
Extending Arbitrary Solvers with Constraint Handling
Rules

Gregory J. Duck
Peter J. Stuckey

Dept. of Computer Science
and Software Engineering

University of Melbourne, 3010
Australia

{gjd,pjs}@cs.mu.oz.au

Maria Garcia de la Banda
School of Computer Science

and Software Engineering
Monash University, 3800

Australia

mbanda@csse.monash.edu.au

Christian Holzbaur,
Dept. of Medical Cybernetics

and Artificial Intelligence
University of Vienna

Austria

christian@ai.univie.ac.at

ABSTRACT
Constraint Handling Rules (CHRs) are a high-level commit-
ted choice programming language commonly used to write
constraint solvers. While the semantic basis of CHRs allows
them to extend arbitrary underlying constraint solvers, in
practice, all current implementations only extend Herbrand
equation solvers. In this paper we show how to define CHR
programs that extend arbitrary solvers and fully interact
with them. In the process, we examine how to compile such
programs to perform as little recomputation as possible, and
describe how to build index structures for CHR constraints
that are modified automatically when variables in the un-
derlying solver change. We report on the implementation
of these techniques in the HAL compiler, and give empirical
results illustrating their benefits.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Constraint and logic languages; D.3.3 [Programming
Languages]: Language Constructs and Features—Constraints;
D.3.4 [Programming Languages]: Processors—Compil-

ers

General Terms
Languages, algorithms

Keywords
constraint handling rules, compilation, constraint solvers

1. INTRODUCTION
Constraint handling rules [6] (CHRs) are a flexible formal-

ism for writing constraint solvers and other reactive systems.
In effect, the rules define transitions from one constraint set

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’03, August 27–29, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-705-2/03/0008 ...$5.00.

leq(A,A) <=> true.
leq(A,B), leq(B,A) <=> A = B.
leq(A,B) \ leq(A,B) <=> true.
leq(A,B), leq(B,C) ==> leq(A,C).

Figure 1: A CHR program for ordering constraints
leq extending a Herbrand solver.

to an equivalent constraint set, which serve to simplify con-
straints and detect satisfiability and unsatisfiability. CHRs
have been used extensively (see e.g. [9]) and efficient im-
plementations are already available for languages such as
SICStus Prolog, Eclipse Prolog, Java [11], and HAL [4].

While the semantic basis of CHRs assumes an arbitrary
underlying constraint system, in practice, implementations
of CHRs only extend builtin Herbrand equation solvers.
This means that the interactions between an underlying
solver and the CHR system are not made explicit, but hid-
den in the implementation. In order to allow CHRs to ex-
tend arbitrary solvers, we need to examine exactly what
these interactions are, and provide enough information to
the CHR compiler to connect the two solvers. Let us illus-
trate the possible interactions with a simple example.

Example 1. Figure 1 shows a simple CHR solver which
extends a Herbrand equation solver by defining the ordering
constraint leq. The first rule states that if there exists a
CHR constraint of the form leq(A,A’) for which A and A′

are identical, the constraint can be replaced by true since
the ordering relation trivially holds. The second rule states
that if there exist two CHR constraints with identical argu-
ments A and B in opposite order, the two constraints can be
replaced by the Herbrand constraint A = B. The third rule
states that given two identical occurrences of a CHR con-
straint, we can replace one by true. Finally, the fourth rule
states that given two CHR constraints of the form leq(A,B)

and leq(B’,C) where B and B′ are identical, then we should
add the transitive ordering relation leq(A,C). Consider now
the execution of goal leq(X,Y), X = Y. The execution will
first add the CHR constraint leq(X,Y) to the store, which
cannot by itself cause the application of any of the previous
four rules. Once the Herbrand constraint X = Y is added to
the Herbrand store, however, the first rule can be applied.
2

We can see three kinds of interaction between the CHR

solver and the underlying Herbrand solver in the example
above.

• First, the CHR solver adds new constraints to the Her-
brand solver, as in the second rule.

• Second, the CHR solver asks the Herbrand solver whether
the equality of two terms is entailed, as in the first rule.

• Third, the Herbrand constraint solver must alert the
CHR solver when changes in the Herbrand constraint
store might cause entailment tests to succeed, as in
the example goal. This is because the CHR rules then
need to be reconsidered to check whether they can now
be applied.

Constraint solvers, by definition, provide methods that al-
low new constraints to be added to their store. It is the last
two kinds of interaction that need a well defined interface
if we wish to extend an arbitrary underlying solver. Fur-
thermore, in order to support efficient computation of CHR
rules, indexes should be used to quickly detect possible rule
firings [10]. If these indexes are based on solver variables,
they depend on the underlying solver and, hence, the solver
needs to communicate changes to the index.

The contributions of this paper are

• We show what features a solver must support in or-
der to be extended by CHRs, and how we make these
features visible to the HAL CHR compiler.

• We show how to reduce the amount of rule rechecking
required by taking into account which changes in the
underlying solver can cause a rule to fire.

• We show two methods to effectively build indexes for
supporting CHR join computation over solver vari-
ables. Previous indexes were restricted to ground data.

The rest of the paper is organized as follows. In the next
section we define CHRs together with their logical and oper-
ational semantics. Section 3 illustrates the basic compilation
approach of CHRs. Section 4 shows how the CHR compiler
can be informed about the capabilities of constraint solvers
for entailment testing. In Section 5 we show how the compi-
lation can minimize the amount of rechecking required, by
better understanding how changes in the underlying solver
store affect entailment testing. In Section 6 we discuss the
use of indexes for CHRs that use solver variables. Section 7
presents the results of some experiments illustrating the ben-
efits of specialized rechecking and indexes. Finally, Section 8
concludes.

2. CONSTRAINT HANDLING RULES
Constraint Handling Rules manipulate a global multiset

of primitive CHR constraints (the CHR constraint store),
using multiset rewrite rules which can take three forms

simplification c1, . . . , cn ⇐⇒ g | d1, . . . , dm

propagation c1, . . . , cn =⇒ g | d1, . . . , dm

simpagation c1, . . . , cl \ cl+1, . . . , cn ⇐⇒ g | d1, . . . , dm

where the head c1, . . . , cn is a conjunction of CHR con-
straints, the guard g is a conjunction of constraints from
the underlying solver, and the body d1, . . . , dm is a conjunc-
tion of CHR constraints and constraints of the underlying
solver. Note that the guard is optional and, if omitted, it

is equivalent to g ≡ true. A CHR program is a sequence of
CHRs.

The simplification rule states that given a constraint store
where the constraints in the underlying solver imply that
there exists a multiset {c′1, . . . , c

′
n} in the CHR store which

matches the multiset {c1, . . . , cn} and the guard g holds,
then we can eliminate {c′1, . . . , c

′
n} from the CHR store and

add the multiset {d1, . . . , dm}. The propagation rule states
that, for a matching constraint multiset {c′1, . . . , c

′
n} where g

holds, we should add {d1, . . . , dm} to the store. The simpa-
gation rules states that, given a matching constraint multiset
{c′1, . . . , c

′
n} where g holds we can eliminate {c′l+1, . . . , c

′
n}

from the store and add {d1, . . . , dm}.
More formally, the logical interpretation of the rules is as

follows.

simpl ∀x̄(∃ȳ g) → (c1 ∧ · · · ∧ cn ↔ (∃z̄ d1 ∧ · · · ∧ dm))
propa ∀x̄(∃ȳ g) → (c1 ∧ · · · ∧ cn → (∃z̄ d1 ∧ · · · ∧ dm))
simpa ∀x̄(∃ȳ g) → (c1 ∧ · · · ∧ cn ↔ (∃z̄ c1 ∧ · · · ∧ cl ∧

d1 ∧ · · · ∧ dm))

where x̄ are the variables occurring in the head of the rule, ȳ
are the variables local to the guard, and z̄ are the variables
local to the body. We assume, for simplicity, that no local
variables appear in both the guard and the body (i.e., that
ȳ ∩ z̄ ⊂ x̄).

The operational semantics of CHRs exhaustively applies
rules to the global multiset of constraints, being careful not
to apply propagation rules twice on the same constraints
(to avoid infinite derivations). It can be described as a tran-
sition system on a triple 〈s, u, t〉v where s represents the
set of (numbered) CHR constraints currently in the CHR
constraint store, u represents the conjunction of constraints
currently in the underlying solver’s store, t represents the
set of (propagation rule) transitions that have already been
applied, and v is a sequence of variables. The logical read-
ing of 〈s, u, t〉v is as ∃ȳ(s ∧ u) where ȳ are the variables in
the tuple not in v. The role of v is simply to record the
universally quantified variables.

The transitions are defined as follows. Consider the tuple
〈s, u, t〉v and the (renamed apart) instance R of a propaga-
tion rule numbered a

c1, . . . , cn =⇒a g | d1, . . . , dk, dk+1, . . . , dm

where d1, . . . , dk are CHR constraints, and dk+1, . . . , dm are
constraints of the underlying solver. Let us assume that
there are numbered CHR constraints {c′i1 , . . . , c′in

} ⊆ s such
that |= u → ∃x̄(c1 = c′i1 ∧ · · · ∧ cn = c′in

∧ g), where x̄ are
the variables in R and there is no entry (a, i1, . . . , in) in t.
Then, a transition can be performed to give new state 〈s ∪
{d1, . . . , dk}, u∧ dk+1 ∧ · · · ∧ dm, t∪ {(a, i1, . . . , in)}〉v where
the new constraints added to s are given new id numbers.

The rule for simplification is simpler. Consider the tuple
〈s, u, t〉v and the (renamed apart) instance R of the simpli-
fication rule

c1, . . . , cn ⇐⇒ g | d1, . . . , dk, dk+1, . . . , dm

where, d1, . . . , dk are CHR constraints, and dk+1, . . . , dm

are constraints of the underlying solver. Let us assume
that there are numbered CHR constraints {c′i1 , . . . , c′in

} ⊆
s such that |= u → ∃x̄(c1 = c′i1 ∧ · · · ∧ cn = c′in

∧ g),
where x̄ are the variables in R. Then, the resulting tuple
is 〈s − {c′i1 , . . . , c′in

} ∪ {d1, . . . , dk}, u ∧ dk+1 ∧ · · · ∧ dm, t〉v,
where, again, the new constraints added to s are given new

min(A,B,C)1 <=> A =< B | C = A.
min(A,B,C)2 <=> B =< A | C = B.
min(A,B,C)3 ==> C =< B, C =< A.
min(A,B,C)5 \ min(A,B,D)4 <=> C = D.

Figure 2: A simple min/3 solver based on extending
a finite domain solver.

id numbers. The transition for a simpagation rule is defined
analogously to the simplification rule. For more details see
e.g. [1].

Example 2. Consider the CHR program given in Fig-
ure 2 which extends an existing finite domain solver (fdint)
that supports constraints of the form A ≤ B and A = B.
The occurrences of min/3 are numbered for later reference.
The new constraint min(A,B,C), which is satisfied iff C is
the minimum of A and B, is defined using four rules whose
logical reading is as follows. The first rule (a simplification
rule) states that if the finite domain solver can determine
that A ≤ B, then min(A,B,C) is equivalent to the finite
domain constraint C = A. The second rule is similar but
for the case B ≤ A. The third rule (a propagation rule)
states that if min(A,B,C) holds, then we require that the
finite domain constraints C ≤ A and C ≤ B also hold. The
last rule (a simpagation rule) encodes the functional depen-
dency min(A, B, C) ∧ min(A, B, D) → C = D by stating
that if both min(A,B,C) and min(A,B,D) hold, this is equiv-
alent to having only one of them hold and the finite domain
constraint C = D.

The operational reading of these rules is as follows. The
first rule can be applied if there is a constraint min(A,B,C) in
the CHR store for which the finite domain solver can deter-
mine that A ≤ B. In that case, it will eliminate min(A,B,C)

from the CHR store and add the finite domain constraint
C = A to the FD store. Similarly for the second rule. The
third rule can be applied for any constraint min(A,B,C) in
the CHR store with identifier i for which the tuple (3, i) 6∈ t.
If so, it will add the finite domain constraints C ≤ A and
C ≤ B to the FD store, and the tuple (3, i) to t. Finally,
the fourth rule can be applied if there are two constraints of
the form min(A,B,C) and min(A,B,D) in the CHR store. If
so, it will remove the second one and add the finite domain
constraint C = D to the FD store. 2

3. BASIC COMPILATION OF CHRS
In this section we recall how CHRs are compiled to logic

programs, see [8, 10] for more details. Compilation starts
with a preprocessing step to make all guards explicit, since
non-variable terms and matching variables appearing in the
head of a rule actually indicate guards. Normalization is
achieved by iteratively applying the following steps

1. If variable X appears more than once in the head of a
rule, replace one location with a new variable, say X ′,
and add the constraint X = X ′ to the guard.

2. If any argument of any CHR constraint in the head of
a rule is not a variable (say some term c), then replace
with a new variable, say X ′, and add the constraint
X ′ = c to the guard

After normalization, each head simply provides the multiset
of names of constraints which can match that rule, while the
guard indicates which such multisets actually match.

leq(A,A’)1 <=> A = A’ | true.
leq(A,B)3, leq(B’,A’)2 <=> A = A’, B = B’ | A = B.
leq(A,B)5 \ leq(A’,B’)4 <=> A = A’, B = B’ | true.
leq(A,B)7, leq(B’,C)6 ==> B = B’ | leq(A,C).

Figure 3: Example CHR program for ordering con-
straints leq with explicit guards.

Example 3. Consider the CHR program in Figure 1. Fig-
ure 3 shows the result of normalizing this program. We have
also numbered each occurrence of leq/2 in the head of a rule;
this will be used later in the compilation process. 2

After normalization is performed, the compilation of CHRs
needs to produce code that determines when to fire rules.
The operational semantics introduced in the previous sec-
tion is highly abstract, leaving such question unresolved. In
practice, execution proceeds as follows. Every time a new
CHR constraint (the active constraint) c is placed in the
store, we search for a rule that can now fire thanks to c, i.e.,
a rule for which there is now a multiset of CHR constraints
(including c) in the CHR store that matches its head and
causes the guard to hold. The first (in the textual order
they appear in the program) such rule R found is fired. If
c has not been deleted by R, we continue checking for more
rules that can make use of c.

The above method is usually implemented by associating
code to each occurrence of a constraint in the head of a
rule R (i.e., each ci in R). The code will be executed if
the active constraint c matches the associated occurrence
ci. The aim of the code is to search for partner constraints
(i.e., constraints in the store that match other cj , j 6= i in the
head of R) that, together with c, will entail the guard and
cause R to fire. Compiling CHRs thus consists of creating
code for each occurrence ci in the program, and joining these
in textual order.

There are two kinds of search for partners: existential

search which looks for a single set of partners and universal

search which looks for all possible partners. The former
is used if the active constraint gets deleted by R since, as
soon as we find the first set of partners, R fires and the
active constraint is deleted making it impossible for R to
fire again. The latter is used if the active constraint does
not get deleted by the rule since then the same rule can fire
multiple times, one for each set of partners found.

Example 4. Figure 4 shows the (simplified) code pro-
duced by the compilation of the normalized CHR program
shown in Figure 3. When a new active leq(X,Y) constraint
is executed, it is first given a new identifier by new id(Id),
then it is added to the store (using insert(X,Y,Id)).1 , Next
some delay goals are set up (by delay leq(X,Y,Id)) for re-
checking the active constraint, we defer discussion of how
this works until Section 5. Finally, the code leq i(X,Y,Id)
associated to each leq(X,Y)i in Figure 3, is called in turn.

The reader should feel free to skip the rest of the descrip-
tion of the code in Figure 4. It gives a reasonably detailed
understanding of the CHR compilation process, not all of

1For simplicity, we give an implementation of the CHR con-
straint store using a Prolog database. This will not work
correctly for non-ground constraints, (since the variables
identities are not maintained) but illustrates concisely the
meaning of the predicates for store manipulation. In prac-
tice, lists of constraints are stored internally.

leq(X,Y) :- new id(Id), insert leq(X,Y,Id),
delay leq(X,Y,Id), leq(X,Y,Id).

leq(X,Y,Id) :-
leq 1(X,Y,Id), leq 2(X,Y,Id), leq 3(X,Y,Id),
leq 4(X,Y,Id), leq 5(X,Y,Id), leq 6(X,Y,Id).
leq 7(X,Y,Id).

leq 1(X,Y,Id) :- (alive(Id), X == Y -> delete(Id) ; true).
leq 2(X,Y,Id) :- (alive(Id),

a leq(A,B,Id2), Y == A, X == B, Id 6= Id2 ->
delete(Id), delete(Id2), X = Y

; true).
leq 3(X,Y,Id) :- leq 2(X,Y,Id).
leq 4(X,Y,Id) :-

(alive(Id),a leq(A,B,Id2), X == A, Y == B, Id 6= Id2 ->
delete(Id)

; true).
leq 5(X,Y,Id) :- all leq(L), leq 5a(L,X,Y,Id).
leq 5a([], , ,).
leq 5a([leq(A’,B’,Id2)|L],X,Y,Id) :-

(X == A’, Y == B’, alive(Id), alive(Id2) -> delete(Id2)
; true),
leq 5a(L,X,Y,Id).

leq 6(X,Y,Id) :- all leq(L), leq 6a(L,X,Y,Id).
leq 6a([], , ,).
leq 6a([leq(A,B,Id2)|L],X,Y,Id) :-

(B==X, \+ fired(leq,4,Id2,Id),alive(Id),alive(Id2) ->
assert(fired(leq,4,Id2,Id)), leq(A,Y)

; true),
leq 6a(L,X,Y,Id).

leq 7(X,Y,Id) :- all leq(L), leq 7a(L,X,Y,Id).
leq 7a([], , ,).
leq 7a([leq(B’,C,Id2)|L],X,Y,Id) :-

(B’==Y, \+ fired(leq,4,Id,Id2),alive(Id),alive(Id2) ->
assert(fired(leq,4,Id,Id2)), leq(X,C)

; true),
leq 7a(L,X,Y,Id).

alive(Id) :- sleq(, ,Id).
delete(Id) :- retract(sleq(, ,Id)).
a leq(X,Y,Id) :- sleq(X,Y,Id).
all leq(L) :- findall(leq(A,B,Id2),sleq(A,B,Id2),L).
insert leq(X,Y,Id) :- assert(sleq(X,Y,Id)).

Figure 4: Compiled code for a new active leq con-
straint.

which is required to understand the rest of the paper. For
the curious reader, here is an explanation of the code.

The code associated to the first occurrence first checks
that the constraint is still alive. This is in fact needed by
the code of every occurrence since the occurrence could have
been removed at some point before executing the code. If
the occurrence is indeed alive it checks whether the guard is
satisfied (the two arguments are in fact the same variable),
in which case it deletes the constraint.

The code associated to the second occurrence checks the
active constraint is still alive and, if so, it searches for a
stored leq constraint that (a) matches occurrence 3, (b)
has the same arguments as the second occurrence in the
opposite order, and (c) is not the active constraint (i.e., it
has a different identifier). If such a constraint exists, then
both constraints are deleted, and the body of the rule A

= B is executed. This is an example of existential search.
The code for the third occurrence is identical to that of the
second occurrence.

The code for the fourth occurrence is similar to that of
the second, except the arguments should appear in the same

order, and only the active constraint is deleted. The code for
the fifth occurrence requires universal search since the active
constraint will not be deleted. In doing this it collects all
the stored leq constraints and iterates through them one by
one looking for matching partners which are then deleted.

The code for the sixth occurrence is the first example of
a propagation rule. Like the code for occurrence five, it
collects all the stored leq constraints, and iterates through
them looking for a match. It also checks that this rule has
not fired before using the same CHR constraints. Finally,
just before firing, it checks that both constraints are still
alive. If so, it records information about the firing and then
executes the body of the rule. The seventh occurrence is
similar. 2

The code given in Figure 4 has been simplified for ease
of explanation. In practice, many optimizations are also ap-
plied (see [10] for details) to improve efficiency. For example,
the code for occurrence 3 can be removed since it is identical
to that of occurrence 2. The code for occurrence 5 can also
be removed since it will never fire (occurrence 4 will always
remove the active constraint first). Furthermore, the code
could postpone adding the leq constraint to the store (in
case it is going to be removed immediately after), and re-
move unnecessary checks for liveness (see Example 13 later).

The operational semantics illustrated above glossed over
two important points related to the interaction of CHRs
with arbitrary constraints solvers: the need for guard en-
tailment testing and the need to reconsider CHR rules to
check whether the guard is now entailed. These issues will
be discussed in the next two sections.

4. GUARD ENTAILMENT TESTING
Let R be a normalized CHR rule with guard g. The op-

erational semantics of CHRs dictates that R can only fire
iff g is entailed by the matching and the current state u of
the underlying solver. In practice, this means that the un-
derlying solver must not only provide a procedure for telling

a constraint (adding it to the underlying constraint store)
whenever it appears in the body of the rule, but also a pro-
cedure for asking a constraint (determining if the guard is
entailed by the current underlying constraint store) when-
ever it appears in the guard of the rule. For example, in the
case of the Herbrand solver used previously, the only tell
constraint (=/2) has the known associated ask constraint
==/2.

Solvers in HAL must define a type for the solver variables
(e.g., fdint), and code to initialize new solver variables.
Often a solver variable will be some form of pointer into a
global store of variable information. The solver also defines
predicates for the constraints supported by the solver. These
predicates define tell constraints for that solver (e.g., they
provide the code for predicate X =< Y which adds constraint
X ≤ Y to the solvers store). Often the solver is also pack-
aged as an appropriate instance of a solver type class, and
thus the solver is known to provide at least the constraints
included in the type class interface. For more details on
HAL solver classes see e.g., [3].

In order for a constraint solver to be extended by CHRs,
the solver needs to provide ask versions of the constraints
that it supports. It is the ask version of the constraints that
should be used in guards. For example, the first rule of the
min program shown in Figure 2 should be re-written as

min(A,B,C) <=> ’ask =<’(A,B) | C = A.

where ask =< is the ask version of the finite domain =< con-
straint.

This transformation is performed automatically by the
compiler because

• this removes the burden from the programmer of un-
derstanding the relationships between tell and ask con-
straints, thus reducing the number of programmer er-
rors; and

• the original rule is far simpler and more aesthetic, cap-
turing the programmers intentions more clearly.

In fact, such automatic transformation is performed by
every CHR implementation we know of. However, these
implementations only deal with one underlying constraint
solver (Herbrand). When arbitrary solvers are used, the
compiler needs a general method for determining the rela-
tionship between the tell and ask versions of each constraint
so that it can automatically transform one into the other.
In HAL this is achieved by the following asks declaration.

:- <ask-constraint> asks <tell-constraint>.

which defines a mapping from a tell to an ask constraint.
Hence, the finite domain solver fdint might declare

:- ’ask =<’(X,Y) asks X =< Y.
:- X == Y asks X = Y.

The asks declaration is effectively a macro definition on
which the following restrictions apply. Each tell constraint
can only have one associated ask constraint (although an
ask constraint can be associated to more than one tell). The
arguments of the tell-constraint must be distinct variables,
and only these and anonymous variables can appear in the
corresponding ask-constraint. And finally, the ask constraint
must be defined for the type of arguments of the associated
tell constraints, it must be usable in any mode in which the
associated tell constraints are, and it should either succeed
once or fail.

Example 5. The result of compiling the CHR program of
Figure 2 in the presence of the two ask declarations included
above, is shown in Figure 5. Note the transformation of the
guard constraints. 2

A predicate is recognized by the compiler as a tell con-
straint iff it has been declared as having an associated ask
constraint. The compiler automatically replaces each such
tell constraint which textually appears in a guard with its
ask version. HAL (and Prolog CHR implementations) also
allow arbitrary predicates in the guard. This means that tell
constraints nested inside the guard will be treated as tells,
when perhaps this was not the intention of the programmer.
The HAL compiler warns if this can occur.2

The need for connecting tell constraints with ask con-
straints has been recognised before. SICstus Prolog allows

2Since Prolog implementations only interact with the Her-
brand solver, there is a devious technique of marking vari-
ables appearing in the guard, to check that no guard variable
is modified. This effectively at runtime converts Herbrand
tell constraints to ask constraints. It does not however no-
tice or convert constraints for other solvers, such as SICStus
Prologs built in clpfd finite domain solver. Hence, it can
give equally erroneous behavior.

min(X,Y,Z) :- new id(Id), insert min(X,Y,Z,Id),
delay min(X,Y,Z,Id), min(X,Y,Z,Id).

min(X,Y,Z,Id) :-
min 1(X,Y,Z,Id), min 2(X,Y,Z,Id),
min 3(X,Y,Z,Id), min 4(X,Y,Z,Id), min 5(X,Y,Z,Id).

min 1(X,Y,Z,Id) :-
(alive(Id), ’ask =<’(X,Y) -> delete(Id), Z = X ; true).

min 2(X,Y,Z,Id) :-
(alive(Id), ’ask =<’(Y,X) -> delete(Id), Z = Y ; true).

min 3(X,Y,Z,Id) :-
(\+ fired(min,3,Id),alive(Id) ->

assert(fired(min,3,Id)), Z =< X, Z =< Y ; true).
min 4(X,Y,Z,Id) :-

(alive(Id), a min(A,B,C,Id2), alive(Id2),
A == X, B == Y -> delete(Id), C = Z

; true).
min 5(X,Y,Z,Id) :- all min(L), min 5a(L,X,Y,Z,Id).
min 5a([], , , ,).
min 5a([min(A,B,C,Id2)|L],X,Y,Id) :-

(X == A, Y == B, alive(Id), alive(Id2) ->
delete(Id2), Z = C ; true),

min 5a(L,X,Y,Z,Id).

Figure 5: Code for executing an active min/3 con-
straint.

finite domain constraints defined by indexicals to be defined
with an attached ask version.

It is sometimes possible to provide useful default imple-
mentations of ask constraints. For example, when all argu-
ments are ground the ask constraint and tell constraint are
known to be equivalent. Thus, for solvers that support the
notion of a fixed variable (i.e., can check whether a variable
is fixed to a single value) we can provide a useful default ask
constraint defined as follows:

:- ask p(A1,...,An) asks p(A1,...,An).
ask p(A1,...,An):- val(A1,), ..., val(An,), p(A1,...,An).

where the call val(Var,Val) succeeds if solver variable Var

has the fixed value Val.3 We plan to extend the solver type
classes [7] provided by HAL to include asks declarations,
which will make it possible to automate the construction of
ask defaults using the default class methods of HAL.

5. RECHECKING RULES
An ask constraint succeeds if the underlying solver can

prove that the constraint is entailed by the current store.
Changes in the constraint solver can make an ask constraint
succeed when it previously failed. Hence, when the under-
lying solver store changes we should revisit the CHR rules
to see if they can now fire. This requires the CHR compiled
code to establish a connection between the CHR constraints
and the underlying solver so that the CHR constraints can
be re-checked when necessary.

Current implementations of CHRs only extend the Her-
brand solver and manage re-checking of constraints as fol-
lows. Anytime a variable occurring in a CHR constraint
is modified (and this could just mean that a variable in the
term is bound to another variable occurring in a CHR), then
that CHR constraint is rechecked.

Example 6. The (missing) definition of the predicate
delay leq(X,Y,Id) from Figure 4 finds all the variables oc-
curring in the term leq(X,Y) and attaches a delay goal to
3For example, the value returned by val on a fixed fdint
variable will be an integer (int).

each variable so that when it is modified the goal leq(X,Y,Id)
is executed, thus treating the constraint as active once more
and checking for any possible partners. Note that by re-
executing leq(X,Y,Id) instead of the original constraint
leq(X,Y) the re-activated constraint (a) is not added (again)
to the store, and (b) keeps the original identification num-
ber, thus preventing it from firing propagation rules twice.
2

The above solution works because Prolog CHRs only ex-
tend the Herbrand solver. To extend arbitrary solvers a
more general method is needed. In this section we discuss
the approach implemented within the HAL compiler.

HAL allows the creation of solvers that support dynamic
scheduling [3]. A dynamically scheduled construct has the
form

cond1 ==> goal1 || ... || condn ==> goaln

where each wake condition condi represents some sort of
solver event, such as “the variable X has been touched”
“the lower bound of X has changed”, etc, and goali is a
HAL goal. Here, the token ‘==>’ should not be confused
with the CHR propagation arrow.4

Example 7. Consider our example fdint finite domain
solver introduced in Example 2. The wake conditions sup-
ported by this solver (the usual ones for a finite domain
solver) are
fixed(X) the domain of X is reduced to a single value.
lbc(X) the lower bound of X changes (increases).
ubc(X) the upper bound of X changes (decreases).
dc(X) the domain of X changes (reduces).

Note that these conditions are not mutually exclusive. For
example, if the domain of X changes from {1, 3, 5} to {1},
then the conditions fixed(X), ubc(X) and dc(X) all hold. 2

The delay construct introduced above causes each goal
goali to be (re)executed every time the wake condition condi

holds. Note that, by default, a wake condition can become
true multiple times and that, therefore, the associated goal
will be re-executed every time this happens. HAL associates
a unique identifier with every delay construct and allows the
user to “kill” the entire construct by including the literal
kill inside any of the goali. This is useful, whenever the
success of a wake condition means there is no further benefit
in re-executing the other goals. More information about
HAL’s dynamic scheduling interface can be found in [3].

We can use the above dynamic scheduling construct to
reconsider CHR constraints whenever changes in the store
of the underlying solver make it necessary.

Example 8. Consider the compiled code of Figure 5 and
the fdint finite domain solver. We can use the dc condition
introduced in the previous example to implement a näıve
delay min predicate which will recheck the min constraint
any time one of the domains of its variables changes.

delay min(X,Y,Z,Id) :-
(dc(X) ==> min(X,Y,Z,Id)
|| dc(Y) ==> min(X,Y,Z,Id)
|| dc(Z) ==> min(X,Y,Z,Id)).

4Dynamic scheduling syntax existed in HAL before CHRs
were added.

Then, the execution of goal

[X,Y,Z] in 0..9, min(X,Y,Z), Z 6= 2, Y ≤ 3, X ≥ 5.

proceeds as follows. First, [X,Y,Z] in 0..9 is added to the
fdint store, causing the domains of the variables X, Y and
Z to be set to {0..9}. Next, min(X,Y,Z,1) is added to the
CHR store, its delay goals are set up, and its occurrences
are checked. In checking its occurrences only occurrence
three (third rule) causes the rule to fire, resulting in the two
fdint constraints Z ≤ X and Z ≤ Y being added to the
fdint store. Neither of these constraints changes the do-
mains of the variables and, therefore, min(X,Y,Z,1) is not
re-executed. When the next constraint Z 6= 2 is added to
the fdint store, the domain of Z becomes {0..1, 3..9}. Since
the finite domain of Z has changed, min(X,Y,Z,1) is re-
executed. Again, only the third rule can fire, but since it
has already fired for Id = 1, the rule is not reapplied. We
then add Y ≤ 3 to the fdint store, which changes the do-
main of Y to {0..3} and that of Z to {0..1, 3}. This causes
min(X,Y,Z,1) to be re-executed twice and, again, no new
rule is fired. Finally, X ≥ 5 is added changing the domain
of X to {5..9}. This causes min(X,Y,Z,1) to be re-executed,
and the second rule to fire since Y ≤ X now holds. Thus
min(X,Y,Z,1) is deleted from the store and the constraint
Z = Y is added to the fdint store changing the domain of
Y to {0..1, 3}. This causes min(X,Y,Z,1) to be re-executed
but since the constraint is no longer alive the execution ter-
minates. 2

The näıve re-execution above rechecks every possible rule
every time the solver state for the variables involved changes.
Often this causes no new rules to fire. We can improve upon
this by (a) determining a set of wake conditions which ac-
curately signal the possible entailment of an ask constraint,
and (b) building code that only reconsiders occurrences as-
sociated to those ask constraints.

Example 9. Consider the following implementation of
the ask ‘≤’ constraint for the fdint finite domain solver:

’ask =<’(X,Y) :-
UBX = fd max(X), %% get current X upper bound
LBY = fd min(Y), %% get current Y lower bound
UBX =< LBY. %% integer comparison

where functions fd max/1 and fd min/1, respectively, return
the (integer) upper and lower bounds of a variable’s current
domain. Note that this is an incomplete test since, even
if the constraint X ≤ Y has been added to the store, the
ask constraint may not succeed. Given this definition, the
answer to the ask constraint will only change if the wake
conditions ubc(X) or lbc(Y) becomes true. Other possible
conditions will never signal a possible change in the answer
to the ask constraint, unless one of these conditions also
occurs.

Consider the following implementation of the ask ’=’ con-
straint for the fdint solver:

X == Y :- val(X,Value), val(Y,Value).

The ask constraint for X = Y (X == Y) will only succeed if
X and Y are both fixed to the same value. As in most finite
domain solvers the implementation of the ask ’=’ constraint
is quite incomplete. Given this definition, the only wake
conditions where we should re-check a X = Y guard are
fixed(X) or fixed(Y).

Constraint Conditions

X = Y fixed(X), fixed(Y)

X 6= Y dc(X), dc(Y)

X ≤ Y ubc(X), lbc(Y)

X ≥ Y lbc(X), ubc(Y)

Figure 6: Relationship between finite domain ask
constraints and wake conditions.

A list of finite domain ask constraints and the correspond-
ing wake conditions is given in Figure (6). X ≥ Y ask
constraints may change answers on lbc(X) or ubc(Y), the
opposite for ≤ constraints. Disequality ask constraints (6=)
may change answers on any generic domain change. 2

Even in the case of a Herbrand solver we can do better
than examine every rule for each CHR constraint whenever a
variable in that CHR is bound (perhaps to another variable).

Example 10. The HAL Herbrand solver supports two
wake conditions: touched(X) if the variable X is touched
(bound to another variable or a structure), and bound(X) if
the variable X is bound to a structure. An ask constraint
of the form X = Y must be revisited if either X or Y are
touched, while an ask constraint of the form X = f(Y) need
only be revisited if X is bound.

The leq/2 example does not include any ask constraints
with structure, hence this provides no improvement. But we
can still improve the näıve wakeup of the Prolog methodol-
ogy by noticing that, for occurrence 6, only changes in the
first argument can signal the entailment of its guard, since
the second argument does not appear in it. Similarly occur-
rence 7 only depends on the second argument. 2

In order to allow each solver to provide a list of the rel-
evant wake conditions for each ask constraint, We extend
the asks declaration (introduced in the previous section)
to allow each solver to provide a list of the relevant wake
conditions for each ask constraint, as follows

:- <ask-constraint> asks <tell-constraint>
[wakes <wake-condition>∗].

The first part of the declaration is the same as before, where
a mapping between an ask and tell constraint is defined. The
new part, prefixed by token ‘wakes’, provides a list of wake
conditions that may cause the ask constraint to succeed.
We shall refer to this as the wakes list. The wakes list is
optional, and by default it will be empty.5 The HAL com-
piler uses type analysis to ensure that each wake condition
is supported by the solver.

Example 11. Our finite domain solver fdint provides
the following declarations:

:- ’ask =<’(X,Y) asks X =< Y wakes [ubc(X),lbc(Y)].
:- X == Y asks X = Y wakes [fixed(X),fixed(Y)].

indicating that the ask X =< Y constraint only needs to be
re-checked whenever the ubc(X) or lbc(Y) conditions be-
come true. Similarly, the ask X = Y constraint only needs
to be re-checked whenever the fixed(X) or fixed(Y) condi-
tions become true. 2

5An empty wakes list implies no wake condition affects the
ask constraint.

delay min(X,Y,Z,ID) :-
(ubc(X) ==> ubc X min(X,Y,Z,ID)
|| ubc(Y) ==> ubc Y min(X,Y,Z,ID)
|| lbc(X) ==> lbc X min(X,Y,Z,ID)
|| lbc(Y) ==> lbc Y min(X,Y,Z,ID)
|| fixed(X) ==> fixed X min(X,Y,Z,ID)
|| fixed(Y) ==> fixed Y min(X,Y,Z,ID)
).

ubc X min(X,Y,Z,ID) :- min 1(X,Y,Z,ID).
ubc Y min(X,Y,Z,ID) :- min 2(X,Y,Z,ID).
lbc X min(X,Y,Z,ID) :- min 2(X,Y,Z,ID).
lbc Y min(X,Y,Z,ID) :- min 1(X,Y,Z,ID).
fixed X min(X,Y,Z,ID) :- min 4(X,Y,Z,ID), min 5(X,Y,Z,ID).
fixed Y min(X,Y,Z,ID) :- min 4(X,Y,Z,ID), min 5(X,Y,Z,ID).

Figure 7: Optimized compiled min/3 delay and
wakeup handling code.

The extended asks declarations allow the HAL CHR com-
piler to determine more accurately which occurrences need
to be re-checked for which wake conditions. In order to do
this, the compiler examines every possible wake condition
for each variable, and determines the subset of occurrences
that must be examined if a wake condition become true. It
then produces specialized code for each wake condition.

Example 12. For the constraint min(X,Y,Z,Id) if the
upper bound of X changes (ubc(X)), only the occurrence
in the first rule needs to be re-checked because of the guard
X ≤ Y . No other guard is affected by the ubc(X) con-
dition. Similarly, if variable X becomes fixed (fixed(X))
then only occurrences 4 and 5 from the last rule need to
be re-checked, since the guard for this rule contains equal-
ity constraints. The resulting optimized implementation of
delay min is shown in Figure 7.

Each wake condition causes the execution of a specialized
wakeup predicate. The wakeup predicate ubc X min for con-
dition ubc(X) only re-checks occurrence min 1 from the first
rule. Similarly, the wakeup predicate fixed X min for condi-
tion fixed(X) only re-checks occurrences min 4 and min 5.
Notice that for some conditions, for example dc(Z), no oc-
currences ever need to be re-checked. This is obviously true,
since variable Z (after renaming as C or D) never appears in
any of the guards. In this case the compiler can completely
eliminate all consideration of that condition.

Using this version of delay min the execution of the goal

[X,Y,Z] in 0..9, min(X,Y,Z), Z 6= 2, Y ≤ 3, X ≥ 5.

proceeds as follows. The first constraint sets the domains
as before. Next the min(X,Y,Z,1) is added, the delay goal
set up, and each rule checked. As before, the third rule
fires adding the constraints Z ≤ X and Z ≤ Y which do not
change any domains. Now, when we add Z 6= 2 to the fdint
store, the domain of Z changes. However, no guard mentions
Z and therefore there is no delayed goal that wakes when Z’s
domain changes. When we add Y ≤ 3 to the fdint store,
only the upper bounds of Y and Z change. This causes the
goal ubc Y min to execute, which checks the second occur-
rence of min only. Similarly, when the constraint X ≥ 5 is
added to the fdint store, the lower bound of X changes and,
again, the only the second occurrence of min is checked. This
time the rule fires, the CHR constraint is deleted and the
constraint Z = Y added to the store. This version makes
7 occurrence checks, rather than the 22 performed by the
näıve version. 2

Clearly, it is generally desirable to avoid re-checking oc-
currences which we know are still doomed to fail, since this
avoids redundant work. The optimized re-execution can be
arbitrarily faster than the näıve approach since checking an
occurrence could be arbitrarily difficult.

There are however tradeoffs in creating the specialized
delay code. In order to avoid code explosion, the compiler
creates a separate predicate for each individual occurrence.
This means we can straightforwardly create the different
sequences of occurrences that are required for each wakeup
condition. Previous CHR compilers for HAL and SICStus
chained the code for each predicate to the next occurrence,
and performed optimizations that relied on this fixed order.
For instance, it was possible to avoid checks for liveness
of the active CHR constraint by never executing code for
occurrences after firing a rule where the active constraint is
deleted.

Example 13. If we chain the occurrences for min together
we can remove unnecessary aliveness checks and not check
any occurrences after the active constraint is deleted. A
fragment of the chained code is shown below:

min(X,Y,Z) :- new id(Id), min 1(X,Y,Z,Id).
min 1(X,Y,Z,Id) :-

(’ask =<’(X,Y) -> delete(Id), Z = X ; min 2(X,Y,Z,Id)).
min 2(X,Y,Z,Id) :-

(’ask =<’(Y,X) -> delete(Id), Z = Y ; min 3(X,Y,Z,Id)).
min 3(X,Y,Z,Id) :-

Z =< X, Z =< Y, min 4(X,Y,Z,Id).
...

Clearly we cannot use this code for the wakeup predicates.
2

We could choose to separately optimize each of the sequences
of occurrences that occur in each wakeup predicate, and
suffer the resultant code size increase, but at present the
HAL compiler does not.

In creating a wakes list, the solver writer should endeav-
our to use a complete set of wakeup conditions, so that any
change in the solver state captured by a wake condition
which could cause the ask constraint to succeed is discov-
ered. Failure to provide a complete list will result in some
rules not being re-checked when they could now succeed.
Hence, the CHR store might not be as reduced as it other-
wise should be. Note that this is still correct, in the sense
that CHR rules only change the constraint store to a logi-
cally equivalent store, so the original store is still a correct
answer. Incompleteness of the wakes list thus leads to in-
completeness of the CHR extension, but this often simply
reflects the incompleteness of the tell and ask constraints as
implemented by the underlying solver.

The solver writer should also endeavour to use a minimal

set of wakeup conditions in order to generate more efficient
code. When a wakes list is not minimal the resulting delayed
goals may be called more often than required.

Example 14. For example, the following asks declara-
tion is complete, but not minimal.

:- X == Y asks X = Y wakes [dc(X),fixed(X),fixed(Y)].

The domain change conditions dc(X) is redundant, since the
conditions fixed(X) and fixed(Y) are already enough to
cover ask X = Y . Given this declaration the CHR compiler
will generate redundant specialized re-activation predicates

that check any =/2 guard on dc(X), causing occurrences to
be checked when there is no need. 2

For solver classes which support delay on fixed values we
can provide the default asks declaration

:- ask p(A1,...,An) asks p(A1,...,An)
wakes [fixed(A1),...,fixed(An)].

As described, CHRs can only (usefully) extend underly-
ing solvers that support delay, since otherwise CHR rules
are never revisited. This may appear to be a strong restric-
tion, since many external solvers will not support any wake
conditions. There are at least two solutions to this problem
that do not require modifying the solver code itself.

The simplest is a programming solution. By attaching
an artificial constraint to each CHR rule we can trigger the
rechecking of all rules, by reinserting a new copy of the con-
straint.

Example 15. If the fdint solver does not support dy-
namic scheduling, then rewriting the min solver as:

redo \ min(A,B,C) <=> A =< B | C = A.
redo \ min(A,B,C) <=> B =< A | C = B.
redo, min(A,B,C) ==> C =< B, C =< A.
redo, min(A,B,C) \ min(A,B,D) <=> C = D.

means that every time we add a redo constraint, all rules
will be rechecked. 2

The above programming solution is extremely expensive
since it rechecks every possible rule and has no understand-
ing of changes in the underlying solver state. If the solver
provides reflection predicates that allow the user to see the
internal state there is a better solution. We can build a
“wrapper” solver around the underlying solver that attaches
to each underlying solver variable its previous (internal)
state. The wrapper solver can then implement (not very
eager) dynamic scheduling by periodically checking which
variables have changed state in the underlying solver.

Example 16. Let us assume that the fdint solver does
not support dynamic scheduling, but does allow the current
domain D of a variable X to be returned (using fd dom(X,D)).
Then, the following psuedo-code checks that the dc “domain
change” condition holds and if so stores the current domain,
as the “last considered” domain. Note it (implicitly) uses a
global index to store domain information attached to each
solver variable.

check dc(X) :-
prev domain(X,D0), %% get previous stored domain
fd dom(X,D), %% get current domain from fdint
D 6= D0, %% if different domain has changed
store domain(X,D). %% replace old stored domain

2

6. BUILDING INDEXES ON SOLVER VARI-
ABLES

In [10] we showed that building indexes for lookups dra-
matically improves the time performance of CHR programs.
This is not surprising, since we can find matching constraints
for rule heads much more efficiently. The first version of the
HAL CHR compiler described in [10] was restricted to CHRs
which did not extend any solver, hence it generated efficient

indexes for ground data. In this section we examine how
to build efficient index structures on data involving solver
variables, a task complicated by the need to take the solver
state into consideration.

As previously mentioned, the main task of the compiled
code associated to each occurrence of a CHR constraint in
rule R is to find partner constraints that cause R to fire.
This is a (possibly complicated) relational join operation.

Example 17. Consider the code for occurrence 6 in

leq(A,B)7, leq(B,C)6 ==> leq(A,C).

Given an active CHR constraint leq(X,Y) matching oc-
currence 6, we need to find CHR constraints of the form
leq(,X). We could quickly determine the possible partners
if we had stored all the leq CHR constraints in an index on
their second argument. 2

Other CHR systems do not make use of indexes in cal-
culating the join. The basic approach to determining join
partners in the Prolog implementations we are aware of, is
close to the Prolog database solution illustrated in Figure 4.
All CHR constraints with the same functor and arity p/n
are stored in a list, which is iterated over when performing
an existential or universal search.

However, these Prolog implementations do provide one
lookup mechanism (using attributed variables) which im-
proves the search for partners for non-ground CHR con-
straints. The mechanism consists of attaching to each vari-
able X a list for each CHR constraint p/n, of constraints
which contain X. For example, a list of min/3 constraints
containing X, and a list for leq/2 constraints containing X.
In order to look for a partner constraint p/n, one selects a
variable X occurring in the matching argument, finds the list
of constraints attached to X for p/n, and searches for one
with the required form. This provides very efficient lookups
when arguments are single variables, but poor lookups oth-
erwise. Furthermore, the technique is not applicable when
the argument is ground.

Example 18. The attributed variable approach to part-
ner search of occurrence 6 in the rule

leq(A,B)7, leq(B,C)6 ==> leq(A,C).

for active constraint leq(X,Y), traverses the list of leq/2

constraints attached to the X variable, looking for con-
straints of the form leq(,X). This list may of course include
constraints of the form leq(W,f(X,Z)) and leq(X,W) which
do not match. This is avoided in HAL by using an index
on the second argument of the leq/2 constraints which only
finds those with X as the second argument. 2

Abstractly speaking, an index maintains a mapping from
some key K (built from solver terms) to a list of numbered
CHR constraints “matching” that key, i.e., constraints con-
taining the solver terms in K in the appropriate argument
positions. The HAL compiler determines, for each occur-
rence, which indexes are required for supporting the efficient
computation of its partners. A key point is that indexes
implicitly ask equality constraints. The following example
makes this clearer.

Example 19. Consider the indexes required for some of
the occurrences in the leq program in Figure 3.

M leq(U,M)

leq(A,F), leq(X,F)F

C leq(F,C)

A leq(B,A),leq(M,A) E leq(B,E) K leq(M.K) X leq(A,X),leq(B,X)

Figure 8: A tree of lists of CHR constraints indexed
on the second argument

leq(A,B)3, leq(B’,A’)2 <=> A = A’, B = B’ | A = B.
leq(A,B)7, leq(B’,C)6 ==> B = B’ | leq(A,C).

For the second occurrence, with active constraint leq(X,Y)

we are looking for a CHR constraint of the form leq(Y,X) to
ensure the guard constraints A = A′, B = B′ hold. Hence,
we need an index on both arguments of leq/2. Similarly,
for the third occurrence. For the sixth occurrence, we need
to find CHR constraints of the form leq(,X) to ensure that
B = B′ holds. Thus, we need an index on the second argu-
ment. 2

The HAL CHR compiler for CHRs over ground data su-
ports several structures (such as trees and lists) as indexes,
with tree indexes being used by default. We plan to support
hash-based indexes in the future.

The core of the tree index code is an ordering �u over
solver terms according to the current state u of the solver.
This order is used to traverse the tree. We write x ≡u y
when x �u y∧y �u x and x ≺u y when x �u y∧¬(y �u x).
The ordering must be total and is assumed to satisfy the
following soundness property: if x �u y ∧ y �u x then
u |= x = y. Thus, the ordering answers whether equality
constraints are entailed by the current store u.

For data that involves no solver variables, the precedence
relation �u does not depend on the solver state. As a result
the relationship between two such terms in the ordering can-
not change. However, when the value of the data is not fixed,
the ordering relationship between two terms can change as
the solver state evolves.

Example 20. The usual ordering ≺u of two Herbrand
terms (Prologs @<) is defined as the lexicographic ordering
(with variables before functors) of the solved form of the
terms involved. In the empty solver state u0 = ∅ we have
X ≺u0

Y , but when u1 ≡ {X = f(A)} we have Y ≺u1
X,

but then adding another equation u2 ≡ {X = f(A), Y =
f(B)} we have X ≺u2

Y , and finally adding A = B, u3 ≡
{X = f(A), Y = f(B), A = B} we have that X ≡u3

Y . 2

As illustrated above, during forward computation as the
state u changes by adding new constraints to u′, the order
between solver terms can change in arbitrary ways (although
we can always ensure that if x ≡u y then also x ≡u′ y).
Therefore, a tree index based on comparison results which
is correct at u, may become corrupted at u′.

Example 21. Figure 8 shows a binary search tree for
leq/2 constraints indexed on the second argument based on
the ordering ≺∅ of an empty store. When we add the con-
straint C = M the ordering ≺{C=M} uses the solved form
of the terms. Assuming M is replaced by C, then searching
in the tree for entry with key K will not succeed. If C is
replaced by M then the same applies to E. 2

The simplest approach to repairing a tree index which was
correct for state u and is corrupted for u′ is as follows. We
must first delete all entries where �u and �u′ are not guar-
anteed to be the same, thus obtaining a correct tree. Then,
the re-insertion can be made using the new ordering �u′ .
There is however a slight problem: the deletion of the cor-
rupted entries has to be performed before u actually changes
into u′, so that these entries can be correctly located.

Example 22. Consider the tree in Figure 8, when we add
the constraint C = M , and assume the ordering �{C=M}

replaces M by C. If when trying to locate the corrupted
entry M we use the current ordering �{C=M}, then at the
root we will find M ≺{C=M} F , go left and find M ≡{C=M}

C. Unfortunately, we will have not discovered the M node,
but the C node. In order to correctly locate the M node we
need to use the previous ordering �∅. 2

This problem is solved in HAL by requiring the solver to
support two things. The first, is the comparison predicate
compare(Result,X,Y) which returns =, < or > when in the
current solver state u respectively X ≡u Y , X ≺u Y and
Y ≺u X. The second, is a new wake condition cc(X) (com-

pare change) which holds whenever a change in the solver
state might cause the result of a comparison involving X to
change (usually highly related to the wake list for X == Y).
Importantly, the cc(X) condition fires and executes any de-
layed goals “just before” the change in solver state occurs.6

Example 23. The HAL Herbrand solver supports the
cc(X) condition. Thus, when using CHRs that extend the
Herbrand solver we can setup delayed goals on this condition
to delete the modified constraints. The following pseudo-
code inserts a leq/2 constraint into two indexes, the first
(index1) indexes on the second argument Y , while the sec-
ond (index2) indexes on both arguments (X, Y):

insert leq(X,Y,Id) :-
(cc(X) ==> index2 delete((X,Y),leq(X,Y,Id))
|| cc(Y) ==> index1 delete(Y,leq(X,Y,Id)),

index2 delete((X,Y),leq(X,Y,Id))),
index1 insert(Y,leq(X,Y,Id)),
index2 insert((X,Y),leq(X,Y,Id)).

Returning to the problem of Example 22, when C = M
is added, just before the solver state (in this case the heap)
is changed, the goal index1 delete(M,leq(U,M,Id)) is ex-
ecuted deleting the node with key M . 2

The implementation of the cc condition may be burden-
some for the solver writer. For solvers other than Herbrand
and those whose comparison relies on reference types, there
is a simpler solution. This is because the only heap data that
is destructively updated is cells for Herbrand variables and
reference types. For solvers not using this kind of data we
can use the universal system compare predicate, which com-
pares terms using their heap representation. This means we
can miss potential partners since we only detect equivalence
of two terms whose heap representation is identical. How-
ever, the implementation is sound since the indexes cannot
be corrupted, and there is no need to support the cc wake
condition.

6Attributed variables in most Prologs similarly must inter-
rupt unification in order to perform computation just before
the heap changes.

Example 24. Variables in the fdint solver must have
type fdint which is defined as

:- typedef fdint -> val(int) ; var(int).

i.e., they are either known to have a fixed integer value from
the start or they are initialised as an int numbered variable
(which is a pointer into a global array of variable informa-
tion). We can define compare so that it simply compares
these representations. This definition is correct (i.e., if it re-
turns true the ask constraint holds), but it is incomparable
with the definition of ==. Given a solver state where vari-
able var(27) has the singleton domain {3}, and var(42)

has domain {4, 6, 7}, then compare(R,var(27),val(3)) re-
turns R = (<) while var(27) == val(3) succeeds. Also,
compare(R,var(42),var(42)) returns R = (=) while var(42)
== var(42) fails.

This means that compare does not depend on the solver
state, so we do not need to update the index. However, we
will miss partner constraints when we use the index. For
example, when we look for variables equivalent to var(27)

we will not find val(3). 2

We can do better if the solver can define == as mapping
each argument to a “representation” which is also a legiti-
mate solver term, and then checking these for identity. Be-
cause the CHR index structures are going to be revisited
whenever the answer to the associated ask constraints might
change, we can replace a solver term by its new representa-
tion.

Example 25. For the fdint solver we can define the rep-
resentation of a variable as itself, unless it is fixed (the solver
predicate val(X,XV) succeeds returning in XV the value of
X) in which case it is represented as a val term. The repre-
sentation calculation is thus

rep(X,R) :- (val(X,XV) -> R = val(XV) ; R = X).

Let us now re-examine the previous example. When var(27)

becomes fixed to 3, its representation changes from var(27)

to val(3), and the condition fixed(var(27)) fires. Thus,
we can attach code to this condition to delete the entries
indexed by var(27) and reinsert them using val(3). Note
that we can do this after the solver state has changed, be-
cause the comparison results have not changed.

Pseudo-code illustrating this approach, assuming an in-
dex on the first two arguments of min/3, is given below.
Whenever a variable in a key is fixed, its entries are deleted
from the index, their representation is calculated, they are
reinserted, and then re-executed.

insert min(X,Y,Z,Id) :-
(fixed(X) ==> index delete((X,Y),min(X,Y,Z,Id)),

rep(X,Xr), insert min(Xr,Y,Z,Id),
min(Xr,Y,Z,Id)

|| fixed(Y) ==> index delete((X,Y),min(X,Y,Z,Id)),
rep(Y,Yr), insert min(X,Yr,Z,Id),
min(X,Yr,Z,Id)),

index insert((X,Y),min(X,Y,Z,Id)).

2

In practice, code for checking occurrences of CHR con-
straints tries to delay the insertion of the constraint as long
as possible, because often the active constraint is deleted.
This avoids index manipulations for insertions and deletions,

and can give considerable performance improvements. We
can also gain these benefits in re-execution, by changing
the re-execution code to delete the constraints from all its
indexes and then recheck the appropriate occurrences, re-
inserting it as late as possible.

Note that the issues we dealt with here are also mostly ap-
plicable to hash-based indexes over solver variables. Clearly,
we must delete entries from the hash table before the result
of the hash function changes for those items, hence the same
issues arise.

7. EXPERIMENTS
The HAL CHR compiler has been extended to include

asks declarations, to translate guard constraints to ask con-
straints, and to use wake conditions to set up minimal re-
execution when a solver changes. It also automatically builds
appropriate index structures for the joins required by CHR
rules, but at present the code for the update of these index
structures in the presence of changes in the solver is hand
coded.

The code produced by the compiler is considerably more
complicated than the example code used in the paper since
we have omitted details related to typing and moding. The
CHR compiler does not yet support the extension of solver
types that include other solver types. To do so seems to
require fairly ingenious use of overloading.

In this section we show the benefits of re-checking CHR
rules using our optimized compilation scheme and the use
of index structures over solver types using benchmarks for
three different solvers. All timings are the average over 10
runs on a Dual Pentium II with 648M of RAM running un-
der Linux RedHat 6.2 with kernel version 2.2.9 and are given
in milliseconds. SICStus Prolog 3.8.6 is run under compact
code (no fastcode for Linux). We compare to SICStus CHRs
where possible just to illustrate that the HAL CHR imple-
mentation is mature and competitive.

The first set of benchmarks uses a simple Boolean solver
which extends a Herbrand solver, and is similar to those
available at the CHR web site [5]. This solver requires
no indexes since it only simplifies individual Boolean con-
straints. The comparison uses five simple Boolean bench-
marks (most from [2]): the first pigeon(n,m) places n pi-
geons in m pigeon holes (the 24-24 query succeeds, while 8-7
fails); schur(n) Schurs’s lemma for n (see [2]) (the 13 query
is the largest n that succeeds); queens(n) the Boolean ver-
sion of this classic problem; mycie(n,m) which colors a 5-
colorable graph (taken from [13]) with n nodes and m edges
with 4 colours; and fulladder(n) which searches for a sin-
gle faulty gate in a n bit adder (see e.g. [12] for the case of
1 bit). Table 1 gives the execution times in milliseconds for
a base compilation where every rule for a CHR constraint is
rechecked each time a variable in the CHR constraint is mod-
ified, and compilation with specialised re-execution. The
dyn column gives the times for an equivalent Boolean solver
hand coded using the dynamic scheduling features of the
Herbrand solver directly. The SICS column is the equivalent
CHR code in SICStus Prolog 3.8.6. The final row provides
the geometric mean for base and its relative value for other
columns. For this CHR solver, since there are no expensive
joins to avoid in the re-execution, the solver provides modest
speedups of around 20%. Surprisingly, the specialized code
is competitive with the hand coded dynamically scheduled
version, even improving it on occasion. This is because the

Prog base spec dyn SICS

pigeon(8,7) 1550 1289 1139 21828
pigeon(24,24) 617 612 577 2195
schur(13) 24 17 20 205
schur(14) 152 117 136 2747
queens(18) 11596 9165 10458 161858
mycie(23,71) 2885 2376 2151 38511
fulladder(5) 561 483 543 24236
Geom. mean 677 82% 85% 1300%

Table 1: Results for benchmarks using a CHR
Boolean solver extending the Herbrand solver.

optimized CHR code can sometimes avoid setting up delayed
goals, which the hand coded solver did not attempt to do.
The HAL CHR code is obviously competitive with SICStus
CHRs.

The next set of benchmarks uses the min solver of Fig-
ure 5 which extends a simple finite domain solver written
directly in HAL. We use two program benchmarks, the first
is an artificial example min(n,m) with a single constraint
min(X,Y,Z) and m additional min constraints on other vari-
ables, where we progressively add the constraints

1 ≤ X, 1 ≤ Y, 1 ≤ Z, X ≤ n − 1, Y ≤ n − 1, Z ≤ n − 1,
2 ≤ X, 2 ≤ Y, 2 ≤ Z, X ≤ n − 2, Y ≤ n − 2, Z ≤ n − 2, ...

until only one value is left. The second example bridge(n)
is the bridge scheduling problem of [14] where redundant
min constraints are added to reduce the search. We use the
(HAL version of) code in [12](page 277). We search for a
solution which requires less than n days. When n = 75 there
is no solution but the min constraints are more active. When
n = 112 there is a solution.

We use four versions of the CHR code, the base ver-
sion uses simple lists to store CHR constraints and rechecks
each rule whenever a variables domain changes (as in Ex-
ample 8), spec specializes the re-execution (as described in
Example 12), tree uses tree indexes (implemented as in Ex-
ample 25) and both does both. The results in Table 2 show
that specialization is very important when there are no in-
dexes available. Even when there are no partners to try to
join with re-execution, specialization improves around 30%.
When it can avoid expensive joins the benefit is unlimited.
Adding tree indexes is clearly important for the artificial ex-
ample when there are other min constraints, otherwise there
is some overhead. Combining the optimizations the special-
ization is beneficial but less so. For the bridge example, tree
indexes are not as helpful as in the artificial benchmark pro-
viding 10-20% improvement, and re-execution specialization
adds an additional 5%. SICStus CHRs do not extend a finite
domain solver, so we cannot compare with SICStus.

The next experiment uses the leq CHR program of Fig-
ure 1 which extends the Herbrand solver on two different
benchmarks. The leq(n,m) benchmark builds a chain of
variables of the form

X0 ≤ X1 ≤ ... ≤ Xn−1 ≤ Xn

plus an additional m constraints of the form Xi ≤ X ′ (where
X ′ represents a fresh variable), for each Xi in the chain, for
a total of n × (m + 1) leq constraints. Finally, it unifies
X0 = Xn which gets the action going. The scc benchmark
adds leq constraints representing the module dependency

Prog base spec tree both

min(300,0) 118 92 151 98
min(300,500) 6282 394 226 172
min(300,1000) 12841 1162 296 236
min(600,0) 489 360 590 358
min(600,500) 24485 689 682 428
min(600,1000) 48120 1450 744 504
min(900,0) 1081 804 1322 801
min(900,500) 54136 1153 1410 860
min(900,1000) 106521 2013 1498 944
bridge(75) 40116 31179 32644 30901
bridge(112) 78496 68668 71732 68777
Geom. mean 10067 14% 13% 9.1%

Table 2: Results for benchmarks using a CHR min

solver extending a finite domain solver.

Prog base spec tree both SICS

leq(30,0) 398 404 224 182 533
leq(30,1) 3006 2816 559 442 4397
leq(30,2) 8851 8189 916 725 11355
leq(40,0) 1233 1229 515 399 1369
leq(40,1) 9719 9154 1242 953 14031
leq(40,2) 29399 27390 2051 1612 38673
leq(50,0) 2946 2950 981 759 2937
leq(50,1) 24948 23616 2342 1781 36247
leq(50,2) 76565 71822 3806 2983 103811
scc 7422 6924 310 284 4892
Geom. mean 6595 96% 14% 11% 120%

Table 3: Results for benchmarks using a CHR leq

solver extending a Herbrand solver.

graph for the HAL compiler. If there is a cycle, variables
representing the modules are unified, thus calculating the
transitive module dependencies and module cycles.

The results are shown in Table 3. For the artificial bench-
mark, we can see that re-execution specialization is not
beneficial when there are no additional constraints, but im-
proves around 7% when there are. The tree index is highly
beneficial since the leq code involves many joins. Special-
ization is more effective with tree indexes, obtaining benefits
between 20–25%. For the scc example specialization gives
a 7% improvement on list indexes, and 9% when tree in-
dexes are used. The attributed variable lookup mechanism
of SICStus does not appear to be as efficient as tree indexes
(although a direct comparison is not possible, due to the
high number of other important differences).

8. CONCLUSION AND FURTHER WORK
In this paper we have shown how we can extend arbitrary

solvers supporting dynamic scheduling using CHRs rules.
We investigated how to compile the execution of CHR rules
so that we re-execute the minimum number of rules on a
change of solver state, and how to build and maintain in-
dexes over the changing state of solver variables. Experi-
ments show that specializing the re-execution is beneficial,
and that the more expensive the joins in the CHR rules the
more beneficial it is. The use of efficient indexes is vital to

support efficient execution of CHRs, and hence we need to
support such indexes over changing solver data.

9. REFERENCES
[1] S. Abdennadher. Operational semantics and

confluence of constraint propagation rules. In Gert
Smolka, editor, Proceedings of the Third International

Conference on Principles and Practice of Constraint

Programming, pages 252–266, 1997.

[2] P. Codognet and D. Diaz. Boolean constraint solving
using clp(FD). In Procs. of ILPS’1993, pages 525–539.
MIT Press, 1993.

[3] M. Garćıa de la Banda, B. Demoen, K. Marriott, and
P.J. Stuckey. To the gates of HAL: a HAL tutorial. In
Proceedings of the Sixth International Symposium on

Functional and Logic Programming, number 2441 in
LNCS, pages 47–66. Springer-Verlag, 2002.

[4] B. Demoen, M. Garćıa de la Banda, W. Harvey,
K. Marriott, and P.J. Stuckey. An overview of HAL.
In Proceedings of the Fourth International Conference

on Principles and Practices of Constraint

Programming, pages 174–188, 1999.

[5] T. Frühwirth. CHR home page.
www.informatik.uni-muenchen.de/~fruehwir/chr/.

[6] T. Frühwirth. Theory and practice of constraint
handling rules. Journal of Logic Programming,
37(1–3):95–138, 1998.

[7] M. Garćıa de la Banda, D. Jeffery, K. Marriott, P.J.
Stuckey, N. Nethercote, and C. Holzbaur. Building
constraint solvers with HAL. In P. Codognet, editor,
Logic Programming: Proceedings of the 17th

International Conference, LNCS, pages 90–104, 2001.

[8] C. Holzbaur and T. Frühwirth. Compiling constraint
handling rules into Prolog with attributed variables.
In Gopalan Nadathur, editor, Proceedings of the

International Conference on Principles and Practice

of Declarative Programming, number 1702 in LNCS,
pages 117–133. Springer-Verlag, 1999.

[9] C. Holzbaur and T. Frühwirth. Constraint handling
rules, special issue. Journal of Applied Artificial

Intelligence, 14(4), 2000.

[10] C. Holzbaur, P.J. Stuckey, M. Garćıa de la Banda,
and D. Jeffery. Optimizing compilation of constraint
handling rules. In P. Codognet, editor, Logic

Programming: Proceedings of the 17th International

Conference, LNCS, pages 74–89. Springer-Verlag,
2001.

[11] JCK: Java constraint kit.
http://www.pms.informatik.uni-
muenchen.de/software/jack/index.html,
2002.

[12] K. Marriott and P.J. Stuckey. Programming with

Constraints: an Introduction. MIT Press, 1998.

[13] M. Trick. mat.gsia.cmu.edu/COLOR/color.html.

[14] P. Van Hentenryck. Constraint Satisfaction in Logic

Programming. MIT Press, 1989.

