
The Refined Operational Semantics of

Constraint Handling Rules

Gregory J. Duck1, Peter J. Stuckey1, Maŕıa Garćıa de la Banda2, and
Christian Holzbaur3

1 Department of Computer Science and Software Engineering
The University of Melbourne, Vic. 3010, Australia

{gjd,pjs}@cs.mu.oz.au
2 School of Computer Science and Software Engineering

Monash University, Vic. 3800, Australia
mbanda@csse.monash.edu.au

3 holzbaur@chello.at

Abstract. Constraint Handling Rules (CHRs) are a high-level rule-
based programming language commonly used to write constraint solvers.
The theoretical operational semantics for CHRs is highly non-deterministic
and relies on writing confluent programs to have a meaningful behaviour.
Implementations of CHRs use an operational semantics which is consid-
erably finer than the theoretical operational semantics, but is still non-
deterministic (from the user’s perspective). This paper formally defines
this refined operational semantics and proves it implements the theoret-
ical operational semantics. It also shows how to create a (partial) con-
fluence checker capable of detecting programs which are confluent under
this semantics, but not under the theoretical operational semantics. This
supports the use of new idioms in CHR programs.

1 Introduction

Constraint Handling Rules (CHRs) are a high-level rule-based programming lan-
guage commonly used to write constraint solvers. The theoretical operational
semantics of CHRs is relatively high level with several choices, such as the or-
der in which transitions are applied, left open. Therefore, only confluent CHR
programs, where every possible execution results in the same result, have a guar-
anteed behaviour.

This paper looks at the refined operational semantics, a more specific op-
erational semantics which has been implicitly described in [10, 11], and is used
by every Prolog implementation of CHRs we know of. Although some choices
are still left open in the refined operational semantics, both the order in which
transitions are applied and the order in which occurrences are visited, is decided.
Unsurprisingly, the decisions follow Prolog style and maximise efficiency of ex-
ecution. The remaining choices, which matching partner constraints are tried
first, and the order of evaluation of CHR constraints awoken by changes in vari-
ables they involve, are left as choices for two reasons. First it is very difficult to

see how a CHR programmer will be able to understand a fixed strategy in these
cases. And second implementing a fixed strategy will restrict the implementation
to be less efficient, for example by disallowing hashing index structures.

It is clear that CHR programmers take the refined operational semantics into
account when programming. For example, some of the standard CHR examples
are non-terminating under the theoretical operational semantics.

Example 1. Consider the following simple program that calculates the greatest
common divisor (gcd) between two integers using Euclid’s algorithm:

gcd1 @ gcd(0) <=> true.

gcd2 @ gcd(N) \ gcd(M) <=> M >= N | gcd(M-N).

Rule gcd1 is a simplification rule. It states that a fact gcd(0) in the store can
be replaced by true. Rule gcd2 is a simpagation rule, it states that if there are
two facts in the store gcd(n) and gcd(m) where m ≥ n, we can replace the part
after the slash gcd(m) by the right hand side gcd(m − n). 4 The idea of this
program is to reduce an initial store of gcd(A), gcd(B) to a single constraint
gcd(C) where C will be the gcd of A and B.

This program, which appears on the CHR webpage [6], is non-terminating un-
der the theoretical operational semantics. Consider the constraint store gcd(3),
gcd(0). If the first rule fires, we are left with gcd(3) and the program terminates.
If, instead, the second rule fires (which is perfectly possible in the theoretical
semantics), gcd(3) will be replaced with gcd(3-0) = gcd(3), thus essentially
leaving the constraint store unchanged. If the second rule is applied indefinitely
(assuming unfair rule application), we obtain an infinite loop.

In the above example, trivial non-termination can be avoided by using a fair

rule application (i.e. one in which every rule that could fire, eventually does).
Indeed, the theoretical operational semantics given in [7] explicitly states that
rule application should be fair. Interestingly, although the refined operational
semantics is not fair (it uses rule ordering to determine rule application), its
unfairness ensures termination in the gcd example above. Of course, it could
also have worked against it, since swapping the order of the rules would lead to
non-termination.

The refined operational semantics allows us to use more programming idioms,
since we can now treat the constraint store as a queryable data structure.

Example 2. Consider a CHR implementation of a simple database:

l1 @ entry(Key,Val) \ lookup(Key,ValOut) <=> ValOut = Val.

l2 @ lookup(,) <=> fail.

where the constraint lookup represents the basic database operations of key
lookup, and entry represents a piece of data currently in the database (an entry
in the database). Rule l1 looks for the matching entry to a lookup query and
returns in ValOut the stored value. Rule l2 causes a lookup to fail if there is no
matching entry. Clearly the rules are non-confluent in the theoretical operational
semantics, since they rely on rule ordering to give the intended behaviour.

4 Unlike Prolog, we assume the expression “m − n” is automatically evaluated.

2

The refined operational semantics also allows us to create more efficient pro-
grams and/or have a better idea regarding their time complexity.

Example 3. Consider the following implementation of Fibonacci numbers, fib(N,F),
which holds if F is the N th Fibonacci number:

f1 @ fib(N,F) <=> 1 >= N | F = 1.

f2 @ fib(N,F0) \ fib(N,F) <=> N >= 2 | F = F0.

f3 @ fib(N,F) ==> N >= 2 | fib(N-2, F1), fib(N-1,F2), F = F1 + F2.

Rule f3 is a propagation rule (as indicated by the ==> arrow), which is similar
to a simplification rule except the matching constraint fib(n,f) is not removed
from the store.

The program is confluent in the theoretical operational semantics which, as
we will see later, means it is also confluent in the refined operational semantics.
Under the refined operational semantics it has linear complexity, while swapping
rules f2 and f3 leads to exponential complexity. Since in the theoretical opera-
tional semantics both versions are equivalent, complexity is at best exponential.

We believe that Constraint Handling Rules under the refined operational se-
mantics provide a powerful and elegant language suitable for general purpose
computing. However, to make use of this language, authors need support to
ensure their code is confluent within this context. In order to do this, we first
provide a formal definition of the refined operational semantics of CHRs as im-
plemented in logic programming systems. We then provide theoretical results
linking the refined and theoretical operational semantics. Essentially, these re-
sults ensure that if a program is confluent under the theoretical semantics, it is
also confluent under the refined semantics. Then, we provide a practical (partial)
confluence test capable of detecting CHR programs which are confluent for the
refined operational semantics, even though they are not confluent for the theo-
retical operational semantics. Finally, we study two CHR programs and argue
our test is sufficient for real world CHR programs.

2 The Theoretical Operational Semantics ωt

We begin by defining constraints, rules and CHR programs. For our purposes,
a constraint is simply defined as an atom p(t1, ..., tn) where p is some predicate
symbol of arity n ≥ 0 and (t1, ..., tn) is an n-tuple of terms. A term is defined
as either a variable X , or as f(t1, ..., tn) where f is a function symbol of arity
n and t1, ..., tn are terms. Let vars(A) return the variables occurring in any
syntactic object A. We use ∃̄AF to denote the formula ∃X1 · · · ∃XnF where
{X1, . . .Xn} = vars(F) − vars(A). We use s̄ = t̄, where s̄ and t̄ are sequences,
to denote the conjunction s1 = t1 ∧ · · · ∧ sn = tn.

Constraints can be divided into either CHR constraints or builtin constraints
in some constraint domain D. While the former are manipulated by the CHR
execution algorithm, the latter are handled by an underlying constraint solver.
Decisions about rule matchings will rely on the underlying solver proving that the

3

current constraint store for the underlying solver entails a guard (a conjunction
of builtin constraints). We will assume the solver supports (at least) equality.

There are three types of rules: simplification, propagation and simpagation.
For simplicity, we consider both simplification and propagation rules as special
cases of a simpagation rules. The general form of a simpagation rule is:

r @ H1 \ H2 ⇐⇒ g | B

where r is the rule name, H1 and H2 are sequences of CHR constraints, g is
a sequence of builtin constraints, and B is a sequence of constraints. If H1 is
empty, then the rule is a simplification rule. If H2 is empty, then the rule is a
propagation rule. At least one of H1 and H2 must be non-empty. Finally, a CHR
program P is a sequence of rules.

We use [H |T] to denote the first (H) and remaining elements (T) of a se-
quence, ++ for sequence concatenation, ǫ for empty sequences, and ⊎ for multiset
union. We shall sometimes treat multisets as sequences, in which case we non-
deterministically choose an order for the objects in the multiset.

Given a CHR program P , we will be interested in numbering the occurrences
of each CHR constraint predicate p appearing in the head of the rule. We number
the occurrences following the top-down rule order and right-to-left constraint
order. The latter is aimed at ordering first the constraints after the backslash
(\) and then those before it, since this gives the refined operational semantics a
clearer behaviour.

Example 4. The following shows the gcd CHR program of Example 1, written
using simpagation rules and with all its occurrences numbered:

gcd1 @ ǫ \ gcd(0)1 <=> true | true.

gcd2 @ gcd(N)3 \ gcd(M)2 <=> M ≥ N | gcd(M-N).

2.1 The ωt Semantics

Several versions of the theoretical operational semantics have already appeared
in the literature, e.g. [1, 7], essentially as a multiset rewriting semantics. This
section presents our variation, which is equivalent to previous ones, but is close
enough to our refined operational semantics to make proofs simple.

Firstly, we define an execution state, as the tuple 〈G, S, B, T 〉n where each
element is as follows. The goal G is the multiset (repeats are allowed) of con-
straints to be executed. The CHR constraint store S is the multiset of identified

CHR constraints that can be matched with rules in the program P . An identified

CHR constraint c#i is a CHR constraint c associated with some unique integer
i. This number serves to differentiate among copies of the same constraint. We
introduce functions chr(c#i) = c and id(c#i) = i, and extend them to sequences
and sets of identified CHR constraints in the obvious manner.

The builtin constraint store B contains any builtin constraint that has been
passed to the underlying solver. Since we will usually have no information about

4

the internal representation of B, we will model it as an abstract logical con-
junction of constraints. The propagation history T is a set of sequences, each
recording the identities of the CHR constraints which fired a rule, and the name
of the rule itself. This is necessary to prevent trivial non-termination for propa-
gation rules: a propagation rule is allowed to fire on a set of constraints only if
the constraints have not been used to fire the rule before. Finally, the counter n

represents the next free integer which can be used to number a CHR constraint.

Given an initial goal G, the initial state is: 〈G, ∅, true, ∅〉1. The theoretical
operational semantics ωt is based on the following three transitions which map
execution states to execution states:

1. Solve 〈{c} ⊎G, S, B, T 〉n 〈G, S, c ∧B, T 〉n where c is a builtin constraint.
2. Introduce 〈{c}⊎G, S, B, T 〉n 〈G, {c#n}⊎S, B, T 〉(n+1) where c is a CHR
constraint.
3. Apply 〈G, H1 ⊎ H2 ⊎ S, B, T 〉n 〈C ⊎ G, H1 ⊎ S, θ ∧ B, T ′〉n where there
exists a (renamed apart) rule in P of the form

r @ H ′
1 \ H ′

2 ⇐⇒ g | C

and a matching substitution θ such that chr(H1) = θ(H ′
1), chr(H2) = θ(H ′

2)
and D |= B → ∃̄B(θ ∧ g), and the tuple id(H1) ++ id(H2) ++ [r] 6∈ T . In the
result T ′ = T ∪ {id(H1) ++ id(H2) ++ [r]}.5 ⊓⊔

The first rule tells the underlying solver to add a new builtin constraint to the
builtin constraint store. The second adds a new identified CHR constraint to the
CHR constraint store. The last one chooses a program rule for which matching
constraints exist in the CHR constraint store, and whose guard is entailed by
the underlying solver, and fires it. For readability, we usually apply the resulting
substitution θ to all relevant fields in the execution state, i.e. G, S and B. This
does not affect the meaning of the execution state, or its transition applicability,
but it helps remove the build-up of too many variables and constraints.

The transitions are non-deterministically applied until either no more transi-
tions are applicable (a successful derivation), or the underlying solver can prove
D |= ¬∃̄∅B (a failed derivation). In both cases a final state has been reached.

Example 5. The following is a (terminating) derivation under ωt for the query
gcd(6), gcd(9) executed on the gcd program in Example 4. For brevity, B and

5 Note in practice we only need to keep track of tuples where H2 is empty, since
otherwise these CHR constraints are being deleted and the firing can not reoccur.

5

T have been removed from each tuple.

〈{gcd(6), gcd(9)}, ∅〉1 (1)
introduce 〈{gcd(9)}, {gcd(6)#1}〉2 (2)
introduce 〈∅, {gcd(6)#1, gcd(9)#2}〉3 (3)

(gcd2 N = 6 ∧ M = 9) apply 〈{gcd(3)}, {gcd(6)#1}〉3 (4)
introduce 〈∅, {gcd(6)#1, gcd(3)#3}〉4 (5)

(gcd2 N = 3 ∧ M = 6) apply 〈{gcd(3)}, {gcd(3)#3}〉4 (6)
introduce 〈∅, {gcd(3)#3, gcd(3)#4}〉5 (7)

(gcd2 N = 3 ∧ M = 3) apply 〈{gcd(0)}, {gcd(3)#3}〉5 (8)
introduce 〈∅, {gcd(3)#3, gcd(0)#5}〉6 (9)

(gcd1) apply 〈∅, {gcd(3)#3}〉6 (10)

No more transition rules are possible, so this is the final state.

3 The Refined Operational Semantics ωr

The refined operational semantics establishes an order for the constraints in G.
As a result, we are no longer free to pick any constraint from G to either Solve
or Introduce into the store. It also treats CHR constraints as procedure calls:
each newly added active constraint searches for possible matching rules in order,
until all matching rules have been executed or the constraint is deleted from the
store. As with a procedure, when a matching rule fires other CHR constraints
might be executed and, when they finish, the execution returns to finding rules
for the current active constraint. Not surprisingly, this approach is used exactly
because it corresponds closely to that of the language we compile to.

Formally, the execution state of the refined semantics is the tuple 〈A, S, B, T 〉n
where S, B, T and n, representing the CHR store, builtin store, propagation
history and next free identity number respectively, are exactly as before. The
execution stack A is a sequence of constraints, identified CHR constraints and
occurrenced identified CHR constraints, with a strict ordering in which only the
top-most constraint is active. An occurrenced identified CHR constraint c#i : j

indicates that only matches with occurrence j of constraint c should be con-
sidered when the constraint is active. Unlike in the theoretical operational se-
mantics, the same identified constraint may simultaneously appear in both the
execution stack A and the store S.

Given initial goal G, the initial state is as before. Just as with the theoretical
operational semantics, execution proceeds by exhaustively applying transitions
to the initial execution state until the builtin solver state is unsatisfiable or no
transitions are applicable. The possible transitions are as follows:

1. Solve 〈[c|A], S0⊎S1, B, T 〉n 〈S1 ++ A, S0⊎S1, c∧B, T 〉n where c is a builtin
constraint, and vars(S0) ⊆ fixed(B), where fixed(B) is the set of variables fixed
by B.6 This reconsiders constraints whose matches might be affected by c.
2. Activate 〈[c|A], S, B, T 〉n 〈[c#n : 1|A], {c#n} ⊎ S, B, T 〉(n+1) where c is
a CHR constraint (which has never been active).

6 v ∈ fixed(B) if D |= ∃̄v(B) ∧ ∃̄ρ(v)ρ(B) → v = ρ(v) for arbitrary renaming ρ.

6

3. Reactivate 〈[c#i|A], S, B, T 〉n 〈[c#i : 1|A], S, B, T 〉n where c is a CHR
constraint (re-added to A by Solve but not yet active).
4. Drop 〈[c#i : j|A], S, B, T 〉n 〈A, S, B, T 〉n where c#i : j is an occurrenced
active constraint and there is no such occurrence j in P (all existing ones have
already been tried thanks to transition 7).
5. Simplify 〈[c#i : j|A], {c#i} ⊎ H1 ⊎ H2 ⊎ H3 ⊎ S, B, T 〉n 〈C ++ A, H1 ⊎
S, θ∧B, T ′〉n where the jth occurrence of the CHR predicate of c in a (renamed
apart) rule in P is

r @ H ′
1 \ H ′

2, dj , H
′
3 ⇐⇒ g | C

and there exists matching substitution θ is such that c = θ(dj), chr(H1) =
θ(H ′

1), chr(H2) = θ(H ′
2), chr(H3) = θ(H ′

3), and D |= B → ∃̄B(θ ∧ g), and
the tuple id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r] 6∈ T . In the result T ′ =
T ∪ {id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r]}.
6. Propagate 〈[c#i : j|A], {c#i} ⊎ H1 ⊎ H2 ⊎ H3 ⊎ S, B, T 〉n 〈C ++ [c#i :
j|A], {c#i} ⊎ H1 ⊎ H2 ⊎ S, θ ∧ B, T ′〉n where the jth occurrence of the CHR
predicate of c in a (renamed apart) rule in P is

r @ H ′
1, dj , H

′
2 \ H ′

3 ⇐⇒ g | C

and there exists matching substitution θ is such that c = θ(dj), chr(H1) =
θ(H ′

1), chr(H2) = θ(H ′
2), chr(H3) = θ(H ′

3),and D |= B → ∃̄B(θ ∧ g), and the
tuple id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r] 6∈ T . In the result T ′ =
T ∪ {id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r]}.

The role of the propagation histories T and T ′ is exactly the same as with
the theoretical operational semantics, ωt.
7. Default 〈[c#i : j|A], S, B, T 〉n 〈[c#i : j + 1|A], S, B, T 〉n if the current
state cannot fire any other transition. ⊓⊔

The refined operational semantics is still non-deterministic. Its first source of
non-determinism is the Solve transition where the order in which constraints S1

are added to the activation stack is still left open. The definition above (which
considers all non-fixed CHR constraints) is weak. In practice, only constraints
that may potentially cause a new rule to fire are re-added, see [5, 10] for more
details.

The other source of non-determinism occurs within the Simplify and Prop-
agate transitions, where we do not know which partner constraints (H1, H2 and
H3) may be chosen for the transition, if more than one possibility exists.

Both sources of non-determinism could be removed by further refining the op-
erational semantics, however we use non-determinism to model implementation
specific behaviour of CHRs. For example, different CHR implementations use dif-
ferent data structures to represent the store, and this may inadvertently affect
the order partner constraints are matched against a rule. By leaving matching or-
der non-deterministic, we capture the semantics of all current implementations.
It also leave more freedom for optimization of CHR execution (see e.g. [12]).

Example 6. The following shows the derivation under ωr semantics for the gcd

program in Example 4 and the goal gcd(6),gcd(9). For brevity B and T have
been eliminated and the substitutions θ applied throughout.

7

〈[gcd(6), gcd(9)], ∅〉1 (1)
activate 〈[gcd(6)#1 : 1, gcd(9)], {gcd(6)#1}〉2 (2)

×3
default 〈[gcd(6)#1 : 4, gcd(9)], {gcd(6)#1}〉2 (2)

drop 〈[gcd(9)], {gcd(6)#1}〉2 (2)
activatedefault 〈[gcd(9)#2 : 2], {gcd(9)#2, gcd(6)#1}〉3 (3)
simplify 〈[gcd(3)], {gcd(6)#1}〉3 (4)
activate

×2
default 〈[gcd(3)#3 : 3], {gcd(3)#3, gcd(6)#1}〉3 (5)

propagate 〈[gcd(3), gcd(3)#3 : 3], {gcd(3)#3}〉4 (6)
activatedefault 〈[gcd(3)#4 : 2, gcd(3)#3 : 3], {gcd(3)#4, gcd(3)#3}〉5 (7)
simplify 〈[gcd(0), gcd(3)#3 : 3], {gcd(3)#3}〉5 (8)
activate 〈[gcd(0)#5 : 1, gcd(3)#3 : 3], {gcd(0)#5, gcd(3)#3}〉6 (9)
simplify 〈[gcd(3)#3 : 3], {gcd(3)#3}〉6 (10)
defaultdrop 〈ǫ, {gcd(3)#3}〉6 (10)

4 The Relationship between the Two Semantics

Once both semantics are established, we can define an abstraction function α

which maps execution states of ωr to ωt as follows:

α(〈A, S, B, T 〉n) = 〈no id(A), S, B, T 〉n

where no id(A) = {c | c ∈ A is not of the form c#i or c#i : j}.

Example 7. A state in Example 6 with number (N) is mapped to the state in
Example 5 with the same number. For example, the state 〈[gcd(0), gcd(3)#3 :
3], {gcd(3)#3}〉5 corresponds to 〈{gcd(0)}, {gcd(3)#3}〉5 since both are num-
bered (8).

We now extend α to map a derivation D in ωr to the corresponding deriva-
tion α(D) in ωt, by mapping each state appropriately and eliminating adjacent
equivalent states:

α(S1 D) =
α(D) if D = S2 D′ and α(S1) = α(S2)
α(S1) α(D) otherwise

We can now show that each ωr derivation has a corresponding ωt derivation,
and the final state of the ωr corresponds to a final state in the ωt derivation.

Theorem 1 (Correspondence). Given a derivation D under ωr then there

exists a corresponding derivation α(D) under ωt. If S is the final state in D

then α(S) is a final state under ωt.

Theorem 1 shows that the refined operational semantics implements the the-
oretical operational semantics. Hence, the soundness and completeness results
for CHRs under the theoretical operational semantics hold under the refined
operational semantics ωr.

8

4.1 Termination

Termination of CHR programs is obviously a desirable property. Thanks to The-
orem 1, termination of ωt programs ensures termination of ωr.

Corollary 1. If every derivation for G in ωt terminates, then every derivation

for G in ωr also terminates.

The converse is clearly not true, as shown in Example 1. In practice, proving
termination for CHR programs under the theoretical operational semantics is
quite difficult (see [8] for examples and discussion). It is somewhat simpler for
the refined operational semantics but, just as with other programming languages,
this is simply left to the programmer.

4.2 Confluence

Since both operational semantics of CHRs are non-deterministic, confluence of
the program, which guarantees that whatever order the rules are applied in leads
to the same result, is essential from a programmer’s point of view. Without it
the programmer cannot anticipate the answer that will arise from a goal.

Formally, a CHR program P is confluent under semantics ω if for any goal G

and any two derivations 〈G, ∅, true, ∅〉1
∗
ω 〈 , S1, B1, 〉 and 〈G, ∅, true, ∅〉1

∗
ω

〈 , S2, B2, 〉 we have that D |= ∃̄G(S1∧B1) ↔ ∃̄G(S2∧B2). That is, the resulting
constraints stores are equivalent.

Confluence of the theoretical operational semantics of CHR programs has
been extensively studied [1, 2]. Abdennadher [1] provides a decidable confluence
test for the theoretical semantics of terminating CHR programs. Essentially, it
relies on computing critical pairs where two rules can possibly be used, and
showing that each of the two resulting states lead to equivalent states.

Just as with termination, thanks to Theorem 1, confluence under ωt implies
confluence under ωr.

Corollary 2. If CHR program P is confluent with respect to ωt, it is confluent

with respect to ωr.

5 Checking Confluence for ωr

One of the benefits of exposing the refined operational semantics is the ability to
write and execute programs that are non-confluent with respect to the theoretical
operational semantics, but are confluent with respect to the refined operational
semantics. In order to take advantage of this, we need to provide a decidable
test for confluence under ωr. This test must be able to capture a reasonable
number of programs which are confluent under ωr but not under ωt. However,
this appears to be quite difficult.

Example 8. For example, consider the following CHR program

9

p1 @ p <=> true.

p2 @ q(), p <=> true.

Rule p2 looks suspiciously non-confluent since, if it was the only rule present,
the goal q(a),q(b),p could terminate with either q(a) or q(b) left in the store.
However, when combined with p1, p2 will never fire since any active p constraint
will be deleted by p1 before reaching p2. Thus, the program is ωr confluent.

The example illustrates how extending the notion of critical pairs can be
difficult, since many critical pairs will correspond to unreachable program states.

As mentioned before, there are two sources of non-determinism in the re-
fined operational semantics. The first source, which occurs when deciding the
order in which the CHR constraints are added to the activation stack while
applying Solve, is hard to tackle. In practice, we will avoid re-activating most
CHR constraints in the store, by only considering those which might now cause
a rule to fire when it did not fire before (see [5, 10] for more details). How-
ever, if re-activation actually occurs, the programmer is unlikely to have any
control on what order re-activated constraints are re-executed. To avoid this
non-determinism we will require S1 to be empty in any Solve transition. This
has in fact been the case for all the examples considered so far except fib, and all
those in Section 6, since all CHR constraints added to the store had fixed argu-
ments. Even for fib we could safely avoid reactivating the fib constraints whose
second arguments are not fixed, since these arguments have no relationship with
the guards.

For programs that really do interact with an underlying constraint solver,
we have no better solution than relying on the confluence test of the theoretical
operational semantics, for in this case it is very hard to see how the programmer
can control execution sufficiently.

The second source of non-determinism occurs when there is more than one
set of partner constraints in the CHR store that can be used to apply the Sim-
plify and Propagate transitions. We formalise this as follows. A matching of
occurrence j with active CHR constraint c in state 〈[c#i : j|A], S, B, T 〉n is the
sequence of identified constraints H1 ++ H2 ++ H3 ++ [c#i] used in transitions
Simplify and Propagate. The goal of the matching is the right hand side of
the associated rule with the matching substitution applied, i.e., θ(C).

Non-confluence arises when multiple matchings exist for a rule R, and R is
not allowed to eventually try them all. This can happen if firing R with one
matching results in the deletion of a constraint in another matching.

Definition 1. An occurrence j in rule R is matching complete if for all reach-

able states 〈[c#i : j|A], S, B, T 〉n with M1, ..., Mm possible matchings and G1, . . . , Gm

corresponding goals, firing R for any matching Ml and executing Gl does not re-

sult in the deletion of a constraint occurring in a different matching Mk, k 6= l.

Note that R itself may directly delete the active constraint. If so, R will only
be matching complete if there is only one possible matching, i.e., m = 1.

10

Example 9. Consider the CHR program in Example 2. The occurrence of entry
in rule l1 is matching complete since the lookup constraint is never stored (it is
deleted before it becomes inactive). This is not however the case for the occur-
rence of lookup in l1. Goal entry(a,b),entry(a,c),lookup(a,V) will return
V=b or V=c depending on which of the two matchings of the occurrence of lookup
in l1 ([entry(a,b)#1,lookup(a,V)#3] or [entry(a,c)#2,lookup(a,V)#3])
is used, i.e., depending on which partner entry constraint is used for lookup(a,V)
in l1. The code is matching complete if the database only contains one entry
per key. Adding the rule

killdup @ entry(Key,Val1) \ entry(Key,Val2) <=> true.

which throws away duplicate entries for a key, provides a functional dependency
from Key to Val in entry(Key,Val). This rule makes the occurrence matching
complete, since only one matching will ever be possible.

Matching completeness can also be broken if the body of a rule deletes con-
straints from other matchings.

Example 10. Consider the following CHR program

r1 @ p, q(X) ==> r(X).

r2 @ p, r(a) <=> true.

The occurrence of p in r1 is not matching complete since the goal q(a),q(b),p,
will obtain the final state q(a),q(b) or q(a),q(b),r(b) depending on which
partner constraint (q(a) or q(b)) is used for the occurrence of p in r1. This is
because the goal of the first matching (r(a)) deletes p.

A matching complete occurrence is guaranteed to eventually try all possi-
ble matchings for given execution state S. However, matching completeness is
sometimes too strong if the user doesn’t care which matching is chosen. This is
common when the body does not depend on the matching chosen.

Example 11. For example, consider the following rule from a simple ray tracer.

shadow @ sphere(C,R,) \ light ray(L,P, ,) <=> blocks(L,P,C,R) | true.

This rule calculates if point P is in shadow by testing if the ray from light L is
blocked by a sphere at C with radius R. Consider an active light ray constraint,
there may be more than one sphere blocking the ray, however we don’t care
which sphere blocks, just if there is a sphere which blocks. This rule is not
matching complete but, since the matching chosen does not affect the resulting
state, it is matching independent.

Definition 2. A matching incomplete occurrence j which is deleted by rule R

is matching independent if for all reachable states 〈[c#i : j|A], S, B, T 〉n with

M1, . . . , Mm possible matchings and G1, . . . , Gm corresponding goals, then all the

final states for 〈Gk, Sk, B, Tk〉n, 1 ≤ k ≤ m are equivalent, where Sk is the store

after firing on matching Mk and Tk is the resulting history.

11

Suppose that a rule is matching complete, and there are multiple possible
matchings. The ordering in which the matchings are tried is still chosen non-
deterministically. Hence, there is still potential of non-confluence. For this reason
we also require order independence, which ensures the choice of order does not
affect the result.

Definition 3. A matching complete occurrence j in rule R is order indepen-
dent if for all reachable states 〈[c#i : j|A], S, B, T 〉n with M1, . . . , Mm possi-

ble matchings and G1, . . . , Gm corresponding goals, the execution of the state

〈Gσ(1) ++ · · · ++ Gσ(m), S
′, B, T ′〉n where S′ is the CHR store S where all con-

straints deleted by any matching are deleted, and T ′ has all sequences added by

all matchings, for any permutation σ, leads to equivalent states.

Note that, since j is matching complete, S′ is well defined. Order indepen-
dence is a fairly strong condition and, currently, we have little insight as to how
to check it beyond a limited version of the confluence check for the theoretical
operational semantics. Thus, we currently require user annotations about order
independence. A matching complete occurrence, which may have more than one
matching, only passes the confluence checker if all CHR constraints called by
the body are annotated as order independent.

Example 12. Consider the following fragment for summing colors from a ray
tracer.

add1 @ add color(C1), color(C2) <=> C3 = C1 + C2, color(C3).

add2 @ add color(C) <=> color(C).

All occurrences of color and add color are matching complete. Furthermore,
calling add color(C1), ..., add color(Cn) results in color(C1+...+Cn). Since
addition is symmetric and associative, it does not matter in what order the
add color constraints are called. Consider the occurrence of output in

render @ output(P) \ light ray(,P,C,) <=> add color(C).

Here, calling output(P) calculates the (accumulated) color at point P where any
light rays (a ray from a light source) may intersect. If there are multiple light
sources, then there may be multiple light ray constraints. The order add color

is called does not matter, hence the occurrence is order independent.

We now have sufficient conditions for a simple confluence test.

Theorem 2 (Confluence Test). Let P be a CHR program such that:

1. Starting from a fixed goal, any derived state is also fixed;

2. All occurrences in rules are matching complete or matching independent;

3. All matching complete occurrences in rules are order independent.

Then P is ωr confluent for fixed goals.

12

The HAL CHR confluence checker implements partial tests for fixedness of
CHR constraints, matching completeness and matching independence, and relies
on user annotation for determining order independence.

The confluence checker uses mode checking [9] to determine which CHR
constraints are always fixed. A non-fixed constraint may also be safe, as long as
it is never in the store when it is not active (such as lookup from Example 2).
We call such constraints never stored.

The confluence checker uses information about never stored constraints and
functional dependency analysis (see [12]) to determine how many possible match-
ings (0, 1 or many) there are for each occurence in a given rule. If there are
multiple possible matchings for an occurence, it then checks that the removal of
other matching constraints is impossible, by examining the rule itself and using
a reachability analysis of the “call graph” for CHR rules, to determine if the
constraints could be removed by executing the body of the rule.

The checker determines matching independence by determining which vari-
ables occuring in the body are functionally defined by the active occurence, mak-
ing use of functional dependency analysis to do so. If all variables in the body
and the deleted constraints are functionally defined by the active occurence, the
occurence is matching independent.

Only bodies restricted to built-in constraints are considered as order indepen-
dent by the current confluence checker. Otherwise, we rely on user annotation.

6 Case Studies: Confluence Test

This section investigates the confluence of two “real-life” CHR programs using
our confluence checker. The programs are bounds – an extensible bounds prop-
agation solver, and compiler – a new (bootstrapping) CHR compiler. Both were
implemented with the refined operational semantics in mind, and simply will not
work under the theoretical semantics.

6.1 Confluence of bounds

The bounds propagation solver is implemented in HAL and has a total of 83
rules, 37 CHR constraints and 113 occurences. An early version of a bounds
propagation solver first appeared in [12]. The current version also implements
simple dynamic scheduling (i.e. the user can delay goals until certain conditions
hold), as well as supporting ask constraints. This program was implemented
before the confluence checker.

The confluence checker finds 4 matching problems, and 3 order independence
problems. One of the matching problems indicated a bug (see below), the oth-
ers are attributed to the weakness in the compiler’s analysis. We only had to
annotate one constraint as order independent.

The confluence analysis complained that the following rule is matching in-
complete and non-independent when kill(Id) is active since there are (poten-
tially) many possible matchings for the delayed goals partner.

13

kill @ kill(Id), delayed goals(Id,X, ,...,) <=> true.

Here delayed goals(Id,X, ,...,) represents the delayed goals for bounds solver
variable X . The code should be

kill1 @ kill(Id) \ delayed goals(Id,X, ,...,) <=> true.

kill2 @ kill() <=> true.

This highlights how a simple confluence analysis can be used to discover bugs.
The confluence analysis also complains about the rules for bounds propaga-

tion themselves. The reason is that the constraint bounds(X,L,U) which stores
the lower L and upper U bounds of variable X has complex self-interaction. Two
bounds constraints for the same variable can interact using, for example,

b2b @ bounds(X,L1,U1), bounds(X,L2,U2) <=> bounds(X,max(L1,L2),min(U1,U2)).

Here, the user must annotate the matching completeness and order independence
of bounds. In fact, the relevant parts of the program are confluent within the
theoretical operational semantics, but this is currently beyond the capabilities
of our confluence analysis (and difficult because it requires bounds reasoning).

6.2 Confluence of compiler

The bootstrapping compiler is implemented in SICStus Prolog (using the CHR
library), including a total of 131 rules, 42 CHR constraints and 232 occurences.
and performs most of the analysis and optimisations detailed in [12]. After boot-
strapping it has similar speed to the original compiler written in Prolog and
produces more efficient code due to the additional analysis performed. During
the bootstrap, when compiling itself the first time, the new code outperformed
the old code (the SICStus Prolog CHR compiler, 1100 lines of Prolog) by a fac-
tor of five. This comparison is rather crude, measuring the costs and effects of
the optimisations based on the additional analysis and the improved runtime
system at once. Yet it demonstrates the practicality of the bootstrapping ap-
proach for CHRs and that CHRs as a general purpose programming language
under the refined semantics can be used to write moderately large sized verifiable
programs.

Bootstrapping CHRs as such aims at easier portability to further host lan-
guages and as an internal reality check for CHRs as a general purpose program-
ming system. To the best of our knowledge, the bootstrapping compiler is the
largest single CHR program written by hand. (Automatic rule generators for
constraint propagation algorithms [3] can produce large CHR programs too, but
from the point of the compiler their structure is rather homogeneous in compar-
ison to the compiler’s own code).

The confluence checker finds 14 matching problems, and 45 order indepen-
dence problems. 4 of the matching problems are removed by making functional
dependencies explicit. The others are attributed to the weakness in the com-
piler’s analysis. We had to annotate 18 constraints as order independent.

14

7 Conclusion

The refined operational semantics for Constraint Handling Rules provides a pow-
erful and expressive language, ideal for applications such as compilers, since
fixpoint computations and simple database operations are straightforward to
program. In order to support programming for this language we need to help
the author check the confluence of his program. In this paper we have defined a
partial confluence checker that is powerful enough to check many idioms used in
real programs. In the future we intend to extend this checker to better handle
order independence, and to include the ability to check confluence with respect
to the theoretical semantics.

References

1. S. Abdennadher. Operational semantics and confluence of constraint propagation
rules. In Gert Smolka, editor, Proceedings of the Third International Conference
on Principles and Practice of Constraint Programming, pages 252–266, 1997.

2. S. Abdennadher, T. Frühwirth, and H. Muess. Confluence and semantics of con-
straint simplification rules. Constraints, 4(2):133–166, 1999.

3. K. Apt and E. Monfroy. Automatic generation of constraint propagation algorithms
for small finite domains. In Principles and Practice of Constraint Programming,
pages 58–72, 1999.

4. B. Demoen, M. Garćıa de la Banda, W. Harvey, K. Marriott, and P.J. Stuckey.
An overview of HAL. In Proceedings of the Fourth International Conference on
Principles and Practices of Constraint Programming, pages 174–188, 1999.

5. G.J. Duck, P.J. Stuckey, M. Garćıa de la Banda, and C. Holzbaur. Extending
arbitrary solvers with constraint handling rules. In D. Miller, editor, Proceedings
of the Fifth ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming, pages 79–90. ACM Press, 2003.

6. T. Frühwirth. http://www.pms.informatik.uni-muenchen.de/~webchr/.
7. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic

Programming, 37:95–138, 1998.
8. T. Frühwirth. Proving termination of constraint solver programs. In New Trends in

Contraints, Joint ERCIM/Compulog Net Workshop, number 1865 in LNCS, pages
298–317. Springer-Verlag, 1999.

9. M. Garćıa de la Banda, P.J. Stuckey, W. Harvey, and K. Marriott. Mode checking
in HAL. In J. LLoyd et al., editor, Proceedings of the First International Conference
on Computational Logic, LNCS 1861, pages 1270–1284. Springer-Verlag, July 2000.

10. C. Holzbaur and T. Frühwirth. Compiling constraint handling rules into Prolog
with attributed variables. In Gopalan Nadathur, editor, Proceedings of the Interna-
tional Conference on Principles and Practice of Declarative Programming, number
1702 in LNCS, pages 117–133. Springer-Verlag, 1999.

11. C. Holzbaur and T. Frühwirth. A Prolog constraint handling rules compiler and
runtime system. Journal of Applied Artificial Intelligence, 14(4), 2000.

12. C. Holzbaur, P.J. Stuckey, M. Garćıa de la Banda, and D. Jeffery. Optimizing com-
pilation of constraint handling rules. In P. Codognet, editor, Logic Programming:
Proceedings of the 17th International Conference, LNCS, pages 74–89. Springer-
Verlag, 2001.

15

