied twice to the same (sub)term.

In CHRs, each constraint is associated with a unique identifier. If multiple
copies of the same constraint appear in the CHR store, then each copy is assigned
a different identifier. We extend the notion of identifiers to arbitrary terms.

Definition 4 (Identifiers). An identifier is an integer associated with each
(sub)term. We use the notation T#i to indicate that term T has been associated
with identifier i. A term T is annotated if T and all subterms of T are associated
with an identifier. We also define function ids(T) to return the set of identifiers
in T , and term(T) to return the non-annotated version of T .

For example, T = f(a#1, b#2)#3 is an annotated term, where ids(T) = {1, 2, 3}
and term(T) = f(a, b).

Identifiers are considered separate from the term.We could be more precise
by separating the two, i.e. explicitly maintain a map between Pos(T) and the
identifiers for T . We do not use this approach for space reasons. We extend
and overload all of the standard operations over terms (e.g. from Section 2) to
annotated terms in the obvious manner. For example, the subterm relation T |p
over annotated terms returns the annotated term at position p. The exception
are elements of the congruence class [T]≈AC

, formed by the AC relation ≈AC ,
which we assume satisfies the following constraints.

A#i ◦ B#j ≈AC B#j ◦ A#i

A#i ◦ (B#j ◦ C#k) ≈AC (A#i ◦ B#j) ◦ C#k

We have neglected to mention the identifiers over AC operators. These identifiers
will be ignored later, so we leave them unconstrained.

A propagation history is a set of entries defined as follows.

Definition 5 (Entries). A propagation history entry is of the form (r @ E),
where r is a propagation rule identifier, and E is a string of identifiers. We
define function entry(r, T) to return the propagation history entry of rule r for
annotated term T as follows.

entry(r, T) = (r @ entry(T))
entry(T1 ◦ T2) = entry(T1) entry(T2) ◦ ∈ AC

entry(f(T1, ..., Tn)#i) = i entry(T1) ... entry(Tn) otherwise

This definition means that propagation history entries are unaffected by asso-
ciativity, but are effected by commutativity.

Example 10. Consider the annotated term T = f((a#1 ∧ b#2)#3)#4. We have
that T ∈ [T]≈AC

and T ′ = f((b#2 ∧ a#1)#3)#4 ∈ [T]≈AC
. Although T

and T ′ belong to [T]≈AC
they have different propagation history entries, e.g.

entry(r, T) = (r @ (4 1 2)) while entry(r, T ′) = (r @ (4 2 1)). ⊓⊔

8

When a (sub)term is rewritten into another, the new term is assigned a set
of new unique identifiers. We define the auxiliary function annotate(P , T) = Ta

to map a set of identifiers P and un-annotated term T to an annotated term Ta

such that ids(Ta)∩P = ∅ and |ids(Ta)| = |Pos(T)|. These conditions ensure that
all identifiers are new and unique.

When a rule is applied the propagation history must be updated accordingly
to reflect which terms are copied from the matching. For example, the rule
f(X) ⇐⇒ g(X, X) essentially clones the term matching X . The identifiers,
however, are not cloned. If a term is cloned, we expect that both copies will
inherit the propagation history of the original. Likewise, terms can be merged,
e.g. g(X, X) ⇐⇒ f(X) merges two instances of the term matching X . In this
case, the propagation histories of the copies are also merged.

To achieve this we duplicate entries in the propagation history for each oc-
currence of a variable in the body that also appeared in the head.

Definition 6 (Updating History). Define function

update(H, Ha, B, Ba, T0) = T1

where H and B are un-annotated terms, Ha and Ba are annotated terms, and T0

and T1 are propagation histories. T1 is a minimal propagation history satisfying
the following conditions:

– T0 ⊆ T1;
– ∀p ∈ Pos(H) such that H |p = V ∈ X (where X is the set of variables), and

∃q ∈ Pos(B) such that B|q = V , then define identifier renaming ρ such that
ρ(Ha|p) and Ba|q are identical annotated terms. Then if E ∈ T0 we have
that ρ(E) ∈ T1.

Example 11. Consider rewriting the term Ha = f((a#1 ∧ b#2)#3)#4 with a
propagation history of T0 = {(r @ (1 2))} using the rule f(X) ⇐⇒ g(X, X).
The resulting term is Ba = g((a#5∧b#6)#7), (a#8∧b#9)#10#11 and the new
propagation history is T1 = {(r @ (1 2)), (r @ (5 6)), (r @ (8 9))}.

Conjunctive context. According to the declarative semantics, a term T with
conjunctive context C is represented as (T where C). Operationally, we will
never explicitly build a term containing a where clause. Instead we use the
following function to compute the conjunctive context of a subterm on demand.

Definition 7 (Conjunctive Context). Given an (annotated) term T and a
position p ∈ Pos(T), we define function cc(T, p) to return the conjunctive context
at position p as follows.

cc(T, ǫ) = true

cc(A ∧ B, 1p) = B ∧ cc(A, p)
cc(A ∧ B, 2p) = A ∧ cc(B, p)
cc(f(T1, . . . , Ti, . . . , Tn), ip) = cc(Ti, p) (f 6= ∧)

9

States and transitions. The operational semantics are defined as a set of
transitions on execution states.

Definition 8 (Execution States). An execution state is a tuple of the form
〈G, T,V ,P〉, where G is a term (the goal), T is the propagation history, V is
the set of variables appearing in the initial goal and P is a set of identifiers.

We also define initial and final states as follows.

Definition 9 (Initial and Final States). Given an initial goal G for program
P , the initial state of G is

〈Ga, ∅, vars(G), ids(Ga)〉

where Ga = annotate(∅, G). A final state is a state where no more rules are
applicable to the goal G.

We can now define the operational semantics of ACDTR as follows.

Definition 10 (Operational Semantics).

〈G0, T0,V ,P0〉 〈G1, T1,V ,P1〉

1. Simplify: There exists a (renamed) rule from P

H ⇐⇒ g | B

such that there exists a matching substitution θ and a term G′
0 such that

– G0 ≈AC G′
0

– ∃p ∈ Pos(G′
0) . G′

0|p = θ(H)
– θ(g) ∈ G
– Ba = annotate(P0, θ(B))

Then G1 = G′
0[Ba]p, P1 = P0 ∪ ids(G1) and T1 = update(H, G′

0|p, B, Ba, T0).

2. Propagate: There exists a (renamed) rule from P

r @ H =⇒ g | B

such that there exists a matching substitution θ and a term G′
0 such that

– G0 ≈AC G′
0

– ∃p ∈ Pos(G′
0) . G′

0|p = θ(H)
– θ(g) ∈ G
– entry(r, G′

0|p) 6∈ T0

– Ba = annotate(P0, θ(B))

Then G1 = G′
0[G

′
0|p ∧ Ba]p, T1 = update(H, G′

0|p, B, Ba, T0) ∪ {entry(r, G′
0|p)}

and P1 = P0 ∪ ids(G1).

3. Simpagate: There exists a (renamed) rule from P

C \ H ⇐⇒ g | B

such that there exists a matching substitution θ and a term G′
0 such that

10

〈(leq(X1, Y2)3 ∧4 leq(Y5, Z6)7 ∧8 ¬9leq(X10, Z11)12), ∅〉 trans

〈(leq(X1, Y2)3 ∧4 leq(Y5, Z6)7 ∧13 leq(X15, Z16)14 ∧8 ¬9leq(X10, Z11)12), T 〉 idemp

〈(leq(X1, Y2)3 ∧4 leq(Y5, Z6)7 ∧13 leq(X15, Z16)14 ∧8 ¬9true17), T 〉 simplify

〈(leq(X1, Y2)3 ∧4 leq(Y5, Z6)7 ∧13 leq(X15, Z16)14 ∧8 false18), T 〉 simplify

〈(leq(X1, Y2)3 ∧4 leq(Y5, Z6)7 ∧13 false19), T 〉 simplify

〈(leq(X1, Y2)3 ∧4 false20), T 〉 simplify

〈(false21), T 〉
Fig. 1. Example derivation for the leq program.

– G0 ≈AC G′
0

– ∃p ∈ Pos(G′
0) . G′

0|p = θ(H)
– ∃D.θ(C) ∧ D ≈AC cc(G′

0, p)
– θ(g) ∈ G
– Ba = annotate(P0, θ(B))

Then G1 = G′
0[Ba]p, T1 = update(H, G′

0|p, B, Ba, T0) and P1 = P0 ∪ ids(G1).

Example. Consider the leq program from Example 8 with the goal

leq(X, Y) ∧ leq(Y, Z) ∧ ¬leq(X, Z)

Figure 1 shows one possible derivation of this goal to the final state representing
false. For brevity, we omit the V and P fields, and represent identifiers as sub-
scripts, i.e. T#i = Ti. Also we substitute T = {transitivity @ (3 2 1 7 5 6)}.

We can state a soundness result for ACDTR.

Theorem 1 (Soundness). If 〈G0, T0,V ,P〉
∗ 〈G′, T ′,V ,P〉 with respect to a

program P , then JP K |= ∃vars(G′)−V G0 ≈ G′

This means that for all algebras A that satisfy JP K, G0 and G′ are equivalent
for some assignment of the fresh variables in G′.

4 Implementation

We have implemented a prototype version of ACDTR as part of the mapping
language of the G12 project, called Cadmium. In this section we give an overview
of the implementation details. In particular, we will focus on the implementation
of conjunctive context matching, which is the main contribution of this paper.

Cadmium constructs normalised terms from the bottom up. Here, a nor-
malised term is one that cannot be reduced further by an application of a rule.
Given a goal f(t1, ..., tn), we first must recursively normalise all of t1, ..., tn (to
say s1, ..., sn), and then attempt to find a rule that can be applied to the top-level
of f(s1, ..., sn). This is the standard execution algorithm used by many TRSs
implementations.

11

This approach of normalising terms bottom up is complicated by the consid-
eration of conjunctive context matching. This is because the conjunctive context
of the current term appears “higher up” in the overall goal term. Thus conjunc-
tive context must be passed top down, yet we are normalising bottom up. This
means there is no guarantee that the conjunctive context is normalised.

Example 12. Consider the following ACDTR program that uses conjunctive con-
text matching.

X = V \ X ⇐⇒ var(X) ∧ nonvar(V) | V.

one(X) ⇐⇒ X = 1.

not one(1) ⇐⇒ false.

Consider the goal not one(A)∧one(A), which we expect should be normalised to
false. Assume that the sub-term not one(A) is selected for normalisation first.
The conjunctive context for not one(A) (and its subterm A) is one(A). No rule
is applicable, so not one(A) is not reduced.

Next the subterm one(A) is reduced. The second rule will fire resulting in
the new term A = 1. Now the conjunctive context for the first term not one(A)
has changed to A = 1, so we expect that A should be rewritten to the number
1. However not one(A) has already being considered for normalisation. ⊓⊔

The current Cadmium prototype solves this problem by re-normalising terms
when and if the conjunctive context “changes”. For example, when the conjunc-
tive context one(A) changes to A = 1, the term not one(X) will be renormalised
to not one(1) by the first rule.

The general execution algorithm for Cadmium is shown in Figure 2. Function
normalise takes a term T , a substitution θ, a conjunctive context CC and a
Boolean value Ch which keeps track of when the conjunctive context of the
current subterm has changed. If Ch = true, then we can assume the substitution
θ maps variables to normalised terms. For the initial goal, we assume θ is empty,
otherwise if we are executing a body of a rule, then θ is the matching substitution.

Operationally, normalise splits into three cases depending on what T is. If
T is a variable, and the conjunctive context has changed (i.e. Ch = true),
then θ(T) is no longer guaranteed to be normalised. In this case we return the
result of renormalising θ(T) with respect to CC. Otherwise if Ch = false, we
simply return θ(T) which must be already normalised. If T is a conjunction
T1 ∧ T2, we repeatedly call normalise on each conjunct with the other added
to the conjunctive context. This is repeated until a fixed point (i.e. further
normalisation does not result in either conjunct changing) is reached, and then
return the result of apply rule on the which we will discuss below. This fixed
point calculation accounts for the case where the conjunctive context of a term
changes, as shown in Example 12. Otherwise, if T is any other term of the form
f(T1, ..., Tn), construct the new term T ′ by normalising each argument. Finally
we return the result of apply rule applied to T ′.

The function call apply rule(T ′,CC) will attempt to apply a rule to normalised
term T ′ with respect to conjunctive context CC. If a matching rule is found, then

12

normalise(T ,θ,CC,Ch)
if is var(T)

if Ch

return normalise(θ(T),θ,CC,false)
else

return θ(T)
else if T = T1 ∧ T2

do

T ′

1 := T1

T ′

2 := T2

T1 := normalise(T ′

1,θ,T
′

2 ∧ CC,true)
T2 := normalise(T ′

2,θ,T
′

1 ∧ CC,true)
while T1 6= T ′

1 ∧ T2 6= T ′

2

return apply rule(T ′

1 ∧ T ′

2,CC)
else

T = f(T1, ..., Tn)
T ′ := f(normalise(T1,θ,CC,Ch), ..., normalise(Tn,θ,CC,Ch))

return apply rule(T ′,CC)

Fig. 2. Pseudo code of the Cadmium execution algorithm.

the result of normalise(B,θ,CC,false) is returned, where B is the (renamed) rule
body and θ is the matching substitution. Otherwise, T ′ is simply returned.

5 Related Work

ACDTR is closely related to both TRS and CHRs, and in this section we compare
the three languages.

5.1 AC Term Rewriting Systems

The problem of dealing with associative commutative operators in TRS is well
studied. A popular solution is to perform the rewriting modulo some permutation
of the AC operators. Although this complicates the matching algorithm, the
problem of trivial non-termination (e.g. by continually rewriting with respect to
commutativity) is solved.

ACDTR subsumes ACTRS (Associative Commutative TRS) in that we have
introduced distributivity (via simpagation rules), and added some “CHR-style”
concepts such as identifiers and propagation rules.

Given an ACTRS program, we can map it to an equivalent ACDTR program
by interpreting each ACTRS rule H → B as the ACDTR rule H ⇐⇒ B. We
can now state the theorem relating ACTRS and ACDTR.

Theorem 2. Let P be an ACTRS program and T a ground term, then
T →∗ S under P iff 〈Ta, ∅, ∅, ids(Ta)〉

∗ 〈Sa, ∅, ∅,P〉 under α(P) (where
Ta = annotate(∅, T)) for some P and term(Sa) = S.

13

5.2 CHRs and CHR∨

ACDTR has been deliberately designed to be an extension of CHRs. Several
CHR concepts, e.g. propagation rules, etc., have been adapted.

There are differences between CHRs and ACDTR. The main difference is
that ACDTR does not have a “built-in” or “underlying” solver, i.e. ACDTR is
not a constraint programming language. However it is possible to encode solvers
directly as rules, e.g. the simple leq solver from Example 8. Another important
difference is that CHRs is based on predicate logic, where there exists a distinc-
tion between predicate symbols (i.e. the names of the constraints) and functions
(used to construct terms). ACDTR is based on equational logic between terms,
hence there is no distinction between predicates and functions (a predicate is
just a Boolean function). To overcome this, we assume the existence of a set
Pred, which contains the set of function symbols that are Boolean functions.
We assume that AC ∩ Pred = {∧(2)}.

The mapping between a CHR program and an ACDTR program is simply
α(P) = P ∪ {X ∧ true ⇐⇒ X}.4 However, we assume program P is restricted
as follows:

– rules have no guards apart from implicit equality guards; and
– the only built-in constraint is true

and the initial goal G is also restricted:

– G must be of the form G0 ∧ ... ∧ Gn for n > 0;
– Each Gi is of the form fi(A0, ..., Am) for m ≥ 0 and fi ∈ Pred;
– For all p ∈ Pos(Aj), 0 ≤ j ≤ m we have that if Aj |p = g(B0, ..., Bq) then

g(q) 6∈ AC and g(q) 6∈ Pred.

These conditions disallow predicate symbols from appearing as arguments in
CHR constraints.

Theorem 3. Let P be a CHR program, and G an initial goal both satisfying
the above conditions, then 〈G, ∅, true, ∅〉V1 〈∅, S, true, T 〉Vi (for some T , i

and V = vars(G)) under the theoretical operational semantics [4] for CHRs
iff 〈Ga, ∅,V , ids(Ga)〉 〈Sa, T ′,V ,P〉 (for some T ′, P) under ACDTR, where
term(Sa) = S1∧...∧Sn and S = {S1#i1, ..., Sn#in} for some identifiers i1, ..., in.

We believe that Theorem 3 could be extended to include CHR programs that
extend an underlying solver, provided the rules for handling tell constraints are
added to the ACDTR program. For example, we can combine rules for rational
tree unification with the leq program from Example 8 to get a program equivalent
to the traditional leq program under CHRs.

ACDTR generalises CHRs by allowing other operators besides conjunction
inside the head or body of rules. One such extension of CHRs has been studied
before, namely CHR∨ [2] which allows disjunction in the body. Unlike ACDTR,

4 There is one slight difference in syntax: CHRs use ‘,’ to represent conjunction,
whereas ACDTR uses ‘∧’.

14

which manipulates disjunction syntactically, CHR∨typically finds solutions using
backtracking search.

One notable implementation of CHR∨is [6], which has an operational se-
mantics described as an and/or (∧/∨) tree rewriting system. A limited form of
conjunctive context matching is used, similar to that used by ACDTR, based
on the knowledge that conjunction ∧ distributes over disjunction ∨. ACDTR
generalises this by distributing over all functions.

6 Future Work and Conclusions

We have presented a powerful new rule-based programming language, ACDTR,
that naturally extends both AC term rewriting and CHRs. The main contribu-
tion is the ability to match a rule against the conjunctive context of a (sub)term,
taking advantage of the distributive property of conjunction over all possible
functions. We have shown this is a natural way of expressing some problems,
and by building the distributive property into the matching algorithm, we avoid
non-termination issues that arise from naively implementing distribution (e.g.
as rewrite rules).

We intend that ACDTR will become the theoretical basis for the Cadmium
constraint mapping language as part of the G12 project [7]. Work on ACDTR
and Cadmium is ongoing, and there is a wide scope for future work, such as
confluence, termination and implementation/optimisation issues.

References

1. S. Abdennadher. Operational semantics and confluence of constraint propagation
rules. In Gert Smolka, editor, Proceedings of the Third International Conference

on Principles and Practice of Constraint Programming, LNCS 1330, pages 252–266.
Springer-Verlag, 1997.

2. S. Abdennadher and H. Schütz. CHR∨: A flexible query language. In International

conference on Flexible Query Answering Systems, number 1495 in LNCS, pages
1–14, Roskilde, Denmark, 1998. Springer-Verlag.

3. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge Univ. Press,
1998.

4. G. Duck, P. Stuckey, M. Garcia de la Banda, and C. Holzbaur. The refined op-
erational semantics of constraint handling rules. In B. Demoen and V. Lifschitz,
editors, Proceedings of the 20th International Conference on Logic Programming,
LNCS 3132, pages 90–104. Springer-Verlag, September 2004.

5. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic

Programming, 37:95–138, 1998.
6. L. Menezes, J. Vitorino, and M. Aurelio. A High Performance CHR∨ Execution

Engine. In Second Workshop on Constraint Handling Rules, Sitges, Spain, 2005.
7. P.J. Stuckey, M. Garcia de la Banda, M. Maher, K. Marriott, J. Slaney, Z. Somogyi,

M. Wallace, and T. Walsh. The G12 project: Mapping solver independent models
to efficient solutions. In M. Gabrielli and G. Gupta, editors, Proceedings of the

21st International Conference on Logic Programming, number 3668 in LNCS, pages
9–13. Springer-Verlag, 2005.

15

