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Abstract

Constraint Handling Rules (CHRs) are a high-level rule-based programming language
for specification and implementation of constraint solvers. CHR manipulates a global
store representing a flat conjunction of constraints. By default, CHR does not support
goals with a more complex propositional structure including disjunction, negation, etc.,
or CHR relies on the host system to provide such features. In this paper we introduce
Satisfiability Modulo Constraint Handling Rules (SMCHR): a tight integration of CHR
with a modern Boolean Satisfiability (SAT) solver for quantifier-free formulae with an
arbitrary propositional structure. SMCHR is essentially a Satisfiability Modulo Theories
(SMT) solver where the theory T is implemented in CHR. The execution algorithm of
SMCHR is based on lazy clause generation, where a new clause for the SAT solver is
generated whenever a rule is applied. We shall also explore the practical aspects of building
an SMCHR system, including extending a “built-in” constraint solver supporting equality
with unification and justifications.
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1 Introduction

Constraint Handling Rules (CHRs) (Frühwirth 1998) are a high-level rule-based

programming language for the specification and implementation of constraint solvers.

CHR has two main types of rules: simplification rules (H ⇐⇒ B) rewrite constraints

H to B, and propagation rules (H =⇒ B) propagate (i.e. add) constraints B for

every H. Constraint solvers are specified by sets of rules.

Example 1 (Bounds Propagation Solver)

A bounds propagation solver propagates constraints of the form X ≥ L and X ≤ U
for constants L (lower bound) and U (upper bound). We can specify how bounds

are propagated through an addition plus(X,Y, Z) constraint (i.e. X = Y + Z) via

the following rules

plus(X,Y, Z) ∧ Y ≥ LY ∧ Z ≥ LZ =⇒ X ≥ (LY + LZ)

plus(X,Y, Z) ∧ Y ≤ UY ∧ Z ≤ UZ =⇒ X ≤ (UY + UZ)

Thus given the constraints plus(A,B,C), B ≥ 3, B ≤ 10, C ≥ 4, and C ≤ 6, the
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rules will propagate A ≥ 7 and A ≤ 16. We can similarly write rules to propagate

bounds in other directions. �

The execution algorithm for CHR is based on constraint rewriting and propaga-

tion over a global store of constraints. CHR solvers are incremental : when a new

constraint c is asserted, we check c and the store against the rules to find a match. If

there is a match, we apply the rule, possibly generating new constraints. Otherwise

c is inserted into the global store. Operational semantics and execution algorithms

for CHR have been extensively studied (Duck et al. 2004)(Sneyers et al. 2010).

The global store represents a flat conjunction of constraints. CHR does not,

by default, support goals that are formulae with a more complex propositional

structure, e.g. with disjunction, negation, etc. Solving CHR constraints in other

propositional contexts typically relies on some external machinery. For example,

Prolog CHR implementations such as K.U.Leuven CHR system (Schrijvers and

Demoen 2004) use Prolog’s default backtracking search to handle disjunction.

In this paper we take a different approach: we extend CHR with a Boolean Sat-

isfiability (SAT) solver to form Satisfiability Modulo Constraint Handling Rules

(SMCHR). The basic idea is that we specify constraint solvers using CHR in the

usual way, such as the rules in Example 1. SMCHR goals are then quantifier-free

formulae of CHR constraints over any arbitrary propositional context.

Example 2 (SMCHR Goal)

For example, the following SMCHR goal encodes the classic n-queens problem for

the instance n = 2.

(Q1 = 1 ∨Q1 = 2) ∧ (Q2 = 1 ∨Q2 = 2) ∧
¬(Q1 = Q2) ∧ ¬(Q1 = Q2 + 1) ∧ ¬(Q2 = Q1 + 1)

This goal can be evaluated using an extended version of the bounds propagation

solver from Example 1. For n = 2 the goal is unsatisfiable. �

Furthermore by integrating CHR with a modern implementation of SAT, we inherit

all the advantages of no-good clause learning, non-chronological back-jumping, unit

propagation, etc.

SMCHR is essentially a Satisfiability Modulo Theory (SMT) solver, where the

theory solver T is implemented with CHR. SMT solvers have applications such

as program verification, program analysis, model checking, theorem proving, con-

straint programming, etc. (Moura and Bjørner 2011). Most SMT solvers support

a fixed set of first-order theories, such as linear arithmetic over the reals, arrays,

uninterpreted functions, etc. SMCHR is much more flexible, as we can support any

theory implementable in CHR.

Integrating CHR with a SAT solver presents several challenges. The first is the

communication between the CHR and SAT solver engines. For this we use a gener-

alization of lazy clause generation (Ohrimenko et al. 2009), a technique previously

used to integrate SAT and finite domain solvers with impressive results. Another

challenge is CHR’s ability to “extend” existing built-in solvers, usually a solver

for equality. For example, given the rule (neq(X,X)⇐⇒ false) and the constraint

neq(A,B), the CHR solver must ask the built-in solver whether constraint A = B
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holds, and if so, apply the rule. This is particularly challenging in the context of

SMCHR as we wish to support both unification, efficient variable indexing, and jus-

tifications for clause generation. A “justification” is a description of why the given

constraint holds.

We make the following contributions in this paper.

- Section 3 defines the SMCHR language and logical/operational semantics;

- Section 4 describes DPLL(CHR): the SMCHR execution algorithm based on

DPLL and (lazy) clause generation;

- Section 5 describes an SMCHR runtime system based on a new variable rep-

resentation supporting variable indexing;

- Section 6 describes a “built-in” reified equality solver supporting unification

and justification; and

- Section 7 we run experiments to evaluate our SMCHR runtime system against

an existing CHR implementation.

2 Preliminaries

Constraint Handling Rules (CHR) (Frühwirth 1998) have three types of rules

H ⇐⇒ B (simplification)

H =⇒ B (propagation)

H1 \ H2 ⇐⇒ B (simpagation)

where the head H, H1, H2, and body B are conjunctions of constraints. Simplifi-

cation rules replace constraints matching H with B. Propagations rules add con-

straints B whenever constraints matching H are found. Simpagation rules are a

hybrid between simplification and propagation rules, where matching H2 is re-

placed by B whenever matching H1 is found. The body B may also contain built-in

constraints such as true and equality x = y. Extended CHR also includes guards

for checking built-in constraints during rule matching.

The logical semantics JRK of a given rule R is defined as follows.

JH ⇐⇒ BK = ∀(H ↔ B)

JH =⇒ BK = ∀(H → B)

JH1 \H2 ⇐⇒ BK = ∀(H1 ∧H2 ↔ H1 ∧B)

where ∀F represents the universal closure of F . Here we assume vars(B) ⊆ vars(H).

3 The SMCHR System

3.1 The SMCHR Language

The SMCHR language is the same as standard CHR with some minor differences.

Constraint solvers are specified in terms of rules in the usual way. However, unlike

CHR, SMCHR rules can handle both constraints and their negations.

Example 3 (Less-than Solver in SMCHR)
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Consider the following CHR solver that defines a “less-than” constraint lt(X,Y ).

lt(X,X) =⇒ false (reflexivity)

lt(X,Y ) ∧ lt(Y,X) =⇒ false (antisymmetry)

lt(X,Y ) ∧ lt(Y, Z) =⇒ lt(X,Z) (transitivity)

The rules (reflexivity), (antisymmetry), and (transitivity) respectively encode the

properties (∀X : ¬X < X), (∀X,Y : ¬X < Y ∨ ¬Y < X), and (∀X,Y, Z : X <

Y ∧ Y < Z → X < Z). With SMCHR we can also write rules that propagate

negated constraints, e.g.

lt(X,Y ) =⇒ ¬lt(Y,X) (antisymmetry (2))

Likewise we can write rules that match negated constraints.

¬lt(X,Z) ∧ lt(X,Y ) =⇒ ¬lt(Y, Z) (transitivity (2))

¬lt(X,Z) ∧ lt(Y,Z) =⇒ ¬lt(X,Y ) (transitivity (3)) �

We extend the logical semantics of CHR in the obvious way allowing for negation.

Under the logical semantics the rules (antisymmetry) and (antisymmetry (2)) are

equivalent. Likewise rules (transitivity), (transitivity (2)), and (transitivity (3)) are

also equivalent. However these rules are not operationally equivalent.

Adding negation is not a significant extension of CHR. In fact, negation can

already be encoded in standard CHR, e.g. by introducing a new constraint symbol:

not lt(X,Z) ∧ lt(X,Y ) =⇒ not lt(Y, Z)

The difference is that with SMCHR it is understood that ¬c(x̄) is the negation of

c(x̄) and vice versa. We also express CHR rules in reified-notation. This expresses

positive literals c(x̄) as (true ↔ c(x̄)), and negative literals ¬c(x̄) as (false ↔ c(x̄)).

For example, rule (transitivity (2)) can be written as

(false ↔ lt(X,Z)) ∧ (true ↔ lt(X,Y )) =⇒ (false ↔ lt(Y,Z))

Reified-notation will be used later for matching reified constraints.

Other key differences between CHR and SMCHR include:

- Range-Restricted : We assume all SMCHR rules are range restricted, i.e. for

rule head H and body B we have that vars(B) ⊆ vars(H).

- Set-Semantics and Negation: SMCHR assumes at most one copy of a con-

straint can appear in the store at once. This is equivalent to assuming the

following rules are “built-in” for each constraint symbol c:

c(x̄) \ c(x̄)⇐⇒ true and c(x̄) ∧ ¬c(x̄) =⇒ false

- Head-Connectiveness: For all rules R with head H, for all h ∈ H let H ′ =

H − {h}, then if H ′ 6= ∅ we require vars(h) ∩ vars(H ′) 6= ∅. That is, for all

multi-headed rules, every head constraint must share at least one variable

with another head constraint.

Like SMT, SMCHR operates on quantifier-free formulae. Range-Restricted CHR

programs ensure that no new (existentially quantified) variables are ever intro-

duced by rule application. SMCHR with quantification is a possible direction for
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future work. Set-Semantics allows each constraint c(x̄) to be associated with ex-

actly one propositional variable b. This simplifies the design of the SMCHR system.

Head-Connectiveness ensures that constraints can be matched against rules using

variable indexing techniques. This will be discussed further in Section 5. The Head-

Connectiveness requirement is specific to our SMCHR implementation, rather than

a requirement in general.

In our experience, most CHR programs that implement constraint solvers satisfy

the above conditions.

3.2 The SMCHR Operational Semantics: ωs

The SMCHR operational semantics are an extension of the theoretical operational

semantics ωt of CHR (Duck et al. 2004) (Frühwirth 1998). An execution state

〈G,S,B, T 〉 is a 4-tuple consisting of a goal G, a constraint store S, a built-in con-

straint store B, and a propagation history T . A reified constraint is of the form

(b ↔ c) where b is a propositional variable. Both G and S are sets of reified con-

straints, B is a conjunction of built-in constraints, and T is a set of tuples of the

form (r, b1, .., bn) where r is a rule identifier, and b1, .., bn are propositional vari-

ables. We assume the existence of a built-in solver D that supports Boolean and

equality constraints.

Given an initial quantifier-free formula G0, let normalize(G0) = GB
0 ∧ GR

0 be

a normalized formula such that (1) GB
0 is a propositional formula, (2) GR

0 is a

conjunction of reified constraints of the form (b1 ↔ c1)∧ ..∧ (bn ↔ cn), where each

propositional variable bi is unique, and (3) G0 is equisatisfiable to GB
0 ∧GR

0 , i.e. G0

is satisfiable iff GB
0 ∧GR

0 is satisfiable. Then the initial state for G0 is 〈GR
0 , ∅, GB

0 , ∅〉.
An exact definition of normalize is left to the implementation, provided the above

conditions are preserved.

We define isSet(B, b) to hold iff D |= B → b or D |= B → ¬b. Our SMCHR

operational semantics ωs introduces a Decide transition that sets a propositional

variable to either true or false. The ωs semantics are defined as follows:

1. Decide: 〈G,S,B, T 〉� 〈G,S,B ∧ (b↔ t), T 〉 where b ∈ vars(B) is a propo-

sitional variable, t ∈ {true, false} is a propositional constant, and b is not

already set, i.e. ¬isSet(B, b).
2. Solve: 〈{(b↔ c)} ]G,S,B, T 〉� 〈G,S, (b↔ c) ∧B, T 〉 where c is a built-in

constraint.

3. Introduce: 〈{(b↔ c)} ]G,S,B, T 〉� 〈G, {(b↔ c)} ∪ S,B, T 〉 where c is a

CHR constraint.

4. Apply: 〈G,C1 ]C2 ]S,B, T 〉� 〈E ]G,C1 ]S,M ∧B, {t}∪T 〉 where there

exists a reified-notation rule R = (r @H1 \H2 ⇐⇒ D) and a matching substi-

tution θ such that θ.H1 = C1, θ.H2 = C2, and (D |= B → ∃vars(H1,H2)θ); and

for D = (t1 ↔ d1) ∧ .. ∧ (tm ↔ dm) we have that E = {(b′1 ↔ θ.d1), .., (b′m ↔
θ.dm)} and M = (b′1 ↔ t1) ∧ .. ∧ (b′m ↔ tm) for fresh propositional variables

b′1, .., b
′
m. Finally t = (r, b1, .., bn) where C1 ] C2 ≡ {(b1 ↔ ), .., (bn ↔ )},

and t 6∈ T .
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A failed state occurs when the built-in store B is unsatisfiable, i.e. D |= ∀¬B. A

final state σF is either a failed state, or a state where no ωs transition is applicable.

Given a goal G with initial state σI , SMCHR answers UNSAT iff (1) for all

derivations σI �∗ σF where σF is a final state then σF is also a failed state, and

(2) there are no non-terminating derivations σI �∗ ... In other words: all possible

derivations for σI result in failure. Otherwise the answer is UNKNOWN and a non-

failed final state σF is the result, or we simply fail to terminate.

Theorem 1 (Soundness)

If the answer for goal G is UNSAT, then G is unsatisfiable, i.e. JP K,D |= ∀¬G.

Proof

(Sketch). By contradiction. Assume there exists a satisfiable goal G with answer

UNSAT. Since G is satisfiable then normalize(G) = GB
0 ∧GR

0 is also satisfiable. There

must therefore exist a substitution θB over the propositional variables vars(GB
0 )

such that θB .G
B
0 = true and θB .G

R
0 is satisfiable. Consider the derivation

σI = 〈GR
0 , ∅, GB

0 , ∅〉�∗ωs
〈GR

0 , ∅, θB ∧GB
0 , ∅〉 = σ′I

comprised of only Decide transitions. Next consider a derivation σ′I �∗ σF from

σ′I to a failed state σF . Such a derivation must exist, otherwise the answer for G

cannot be UNSAT. Since the propositional variables vars(GB
0 ) are already set, the

derivation σ′I �∗ σF cannot contain a Decide transition.

The remainder of the proof is to show that each of the Solve, Introduce, and

Apply transitions preserve satisfiability, as with standard CHR. Therefore if σ′I
is satisfiable, then so is σF , and therefore σF cannot be a failed state. This is a

contradiction, and therefore the answer for a satisfiable G cannot be UNSAT.

The interpretation of UNKNOWN is merely the inability to prove unsatisfiabil-

ity. An incomplete solver may answer UNKNOWN for unsatisfiable goals, i.e. the

converse of Theorem 1 does not hold in general.

Example 4 (Incomplete Solver)

For example, consider the CHR program P

p⇐⇒ q p =⇒ false

and the goal p. The goal p is unsatisfiable since JP K,D |= ¬p, yet the answer for p

is UNKNOWN because of the non-failed derivation 〈{b ↔ p}, ∅, b, ∅〉 �∗ 〈∅, {b′ ↔
q}, b ∧ b′, ∅〉. �

A complete solver has the property that UNKNOWN = SAT. The result σF may be

mapped to a solution for G depending on the definition of normalize.

4 DPLL(CHR): The SMCHR Execution Algorithm

The abstract operational semantics does not specify how and when the Decide

transition is applied. For this we use a variant of the Davis-Putnam-Logemann-

Loveland (DPLL) decision procedure for propositional formulae combined with

CHR solving, i.e. DPLL(CHR).
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dpllCHR(S)
while ∃b ∈ S.Vars : ¬isSet(b)

l = selectLiteral(S)
S := setLiteral(S, l)
S.Level := S.Level + 1
S := propagate(S)
if ∅ ∈ S.Clauses

S = backtrack(S)
if S.Level ≡ 0

return UNSAT
return UNKNOWN(S)

propagate(S)
S := unitPropagate(S)
let S′ := S
S := chrPropagate(S)
if S′ ≡ S return S
return propagate(S)

unitPropagate(S)
if ∅ ∈ S.Clauses

return S
if ∃l′ : {l′} ∈ S.Clauses

S := setLiteral(S, l′)
return unitPropagate(S)

return S

chrPropagate(S)
let Cs = chrMatch(Rules, S)
if Cs ≡ nil return S
S.Clauses := S.Clauses ∪ Cs
return S

Fig. 1: Pseudo-code for the DPLL(CHR) algorithm.

The pseudo-code is shown in Figure 1. Search is controlled by the dpllCHR(S)

routine. Here S represents the SMCHR “state” which includes

- S.Vars is the set of all propositional variables;

- S.Clauses is the a set of all clauses;

- S.Level is the decision level;

The state S also includes S.Trail for backtracking, and S.Store which contains the

reified CHR constraint b ↔ C corresponding to each b ∈ S.Vars. The top-level

loop selects a propositional literal l with selectLiteral, sets l to true with setLiteral,

and propagates the change with propagate. Here selectLiteral typically uses some

heuristic to determine the “best” literal to select, and setLiteral replaces all C ∈
S.Clauses where C = {¬l} ∪ C ′ with C ′, i.e. resolution. Propagation may result in

the empty clause ∅ ∈ S.Clauses indicating failure in which case we backtrack. The

process continues until either all variables are set, and we have reached UNKNOWN,

or we backtrack to level 0, indicating UNSAT.

Our pseudo-code is a simplification. Our actual SMCHR implementation uses a

modern SAT solver with no-good learning, back-jumping, etc.

Propagation is handled by the propagate, unitPropagate, and chrPropagate rou-

tines. First unitPropagate exhaustively propagates all unit clauses {l′} ∈ S.Clauses

by setting l′. Next we call chrPropagate to “wake up” any reified CHR constraint

b ↔ C where b has been set to true or false. Here we assume Rules are in reified

notation. The chrMatch routine attempts to match (and apply) a CHR rule. This

involves searching for a (renamed apart) rule (H1 \ H2 ⇐⇒ D) ∈ Rules and sets

of constraints C1, C2 ⊆ S.Store such that (1) for C1 ] C2 = {b1 ↔ c1(x̄1), .., bn ↔
cn(x̄n)} and H1 ] H2 = {t1 ↔ c1(ȳ1), .., tn ↔ cn(ȳn)} we have that bi has been

set (via setLiteral) to the propositional constant ti; and (2) there exists a matching
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(1) true

b1 ∧ b3 ∧ ¬b4(2) ¬b1 ∧ b2 ∧ b3 ∧ ¬b4(3)

match(S) = {{¬b1,¬b3, b4}}

Fig. 2: An example SMCHR execution tree.

substitution θ such that θ.ci(ȳi) = ci(x̄i) for each i ∈ 1..n. If such a match θ is

found, then

1. We delete C2 from the store: S.Store := S.Store − C2

2. For the rule body D = {t′1 ↔ c′1(z̄1), .., t′m ↔ c′m(z̄m)} (where each t′i is

a propositional constant) we generate the set B of constraints defined as

follows:

B = {d1 ↔ θ.c′1(z̄1), .., dm ↔ θ.c′m(z̄m)}

where each di is either the propositional variable corresponding to an existing1

(di ↔ θ.c′i(z̄i)) ∈ S.Store, else di is a fresh propositional variable. We set

S.Store := B ∪ S.Store and S.Vars := {d1, .., dm} ∪ S.Vars.

3. We define the set of head literals LH and body literals LB as follows:

LH = {l1, .., ln} = {bi | i ∈ 1..n ∧ ti} ∪ {¬bi | i ∈ 1..n ∧ ¬ti}
LB = {l′1, .., l′m} = {di | i ∈ 1..m ∧ t′i} ∪ {¬di | i ∈ 1..m ∧ ¬t′i}

Finally we generate the following set of clauses:

Cs = {(¬l1 ∨ .. ∨ ¬ln ∨ l′i) | i ∈ 1..m ∧ ¬isTrue(S, l′i)}

Note that we do not generate redundant clauses, i.e. when isTrue(S, li) holds.

If there is no rule where Cs 6= ∅ nor a constraint is deleted, then chrMatch returns

nil .

The chrMatch routine is essentially standard CHR rule application except (1) we

are matching reified constraints, and (2) we are generating clauses and constraints.

Each generated clause is either a unit clause that implies l′i ↔ true, or is the

empty clause because l′i is already set to false, indicating failure. The propagate

routine re-invokes unitPropagate if a rule was applied. Propagation continues until

a fixed-point is reached or failure occurs.

Propositional variables are never set by the CHR solver directly. Instead variables

are set indirectly via the generated clauses. Each generated clause can be used by the

SAT solver for future no-good learning and unit propagation. Our clause generation

scheme is essentially a generalization of (Ohrimenko et al. 2009) from finite domain

propagation solvers to any solver specified in CHR.

1 Set-Semantics ensures there is only one choice for di.
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Example 5 (SMCHR Execution)

Consider the rules (reflexivity), (antisymmetry), and (transitivity) from Example 3.

Suppose the initial goal G is(
lt(A,B) ∨ lt(B,A)

)
∧ lt(B,C) ∧ ¬lt(A,C)

First we normalize G into a propositional formula in CNF and reified CHR con-

straints as follows[
(b1 ∨ b2) ∧ b3 ∧ ¬b4

]
∧ b1↔ lt(A,B) ∧ b2↔ lt(B,A) ∧ b3↔ lt(B,C) ∧ b4↔ lt(A,C)

The initial state is therefore

S.Vars = {b1, b2, b3, b4} S.Clauses = {{b1, b2}, {b3}, {¬b4}}
S.Store = {(b1 ↔ lt(A,B)), (b2 ↔ lt(B,A)), (b3 ↔ lt(B,C)), (b4 ↔ lt(A,C))}

A possible execution tree for G is shown in Figure 2. Execution proceeds as follows:

(1) Assuming selectLiteral chooses literal b1, after unitPropagate we have that

b1 ∧ b3 ∧ ¬b4 is set.

(2) Next chrPropagate is called. The rule (lt(X,Y )∧lt(Y,Z) =⇒ lt(X,Z)) matches

with θ = {X/A, Y/B,Z/C} and thus the clause ¬b1 ∨ ¬b3 ∨ b4 is generated.

This clause is empty (since ¬b4 is already true) and therefore we fail and

backtrack. The global set of clauses is now

S.Clauses = {{b1, b2}, {b3}, {¬b4}, {¬b1,¬b3, b4}}

A SAT with no-good learning would also generate {¬b1}.
(3) Next suppose selectLiteral selects the literal ¬b1. After unitPropagate we have

that ¬b1 ∧ b2 ∧ b3 ∧¬b4. No rule is applicable, and therefore we have reached

a final state. The answer is therefore UNKNOWN with the result

¬lt(A,B) ∧ lt(B,A) ∧ lt(B,C) ∧ ¬lt(A,C) �

Another advantage of clause generation is that it completely subsumes the prop-

agation history. In Example 5, the matching clause ¬b1 ∨ ¬b3 ∨ b4 sets b4 to true

(i.e. isTrue(S, b4) holds) preventing the same rule from being applied once more on

the same constraints. The rule will never be reapplied in other parts of the search

tree where b1 ∧ b3 has been set to true and b4 is unset. In such cases unitPropagate

will set b4 to true before chrPropagate is called, preventing the reapplication of the

rule.

So far we have not considered CHR extending an existing “built-in” constraint

solver. Later in Section 6 we will discuss how to extend SMCHR with a built-in

solver supporting equality x = y.

5 Implementation

We have implemented a SMCHR runtime system based on the DPLL(CHR) design

from Section 4. Most of the design and implementation is standard and covered

by existing literature on SAT (Een and Srensson 2003), SMT (Nieuwenhuis et al.
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b1 b2 b3lt/3 lt/3 lt/3

R

T

C

S

B

A D

Fig. 3: Variable representation for the constraints from Example 6.

2006), CHR (Holzbaur 1999), and lazy clause generation (Ohrimenko et al. 2009).

This section will focus on aspects of the SMCHR implementation that are novel.

5.1 Variable Indexing

Prolog CHR implementations such as the K.U.Leuven CHR system (Schrijvers and

Demoen 2004) implement variable indexing using attributed variables (Holzbaur

1999)(Holzbaur 1992). The basic idea is as follows: given a variable X, we attach an

attribute to X which contains all CHR constraints that mention X. This attribute

can then be used to efficiently find partner constraints when matching CHR rules.

Example 6 (Attributed Variable Indexing)

Suppose the CHR store contains the constraints lt(A,B)∧ lt(B,C)∧ lt(C,D), then

an attribute would be attached to B via the call

put attr(B, lt index, [lt(A,B), lt(B,C)])

Here lt index is the attribute’s name, and the list [lt(A,B), lt(B,C)] is the at-

tribute’s value containing all CHR constraints that mention variable B.

Consider the rule propagation rule (lt(X,Y ) ∧ lt(Y,Z) =⇒ lt(X,Z)). Suppose

we have matched lt(A,B) with the occurrence lt(X,Y ), and we wish to find a

partner constraint to match the occurrence lt(Y,Z). With attributed variable in-

dexing, we call get attr(B, lt index, Ls) to retrieve the attributes value Ls =

[lt(A,B), lt(B,C)]. We simply scan Ls to find the match lt(B,C), and apply the

rule. �

Our SMCHR runtime system also uses variable indexing, but does not use at-

tributed variables. Instead our variable indexing scheme is based on PARMA-

bindings (Taylor 1996). PARMA-bindings represent a variable X as a pointer-cycle

through all constraints (or terms) that contain X. This is opposed to pointer-chains

from a traditional WAM-style variable representation. A good comparison between

WAM and PARMA variable representations can be found in (Demoen et al. 1999).

Example 7 (Term and Variable Representation)

The representation of the (reified version of the) constraints from Example 6 is

shown in Figure 3. Here we assume a reified constraint b ↔ f(x1, .., xn) is repre-

sented by a n+1-arity term f(b, x1, .., xn). The term itself is represented as a vector

containing the functor/arity pair followed by the term’s arguments b, x1, .., xn.

In Figure 3 the pointer-cycles are represented by the unbroken arrows. Symbols
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b1, b2, and b3 are propositional variables handled by the SAT solver. The pointer-

cycles for B and C are of length two because they appear in two constraints, whereas

singleton variables A and D have a pointer-cycle length of one. �

A variable reference is a pointer to a cell in the pointer-cycle of a given variable.

Given a reference R to variable X, we define the following low-level operations:

1. var next(R) is a reference to the next cell in the pointer-cycle for X;

2. var container(R) is the term containing the cell pointed to by R; and

3. var index(R) is the argument index (from 0) of the cell pointed to by R.

Example 8 (Variable Operations)

Consider Figure 3 once more. Here R and S are references to variable B, and T is

a reference to the term representing the first lt constraint. We see that

var next(R) = S var next(S) = R var container(R) = T

var index(R) = 2 var index(S) = 1 �

The var next operation is simply pointer dereference, i.e. var next(R) ≡ *R.

Our implementation of var container relies on low-level garbage collector support.

Namely, it relies on a garbage collector that can efficiently2 map interior pointers,

i.e. pointers to inside a term such as R, to exterior pointers, i.e. the pointer to the

term itself such as T . We have implemented a garbage collector as part of our SM-

CHR implementation.3 Finally the var index operation is implemented in terms of

var container, and pointer arithmetic, i.e. var index(R) ≡ R− var container(R)− 1.

Using these low-level operations, we can directly implement variable indexing.

Example 9 (Variable Indexing)

Consider the following constraints for variable B.

b1 ↔ lt(A,B) ∧ b2 ↔ lt(D,B) ∧ b3 ↔ lt(B,C)

A possible variable layout for these constraints is shown in Figure 4a. Suppose that

b1 ∧ b2 ∧ b3 is set to true, and that we have matched b1 ↔ lt(A,B) with occurrence

true ↔ lt(X,Y ) from the rule (lt(X,Y ) ∧ lt(Y, Z) =⇒ lt(X,Z)). To match the

rule we must find a partner constraint of the form true ↔ lt(B, ) using B as the

variable index.

The pseudo-code for the matching routine in shown in Figure 4b. The algorithm

traverses the pointer-cycle of B. It will stop when either a match is found, or if we

complete a full loop without finding a match. Assuming the layout from Figure 4a,

the match lt routine will find the matching constraint b3 ↔ lt(B,C) in the third

iteration of the loop. �

Our variable representation is advantageous when it comes to discovering jus-

tifications for equality, which will be discussed in Section 6. The disadvantage is

that our variable indexing scheme does not directly allow for variables nested inside

2 In constant O(1) time.
3 Other garbage collectors also support the mapping of interior to exterior pointers, e.g. the

Boehm Collector (Boehm and Weiser 1988) with the GC base(ptr) API call.
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lt/3 b1

A

b3lt/3

C

b2lt/3

D

B

(a) Variable layout

match lt(R)
let R0 = R
do

let T = var container(R)
let I = var index(R)
let b = arg(0, T )
if isTrue(b) ∧ functor(T, lt, 3) ∧ I = 1

return T
R := var next(R)

while R 6= R0

return nil

(b) Match pseudo-code

Fig. 4: Matching a lt( , B, ) constraint.

other terms, e.g. c(f(X,Y ), Z). This is acceptable for solvers over “flat” domains

such as integers. For other domains we may apply the flattening transformation as

described in (Sarna-Starosta and Schrijvers 2008). Here we flatten constraints by

introducing new constraint symbols, e.g. c(f(X,Y ), Z) becomes cf (X,Y, Z).

5.2 Constraint Deletion

When a simplification or simpagation rule is applied, we must delete some of the

constraints that matched the rule head. Say we wish to delete constraint c(X̄), this

can be achieved in one of two possible ways:

1. Remove c(X̄) from the pointer-cycles of all X ∈ X̄; or

2. Overwrite the functor c with some “dummy” functor, say d.

The latter destructively updates c(X̄) to d(X̄) making it invisible to future match-

ings. The former is the more expensive operation, but keeps pointer-cycles shorter,

which may be advantageous in the long run.

6 A Reified Equality Solver

Most CHR systems extend a “built-in” constraint solver that, at a minimum, sup-

ports equality x = y. Prolog CHR systems such as (Schrijvers and Demoen 2004)

extend Prolog’s standard unification =/2 over (attributed) variables and terms. For

SMCHR we require a built-in solver that supports reified equality constraints of the

form b↔ (X = Y ), where b is a propositional variable. For efficient rule matching

using variable indexing, we wish to support variable unification. However, for clause

generation, we must also support justifications that include equality constraints. In

this section we describe how to implement such a solver using the variable repre-

sentation described in Section 5.1.
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b1

A

lt/3 =/3

B

b3

D

C

lt/3 b2

RB RC

(a) Before

b1

A

lt/3 =/3

B

b3

D

C

lt/3 b2

(b) After

Fig. 5: Variable representation and unification.

6.1 Unification

Given an equality constraint b ↔ (X = Y ) where b has been set to true, then we

must unify the representations of variables X and Y . This is handled the same way

as with PARMA-bindings, i.e., by merging the pointer cycles for X and Y to form

one larger cycle (Demoen et al. 1999). Specifically, let T be the term representation

of the equality constraint b↔ (X = Y ); let RX and RY be the variable references

to X and Y in T ; and let R′X = var next(RX) and R′Y = var next(RY ), then we set

∗RX := R′Y and ∗RY := R′X

Both updates are trailed and will be undone on backtracking.

Example 10 (Variable Unification)

Consider the constraints:

b1 ↔ lt(A,B) ∧ b2 ↔ lt(C,D) ∧ b3 ↔ (B = C)

The representation of these constraints is shown in Figure 5a. Here RB and RC are

the references to B and C in the term representation of the equality constraint.

Suppose b3 is set to true. Let R′B = var next(RB) and R′C = var next(RC), then

the equality solver unifies B with C by setting ∗RB := R′C and ∗RC := R′B . This

merges the pointer-cycles to form one larger cycle, as shown in Figure 5b. �

Note that variable unification only the updates the equality term itself. All other

constraints remain unchanged.

We avoid unifying two references to already-unified variables. Instead we delete

the redundant equality constraint. In effect, our equality solver enforces the follow-

ing CHR rule

X = Y \ X = Y ⇐⇒ true

The built-in equality solver only handles variable/variable unification. Variable/val-

ue equality can be implemented via the rule

X = c ∧X = d =⇒ false where c 6= d
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B = C

B

B

C

C

(a) Unification B = C

A B C

D

(b) Unified A = B∧C = B∧B = D

Fig. 6: Unification and justification of pointer-cycles.

6.2 Justification

Given two references to variables x and y, we must determine whether x and y are

equal, and if they are, generate a justification as to why x and y are equal.

Example 11 (Equality Justification)

Given the rule (lt(X,Y ) ∧ lt(Y,X) =⇒ false) and the constraints

b1 ↔ lt(A,B) ∧ b2 ↔ lt(C,A) ∧ b3 ↔ (B = D) ∧ b4 ↔ (D = C) ∧ b5 ↔ (A = E)

suppose b1∧b2∧b3∧b4∧b5 is set to true. The rule matches since D |= B = D∧D =

C → B = C with the corresponding justification b3 ∧ b4. The negated justification

is incorporated into the clause ¬b1 ∨ ¬b2 ∨ ¬b3 ∨ ¬b4 that is generated when the

rule is applied. �

The challenge is to combine justification with unification. In Example 11, vari-

ables B, C, and D will already be unified as per Section 6.1, and thus share one

combined pointer-cycle. For justifications, we must treat B, C, and D as separate

variables. We can however make the following observation:

Observation 1

The term representation of a reified equality constraint b ↔ (X = Y ) remains in

the combined pointer-cycle after unification.

This is demonstrated in Figure 5. After the unification (in Figure 5b), the term

representation of b3 ↔ (B = C) remains in the combined pointer-cycle. This term

marks the point where the pointer-cycles for B and C were joined. With this infor-

mation, we can reconstruct the original pointer-cycles before the unification.

To help describe the algorithm for computing justifications, we introduce an

abstraction based on the following observation about the “shape” of the combined

pointer-cycle in Figure 5b:

Observation 2

The combined pointer-cycle has a “twist” in it, i.e. where it overlaps with itself to

form a horizontal “figure-8” pattern.

The abstract version the unification from Figure 5 is shown in Figure 6a. Vari-

ables are represented by abstract pointer-cycles. Unifying two pointer-cycles forms
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ask eq(X,Y )
let X0 = X,S = ε
do

if X ≡ Y return S
let T = var container(X)
let b = arg(0, T )
if isTrue(b) ∧ functor(T, =, 3)

if peek(S) ≡ b
S := pop(S)

else
S := push(S, b)

X := var next(X)
while X 6= X0

return unknown

(a) Ask-equals with justification

A B C

D

s
r

t

u
b1

b2b3

(b) Justification example

Fig. 7: Ask-equals with justification example.

a larger pointer-cycle with a twist. The twist is merely an abstraction of the equal-

ity term, and therefore denotes the transition between the original pointer-cycles

from B to C and vice versa.

Example 12 (Twists)

Suppose A, B, C, and D are “fresh” variables with no twists, i.e. are yet to be

unified with any other variable. Suppose that

b1 ↔ (A = B) ∧ b2 ↔ (C = B) ∧ b3 ↔ (B = D)

and b1 ∧ b2 ∧ b3 is set to true. Variables A, B, C, and D are unified to form an

abstract pointer-cycle with three twists as shown in Figure 6b. �

Equality justifications can be straightforwardly generated by traversing pointer-

cycles and tracking twists. Consider the rule (neq(X,X) =⇒ false) that implements

a disequality constraint. Given a CHR constraint neq(A,B), the SMCHR engine

asks the built-in equality solver whether variable references A and B are equal, and

if so, the justification for the equality for clause generation. The pseudo-code for the

ask-equals algorithm is shown in Figure 7a. The inputs are variable references X

and Y . The algorithm traverses the pointer-cycle starting from X and maintains a

stack S of twists. Each twist is represented by the propositional variable b from the

corresponding non-redundant reified equality constraint b↔ ( = ). As we traverse

the pointer-cycle and we encounter a twist b, we either (1) pop b from S if the top of

S is b (i.e. peek(S) ≡ b), or (2) push b onto S otherwise. If Y is encountered, then

X = Y holds and the stack S is returned. Otherwise unknown is returned. The

justification for the equality is simply the resulting stack S = [b1, .., bn] interpreted

as the conjunction b1 ∧ .. ∧ bn.

Example 13 (Justifications)

Consider the abstract pointer-cycle diagram from Figure 7b and the variable refer-
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SMCHR CHR
Bench. Solver time #clauses #fails time #fails
cycle(50) lt 285 1177 1 238 1
cycle(100) ′′ 8003 4852 1 3515 1
cycle(50) leq 501 1225 0 242 0
cycle(100) ′′ 12113 4950 0 3382 0
queens(12) bounds 582 2834 388 847 2805
queens(14) ′′ 1750 5829 991 9029 24596
queens(16) ′′ 7072 14659 4119 65951 150660
queens(18) ′′ 22984 33159 12972 359170 701930
queens(20) ′′ 82200 84000 44548 – –
subsets(15, 99) ′′ 57 7477 106 4301 30827
subsets(20, 99) ′′ 102 12687 156 79115 616666
Geo. Mean. – 1296 – – 447% –

Fig. 8: SMCHR vs. K. U. Leuven CHR (SWI) experimental results

ences r, u to A, s to B, and t to D, then

(query) (sequence) (justification)

ask eq(r, s) push(b1), push(b2), pop(b2) b1
ask eq(r, t) push(b1), push(b2), pop(b2), push(b3) b1 ∧ b3
ask eq(r, u) push(b1), push(b2), pop(b2), push(b3), pop(b3), pop(b1) true

ask eq(u, r) ε true

Furthermore we see that ask eq(R,S) = ask eq(S,R) for all R,S. For example,

ask eq(u, r) = ask eq(r, u) = true, as expected. �

We can similarly adapt the variable indexing routines such as from Figure 4b to

generate justifications for matches using the same basic idea.

7 Experiments

In this section we test the SMCHR runtime system presented in this paper. We are

yet to integrate a CHR compiler, and all CHR solvers tested in this section were

compiled manually. All timings are on Intel i5-2500K CPU clocked at 4Ghz and

averaged over 10 runs. We compare against the K.U.Leuven CHR system (Schri-

jvers and Demoen 2004) running on SWI Prolog (Wielemaker et al. 2012) version

5.8.2., with debugging disabled and full CHR optimization enabled. The results are

shown in Figure 8. Here, time is the time in milliseconds, #clauses is the number

of generated clauses (for SMCHR), and #fails is the number of fails/backtracks. A

dash indicates a time exceeding 10 minutes.

Benchmark cycle(n) is a cycle of CHR constraints p(A0, A1)∧ ..∧ p(An, A0) for

p ∈ {lt , leq}. The lt solver answers false, whereas the leq unifies all the variables Ai

for i ∈ 0..n. Benchmark queens(n) finds a solution to the classic n-queens problem

using a bounds propagation solver implemented in CHR (e.g. like Example 1) and

a generalization of the encoding from Example 2. Benchmark subsets(n, v) is a

variant of the sum-of-(multi-)sets problem, where the multi-set is {10, .., 10} and is

of size n, and v is the target value. For v = 99 there are no solutions.
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The experimental results show that SMCHR is slower for benchmarks that do not

use search/disjunction, such as cycle(n). This is because of overheads introduced

by the SAT solver and clause generation. For benchmarks that use search, such as

queens(n) and subsets(n, v), SMCHR is faster thanks to no-good learning. This

benefit likely overwhelms any advantage gained from manual compilation.

8 Related Work

SMCHR is closely related to Satisfiability Modulo Theories (SMT) (Moura and

Bjørner 2011). The basic design is the same: a SAT solver core sets and wakes

theory constraints which are solved using a theory solver (Nieuwenhuis et al. 2006).

In SMCHR, the theory solver is specified in CHR. As far as we are aware, most

SMT implementations do not use the (lazy) clause generation (Ohrimenko et al.

2009) approach. Instead the theory solvers either do no propagation (i.e. merely test

satisfiability) or the SAT core directly queries the theory solver for justifications

on backtracking. The clause generation approach is far more flexible. It allows

for theory propagation, and does not require any special algorithm to construct

justifications on failure.

SMCHR is not the first CHR system to support back-jumping and no-good learn-

ing. CHR∨ (Wolf et al. 2008) is an extension of CHR that allows disjunction in the

body of the rules, e.g. a rule for indomain for labelling might be:

label(X) \ indomain(X, [Y |Y s])⇐⇒ X = Y ∨ indomain(X,Y s)

In SMCHR we do not currently support disjunction in rules, only in the initial

goal. Disjunction in rules is an obvious direction for future work. The operational

semantics of CHR∨ is an extension of the the refined operational semantics (Duck

et al. 2004), where conflict driven back-jumping is supported by explicitly annotat-

ing constraints with justifications. Unlike CHR∨, we do not build the machinery of

no-good learning, back-jumping, etc., into the operational semantics. Rather these

details are left to the SAT solver. It is not clear how the CHR∨ implementation

supports justifications for equality.

9 Conclusions and Future Work

In this paper we introduced SMCHR, the natural merger of SMT, CHR, and (lazy)

clause generation. We presented a new CHR runtime system based on a new variable

representation that supports both unification, and importantly, justifications. Our

experimental results confirm that no-good clause learning is very effective at search

space pruning, resulting in large speed-ups for some benchmarks.

Our SMCHR runtime system has not yet been finely tuned and results from

Section 7 can likely be improved. This is future work. We also intend to use SMCHR

for applications such as automated program verification.
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