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Abstract

We consider the application of Constraint Handling Rules (CHR) for the specification of type
inference systems, such as that used by Haskell. Confluence of CHR guarantees that the answer
provided by type inference is correct and consistent. The standard method for establishing con-
fluence relies on an assumption that the CHR program is terminating. However, many examples
in practice give rise to non-terminating CHR programs, rendering this method inapplicable.
Despite no guarantee of termination or confluence, the Glasgow Haskell Compiler (GHC) sup-
ports options that allow the user to proceed with type inference anyway, e.g. via the use of
the UndecidableInstances flag. In this paper we formally identify and verify a set of relaxed
criteria, namely range-restrictedness, local confluence, and ground termination, that ensure the
consistency of CHR-based type inference that maps to potentially non-terminating CHR pro-
grams.
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1 Introduction

Constraint Handling Rules (CHR) (Frühwirth 2009) are a powerful rule-based program-

ming language for specification and implementation of constraint solvers. CHR has many

application domains, including constraint solving (Sneyers et al. 2010), type inference

systems (Sulzmann et al. 2007), coinductive reasoning (Haemmerlé 2011), theorem prov-

ing (Duck 2012) and program verification (Duck et al. 2013). This paper concerns the

application of CHR to type inference systems for high-level declarative programming lan-

guages such as Haskell (Jones 2003) and Mercury (Somogyi et al. 1996). In particular,
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type constraints imposed by type classes (Wadler and Blott 1989) can be straightfor-

wardly mapped into a set of CHR rules. Type inference with type classes is then reduced

to CHR solving.

For example, consider the following Haskell type class declarations

class Eq a where (==) :: a->a->Bool instance Eq a => Eq [a] where ...

The class declaration introduces some (overloaded) equality operator == whose type is

constrained by the type class (Eq a). The instance declaration states that we obtain

equality among lists assuming we supply equality on the element type. Here the notation

[a] represents a list type with element type a. Following (Sulzmann et al. 2007), the

above maps to the following CHR simplification rule

Eq [a] ⇐⇒ Eq a

Type inference via CHR solving is performed by (1) generating the appropriate con-

straints out of the program text, (2) solving these constraints w.r.t. the set of CHR rules

derived from class and instance declarations. For example, consider the function f that

tests if a list xs is equal to a singleton list containing y.

f xs y = xs == [y]

To infer the type of f we (roughly) generate Eq txs , txs = [ty], tf = (txs → ty → Bool)

which reduces, via application of the above CHR rule and substitution, to Eq ty , txs =

[ty], tf = ([ty]→ ty → Bool). Hence, function f has type ∀a.Eq a⇒ [a]→ a→ Bool .

This approach extends to richer sets of type class programs such as multi-parameter

type classes and functional dependencies (Jones 2000). The advantage is that impor-

tant type inference properties such as decidability and consistency can be verified by

establishing the respective properties for the resulting CHR rules.

The answer of type inference is guaranteed to be consistent if the set of CHR rules

is confluent. A terminating set of CHR rules is confluent if it reduces any given goal to

the same answer regardless of rule application ordering. Earlier work (Stuckey and Sulz-

mann 2005; Sulzmann et al. 2007) identifies sufficient conditions on type class programs

to guarantee that the resulting CHR rules are confluent. A critical assumption is that

CHR rules are terminating. In doing so, the proof of confluence can be reduced to es-

tablishing a weaker condition, namely local confluence, via the application of Newman’s

Lemma (Newman 1942).

The problem is that the kinds of CHR programs that arise in practice often violate

the termination assumption. For example, consider the following set of multi-parameter

class and instance declarations that incorporates a functional dependency a→ b

class F a b | a -> b instance F Int Bool instance F a b => F [a] [b]

The functional dependency roughly states that: given a type-class constraint F a b, then

the type b is a functionally determined by a. These class and instance declarations can

be mapped to the following CHR rules

F Int b⇐⇒ b = Bool F [a] b⇐⇒ b = [c], F a c

F a b, F a c =⇒ b = c

The first two rules capture the two instances and also enforce the functional dependency

for the respective instance.
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At first glance, the above CHR program may appear to be terminating. Indeed, any

ground constraint (F t1 t2) will be reduced in a finite number of steps. However, consider

the non-ground goal (F [a] a), where a is some variable, for which we find the following

non-terminating derivation

F [a] a � (F [b] b, a = [b]) � (F [c] c, a = [b], b = [c]) � . . .

The above example represents a typical (albeit much simplified) example that is found

when applying type classes for expressive type reasoning (Hallgren 2001). For example,

consider the following more realistic example, which encodes addition at the level of types

data Zero data Succ n class Add a b c | a b -> c

instance Add Zero b b instance Add a b c => Add (Succ a) b (Succ c)

Here the non-ground goal Add (Succ a) b a also exhibits the same non-terminating be-

havior.

Fortunately, realistic programs will usually not yield devious non-terminating con-

straints such as (F [a] a). Hence, practical implementations of type inference systems,

such as the Glasgow Haskell Compiler (GHC 2014), typically enable the user1 to proceed

with type inference even though the corresponding CHR program is potentially non-

terminating. If the flag is enabled, the type inference engine must compute the answer

within a fixed number of reduction steps, otherwise an error is reported.

This paper is concerned with the correctness of the above “practical implementations”.

Current CHR theory concerning confluence and consistency of CHR programs explicitly

assumes the program is terminating for all goals, which is simply not applicable under

our setting. Our main contributions are:

- We establish that range-restricted, ground confluent CHR programs are consistent

(Section 3). This extends the classical CHR consistency result from (Abdennadher

et al. 1999).

- We establish that terminating goals are confluent for range-restricted, ground-

terminating and locally confluent programs (Section 4).

- We discuss how these results apply to the GHC/type class setting (Section 5). In

particular, we show that if type inference finitely terminates with an answer, then

that answer is unique.

Section 2 reviews background material on CHR. Section 6 summarizes related work and

concludes.

2 Constraint Handling Rules

Throughout this paper we use Haskell type notation to represent terms, constraints and

predicates. Under this scheme:

- functors (a.k.a. atoms) begin with an upper case letter (the opposite to Prolog);

- variables begin with a lower-case letter (the opposite to Prolog);

- term arguments are separated by whitespace; and

- the special functor [a] is shorthand for (List a) and a=b for equality.

1 Via GHC’s UndecidableInstances flag.



4 Duck and Haemmerlé and Sulzmann

For example, the term p(X, q(Y), list(Z)) under Prolog syntax would be represented

as (P x (Q y) [z]) under Haskell type syntax.

Constraint Handling Rules (CHR) is a rule-based constraint rewriting programming

language designed for implementing constraint solvers.

We assume, as given, the following disjoint infinite sets of variables: ProgVars, GlobalVars

and LocalVars. We define:

Terms t ::= v | F t . . . t

Built-in Constraints b ::= True | False | t = t

User Constraints u ::= C t . . . t

Constraints c ::= b | u

where v is a variable from some variable set. A substitution is a mapping from variables

to terms. We use the notation θ.X to represent a substitution θ applied to a term or

constraint X. We respectively define Cons(V ) and Usr(V ) as the set of all constraints

and the set of all user-constraints over the set of variables V . There are two main types

of CHR rules:

H ⇐⇒ B (Simplification) and H =⇒ B (Propagation)

where H ∈M(Usr(ProgVars)) and B ∈M(Cons(ProgVars))2. The local variables of a rule

are those variables that appear in the body but not in the head. Logically simplification

rules (resp. propagation rules) are understood as equivalence (implication) between the

head and the body where local variables are implicitly existentially quantified.

Let StateVars = GlobalVars ∪ LocalVars and let S1, S2 ∈ M(Cons(StateVars)) then we

define S1 ≡ S2 as the least relation satisfying

CT |= (∃LocalVars : usr(S1) = usr(S2) ∧ S1)↔ (∃LocalVars : usr(S1) = usr(S2) ∧ S2)

where CT is the theory of term equality and usr(S) the user constraints of the state S.

The set of all CHR states Σ is defined as the quotient set Σ = (M(Cons(StateVars))/ ≡).

Note that we usually represent a state [S] ∈ Σ by an S, and we often drop the braces

{. . .} around sets of constraints, i.e. we write P a, a = [b] instead of {P a, a = [b]}. We

will say that a rule is purely built-in if its body does not contain any user constraints.

Operationally, CHR is the abstract rewriting system 〈Σ,�〉, where binary relation

(�) ∈ Σ× Σ is the CHR derivation step defined as the least relation satisfying:

(H ⇐⇒ B) CT |= S → (θ.H = C) CT |= ∃ : C ∧ S
C ] S � θ.B ] S

(H =⇒ B) CT |= S → (θ.H = C) CT |= ∃ : C ∧ S C ] S 6= θ.B ] C ] S
C ] S � θ.B ] C ] S

where (]) is multi-set union, θ : ProgVars→ StateVars is a substitution mapping vars(H)

to vars(C) and vars(B)− vars(H) to fresh variables from LocalVars− vars(C, S).

Note that there are many different definitions for the operational semantics of CHR.

Our version does not keep propagation histories, and as such will only terminate for

propagation rules with built-in only bodies. This is sufficient for our purposes.

2 M(X) is the set of all multisets built form the set X.
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Let (�=) the reflexive closure of (�), and let (�∗) be the transitive closure of (�=).

A pair of states S1, S2 ∈ Σ is join-able if there exists an S′ ∈ Σ and derivations S1 �∗ S′,
S2 �∗ S′. An abstract rewriting system 〈Σ,�〉 is:

- terminating if there is no infinite derivation (S � . . .) for all S ∈ Σ.

- locally confluent if for all S, S1, S2 ∈ Σ : S1 � S � S2 then S1 and S2 are join-able.

- confluent if for all S, S1, S2 ∈ Σ : S1 �∗ S �∗ S2 then S1 and S2 are join-able.

If a program P is both locally confluent and terminating, then P is confluent (Newman

1942). Confluence implies logical consistency of P (Abdennadher et al. 1999; Haemmerlé

et al. 2011). That is, the logical reading of P does not imply false.

Let I be any property over states such that: for all S, S′ ∈ Σ where S � S′, if I(S)

holds then I(S′) also holds. Then I is an observable invariant (Duck et al. 2007). If

we define ΣI = {S | S ∈ Σ ∧ I(S)} then program P is respectively I-terminating, I-

locally-confluent, and I-confluent if the abstract rewriting system 〈ΣI ,�〉 is terminating,

locally-confluent and confluent.

We define the set of all ground states Σg as the canonical surjection of M(Cons(∅))
onto Σ. A CHR program P is range restricted iff groundness is an observable invariant.3

Before continuing we state the monotonicity of CHR transitions as a number of proofs

of the present paper rely on it. This property means that if a transition step is possible

in a state, then it is possible in any state that contains additional constraints.

Proposition 1 (Monotonicity) Let S, T , and U be three states such that vars(S, T )∩
vars(U) ⊂ GlobalVars. If S � T holds, then so does (S ] U) �= (T ] U).

3 Consistency of Ground Confluent CHR

In our first result we show that ground-confluence with range-restrictedness guarantees

the logical consistency of programs.

Theorem 1 (Consistency) If P is range-restricted and ground confluent program, then

it is consistent.

Proof

Define H = {c | ({c} ] S) ∈ Σg and S �∗ True}. To establish consistency of P , it is

sufficient to show H is an Herbrand model for both the constraint theory and the logical

reading of the program:

For the constraint theory, clearly True ∈ H whilst False 6∈ H. Now consider an

equality constraint t = s between two ground terms. If t is syntactically equal to s, then

the derivation (t = s) �∗ True trivially holds, i.e H |= t = s. Otherwise if t syntactically

differs from s, for any S ∈ Σ we have that ({t = s}]S) = False 6�∗ True, i.e.H 6|= t = s.

For the logic reading of a simplification rule (H ⇐⇒ B), we are required to show

that H |= ∀(H ↔ ∃vars(H)B), or equivalently θ.H ⊆ I iff there exists ρ that coincides

with θ on vars(H) such that ρ.B ⊆ H. If θ.H ⊆ H then for any h ∈ H there exists

({θ.h} ]Sh) �∗ True for some Sh ∈ Σg. Therefore by monotonicity for S =
⊎

h∈H{Sh},

3 Note that our definition of range-restricted-ness is more general than the standard definition, i.e. that
vars(B) ⊆ vars(H) for all rules (H ⇐⇒ B) or (H =⇒ B).
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(θ.H ] S) �∗ True. Let S′ ∈ Σg be the state obtained by applying the simplification

rule on (θ.H ] S). By definition of �, ρ.B ⊆ S′ for some ρ that coincides with θ on

vars(H). Then S′ �∗ True by ground-confluence, and therefore ρ.B ⊆ H, i.e. H |=
θ.B. Conversely, if H |= ρ.B then for any b ∈ B there exists some Sb ∈ Σg such that

({ρ.b} ] Sb) �∗ True. Define S =
⊎

b∈B{Sb}, then by monotonicity (ρ.H ] S) �∗ True,

therefore ρ.H ⊆ S ⊆ H, i.e. H |= θ.H.

For the logical reading of a propagation rule (H =⇒ B) one may consider the simpli-

fication (H ⇐⇒ H,B) and apply previous case.

Our consistency result is similar to the original result from (Abdennadher et al. 1999),

except that it (1) uses a more general definition of range restrictedness, and (2) as-

sumes ground confluence versus confluence. Also note that ground confluence follows

from ground termination and local confluence, using Newman’s Lemma (Newman 1942).

4 Confluence for Terminating Goals

A non-confluent, non-terminating CHR program P may still be confluent and terminating

for specific goals. For example, the CHR program from the introduction has both non-

terminating and terminating goals:

F [a] a� F [b] b, a= [b]� . . . (non-termination) F [a] [a]� F a a (termination)

Since type inference is the same as CHR solving, the first goal is clearly problematic. On

the other hand, the second goal always terminates, and thus is acceptable.

In the following, we identify sufficient conditions which guarantee that if for goal S we

find some derivation S �∗ S′ where S′ is a non-False final state then (a) all derivations

starting from S will terminate and (b) these derivations lead to the same state S′. Part

(b) follows rather easily once we have (a). Hence, we first consider part (a).

4.1 Universal Termination follows from Existential Termination

We distinguish between different types of termination. Universal termination means that

all derivations from a state S will terminate, i.e. there does not exist an infinite derivation

(S �∗ . . .). In contrast, existential termination means that there exists a terminating

derivation from S, i.e. there exists at least one derivation of the form S �∗ T 6�. For

example, the goal (F [a] [a]) is both existentially and universally terminating.

Our main result is as follows: Given a range-restricted, ground-terminating and locally-

confluent program P , then a given state S is universally terminating if it is existentially

terminating to a non-False final state.

Theorem 2 (Universal Termination) Let P be a range-restricted, ground-terminat-

ing, and locally-confluent program. If S is existentially terminating to a non-False final

state, i.e. S �∗ T 6= False and T 6�, then S is universally terminating.

The proof of the Theorem 2 relies on the following lemmas.

Lemma 1 If S �∗ T , T 6= False and T 6�, then there exists a ground substitution θ

such that θ.S �∗ θ.T , θ.T 6= False and θ.T 6�.
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Proof

Let ψ be the m.g.u. of the equations in T . Let ρ = {x 7→ cx | x ∈ Vars} be a ground

substitution mapping variables to fresh constants cx. Then define θ = {x 7→ ρ.ψ(x) | x ∈
Vars} and we see that:

- θ.S �∗ θ.T by monotonicity;

- θ.T 6= False since θ is a unifier of the equations in T ; and

- θ.T 6� otherwise T � since cx were fresh constants.

Lemma 2 A set P of purely built-in propagation rules is terminating.

Proof

Let S be a state. Now consider all pairs ((H =⇒ B), ψ) such that (H =⇒ B) is a rule of

P and ψ is the m.g.u. between H and some subset S′ of S (i.e. S′ ⊆ S and ψ.H = ψ.S′).

There exists at most finitely many such pairs which we may enumerate thusly:

((H1 =⇒ B1), ψ1), . . . , ((Hn =⇒ Bn), ψn)

where the local variables of the (Hi =⇒ Bi) have been previously renamed apart. Now

let define the ranking of S as rank(S) = n − |{i | CT |= S → ψi.Bi}| where |X| is the

cardinality of the set X. One verifies that if S � T then rank(S) > rank(T ). It follows

that � is terminating.

Lemma 3 Let P be a range-restricted and ground-terminating program. Suppose there

exists an infinite derivation (S �∗ . . .) with vars(S) ⊆ GlobalVars. Then for all ground

substitution θ with domain GlobalVars, we have that θ.S �∗ False.

Proof

Assume there exists an infinite derivation of the form:

S � S1 � · · ·� Sn � · · ·

Let ρ be an arbitrary ground substitution with domain GlobalVars. By monotonicity:

ρ.S �= ρ.S1 �= · · ·�= ρ.Sn �= · · ·

Since P is ground terminating, we get that there exists some i ∈ N such that for any

j ≥ i, ρ.Si = ρ.Sj 6�. By Lemma 2, there is a k ≥ i such that the transition step

Sk � Sk+1 is induced by a simplification rule or a propagation rule with user-defined

constraints in the body. In such a case, we observe if Sk � Sk+1 and ρ.Sk 6� ρ.Sk+1

then ρ.Sk = False.

Proof of Theorem 2

By contradiction:

1. Assume there exists an infinite derivation S �∗ . . .
2. Since S �∗ T , there exists a ground substitution θ satisfying Lemma 1.

3. Then False �∗ θ.S �∗ θ.T by Lemmas 3 and 1.

4. Since θ.S is ground and θ.T 6= False, then P is not ground-confluent.

5. Since P is locally-confluent, P is ground-locally-confluent.

6. Since P is ground-locally-confluent and ground-terminating, P is ground-confluent.

7. Contradiction between 4 and 6.
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Note that Theorem 2 cannot be extended to the case where S �∗ False. For example,

consider the CHR program

P x ⇐⇒ False P x ⇐⇒ x = [y], P y

This program is range restricted, ground-terminating, and locally confluent since the only

critical pair (False � P x � x = [y], P x) is join-able. Although (P x) is existentially

terminating, i.e. (P x� False), it is not universally terminating because of the infinite

derivation (P x � x = [y], P y � x = [y], y = [z], P z � . . .). If we change the first

rule P x ⇐⇒ True (or any other non-False body), the program becomes non-locally-

confluent.

4.2 Observable Confluence w.r.t. Existential Termination

What remains is to establish confluence for terminating goals. For notational convenience,

we define T∀(S) and T∃(S) to respectively hold if state S is universally or existentially

terminating. Clearly T∀ is an observable invariant.

Lemma 4 If P is locally-confluent, then P is T∀-confluent.

Proof

Define Σ∀ = {S | S ∈ Σ∧T∀(S)}, then the abstract rewriting system 〈Σ∀,�〉 is locally-

confluent and terminating (by construction), and is therefore confluent by a straightfor-

ward application of Newman’s Lemma (Newman 1942).

Alternatively, one can use the method from (Duck et al. 2007) to prove T∀-confluence.

However, this is overkill, as P is already assumed to be locally confluent.

The condition T∃ by itself is not an observable invariant, since an existentially termi-

nating state can be rewritten into a universally non-terminating state. However, if we

define T′∃(S) to mean existential termination to a non-false state, i.e. T′∃(S) holds iff

there exists a derivation S �∗ T 6= False and T 6�, then we can state the following:

Corollary 1 Let P be a range-restricted, ground-terminating and locally-confluent pro-

gram, then P is (1) T′∃ is an observable invariant, and (2) T′∃-confluent.

Proof

By Theorem 2, T′∃ = T∀, and therefore (1) holds. By Lemma 4, P is T∀-confluent, and

therefore (2) holds.

To elaborate further: given a state S, suppose we execute S and discover a finite

derivation S �∗ T , then T is the only possible answer for S.

Corollary 2 (Uniqueness of Answers) Let P be a range-restricted, ground-terminat-

ing and locally-confluent program, if S �∗ T 6�, then for all S �∗ U 6� we have that

T = U .
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Proof

If T′∃(S) then T = U follows from Corollary 1. If ¬T′∃(S) then T = U = False since

T∃(S) holds by assumption.

Note that uniqueness of answers is not equivalent to confluence for non-terminating

programs. For example, if (. . . �∗ T �∗ S �∗ U �∗ . . .) and if T,U are non-joinable

and universally non-terminating, then P is not confluent. But P may still produce unique

answers for terminating goals.

5 Practical Implications for Type Classes

Type inference with type class constraints is an important application of CHR. Previ-

ously, strong conditions must be imposed in order to guarantee the consistency, confluence

and termination of type inference. As will be explained in this section, the results from

Sections 3 and 4 allow for the relaxation of some of these conditions, which in turn, allows

for more programs to be safely accepted.

First, we summarize the standard translation scheme from type classes to CHR, as

well as the strong conditions required for termination and confluence. The remainder of

this section discusses the relaxed conditions based on our earlier results.

5.1 From Type Classes to CHR

The basic syntax for a class-declaration is:

class D => C a1 . . . an| fd1, . . . , fdn (Class)

The declaration defines a new type-class (C a1 . . . an) where ai is a (type-variable)

argument type. Here, D is a set of (super) type-class constraints for which C depends,

and fd i is a functional dependency of the form ai1 , . . . aik->ai0 where {i0, .., ik} ⊆ 1..n.

Both D and the fd set may be empty and omitted. The basic syntax for instance-

declarations4 is:

instance D => C t1 . . . tn (Instance)

Here D is a set of type-class constraints for which the instance depends, and ti are bound

types.

For example, the following class declaration defines a (Coll c e) type-class constraint

representing an abstract collection-type c with element-type e:

class Coll c e | c -> e instance Eq a => Coll [a] a

Here the class declaration states that the element type e is functionally dependent on the

collection type c, for more formally: for all a, b, c, if (Coll a b) and (Coll a c) then b = c.

The instance declaration states that (Coll [a] a) holds for any type satisfying (Eq a).

Both class and instance declarations can be understood as syntactic sugar for collec-

tions of CHR rules (Sulzmann et al. 2007). The basic translation schema is as follows:

4 Both class and instance declarations also provide function interfaces and implementations respectively.
However, these are not relevant to type inference, so we shall ignore them here.
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For class-declarations of the form (Class) we generate the following rules:

C a1 . . . an =⇒ D (Class-Rule)

C a1 . . . an, C b1 . . . bn =⇒ ai0 = bi0 (FD-Rule)

One (FD-Rule) is generated for each fd i (of the form ai1 , . . . aik->ai0). Here bj is aj if j ∈
{i1, . . . ik}, otherwise bj is a fresh variable. Instance-declarations of the form (Instance)

generate the following rules:

C t1 . . . tn ⇐⇒ D (Instance-Rule)

C b1 . . . bn =⇒ bi0 = ti0 (Improvement-Rule)

One (Improvement-Rule) is generated per fd i provided tj is not a variable. Here bj is

tj if j ∈ {i1, . . . ik}, otherwise bj is a fresh variable. For example, the CHRs generated

by the declarations for Coll are:

Coll c e, Coll c d =⇒ e = d Coll [c] e =⇒ e = c Coll [a] a⇐⇒ Eq a

It is possible to combine the last two rules into a single rule Coll [a] e⇐⇒ e = a, Eq a

as we have done in the introduction.

5.2 Strong Conditions to guarantee Sound and Decidable Type Classes

In order for type inference to be both sound and decidable, the resulting CHR rules must

be consistent, confluent and terminating. If we allow for arbitrary class and instance

declarations, this will not always be the case.

Earlier work (Sulzmann et al. 2007) identifies a set of conditions that guarantee that the

resulting CHR rules are both terminating and confluent. The CHR resulting from instance

declarations must be terminating and class declarations must satisfy the following two

conditions:

• (Consistency Condition) Consider a pair of instance declarations for a class TC:

instance D1 => TC t1 . . . tn instance D2 => TC s1 . . . sn

Then, for each functional dependency fd i = (ai1 , ..., aik -> ai0) for TC, the following

condition must hold: for any substitution θ such that θ(ti1 , ..., tik) = θ(si1 , ..., sik)

we must have that θ(ti0) = θ(si0).

• (Coverage Condition) Consider an instance declaration for class TC:

instance D => TC t1 . . . tn (1)

Then, for each functional dependency fd i = (ai1 , ..., aik -> ai0) for TC, we require

that vars(ti0) ⊆ vars(ti1 , . . . , tik).

5.3 Relaxed Conditions to guarantee Soundness for Terminating Goals

Many practical programs violate the Coverage Condition. Recall the program

class F a b | a -> b instance F Int Bool instance F a b => F [a] [b]

which violates the Coverage Condition because vars([b]) 6⊆ vars([a]).

We cannot naively drop the Coverage Condition; but we may impose the following

Weak Coverage Condition.
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• (Weak Coverage Condition) For the instance declaration (1) and each functional

dependency fd i = (ai1 , . . . , aik -> ai0), then vars(ti0) ⊆ closure(D, vs) where

closure(D, vs) =
⋃∞

i=1 covered i(D, vs)

covered1(D, vs) =
⋃

TC t1 . . . tn ∈ D
TC a1 . . . an | ai1 , ..., aik -> ai0

{vars(ti0) | vars(ti1 , . . . , tik) ⊆ vs}

covered i+1(D, vs) = covered1(D, covered i(D, vs))

Like the Coverage Condition, the Weak coverage is sufficient to establish local confluence

of the resulting CHR rules in combination with the Consistency Condition (Sulzmann

et al. 2007). However, unlike the Coverage Condition, Weak Coverage is not sufficient to

establish termination. Recall the infinite derivation from the introduction

F [a] a � (F [b] b, a = [b]) � (F [c] c, a = [b], b = [c]) � . . .

Fortunately, such devious goals usually do not show up for realistic programs.

We can summarize the relaxed conditions as follows. Given a set C of class and instance

declarations, we derive the corresponding CHR program P from C using the translation

from Section 5.1. The relaxed conditions are essentially the same as that used by our

CHR theoretical results, namely

• (Range restrictedness): P must be range restricted;

• (Local Confluence): P must be locally-confluent; and

• (Ground Termination): P must be ground-terminating.

Range restrictedness of P can be established via simple syntactic checks. For example,

if all given instance declarations of the form (instance Ctx ⇒ H) satisfy the constraint

vars(Cxt) ⊆ vars(H), then the resulting P will be range-restricted (Sulzmann et al.

2007). Local confluence follows directly from the Weak Coverage Condition and the

Consistency Condition (Sulzmann et al. 2007).

To prove Ground Termination we can rely on the existing state-of-the-art work on

termination for CHR programs, such as (Frühwirth 2000) and (Pilozzi and Schreye 2008).

For example, we can prove that the rule (F [a] b ⇐⇒ b = [c], F a c) is ground

terminating by defining rank([x]) = 1 + rank(x). Each rule application to a ground

state decreases the rank, so any corresponding derivation must eventually terminate.

An alternative method for proving ground termination in our context is the notion of

CLP projection as described in (Haemmerlé et al. 2011). Formally, the projection of a

simplification rule (h1, . . . , hn ⇐⇒ B) is the set of Horn clauses {hi ← B | i ∈ 1, . . . n}.
The projection of a CHR program is the union of the projections of its simplifications.

If the projection of a set P of mono-headed simplifications is terminating then so is

P (Haemmerlé et al. 2011). Since purely built-in propagation rules either do not apply or

fail on ground states, there exists a direct correspondence between the ground termination

if P and its projection. We can therefore use state-of-the-art CLP termination analysis

tools to verify ground-termination of the CHR type inference programs. For instance, we

used the AProVE analyzer (Giesl et al. 2006) to automatically prove ground-termination

of all the programs given as examples in the present paper.
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5.4 Correctness of the UndecidableInstances Flag

Assuming the relaxed conditions are satisfied, we can verify the correctness of type infer-

ence in GHC under the UndecidableInstances flag. We can formalize the behavior of

this flag as follows: given a depth bound B and a goal S, we choose a bounded derivation

S � S1 � · · ·� Sb for S such that either:

- (Final State) Sb 6�, b ≤ B, then the answer is Sb; or

- (Unknown) Sb � . . ., b = B, then the answer is unknown.

An answer of unknown is reported to the user in the form of a compiler error. Otherwise,

by Corollary 2 we know that Sb is the one unique answer for any finite derivation of S.

6 Conclusion and Related Work

The idea that confluent programs are consistent can be traced back to early CHR conflu-

ence results (Abdennadher et al. 1999), but the general proof is more recent (Haemmerlé

et al. 2011). In comparison with these earlier works, the main result of Section 3 requires

a weaker form of confluence (i.e. ground confluence) in combination with the additional

condition that CHR are range-restricted. In the context of types, consistency is an im-

portant condition to guarantee type safety (“well-typed programs will not go wrong”).

Hence, the result of Section 3 provides some general consistency criteria to ensure that

type class programs are safe.

Establishing confluence in the presence of non-termination is a notoriously difficult

problem (Haemmerlé 2012). Our results in Section 4 advance the state of the art in this

area by showing that existentially-terminating goals (to non-False states) are confluent

for range-restricted, ground-terminating and locally confluent programs. These results

have an important practical applications in the type inference setting for type classes.

In our current formulation, the ground termination assumption trivially rules out super

classes, i.e. CHR rules which propagate user constraints. Range-restrictedness rules out

instance declarations such as (instance (F a c, F c b) => F [a] [b]) since variable

c does not appear in F [a] [b]. We believe that it is possible to relax both restrictions.

This is something we plan to investigate in future work.

In another direction, we intend to investigate to what extent our results are transferable

to type functions (Schrijvers et al. 2008), a concept related to type classes with functional

dependencies.

From the point of view of general CHR confluence state of art, we plan generalizing

consistency of ground-confluent but non range-restricted program by using CLP projec-

tion (Haemmerlé et al. 2011). It seems also worthwhile to prove ground-confluence of non

ground-terminating programs using diagrammatic techniques (Haemmerlé 2012).
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