
Compilation of Constraint Handling Rules

Gregory J. Duck

December 2005

Submitted in total fulfilment of the requirements
of the degree of Doctor of Philosophy

Department of Computer Science and Software Engineering
The University of Melbourne

Victoria, Australia

ii

Copyright c© 2005 Gregory J. Duck
All Rights Reserved

Abstract

Constraint Handling Rules (CHRs) are a committed choice rule based
programming language designed for the implementation of incremen-
tal constraint solvers, or for extending the functionality of existing
solvers. A CHR program is a set of rules, which are exhaustively
applied to some input constraints, until no further rule is applicable.

CHRs have become increasingly popular in recent years, mainly be-
cause CHRs are a very high-level language, which makes it possible
to specify complex problems with just a few rules.

Despite the popularity of CHRs, most CHR compilers or interpreters
are still very simple. For instance, very few implementations attempt
any meaningful optimisation, which results in poor performance at
runtime. The aim of this thesis is to modernise the compilation of
CHRs, and therefore make it a far more practical programming lan-
guage.

We take both a theoretical and practical approach to compiling CHRs.
For the theoretical part, we formalise the operational semantics of
CHRs as used by most current CHR implementations. This helps
us verify some important theoretical results for CHRs, and forms the
basis for CHR program analysis, which is an essential part of CHR
compilation.

We look at optimising CHRs based on various information available
to the compiler. Some of the optimisations depend on the results of
the program analysis. We evaluate the optimisations based on some
experimental results.

This thesis is also a handbook on CHR compilation, with all of the es-
sential information contained within. Most of the ideas in this thesis
could easily be adapted to other CHR compilers in other environ-
ments.

iii

iv

Declaration

This is to certify that:

(i) the thesis comprises only my original work towards the PhD except where indi-
cated in the Preface,

(ii) due acknowledgement has been made in the text to all other material used,

(iii) the thesis is less than 100,000 words in length, exclusive of tables, maps, bibli-
ographies and appendices.

Signed,

Gregory J. Duck
21st December 2005

v

vi

Acknowledgements

Financial support for this thesis was provided by the federal government of
the Commonwealth of Australia in the form of a Australian Postgraduate
Award (APA), and by the state government of Victoria in the form of an
Information Communication Technology (ICT) scholarship.

I would especially like to thank my supervisor, professor Peter J. Stuckey,
for his (generally) excellent supervision.

I would also like to thank the following people. Maria Garcia de la Banda
for her help and guidance with respect to the HAL compiler, and all of its
idiosyncrasies. Christian Holzbaur for his help with some of the practical
aspects of building a CHR compiler. Tom Schrijvers and Jeremy Wazny
for many interesting (and relevant) discussions about CHRs. For their help
with the HAL compiler, I’d also like to thank two of its past developers,
David Overton and Ralph Becket.

I’d like to especially thank Martin Sulzmann for his help and support, and
for helping me escape Melbourne’s cold cold winters.

And a special thanks to Priscilla, for all of her love and patience over the
years.

vii

viii

Preface

This thesis consists of 9 chapters, including introduction and conclusion.
Chapter 2 presents the necessary background information in order to un-
derstand this thesis. Chapter 3 formalises the operational semantics of
CHRs used by modern CHR compilers. Chapter 4 details a simple com-
pilation strategy for CHRs. Chapter 5 presents an analysis framework for
CHRs, and includes two instances of that framework. Chapter 6 presents
a confluence test based on the results of the analysis. Chapter 7 presents
several CHR specific optimisations, also based on the analysis. Chapter 8
examines more closely the problem of compiling CHRs which extend con-
straints solvers. Finally, in Chapter 9, we conclude.

Portions of this thesis are based on joint work, which we list here. Chap-
ter 3 is based on the first part of Duck, Garcia de la Banda, Stuckey and
Holzbaur [27]. Section 4.5 of Chapter 4 is loosely based on Duck, Garcia de
la Banda and Stuckey [24]. Chapter 5, except for Section 5.6, is based on
Schrijvers, Stuckey and Duck [73]. Chapter 6, like Chapter 3, is also based
on [27]. Chapter 7 is based on Holzbaur, Garcia de la Banda, Stuckey
and Duck [45]. Finally, Chapter 8 is based on Duck, Stuckey, Garcia de la
Banda and Holzbaur [26]. The rest of the thesis is entirely my own work.

ix

x

Contents

1 Introduction 1

1.1 Constraint Handling Rules . 1

1.2 Aims of this Thesis . 3

1.3 A Guide to this Thesis . 4

2 Background 7

2.1 Introduction . 7

2.2 Preliminaries . 7

2.2.1 Notation . 7

2.2.2 Predicate Logic . 8

2.2.3 Constraint Programming (CP) 9

2.2.4 Logic Programming (LP) 10

2.2.5 HAL Programming Language 14

2.2.6 Future of HAL . 19

2.3 Constraint Handling Rules . 20

2.3.1 Syntax and Semantics . 20

2.3.2 Confluence and Termination 22

2.3.3 History of Implementations 24

2.3.4 Related Systems . 31

3 Operational Semantics 35

3.1 Introduction . 35

3.2 The Theoretical Operational Semantics ωt 37

3.2.1 The ωt Semantics . 38

3.3 The Refined Operational Semantics ωr 41

3.3.1 Extended Example: leq 46

3.3.2 Small Example: gcd . 48

3.4 Declarative Semantics . 49

3.5 The Relationship Between ωt and ωr 51

3.5.1 Termination . 60

3.5.2 Confluence . 62

3.6 Related Work . 66

3.7 Summary . 67

xi

xii CONTENTS

4 Basic Compilation 69

4.1 Introduction . 69

4.2 Parsing and Normalisation . 70

4.2.1 Parsing . 70

4.2.2 Head and Guard Normalisation 71

4.2.3 Program Normalisation . 73

4.3 Runtime Environment . 73

4.3.1 Execution Stack . 73

4.3.2 CHR Store . 74

4.3.3 Built-in Store . 75

4.3.4 Propagation History . 77

4.4 Code Generation . 77

4.4.1 Top-level Predicate . 78

4.4.2 Occurrence Predicates . 78

4.5 Compiling the Guard . 83

4.5.1 Basic Guards . 85

4.5.2 Guards with Existential Variables 86

4.6 Summary . 91

5 Analysis 93

5.1 Introduction . 93

5.2 The Call-based Operational Semantics ωc 94

5.3 Equivalence of ωc and ωr . 98

5.3.1 From Call-based to Refined 98

5.3.2 From Refined to Call-based 103

5.3.3 Main Result . 108

5.4 Abstract Interpretation Framework 108

5.4.1 Abstract State . 108

5.4.2 Abstract Transitions . 108

5.4.3 The Generic Abstract Semantics 109

5.5 Late Storage Analysis . 111

5.5.1 The Observation Property 112

5.5.2 Abstract Domain . 115

5.5.3 Abstract Transitions . 115

5.5.4 Example Analysis . 117

5.6 Functional Dependencies . 119

5.6.1 The Functional Dependency Property 119

5.6.2 Abstract Domain . 120

5.6.3 Abstract Transitions . 123

5.6.4 Example Analysis . 127

5.7 Summary . 127

CONTENTS xiii

6 Confluence 131

6.1 Introduction . 131

6.2 Checking Confluence for ωr . 132

6.2.1 Nondeterminism in the Solve Transition 133

6.2.2 Nondeterminism in the Simplify and Propagate Transitions 134

6.2.3 Confluence Test . 138

6.3 Implementation of Confluence Test 142

6.4 Case Studies: Confluence Test . 146

6.4.1 Confluence of ray . 146

6.4.2 Confluence of bounds . 147

6.4.3 Confluence of compiler 148

6.4.4 Confluence of union . 151

6.5 Summary . 151

7 Optimisation 153

7.1 Introduction . 153

7.2 Local Optimisation . 154

7.2.1 Overhead Removal . 154

7.2.2 Join Ordering and Early Guard Scheduling 158

7.2.3 Index Selection . 163

7.3 Global Optimisation . 168

7.3.1 Continuation Optimisation 168

7.3.2 Lateness Optimisations . 170

7.3.3 Never Stored . 173

7.4 Experimental Results . 174

7.5 Summary . 180

8 Extending Solvers 183

8.1 Introduction . 183

8.2 Wakeup Policy . 184

8.3 Rechecking Rules . 188

8.3.1 Optimising Delay . 188

8.3.2 Accurate Specialisation . 193

8.3.3 Existential Variables . 196

8.4 Building Indexes on Solver Variables 197

8.5 Implementing Delay in HAL . 200

8.5.1 Fundamentals . 200

8.5.2 Polymorphic Solver Events 203

8.5.3 Complex Solver Terms . 204

8.5.4 Index Related Dynamic Scheduling 206

8.6 Experimental Results . 209

8.7 Summary . 212

xiv CONTENTS

9 Conclusion 215
9.1 Summary and Conclusions . 215
9.2 Contributions . 216
9.3 Future Work . 217

A Example Programs 227
A.1 Bounds Propagation Solver in HAL CHR 227
A.2 Ray Tracer in HAL CHR . 228

List of Figures

3.1 ωt derivation for gcd. 41
3.2 ωr derivation for gcd. 49

4.1 Pseudo code for a top-level predicate. 78
4.2 Pseudo code for the ith occurrence predicate. 79
4.3 Pseudo code for the join loop predicate. 81
4.4 Join loop predicate for the transitivity rule’s first occurrence. . . 82
4.5 Pseudo code for the call body predicate. 83
4.6 Compiled version of the gcd program. 84

5.1 Example derivation under the call-based operational semantics of
CHRs . 98

5.2 Example abstract derivation for late storage analysis 118
5.3 Example abstract derivation for functional dependency analysis . 128

7.1 Simplified join-loop predicate based on nondeterministic search . 155
7.2 Existential search code for the fourth occurrence of a bounds/3

constraint . 156
7.3 Example selectivity approximations of various guards. 160
7.4 Algorithm for evaluating join ordering 161
7.5 Operations that need to be supported for each index. 165
7.6 Supported index structures and corresponding iterator types . . . 165
7.7 Pseudo code for p insert and p delete 172
7.8 Simplified code for gcd/1 with late storage and late ID optimisations173

8.1 Relationship between finite domain ask constraints and solver events.191
8.2 Optimised compiled min/3 delay and wakeup handling code. . . . 195
8.3 A tree of lists of CHR constraints indexed on the second argument 198
8.4 Pseudo code for safe indexing over solver terms 200
8.5 Example implementation of fd delay for a finite domain solver . 202
8.6 Example usage of wake up/1 to implement delay 203
8.7 Pseudo code for delay changed over a complex type 206
8.8 Implementation of delay changed over a list solver 207
8.9 The delay update typeclasses for indexing 207
8.10 Implementation of delay update cc for a Boolean solver 208

xv

xvi LIST OF FIGURES

8.11 Implementation of the true(X) constraint supporting delay update

208

List of Tables

7.1 Statistics from each of the example programs 176
7.2 Execution times (ms) for various optimised versions of the gcd

program . 177
7.3 Execution times (ms) for various benchmarks testing indexing . . 178
7.4 Execution times (ms) for various benchmarks testing join ordering

and early guard scheduling . 179
7.5 Execution times (ms) for various benchmarks testing continuation

optimisation . 180
7.6 Execution times (ms) for various benchmarks testing lateness op-

timisation . 180

8.1 Statistics from each of the example programs extending solvers . . 210
8.2 Execution times (ms) for various benchmarks testing indexing over

solver variables . 211
8.3 Execution times (ms) for various benchmarks testing specialisation 212

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

1.1 Constraint Handling Rules

Constraint Handling Rules (CHRs) are a rule based programming language de-
signed for the implementation of incremental constraint solvers, or for extending
the functionality of existing solvers. The popularity of CHRs has significantly
increased in recent years. This is principally because, given their high-level and
declarative nature, many problems can be concisely expressed in CHRs. For
example, some applications of CHRs include

• agent reasoning in the FLUX [84] language;

• type inference in the Chameleon [81] system; and

• many constraint logic programming applications such as the Munich Rent
Advisor (MRA) [34] or university course time tabling with soft constraints [2].

More recently, CHRs are being used as a general rewrite language, rather than a
language exclusively for writing constraint solvers.

CHRs are part of the rule based programming paradigm. A program consists
of a sequence of rules, and these rules are exhaustively applied to some initial
input until no more rule application is possible. The result is the output of the
program. There are many other programming languages in existence, includ-
ing reduction systems, production systems, etc., that fit under the rule based
paradigm.

Rules in CHRs define relations between constraints. Three types of rules are
supported: rules for rewriting constraints into other constraints, rules for adding
new constraints, and rules that are a hybrid of the two. All of these rules consist
of a head and a body separated by an arrow. The rule is applicable if there exist a
set of constraints that match1 the head. When the rule is applied, the constraints
in the body are added to the goal.

1As opposed to unify, as with logic programming languages.

1

2 CHAPTER 1. INTRODUCTION

Example 1 By far the most famous example of a CHRs is the leq program,
which defines a less-than-or-equal-to constraint leq(X,Y) (i.e. X ≤ Y) as
follows.

reflexivity @ leq(X,X) <=> true.

antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.

idempotence @ leq(X,Y) \ leq(X,Y) <=> true.

transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

This program consists of four rules, one for each line. Each rule has a name, e.g.
reflexivity, idempotence, etc., appearing before the ‘@’ token, which describes
the purpose of the rule. The name is optional, and purely syntactic, i.e. doesn’t
affect the behaviour of the program.

The reflexivity rule declares that a constraint of the form leq(A,A) (i.e.
the first and second arguments are identical), can be rewritten to the true con-
straint. The true constraint represents the empty or trivial constraint, i.e. con-
tains no information. This rule maintains the identity

∀X(X ≤ X ↔ true)

The antisymmetry rule states that two symmetric leq constraints, i.e. of
the form leq(A,B) and leq(B,A), can be replaced with the equation A = B
unifying A and B. This rule maintains the identity

∀X∀Y (X ≤ Y ∧ Y ≤ X ↔ X = Y)

The idempotence rule is more complicated, because there are two leq con-
straints appearing in the head of the rule. Notice that the two leq constraints
are identical. The rule states that given two identical leq constraints, one of the
constraints (the one matching the right-hand-side of the token ‘\’) can be rewrit-
ten to the true constraint. The purpose of this rule is remove redundant copies
of leq constraints.

Finally, the transitivity rule states that given two leq constraints of the
form leq(A,B) and leq(B,C), we can add the new constraint leq(A,C).
Unlike the other rules, this rule does not delete any constraint, and it maintains
the identity

∀X∀Y ∀Z(X ≤ Y ∧ Y ≤ Z → X ≤ Z)

⊓⊔

Notice the close relationship between the rules and the mathematical relationship
they represent.

A rule with the ‘==>’ arrow is a propagation rule, which adds the body of the
rule. For example, transitivity is a propagation rule. A rule with the ‘<=>’ ar-
row, and without the token ‘\’ in the head, is a simplification rule, which replaces
constraints matching the head with the body. For example, both reflexivity

and the antisymmetry are simplification rules. A rule with the ‘<=>’ arrow, but

1.2. AIMS OF THIS THESIS 3

with a ‘\’ in the head, is a simpagation rule, which replaces the constraint match-
ing the right-hand-side of the ‘\’ token with the body. For example, idempotence
is a simpagation rule.

The input to a CHR program is called the goal.

Example 2 Consider the following goal for the leq program in Example 1.

leq(A,B), leq(C,A), leq(B,C)

We can apply the transitivity rule on the second and first constraints to add
the new constraint leq(C,B).

leq(A,B), leq(C,A), leq(B,C), leq(C,B)

We can apply the antisymmetry rule to replace the third and fourth constraints
with the equation B = C.

leq(A,B), leq(C,A), B = C

Now that B and C are equal, we can apply the antisymmetry rule to replace the
first and second constraints with the equation A = B.

A = B, B = C

Since no more rules can be applied (since there are no more leq constraints), this
is the output of the program. ⊓⊔

CHRs are a committed choice language, which means that if multiple rule appli-
cations are possible, then we only try one of them. In Example 2, other combi-
nations of rule applications were possible. If the output state is independent of
the combination chosen for any input, then we say that the program is confluent.
The leq program is known to be confluent. In general, confluence is an important
property for CHRs (and other rule based languages).

1.2 Aims of this Thesis

Whilst there have been many implementations of CHRs since their invention in
1991, most of these were relatively naive and ad hoc. As the popularity of CHRs
has significantly grown in recent years, the need to have better compilers has
also grown. The purpose of this thesis is to significantly improve and modernise
the compilation of CHRs, which will benefit both CHR programmers and CHR
compiler writers.

We divide the aims of this thesis into two main parts.

4 CHAPTER 1. INTRODUCTION

Formalise the operational semantics of CHRs

The operational semantics of CHRs have long been formalised per se, however
most implementations implicitly define a more restrictive operational semantics,
where some of the inherent nondeterminism of CHRs (e.g. the choice of rule
application) has been removed. In practice, rules are chosen in a textual top-
down order, and (sub)goals are executed left-to-right. This is analogous to the
execution order which the Prolog [50] programming language uses. Many Prolog
applications rely on the execution order, and similarly, many CHR applications
have a similar dependency.

The implicit operational semantics for CHRs has never been formalised pre-
vious to our work (as far as we are aware). By formalising the semantics, we
give the compilation of CHRs a theoretical basis, which can be used to establish
correctness, for program analysis, and for optimisation. It also serves as a for-
mal specification for future compiler writers. We can also understand confluence
under the implicit semantics, and use it to detect bugs in CHR code.

Improve CHR compilation

Before work on this thesis begun, CHR compilers were relatively simple, and
made little or no optimisation. The penalty for using CHRs over a more low-level
language could be significant depending on the type of the application. Our aim
is to reduce this penalty, and make CHRs a practical option for implementing
some applications.

In this thesis we focus on a CHR compiler for the HAL programming lan-
guage [20, 17]. HAL is a recent Constraint Logic Programming (CLP) language,
which makes an ideal host environment for the CHR language. CHR rules can
be embedded in HAL programs, and the HAL compiler converts the rules into
optimised HAL code.2 This compiler was implemented by the author of this the-
sis, and incorporates several kinds of optimisations designed to improve runtime
performance. We provide benchmarks to backup the claims of improvements over
earlier (and more primitive) compilation schemes.

1.3 A Guide to this Thesis

In Chapter 2 we present all of the necessary background information required
in order to understand this thesis. This includes overviews of constraint logic
programming, the HAL programming language and CHRs themselves.

Chapter 3 presents a formalisation of the operational semantics of CHRs used
in most CHR compilers, including the HAL CHR compiler. This is the implicit
semantics identified in Section 1.2. We compare and prove correctness for the
new operational semantics with respect to the original version. We show that

2It is usually the case that CHRs are compiled into the host language.

1.3. A GUIDE TO THIS THESIS 5

several main results in CHRs, e.g. results for confluence and termination, can be
lifted to the new semantics.

Chapter 4 presents a basic compiler and runtime environment for CHRs based
on the operational semantics from Chapter 3. The basic compiler is no more
advanced than existing implementations. It will form the basis for more advanced
optimising compilation presented later in this thesis.

Chapter 5 presents an analysis framework of CHRs. This is also based on
the operational semantics of Chapter 3. The analysis framework is modelled
on abstract interpretation, and there are some unique issues specific to dealing
with a language like CHRs. We present two instances of our framework which
discover useful information from CHR programs. The information will be used
for confluence testing and optimisation presented later in the thesis.

Chapter 6 presents a static check that can partially verify the property of
confluence assuming the operational semantics of Chapter 3. Confluence is an
important property, and a nonconfluent program is generally considered a buggy
program. We use the test to help verify confluence for three large CHR applica-
tions.

Chapter 7 presents several optimisations which can improve the resulting ex-
ecutable compared with the basic compilation and other CHR implementations.
Some of the optimisations are fairly simple, whilst others rely on the results from
program analysis as presented in Chapter 5. We present experimental results to
show the benefit of using the optimisations on several sample CHR programs.

Chapter 8 examines the unique issues that arise from CHRs extending another
constraint solver. Example 1 is an example of CHRs extending another solver,
since the leq constraint “extends” a Herbrand solver, which provides the equality
constraint. This chapter presents some additional optimisations that were not
covered in Chapter 7. It also describes the interface between CHRs and other
constraint solvers. We give benchmarks to evaluate the benefits of our approaches.

Finally, in Chapter 9 we conclude.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Introduction

In this chapter we cover the necessary background information required for com-
prehending the rest of this thesis.

Section 2.2 covers the necessary preliminaries, such as an overview of the
relevant notation, predicate logic, constraint/logic programming and the HAL
programming language. Section 2.3 cover CHRs, including CHR preliminaries,
confluence/termination results, the history of CHR compilers to date and related
systems.

2.2 Preliminaries

2.2.1 Notation

Most of this notation is standard, so we only give a brief overview.
We use the following notation for the standard logical connectives: ∧ (and), ∨

(or),→ (implies), ↔ (iff), ¬ (negation), |= (models), ∀ (universal quantification)
and ∃ (existential quantification).

We use standard notation for sets: ∈ (element of), ⊂ (strictly contains), ⊆
(contains), ∪ (union), ∩ (intersection) and − (difference). We use ∅ to denote
an empty set. We can define a set by a listing of its elements enclosed in curly
braces, i.e. {x1, ..., xn} is a set containing elements x1, ..., xn. Sets may also be
defined using set comprehension, e.g. {x | p(x)} defines the set of all x that
satisfies property p. The cardinality of a set S is given by |S|. For finite sets, the
cardinality is the number of elements in S. We do not consider the cardinality of
infinite sets in this thesis.

We use exactly the same notation for multisets, but introduce the following
additional operations: ⊎ (multiset union) and C (multiset intersection). For
example, {1, 2} ⊎ {1, 1, 3} = {1, 1, 1, 2, 3}.

For sequences, we use a notation based on the syntax for the Prolog program-
ming language (which we cover in Section 2.2.4). We use [] to denote an empty

7

8 CHAPTER 2. BACKGROUND

sequence, and [H|T] to denote a sequence with H as the first element (the head),
and T as the remainder of sequence with H removed (the tail). We use operator
++ to represent sequence concatenation.

The remainder of the notation will be introduced when required.

2.2.2 Predicate Logic

Both constraint and logic programming have their formal basis in first order
predicate logic, which we briefly describe here. For a more detailed introduction,
see [62].

We define V ars to be a set of logic variables, PredSym to be a set of predicate
symbols and FuncSym to be a set of function symbols or functors. Informally,
the variables represent unknowns, predicates are relations which are true or false,
and functions are used to construct values which can be assigned to the variables.
We usually use an upper case letter to indicate a variable.

A term is constructed from variables and function symbols as follows. A term
is either

1. a variable V ∈ V ars; or

2. a function symbol f ∈ FuncSym, followed by a comma separated list of
terms surrounded by parentheses, i.e. f(t1, ..., tn).

We define n to be the arity of the term. Sometimes we use f/n group a functor
f together with arity n. A term with arity 0 is called a constant, in which case
we omit parentheses. Terms are ground if they contain no variables, otherwise
they are nonground. We also define a ground term to be a value.

An atomic formula is of the form p(t1, ..., tn) where p ∈ PredSym is a pred-
icate symbol and t1, ..., tn are terms. We also extend the definitions of arity,
arguments and ground to atomic formulae.

A formula is constructed from atomic formulae using the logical connectives
(∧, ∨, → and ¬) and quantifiers (∀V and ∃V for V ∈ V ars).

We use a shorthand notation for existential quantification over many variables.
Let vars(A) return the variables occurring in any syntactic object A. We use ∃AF
to denote the formula ∃X1 · · · ∃XnF where {X1, . . .Xn} = vars(A). Similarly, we
use ∃̄AF to denote the formula ∃X1 · · · ∃XnF where {X1, . . .Xn} = vars(F) −
vars(A). We also use similar notation with ∀ replacing ∃.

A substitution θ is a mapping from variables to terms represented as

θ = {X1/t1, ..., Xn/tn}

where X1, ..., Xn are distinct variables, and t1, ..., tn are terms. If A is a syntactic
object, then θ(A) is the syntactic object obtained by replacing each instance of
variable Xi with the term ti. Often we treat a substitution as a conjunction of
equations, i.e. θ = (X1 = t1 ∧ ... ∧Xn = tn).

2.2. PRELIMINARIES 9

The statement D |= F means that formula F holds (i.e. is true) with respect
to formula D. That is, any model of D is a model of F . We call D the domain
or theory, which decides if a given ground atomic formula is true or false.

2.2.3 Constraint Programming (CP)

Constraint Programming (CP) is a programming paradigm where a problem is
expressed declaratively in terms of a set of constraints, which are solved to obtain
a desired answer. CP is well known for its ability to find solutions to difficult
combinatorial problems, e.g. timetable scheduling, relatively quickly compared
with more traditional programming techniques. This is because of the interactions
between unknowns through constraints, e.g. fixing an element in a timetable may
fix other elements, which means the size of the search space (i.e. all potential
timetables) has been significantly reduced.

There are several CP languages in existence, e.g. CHIP [23] and other Con-
straint Logic Programming (CLP) languages (which are covered in Section 2.2.4),
OPL [42], Concurrent Constraints (CC) [69] and CHRs. There are several books
on CP [61, 85, 7, 35].

Constraint programming is based on first order predicate logic, where con-
straints are atomic formulae. For example, the equation X = Y + 1 is a con-
straint. The predicate symbol is = which represents equality, and the arguments
are variable X and function call Y + 1. In turn, the arguments to the function
call are variable Y and value 1. Another example is leq(A,B) from Example 1,
where the predicate symbol is leq, and variables A and B are the arguments.

Given a set of constraints, a constraint solver (or simply solver) attempts
to solve the constraints by applying domain specific algorithm(s). For example,
the leq program from Example 1 solves less-than-or-equal-to constraints using
the CHR execution algorithm and the rules from the program. Other examples
include finite domain solvers using domain propagation, Herbrand solvers using
a unification algorithm, linear arithmetic constraint solver using the simplex al-
gorithm, and many others.

The process of solving has three possible outcomes: satisfiable, unsatisfiable
or unknown. A set of constraints are satisfiable if there exists an assignment of
values to the variables such that the constraints become true. Such an assignment
is known as a solution to the constraints. For example, the linear arithmetic
constraint X = Y + 1 is satisfiable because there exists at least one solution, e.g.
(X = 1∧Y = 0). On the contrary, constraints are unsatisfiable if the constraints
can never be made true for any assignment of values to variables. For example,
the constraint X = X + 1 is unsatisfiable. If the constraints are unsatisfiable,
then we say that failure has occurred. Finally, the result may be unknown, which
means that the internal algorithms used by the constraint solver are too weak to
determine if the constraints are satisfiable or not. Such solvers are incomplete,
and are usually chosen for efficiency reasons. It is common for solvers to be
incomplete, e.g. finite domain solvers are generally incomplete.

10 CHAPTER 2. BACKGROUND

We assume that all solvers support the the trivial constraint true (which is
always satisfiable) and the false constraint (which is always unsatisfiable).

The set of constraints handled by the constraint solver is known as the con-
straint store, which we usually represent by symbol B. A constraint solver is
incremental if it supports the addition/removal of constraints into/from the con-
straint store as execution proceeds. All solvers we consider in this thesis are
assumed to be incremental. Sometimes we denote the constraint store with a
number i, i.e. Bi, to take into account incremental constraint solving, where Bi

represents the state of the store at the ith point in the execution of the program.
The initial store is always B0 = true, the trivial constraint. Suppose c is to be
added to the store Bi, then Bi+1 = (c∧Bi). Sometimes we call c a tell constraint,
because we are telling the solver that constraint c should hold.

The meaning of the constraint store is decided by a constraint theory, which we
represent by symbol D. The store Bi is satisfiable iff D |= ∃Bi

Bi holds. Likewise,
it is unsatisfiable iff D |= ¬∃Bi

Bi holds. Ideally, the constraint theory D should
satisfy the satisfaction completeness property, which means for all constraints B,
either D |= ∃BB or D |= ¬∃BB holds.

For an incomplete solver S, we introduce a special test D |=S B, which holds
if S can prove that D |= B holds (for arbitrary formula B). We consider D |=S B
to have failed if either the solver can prove D |= ¬B holds or is too weak to prove
that D |= B holds (i.e. we treat the unsatisfiable and unknown as the same).
We (re)define (un)satisfiability for incomplete solvers by replacing (D |=) with
(D |=S) above.

Most solvers provide facilities for querying the current state of the constraint
store. For example, given a solver store B, it might be useful to know if a
constraint c is entailed by B. We call this an ask constraint (as opposed to a
tell constraint), which holds iff D |=S (B → c) holds. Often it is the case that
a constraint solver provides procedures for both the tell and ask versions of a
constraint.

2.2.4 Logic Programming (LP)

In this section we give a brief overview of Logic Programming (LP). The idea
of logic programming is programming with logic, where a program is a logical
statement, and the execution algorithm is a form of theorem proving. A more
comprehensive introduction to LP can be found in [57].

Logic programming can be thought of as form of CP over the Herbrand do-
main,1 and this is how we shall present it.

Prolog

By far the most common logic programming language in use today is Prolog.
There are many implementations including [39, 88, 12, 68, 19, 15] and several

1The Herbrand domain is simply the domain of all terms.

2.2. PRELIMINARIES 11

textbooks [79, 65, 14, 10]. There is also an ISO standard [50].
The basic syntax for Prolog is as follows. Conjunction (∧) is represented by

a comma ‘,’ and disjunction (∨) by a semicolon ‘;’. There are three types of
symbols to consider: variables, predicate symbols and function symbols. Variables
are alphanumeric string that must begin with a uppercase letter or an underscore
character ‘ ’, and anything else is a function or predicate symbol. The value of this
string distinguishes the variable (or function/predicate symbol). The exception
are variables represented by a single underscore, i.e. ‘ ’. Each occurrence of the
underscore character in the program represents a unique unbound variable. For
example, p(,) is equivalent to p(A, B) where A and B do not appear elsewhere
in the program.

Program data in Prolog are terms constructed from variables and function
symbols (defined the same way as terms in predicate logic). Prolog also allows
integers and floating point numbers as constants.

Terms can use used to construct complex data structures, such as lists, trees,
etc. Prolog uses a special notation for lists (which we borrow for our sequence
notation). The empty list nil is represented by the atom ‘[]’, and cons(A, B)
by the special term [A|B]. Apart from the special syntax, a list is an ordinary
term.

Procedures in Prolog are called predicates. A call to a predicate p is repre-
sented by an atomic formula p(t1, ..., tn) where p is a predicate symbol.

A Prolog program is a sequence of clauses of the form (H:-B1, ..., Bn), where
H, B1, ..., Bn are atomic formulae. The operator ‘:-’ separates the clause head H
from the clause body B1, ..., Bn. Both the clause body and the operator ‘:-’ are
optional, and if missing, indicates the body is true. Each clause is terminated
with a full stop ‘.’.

The declarative view of a clause (H:-B1, ..., Bn) is the implication

∀H(H ← ∃̄HB1 ∧ ... ∧Bn)

Such an implication is called a definite clause, which is a special kind of Horn
clause [49]. The declarative view reads as follows: for all values of the variables
in H , if H is true, then all of B1∧ ...∧Bn must be also true for some value of the
variables not in H . Thus to execute H , we must execute all of B1∧ ...∧Bn. This
is the operational view of logic programming, which is discussed below. In this
thesis, we are mostly interested in the operational view of logic programming.

Prolog is also a constraint programming language with one kind of solver:
the Herbrand equation solver over terms. The constraint X = Y is added to the
constraint store by calling a special predicate (the unification predicate) of the
same form, where X and Y can be any valid term. If X and Y are not unifiable,
then failure occurs. Prolog also supports the built-in predicate X == Y , which
is an ask version of the equality constraint, i.e. the call X == Y succeeds iff the
current store entails X and Y are equal.

The operational semantics of Prolog is based on SLD-resolution (linear reso-
lution with selection function for definite clauses), for more information see [57].

12 CHAPTER 2. BACKGROUND

We give a simplified summary of the operational semantics as follows. The
input to the program is called the initial goal G1, ..., Gm, which is a conjunc-
tion of atomic formulae, and represents a Horn clause with an empty head, i.e.
(true← ∃̄∅G1 ∧ ... ∧ Gm). Initially, the constraint store is empty, i.e. B = true.
At each execution step we select a subgoal Gi, and a (renamed apart) clause
(H:-B1, ..., Bn) from the program such that Gi and H are unifiable (i.e. the ad-
dition of the Herbrand constraint2 Gi = H into the store will not cause failure).
The resulting goal is

B1, ..., Bn, G1, ..., Gi−1, Gi+1, ..., Gm

and the constraint Gi = H is added to the store. Otherwise, if no clause with
a head H unifiable with Gi can be found, then failure has occurred. In prac-
tice, Prolog always executes the subgoals from left-to-right and chooses clauses
top-down (in textual order). This corresponds to a depth-first-search execution
strategy.

Sometimes there may be more than one possible clause with a head unifiable
with a given subgoal Gi. We call such predicates nondeterministic, and they
are executed as follows. When subgoal Gi is selected a choice point is created,
and the top-most eligible clause for the predicate is tried. If this choice leads
to failure, then execution will backtrack to the choice point, and the next clause
is tried, and so forth. Failure occurs once all clauses have been tried without
success. Choice points can be nested, and when failure occurs, execution jumps
to the “most recent” (i.e. the set of choice points forms a stack). If failure occurs
and the choice point stack is empty, then the initial goal has failed.

For any given initial goal G1, ..., Gm there are three possible outcomes. The
first is that failure occurs (as detailed above). The second is that the goal becomes
empty, in which case we say that the goal succeeded, and the constraints in the
Herbrand store become the solution. The third possibility is that the goal never
becomes empty, and execution proceeds indefinitely. In this case we say that the
program is nonterminating.

We can now give a simple example of a Prolog program.

Example 3 The following is a simple program for the concatenation of two lists.
It consists of two clauses.

append([],Bs,Bs).

append([A|As],Bs,[A|Cs]) :-

append(As,Bs,Cs).

Consider the initial goal append(Xs,Y s,[1]). In effect we are asking for two
lists Xs and Y s such that their respective concatenation results in the list ‘[1]’.

There are two clauses that can be unified with the initial goal (i.e. append/3
is nondeterministic), so a choice point is created. Prolog always chooses clauses

2By treating the atomic formulae Gi and H as ordinary terms.

2.2. PRELIMINARIES 13

in textual order, so after choosing the first clause we arrive at the solution (Xs =
[] ∧ Y s = [1]) by unifying the goal with the clause head.

Prolog allows the user to backtrack to find additional answers. By backtracking
to the first choice point we can consider the second clause. The unification adds
the following (simplified) constraint (Xs = [1|As]) to the store, and calls the
(new) goal append(As,Y s,[]). The new goal can only be matched with the first
clause, which adds the constraint (As = [] ∧ Y s = []) into the store. Thus the
final solution is (Xs = [1] ∧ Y s = []).

Backtracking again will cause failure, since all clauses have now been tried on
the initial goal. ⊓⊔

Prolog also supports higher-order programming, where goals can be stored
as regular terms, and executed by a call to the special predicate call(Goal).
For example, the following simple program calls a given goal whenever the first
argument is the number 1, otherwise failure occurs.

p(1,Goal) :- call(Goal).

The call/1 predicate can also be generalised to call(Goal,X1,...,Xn), where
X1,...,Xn are appended to the end of arguments for Goal, however this is not
used in this thesis.

Whilst Prolog is a logic programming language, it supports several non-logical
features. For example, several special meta-predicates are supported. A meta
predicate implements some action that cannot be expressed in a finite sequence
of regular clauses. For example, Prolog supports a useful meta-predicate var(V),
which causes failure if V is not a variable.

Prolog also supports more “procedural” style language constructs, such as the
if-then-else. The syntax is (Cond->Then;Else), where Cond is the condition,
and Then is the then-part and Else is the else-part. Operationally, if the condition
executes without causing failure, then the then-part is executed, otherwise the
else-part is executed. Any choice points created during the execution of the
condition are discarded. This has the effect of committing to the first (partial)
solution generated whilst executing Cond.

Example 4 For example, the following is the append program from Example 3
redefined using an if-then-else construct.

append(As,Bs,Cs) :-

(As = [] ->

Cs = Bs

; As = [A|As1],

Cs = [C|Cs1],

append(As1,Bs,Cs1)

).

Consider the initial goal append(Xs,Y s,[1]). Choosing the first clause (there is
only one clause to consider), we execute the condition for the if-then-else, which is

14 CHAPTER 2. BACKGROUND

the subgoal Xs = []. This subgoal succeeds (Xs is unified with []), so the then-part
[1] = Y s is executed. Thus the solution is (Xs = [] ∧ Y s = [1]) as before.

Unlike Example 3, no choice points are created, so it is not possible to back-
track and find the second solution (Xs = [1]∧Y s = []). Effectively, the if-then-else
commits to the first solution. ⊓⊔

Mercury

The Mercury programming language [78, 77, 40] is more recent logic programming
language that is very similar to Prolog. The syntax and semantics for Mercury
is essentially the same as for Prolog, i.e., a Mercury program is a sequence of
clauses. However, unlike most versions of Prolog, Mercury is strongly typed and
strongly moded [66]. Mercury programs generally out perform equivalent Prolog
programs. This is mainly because Mercury is capable of better optimisation,
thanks to additional information, e.g. types and modes, available to the compiler.

Mercury’s runtime term representation of terms is more restricted than Prolog.
In Mercury, a term is fully a ground Prolog-style term, or a free unbound variable.
For example, the Prolog term [1, X|Y] would not be allowed in Mercury. This
may seem to be a severe restriction, but in practice it is not. The advantage
is that the Mercury compiler can use a more specialised (hence more efficient)
unification algorithm than Prolog.

We delay the introduction of the Mercury type and mode system until we
introduce HAL, since in HAL these are very similar.

It is worth noting that some variants of Prolog, notably the Ciao Prolog
Development System [11], similarly support type and mode declarations. Like
Mercury, this information is used for analysis and optimisation.

Constraint Logic Programming

Constraint Logic Programming (CLP) is the marriage of Constraint Programming
(CP) and Logic Programming (LP). It is a powerful combination of constraint
solving from CP with search capabilities from LP.

CLP can be thought of as a generalisation of LP, where the Herbrand solver
has been replaced by constraint solvers from other domains. Usually we write
CLP(S), where S is the name of the solver. Famous variants of CLP include
CLP(R) [53, 89], CLP(Z) and CLP(FD) [22]. Ordinary Prolog can be thought
of as CLP(H), where H is a Herbrand equation solver. More information about
CLP can be found in [61, 51, 52].

2.2.5 HAL Programming Language

HAL [20, 17] is a new CLP language built on top of Mercury. In fact, operationally
and syntactically, HAL is closely related to Mercury (which is related to Prolog).
HAL supports more general constraint solvers, whereas Mercury has no such

2.2. PRELIMINARIES 15

inbuilt support. The current version of the HAL compiler (used in this thesis)
compiles directly to Mercury.

The aims of the HAL language were to provide an efficient CLP language, with
a flexible choice of constraint solvers, and various options available for defining
new solvers or extending old solvers. Many solvers for HAL have been imple-
mented. These include a a Herbrand solver [21] based on PARMA bindings [82],
a bounds propagation solver (written by the author of this thesis) and a Boolean
solver amongst others. Some earlier implementations of constraint solvers, e.g.
CLP(R) and CLP(Z), have also been ported to HAL. For an overview of how
constraint solvers are defined in HAL, see [18].3

For the rest of this section, we describe a brief overview of the subset of HAL
needed for this thesis.

Predicates, functions and constraints

Syntactically and operationally, clauses in HAL are the same as a clauses in
Prolog. In addition, HAL has notions of functions and constraints.

A call to a constraint is the same as a call to a predicate, however the former
updates the constraint store. For example, in Prolog the call X = Y is a con-
straint call, which adds an equality constraint to the Herbrand solver’s store. In
HAL, the call X = Y is implemented as a predicate that updates the PARMA
bindings (i.e. the representation of the constraint store) inside the HAL Herbrand
solver. In general, the representation of the constraint store depends on the im-
plementation of a solver. Typically, either some global data structure is used,
e.g. a hash table of variables to constraints on the variables, or the constraints
are stored within the internal representation of the variables themselves (as is the
case with the Herbrand solver). Each solver defines the internal representation
of the variables it uses. More information can be found in [20].

HAL also supports function calls, which makes it a strict functional language
as well as a logic programming language. Function calls in HAL are treated as
a special kind of predicate call with an extra argument representing the output
of the function. For example, a call to the addition function (X + Y) is treated
as the predicate call ’+’(X,Y ,Z), where Z will be the result of the addition of
X and Y . This translation is performed at compile time. Functions are defined
using a special clause syntax, with an arrow --> representing function equality.
For example, the following defines the function (X + Y) in terms of a (given)
predicate plus(X,Y ,Z).

X + Y --> Z :- plus(X,Y,Z).

Functions are similarly supported in Mercury, however a different syntax is used.

3The paper also mentions a very early version of a CHR compiler for HAL. This version of
the compiler is now obsolete.

16 CHAPTER 2. BACKGROUND

Types

Each predicate in HAL is assigned with a type. The type determines what ground
values arguments to the predicate are allowed to take. For example, the func-
tion +/2 expects either integers or floating point number arguments. Types are
checked at compile time, and a error is generated if the program is inconsistent
with the types declared by the programmer.

HAL provides four main primitive types: int (integer), float (floating point
number), char (character) and string (character string). There are also con-
structor types: a type constructor is a functor t with some arity n, a type expres-
sions is either a variable or a type constructor (of arity n) applied to t1, ..., tn type
expressions. The user defines new constructor types with the type declaration:

:- typedef t(v1, ..., vn) -> f1(t
1
1, ..., t

1
m1
) ; ... ; fk(t

k
1 , ..., t

k
mk

).

where v1, ..., vn are distinct type variables, and t11, ..., t
k
mk

are type expressions
which contain at most variables v1, ..., vn. For example, the list type is defined as

:- typedef list(A) -> ([] ; [A|list(A)]).

HAL also allows type renamings, e.g.

:- typedef ints = list(int).

defines a type ints which is identical to a list of integers.
Types are associated to each predicate by a special ‘pred’ declaration (which

also declares the existence of a predicate p/n to the compiler).

:- pred p(t1, ..., tn).

Where p/n is a predicate, and t1, ..., tn are type expressions representing the
types of the arguments for p/n. Polymorphic types are allowed, i.e., t1, ..., tn may
contain variables.

In addition to the ‘pred’ declaration, there are similar ‘func’ and ‘chrc’ dec-
larations for declaring the types of functions and constraints4 respectively. For
example, the declarations

:- func float + float ---> float.

:- chrc leq(int,int).

give types for function +/2 and constraint leq/2 respectively. Each predicate/-
function/constraint must have exactly one type declaration.

There is also a special type for higher order programming. The type
pred(t1, ..., tn) matches a predicate of arity n whose arguments have types match-
ing t1, ..., tn. For example, the type pred(float,float,float) will match the
plus/3 predicate mentioned above.

HAL also supports overloading using type classes [86]. A typeclass c/n is
defined by the following declaration.

4More specifically, constraints defined by a CHR solver (e.g. the leq/2 constraint from
Example 1). The token ‘chrc’ is an acronym for CHR Constraint. Constraints from other
kinds of solvers simply use ‘pred’ declarations.

2.2. PRELIMINARIES 17

:- class c(v1, ..., vn) where [

<preds-and-modes>
].

where v1, ..., vn are type variables, and <preds-and-modes> is a sequence of pred
declarations (without the ‘:-’) and mode declarations (see below). The predicates
defined by this sequence (which are sometimes called methods) are overloaded,
which means they can be defined for multiple types.

The programmer can define an instance to the typeclass by the following
declaration

:- instance c(t1, ..., tn) where [

pred(p1/a1) is q1,
...,

pred(pm/am) is qm

].

where t1, ..., tn are non-variable type expressions, pi/ai are the functor/arities of
the methods (from the class declaration) and qi is the functor of the predicate
which implements the corresponding method. This means that a call to the
overloaded predicate pi/ai with types t1, ..., tn will be replaced with a call to
gi/ai at either compile time or runtime.

Example 5 An important typeclass in HAL is solver(T), as given by the fol-
lowing declaration.

:- class solver(T) where [

pred init(T)

].

We omit the mode declaration (as we have not covered them yet). The method
init/1 creates a fresh (unbound) variable for the solver of type T.

Consider a finite domain solver over the integers. The solver writer must
declare an instance of the solver class.

:- instance solver(fdint) where [

pred(init/1) is fd init

].

Overloaded calls to init(X) where X has type fdint are replaced with a call to
fd init(X) which is defined by the finite domain solver. ⊓⊔

Types that have an associated instance to the solver class are referred to as
solver types. For example, fdint is a solver type.

18 CHAPTER 2. BACKGROUND

Modes

Each predicate/function/constraint in HAL has one or more modes. A simple
form of modes indicate which arguments are “input” (denoted by ‘in’) and which
are “output” (denoted by ‘out’).

Modes are declared by the programmer in the form of a mode declaration.
For example, consider the predicate append/3 from Example 3. The programmer
might declare the following modes.

:- mode append(in,in,out).

:- mode append(out,out,in).

The first mode indicates that given two input lists, append/3 produces an output
list. Likewise, the second mode indicates given an input list as the third argument,
append/3 produces output list(s) as the first and second arguments. This is the
mode used in Example 3.

In general a mode indicates the before and after instantiations of the argu-
ment. Valid instantiations include new, which indicates a “new” unbound vari-
able, and ground, which is a ground term. The mode out is defined as (new ->

ground), which means before the call the argument is new, and after the call the
argument is ground. The mode in is similarly defined as (ground -> ground).

Terms which contain solver variables are generally neither new nor ground, so
HAL uses special instantiations (and modes) to take this into consideration. The
instantiation ‘old’ allows for any term, including terms that are neither a variable
nor ground, e.g. [1, X|Y]. A variable that is old is also considered different than
a variable that is new. An old variable has been initialised by a solver (by a call
to init/1), whereas a new variable has not. For this reason, we sometimes call
an old variable a solver variable.

There are two associated modes for old: ‘oo’, which is defined as (old ->

old), and ‘no’, which is defined as (new -> old). Constraints provided by solvers
use these modes, e.g. the mode

:- mode oo =< oo.

is the mode declaration for the constraint X ≤ Y . Mode checking in Mercury
is very similar to that in HAL, except Mercury does not support the oo nor no

modes. In general, the programmer can define more complex instantiations and
modes. For simplicity, we do not consider these for this thesis. More information
about mode checking in HAL can be found in [37].

Determinism

Determinism may also be declared by the programmer (or inferred by the com-
piler). The determinism determines how many times a predicate may succeed
on backtracking. A different determinism may be assigned to each mode of a
predicate, e.g.

2.2. PRELIMINARIES 19

:- mode append(in,in,out) is det.

:- mode append(out,out,in) is multi.

The mode ‘is det’ indicates that the first mode of append/3 is deterministic,
i.e. succeeds exactly once and never fails. The second mode has determinism
‘multi’, which means it succeeds at least once, and we may find other solutions
on backtracking.

The types of determinism we are interested in for this thesis are ‘det’ (suc-
ceeds once), ‘semidet’ (succeeds at most once) and ‘failure’ (never succeeds).
Constraints generally have semidet determinism, with the exceptions being the
true constraint (which is det) and the false constraint (which is failure). For
predicates, other types of determinism are supported. These are ‘multi’ (succeeds
at least once) and ‘nondet’ (succeeds any number of times).

Determinism inference/checking is exactly the same in Mercury as it is in
HAL. More information about determinism analysis in Mercury (and hence in
HAL) can be found in [41].

Example program

The following is the HAL version of append program from Example 3.

:- pred append(list(A),list(A),list(A)).

:- mode append(oo,oo,oo) is nondet.

append([],Bs,Bs).

append([A|As],Bs,[A|Cs]) :-

append(As,Bs,Cs).

The definition of append/3 itself is identical to that in Example 3. The pred

declaration means that all three arguments to the append predicate must be of
type list(A) for the same A. This means that the type of the elements of all
three lists must be the same. The modes for each argument is oo, which means
that the arguments can be any term that matches the type, and may contain
solver variables. The determinism is nondet, since depending on the input, zero
or more solutions are possible.

2.2.6 Future of HAL

The version of HAL that is used throughout this thesis has been discontinued.
Instead, the Mercury programming language is in the process of being adapted
to implement the core ideas of HAL directly (i.e. native support for constraint
solvers). There are several benefits for merging the two languages, since type,
mode and determinism analysis happens once per compilation, as opposed to
twice under the old system (once by the HAL compiler, then again by the Mercury
compiler). There are no major consequences for this thesis, although there may
be differences in syntax. In future, a CHR compiler for Mercury will be written,
using and extending the ideas in this thesis.

20 CHAPTER 2. BACKGROUND

2.3 Constraint Handling Rules

CHRs are a high-level CP language for specifying and extending constraint solvers.
Before CHRs, constraint solvers were implemented in low-level languages, such as
C or C++. CHRs offer a far more declarative approach, where the program closely
corresponds to the declarative semantics of the intended solver. For example, the
leq solver from Example 1 is expressed very concisely in CHRs.

In this section we give an overview of CHRs. We will cover both the theoretical
and practical aspects of the CHR programming language, related systems and the
history of CHR implementations.

2.3.1 Syntax and Semantics

CHRs are a CP language which use existing built-in constraints to define new
CHR constraints. The built-in constraints are provided by one or more built-in
solvers. For example, the leq program from Example 1 uses a built-in Herbrand
solver, and the equations X = Y are the built-in constraints. In general, any
constraint solver (e.g. finite domain, Boolean, etc.) may be used as a built-in
solver. The constraints defined by the CHR rules are the CHR constraints. For
example, the constraint leq(X,Y) is a CHR constraint.

CHR constraints are defined by three types of rules: simplification, propaga-
tion and simpagation rules, and the respective syntax is

name @ h1, . . . , hn <=> g | b1, . . . , bm.

name @ h1, . . . , hn ==> g | b1, . . . , bm.

name @ h1, . . . , hl \ hl+1, . . . , hn <=> g | b1, . . . , bm.

where name is the rule name, h1, . . . , hn are CHR constraints, g is a conjunction of
built-in constraints, and b1, . . . , bm is a conjunction of CHR constraints and built-
in constraints. Both name and g are optional. Simplification and propagation
rules are differentiated by the type of arrow: ‘<=>’ for simplification, and ‘==>’
for propagation. Simplification and simpagation are differentiated by a backslash
‘\’ token in the rule head. Like Prolog clauses, CHR rules are always terminated
with a full stop ‘.’. A CHR program P is a finite sequence of CHR rules.

The CHR constraints h1, . . . , hn are the head of a rule. Sometimes we may
also refer to each individual hi as a head. The conjunction of built-in constraints g
is the guard of a rule, and b1, . . . , bm are the body of the rule. The head and body
of a rule must be non-empty. If the guard g is omitted, then this is equivalent to
g ≡ true.

We say that a rule r fires if we apply r to some subset of the CHR constraints
in the store. We use the notation (S S ′) to represent a rule firing on the
constraint store S to give the new constraint store S ′. The conditions for a rule
firing are

1. there exists a multiset of constraints {h′
1, ..., h

′
n} ⊆ S that matches the head

h1, ..., hn; and

2.3. CONSTRAINT HANDLING RULES 21

2. the guard g is entailed by S.

Matching is very similar to unification, except the variables in h′
1, ..., h

′
n are

only allowed to be bound to variables in h1, ..., hn. Matching can be thought of
as one way unification. For example, constraint leq(A,B) does not match the
head leq(X,X), since the equations (A = X ∧ B = X) bind A and B to the
same value. Note that leq(X,X) does match leq(A,B), since the equations
(X = A ∧ X = B) only bind X to variables in leq(A,B). The set of equality
constraints generated from the matching is the matching substitution which is
usually represented by θ. A matching substitution θ can be applied to a term T ,
which means that variables aliased by θ that do not appear in S are eliminated.

The action performed when a rule fires depends on the type of rule.

• Simplification: Given a constraint multiset {h′
1, . . . , h

′
n} and a matching

substitution θ such that {h′
1, . . . , h

′
n} = θ({h1, . . . , hn}), and θ(g) is entailed

by S, then we replace {h′
1, . . . , h

′
n} with θ({b1, . . . , bm}).

• Propagation: Given a constraint multiset {h′
1, . . . , h

′
n} where θ(g) is entailed

by S, we add θ({b1, . . . , bm}).

• Simpagation: Given a constraint multiset {h′
1, . . . , h

′
n} where θ(g) is entailed

by S, we replace {h′
l+1, . . . , h

′
n} (the constraints matched after the ‘\’ token)

by θ({b1, . . . , bm}).

A sequence of rule applications is called a derivation.
The operational semantics of CHRs is to exhaustively fire rules on an initial

goal until no further rule is application is possible.

Example 6 The following is a similar derivation to that of Example 2, except the
initial goal has two copies of the constraint B ≤ A. The type of rule application
for each step has been marked.

A ≤ B, C ≤ A, B ≤ C, B ≤ C
simpagation A ≤ B, C ≤ A, B ≤ C
propagation A ≤ B, C ≤ A, B ≤ C, C ≤ B
simplification A ≤ B, C ≤ A, B = C
simplification A = B, B = C

The simpagation corresponds to the idempotence rule, propagation with the
transitivity and simplification with the antisymmetry rule. ⊓⊔

Often, several rules can fire on any given store, in which case a rule is chosen
nondeterministically. This inherent nondeterminism makes confluence important,
which we will discuss in the next section.

A considerably more formal definition of the operational semantics of CHRs
will be covered in Chapter 3. Alternatively, see [32, 1]. CHRs also have a declar-
ative semantics, which will also be discussed in Chapter 3.

22 CHAPTER 2. BACKGROUND

In past literature, e.g. [32, 1], simpagation rules are treated as simplification
rules, i.e.,

h1, . . . , hl, hl+1, . . . , hn <=> g | h1, . . . , hl, b1, . . . , bm.

An alternative approach is to treat simplification and propagation rules as spe-
cial cases of simpagation rules, where no constraint appears before or after the
backslash ‘\’. Let ǫ represent the empty sequence, then

h1, . . . , hl \ ǫ <=> g | b1, . . . , bm.

ǫ \ h1, . . . , hl <=> g | b1, . . . , bm.

are a propagation and simplification rule respectively.
The operational semantics prevent a propagation rule firing more than once

on a given set of constraints. The purpose of this restriction is to prevent trivial
nontermination by repeatedly applying the same rule. For more information
see [1], or Chapter 3.

2.3.2 Confluence and Termination

CHRs are a committed choice language. This means that, unlike Prolog, no choice
points are created and there is no backtracking (to try other rules) on failure. In
effect, we are committing to a choice of rule, even if several possibilities exists.
This is also called don’t care nondeterminism (committed choice) as opposed to
don’t know nondeterminism (search + backtracking).

As with all systems that use don’t care nondeterminism, the property of con-
fluence is essential. Confluence is informally defined as follows: For all possible
stores S, if we can apply a rule to get S ′, and apply a (possibly different) rule to
get S ′′, then the resulting final stores after executing S ′ and S ′′ must be variants.
Two stores are variants if they are identical up to the renaming of new variables
introduced during the execution of S ′ and S ′′. Precise definitions of confluence
and related topics will be covered in Chapter 3. Even more informally, conflu-
ence is the property that the program always computes the same output for every
given input (no matter which derivation is chosen).

Example 7 The leq program in Example 1 is an example of a confluent program.
The following is an example of a non-confluent program.

p <=> q.

p <=> r.

Starting from the initial goal of a single p constraint, the final store will be either
q or r depending on which rule is chosen. ⊓⊔

Confluence for CHRs has been extensively studied. In [32, 4, 1] a decidable
confluence test for terminating CHR programs is presented. The property of
confluence has been recognised before in other rule based languages. For example,

2.3. CONSTRAINT HANDLING RULES 23

confluence has been well studied in relation to term rewriting systems [9]. Other
systems rely on a weaker form of confluence, known as determinism (e.g. see [59]
for definition). Determinism is a trivial form of confluence, i.e. when only one
rule is applicable to a given store.

Another important property for CHR programs is termination. The general
problem of termination of CHR programs has been studied in [33]. Termination
is an undecidable property, however several common CHR programs have been
shown to be terminating. Some common CHR solvers are nonterminating.

Example 8 Surprisingly, the famous leq program from Example 1 is nontermi-
nating. Consider the following initial goal.

A ≤ A, A ≤ A

Since CHRs use a multiset semantics, multiple copies of the same constraint (in
this case A ≤ A) are allowed. We achieve an infinite derivation by continu-
ally applying the transitivity propagation rule to the first constraint, and the
rightmost constraint.5

A ≤ A, A ≤ A
transitivity A ≤ A, A ≤ A, A ≤ A
transitivity A ≤ A, A ≤ A, A ≤ A, A ≤ A
...

Even with a fair rule application, it is possible to construct a nonterminating
derivation for the leq program. ⊓⊔

The question of confluence for terminating CHR programs is decidable, as
shown by the following theorem.

Theorem 1 [32, 1] A terminating CHR program is confluent iff all its critical
pairs are joinable.

In this theorem, a critical pair is a pair of constraint stores constructed as follows.
Given two (not necessarily different) CHR rules r1 and r2 we find a most general
(and minimal) store S such that S can fire both r1 and r2. Such an S is called a
non-trivial direct common ancestor state of r1 and r2.

Example 9 Consider the following two rules from the leq programs.

leq(X,Y), leq(Y,X) <=> X = Y.

leq(X,Y), leq(Y,Z) ==> leq(X,Z).

Then the following store S

leq(A,B), leq(B,A)

5Note that multiple copies of constraints are considered different in CHRs.

24 CHAPTER 2. BACKGROUND

is a non-trivial direct common ancestor state. Note that both rules can be applied
to S.

There are typically several such non-trivial direct common ancestor states.
For example

leq(A,B), leq(B,A), leq(B,C)

is another such state. ⊓⊔

More formally, a non-trivial direct common ancestor state is constructed by par-
titioning the heads H1 = H ′

1 ⊎H ′′
1 from r1 and H2 = H ′

2 ⊎H ′′
2 from r2, then we

construct S = H ′
1 ∧ H ′′

1 ∧ H ′′
2 ∧ (H ′

1 = H ′
2) provided H ′

1 and H ′
2 are unifiable.

See [32] for more details.
Let S1 and S2 be the results of applying r1 and r2 to a non-trivial direct

common ancestor state S respectively, then (S1, S2) is a critical pair. The critical
pair is joinable if executing S1 and S2 results in variant final states. If all critical
pairs are joinable, then by Theorem 1 the program is confluent. We note that
there are finitely many critical pairs for any given program, hence testing for
confluence for terminating programs is decidable.

If a CHR program is not confluent, then it is sometimes possible to auto-
matically derive a (declaratively) equivalent confluent program. This process is
known as completion. Completion for CHRs has been studied in [3].

In Chapter 3 we give considerably more formal definitions of confluence, ter-
mination, critical pairs and other related concepts.

2.3.3 History of Implementations

In this section we give an overview of all (known) CHR implementations to date,
roughly in chronological order.

Original implementations

CHRs were invented (and first implemented) in 1991 by Thom Frühwirth [30, 31].
Originally, CHRs were known as Constraint Simplification Rules, or SiRs for short.
The syntax and operational semantics of SiRs are nearly identical to the modern
day CHRs, however there are some differences. For example, SiRs did not have
simpagation rules.6 Also, SiRs used (now redundant) ‘callable’ declarations
whose purpose was to declare the conditions a CHR constraint can be “called”,
i.e. considered for matching against rules. An example callable declaration
from [31] is

callable max(X,Y,Z) if bound(X), bound(Y).

6SiRs did have both simplification and propagation rules. Simplification rules were named
replacement simplification rules, and propagation rules were named augmentation simplification

rules.

2.3. CONSTRAINT HANDLING RULES 25

which states that the constraint max(X, Y, Z) must only be “called” if both X
and Y have been bound, i.e. are not variables. Modern CHR implementations do
not use callable declarations, and CHR constraints are always called eagerly.

The first actual implementation of CHRs/SiRs was a simple interpreter written
for ECLiPSe Prolog in 1991. Unfortunately, this original CHR implementation
is believed to have been lost for all time. However parts of the implementation,
including a brief description, can be found in the appendix of [36].

The original implementation grouped rules into two classes: single-headed
and multi-headed rules. Single-headed rules had a single CHR constraint in the
head (e.g. the reflexivity rule from Example 1), and multi-headed had two
constraints. Rules with more than two heads were not allowed. Some later CHR
implementations have similar restrictions. Rules with large heads can be handled
(by the programmer) by introducing auxiliary constraints that perform a partial
match. For example, the rule

p(X), q(Y), r(Z) <=> true

can be implemented as

p(X), q(Y) ==> pq(X,Y).

pq(X,Y), r(X) <=> true.

There are obvious problems with this approach, since the two programs are tech-
nically different (i.e. the answer to a goal may have redundant pq/2 constraints).
Modern CHR compilers allow rules with arbitrarily large heads.

The execution algorithm of the original implementation is very different to
that of modern CHR compilers. Firstly, all single-headed rules are considered
before multi-headed rules. Secondly, testing the guard for single-headed rules has
three possible outcomes: success if the guard succeeds, failure if the (logical)
negation of the guard succeeds and suspend if there is not enough information
to decide if the guard succeeds or fails. The third case occurs when the variables
in the guard are not bound enough to decide the outcome.

Example 10 Consider a rule with the guard X < Y . Given a matching sub-
stitution (X = 3 ∧ Y = 5) we have enough information to decide that this
guard succeeds, thus success is returned. Similarly, a matching substitution
(X = 5 ∧ Y = 3) causes the guard to return failure.

Now consider the matching substitution (X = 3). The guard neither succeeds
nor fails because this depends on the value of Y . Hence the result is suspend,
which means the rule should be reconsidered when Y becomes more bound. ⊓⊔

If the guard suspends, the rule is (re)scheduled (into a queue of rules) for consid-
eration later. Modern implementations treat failure the same as suspend for
simplicity.

Another very early implementation of CHRs was written for the LISP pro-
gramming language.7 It was also a simple implementation that lacked simpaga-

7If the reader understands German, see [43], otherwise see [32] (a secondary source) for a
brief overview.

26 CHAPTER 2. BACKGROUND

tion rules.

Next generation implementation

A significantly more sophisticated implementation of CHRs was built for ECLiPSe

Prolog in 1994 [36]. This implementation is the first CHR compiler (as opposed to
an interpreter), and is the ancestor of modern CHR compilers. Several improve-
ments were made: such as Prolog calls being allowing in the rule body and deep
guards. A deep guard contains CHR constraints (which is normally disallowed).

The ECLiPSe implementation compiles CHRs in several phases. The first
phase is to translate a CHR program into an equivalent program consisting of
only single-headed simplification rules with deep guards. For example, the rule

p(X), q(X) <=> ground(X) | true.

is translated to

p(X,H1,Id1) <=> delayed constraint(q(X,H2,Id2)),

ground(X), var(Id1), var(Id2) |

remove(q(X,H2,Id2)).

A similar single-headed simplification rule is created with p replaced by q and
vice versa. Here delayed constraint/1 unifies the argument with a matching
constraint from the store. If there is more than one potential match, then it
returns others on backtracking. The remove/1 call explicitly removes a constraint
from the store. Notice that two additional arguments H and Id has been added
to each constraint. The argument Id is call the constraint identifier, and is an
essential part of modern CHR systems. The constraint identifier is either an
unbound variable or a ground atom. An atom means the constraint has been
deleted, otherwise the constraint has not been deleted. The var/1 tests in the
guard make sure the rule does not fire on deleted constraints. The additional
arguments H1 or H2 are propagation histories, which are described below.

The translation for propagation rules is similar. The rule

p(X), q(X) ==> ground(X) | true.

is translated to

p(X,H1,Id1) <=> delayed constraint(q(X,H2,Id2)),

ground(X), var(Id1), var(Id2),

not member(n-q(X)-2,H1), not member(n-p(X)-1,H2) |

p(X,[n-q(X)-2|H1],).

As before, a similar rule is also generated with p replaced by q and vice versa. The
propagation histories for each constraint must be checked by the guard before the
rule fires. This prevents a propagation rule from firing twice on the same set of
matching constraints, which is disallowed by the operational semantics of CHRs.

2.3. CONSTRAINT HANDLING RULES 27

In this implementation, a propagation history is simply a list of entries of the form
n-C-p, where n is the name of the rule, C is the matching partner constraint, and
p ∈ {1, 2} indicates whether C matches the first or second head. The auxiliary
predicate not member(E,Ls) fails if entry E is present in list Ls. Note that
when the rule fires, we only need to update the history for p. This is safe because
both the histories for p and q are considered by the guard.

A second compilation phase translates the single-headed simplification rules
into Prolog clauses. This is reasonably straightforward since the single-headed
rule (H ⇐⇒ G | B) roughly corresponds to the clause

H :-

(G ->

remove(H), B
; true

).

This translation is simplified, and in practice several subtleties must be taken into
consideration. For example, executing the guard G must not bind any variables
from the constraints that matched the head of the rule. This is achieved by using a
special predicate delay(Ls,Goal), which is similar to call(Goal), except Goal
is immediately called once any variable appearing in the list Ls has changed.
We informally define changed as meaning “further constrained”.8 To ensure that
variables are not bound by the guard, we call delay(Hs,fail), where Hs are all
variables from the matching constraints. Thus if one of Hs changes, then fail

(the false constraint) is called. After the guard has been tested, the delayed
fail goals are removed.

The delay/2 predicate is also used for waking up CHR constraints once a
variable it contains changes. A woken up constraint rechecks every rule, since a
change in a variable may result in a guard succeeding where it previously had
“failed” (i.e. returned suspend under the original implementation, see Exam-
ple 10). Consider the leq/2 constraint from Example 1, the following code is
generated.

leq(X,Y) :-

extract vars(leq(X,Y),Vars), delay(Vars,leq(X,Y)), ...

This ensures that a leq/2 constraint is called (i.e. woken up) each time a variable
in the constraint changes. Modern CHR compilers use similar techniques.

Operationally, the ECLiPSe implementation is different than that of the earlier
CHR interpreters. One important difference is the notion of an active constraint,
which represents a “call” to a CHR constraint. When a rule fires, the (current)
active constraint must always be included in the set of matching constraints.
Active constraints form a stack, where a call (e.g. in a rule body) pushes an
active constraint onto the stack, and it is popped off once all rules have been

8Much later in this thesis, Definition 48 gives a formal definition of “changed”.

28 CHAPTER 2. BACKGROUND

tried. The notion of an active constraint was not deliberately invented, but it
emerged as result to the way CHRs are compiled, i.e. CHR constraints to Prolog
clauses. The active constraint stack is merely the program stack for Prolog. All
modern CHR compilers use a similar call-based active constraint implementation.

Modern Prolog CHR compilers

There are modern CHR compilers for SICStus, Yap, hProlog, XSB and SWI
Prolog. The SICStus and Yap Prolog versions are based on a compiler written
in 1998 by Christian Holzbaur [46, 47], which represents the first modern CHR
compiler to be built. The hProlog CHR compiler is based on a CHR compiler
written in 2002 by Tom Schrijvers [71] called the “K.U.Leuven CHR system”,
which was later ported to XSB [74] and SWI Prolog [75]. Both implementations
are similar, except the Schrijvers compiler uses several kinds of program analysis
and optimisation (some of which are detailed in this thesis) to improve the runtime
performance of the CHR programs.

Both of these compilers are considered modern for two main reasons. The first
is because they represent the state-of-the-art in terms of CHR implementations
(although this is more true for the Schrijvers compiler). The other reason is
because of a more guaranteed operational behaviour of CHR programs. As a
result, CHRs can be used more as a generic committed choice rule-based language,
rather than a specialised language for implementing constraint solvers.

Modern CHR compilers offer the following guarantees about the operational
behaviour of CHR programs:

1. A call-based active constraint semantics for CHRs, similar to that of the
earlier ECLiPSe compiler;

2. The active constraint always checks rules in textual order, as specified by
the programmer;

3. The bodies of rules are also executed in textual order, i.e. from left to right.

This means the the operational behaviour of CHRs is analogous to that of Prolog,
i.e. top-down and left-to-right. In addition, some of the restrictions that existed
in earlier implementations have been abolished. Notably, rules can now have
arbitrary sized heads.

The new guaranteed operational behaviour of CHRs is, in effect, defining a
new (more deterministic) operational semantics for CHRs. This has proved to be
useful for CHR programmers, who can better visualise the control flow in CHR
programs.

Example 11 For example, consider the following simple CHR program, which
writes a message to the screen.

p() ==> write("hello ").

p(X) <=> write(X).

2.3. CONSTRAINT HANDLING RULES 29

Consider the goal p("world"). This program is not confluent, since executing
the goal could result in either “hello world” or “world” been printed, depending
on which rule is tried first. However, under the new CHR operational semantics,
execution proceeds as follows. First, the constraint p("world") becomes the ac-
tive constraint that we are currently considering for execution. Rules are tried
in textual order, hence the first rule will always be chosen. The first rule fires,
and prints “hello ”. Since the propagation rule has fired (and it is not allowed
to fire again because of the propagation history), the active constraint proceeds to
the next rule. This rule fires, and prints “world” onto the screen.

In effect, this program is confluent under the new operational semantics, since
there is only ever one output for any given input. ⊓⊔

This example also shows how Prolog calls, e.g. write(X), can be embedded in
CHR rules.

The compiler and runtime system of the modern Prolog compilers has also
improved over earlier attempts. The biggest improvement is the use of attributed
variables [44]. The functionality of attributed variables subsumes that of delay/2
predicate used in the early ECLiPSe compiler, i.e. it provides a means for con-
straints to be woken up when a set of variables has changed.

An attributed variable is equivalent to an ordinary Prolog variable with with
one or more attributes attached to it. An attribute is any ordinary Prolog term
f(X1, ..., Xn) where the functor/arity f/n uniquely defines the attribute. For ex-
ample, in the SICStus Prolog attributed variable interface [39],9 attributes are as-
sociated to a variable V by the special predicate put atts(V ,Attribute). There
is also a similar predicate get atts/2 for retrieving attributes. Some constraint
propagation solvers, e.g. the finite domain solver in [39], are implemented directly
using attributed variables (the variable’s domain is stored as an attribute).

The Prolog CHR compilers utilise attributed variables by suspending CHR
constraints in an appropriate attribute attached to all variables appearing in
that constraint. For example, the constraint leq(X,Y) is suspended inside an
attribute leqs(Ls), where Ls is a list of leq/2 constraints, for variables X and
Y . Note that this is a slight simplification, as the attribute would also carry other
information, see [46, 47] for details. The task of searching for matching partners
is made more efficient by using attributed variables. For example, consider the
rule

leq(X,Y), leq(Y,Z) ==> leq(X,Z).

and consider the left-most occurrence of leq/2 constraint in the head of this
rule. Given the active constraint leq(A,B) we require all matching partners
of the form leq(B,). Such partners must be inside the attribute leqs(Ls) of
variable B, which is quickly obtained by calling get atts/2. Since Ls is usually
significantly smaller than entire constraint store, the search for matching partners
is very efficient. This technique is known as attributed variable indexing.

9Note that other Prologs use a different interface for attributed variables.

30 CHAPTER 2. BACKGROUND

Attributed variable indexing does not work on ground constraints, since there
are no variables to attach attributes to. In such cases, the Prolog implementations
use some form of secondary indexing in order to find matching partners. This is
typically either a list or (in the newer compilers) hash tables.10

For the rest of this section, we shall briefly describe some of the other CHR
implementations currently in existence.

Bootstrapping CHR compiler

In 2002, Christian Holzbaur implemented a bootstrapping CHR compiler, i.e.
a CHR compiler implemented in CHRs, for SICStus Prolog. Operationally, it
is equivalent to the current (non-bootstrapping) compiler. This version of the
compiler was never released.

JACK

JACK (JAva Constraint Kit) [5, 55] is an implementation of CHRs for the Java
programming language [54]. The JACK package consists of a language to write
CHRs (JCHR), a CHR visualisation tool (VisualCHR), and a generic search en-
gine (JASE). Special declarations are used by the programmer to specify rules
and goals.

The implementation of JACK is very similar to the Prolog implementations
of CHRs. The main difference is that much of the functionality of Prolog had to
be implemented in Java, for example, Prolog style variables, etc. The operational
semantics of JCHR are different from that of the Prolog implementations.

Chameleon

Chameleon is a functional programming language [81] very similar to Haskell [56].
The main difference is that Chameleon uses an experimental implementation of
type classes using a CHR interpreter. See [80] for the theory behind this approach.
The idea is that type classes are represented as CHR constraints, and class and
instance declarations as CHR rules. For example, the Haskell class declarations
(with ghc extensions [83])

class P x y

class Q x | -> x

instance (Q x, Q y) => P x y

correspond to the CHR program

p(X,Y) <=> q(X), q(Y).

q(X), q(Y) ==> X = Y.

It is also possible to write CHR rules directly in a Chameleon program using
a special ‘rule’ declaration, e.g.

10Using hash tables for indexing in covered in Chapter 7.

2.3. CONSTRAINT HANDLING RULES 31

rule P x y <=> Q x, Q y

rule Q x, Q y ==> x = y

These declarations are equivalent to the class declarations above.
The original version of Chameleon used a different operational semantics than

other CHR implementations. Basically, the interpreter would iterate through all
rules, exhaustively applying the current rule before moving to the next rule. It
would repeat this process until the constraint store survives an entire iteration
of rules without any firing. Recently, the CHR engine in Chameleon has been
replaced with a version which has an operational semantics very close to that of
the Prolog implementations.11

HAL

The first implementation of CHRs for HAL was written by Christian Holzbaur
in 2001. This version was featured in [48]. It is essentially a port of the (non-
bootstrapping) SICStus CHR compiler. The compiler could not handle CHR
constraints with solver variables.

A newer CHR compiler for HAL was written in 2002 by the author of this
thesis, and incorporates the ideas of the thesis to improve CHR compilation.
Operationally, this version of the compiler is the same as that of the modern
Prolog CHR compilers.

2.3.4 Related Systems

CHRs are part of the rule based programming languages paradigm. In all such
languages, a program is a set or sequence of rules. Executing the program involves
continually applying rules to an initial goal until a final state is reached. Unlike
CHRs, most rule based languages are not CP languages, so there is no concept
of a built-in solver.

In this section we briefly cover some of the more common/relevant rule-based
languages.

Reduction systems and term rewriting

A reduction system is a set of rewrite rules over some formal domain, e.g. strings,
graphs, etc. A common kind of a reduction system is a term rewriting system
(TRS), where the rewrite rules apply to terms. See [9] for a more detailed intro-
duction to TRSs.

In reduction systems a rewrite rule is of the form (H → B), which is analogous
to the CHR rule (H ⇐⇒ B) (single headed simplification rule with no guard).
Note that the rewrite rule (H → B) can be thought of as defining equality
between terms, i.e. (H = B).

11This engine was implemented by the author of this thesis.

32 CHAPTER 2. BACKGROUND

Example 12 A classic example of a TRS program is addition using successor
notation, i.e. the integer 1 is represented as s(0), 2 as s(s(0)), and so on.

0 + X → X
s(X) + Y → s(X + Y)

The initial goal (s(0)+ 0+ s(s(0))) (which represents (1+0+2)), will be reduced
to s(s(s(0))) (which represents 3). ⊓⊔

Several implementations of TRSs exist, such as OBJ3 [38] and Maude [13] amongst
others.

There are several differences between CHRs and TRSs. Unlike CHRs, stan-
dard term rewriting does not have any notion of propagation or simpagation rules,
and all rules are effectively single-headed and lack guards. The goal is always a
single term (rather than a conjunction of terms/constraints). Another important
difference is that term rewriting rules may be applied to any sub-term of the
goal, whereas CHRs do not operate on arguments to constraints. For example,
in Example 12 it is possible to rewrite the goal s(0)+0+ s(s(0)) to s(0)+ s(s(0))
by applying the first rule to the subterm 0 + s(s(0)). On the contrary, CHRs
distinguish between constraints, and the arguments of constraints (CHR rules
cannot be applied to the latter).

Confluence is also an important issue in term rewriting (and other reduction
systems) for the same reason it is important for CHRs. In fact, the confluence
results for CHRs are adapted versions of similar results for term rewriting. For
example, proving confluence for term rewriting involves showing that all critical
pairs are joinable. The completion algorithm for CHRs [3] is also based on a
similar algorithm for term rewriting.

Guarded rules

Guarded rules [76] are highly related to CHRs. A guarded rule is of the form

g � h ⊲ B

where g is the guard, H is the head (a single constraint) and B is the body (a
conjunction of constraints).

Example 13 The following is a very simple program defining a (one way) not/2
constraint for a simple Boolean solver.

X = 0 � not(X,Y) ⊲ Y = 1

X = 1 � not(X,Y) ⊲ Y = 0

The constraint not(1,Y) will be reduced to Y = 0. ⊓⊔

In fact, guarded rules are equivalent to single-headed simplification rules (h⇐⇒
g | B). Thus, CHRs are more general.

2.3. CONSTRAINT HANDLING RULES 33

Production systems and RETE/TREAT

Production systems, such as OPS5 [28], are a rule based language similar to
CHRs, and are mainly used in artificial intelligence (AI) applications. In a pro-
duction system a token is analogous to a CHR constraint, and the working mem-
ory is analogous to the CHR store. A production is similar to a propagation rule.
Tokens are deleted explicitly, rather than implicitly by matching a certain type
of rule (as is the case with CHRs).

RETE is an algorithm for compiling rules from a production system into a
special type of optimised decision graph (sometimes called the RETE network).
There is two types of input to the graph, +G for adding the token G to the
working memory, and −G for explicitly removing it. A RETE network has three
types of nodes: constant test nodes for testing if G is in a certain form, two input
nodes for testing if a condition holds between two tokens, and memory nodes for
storing partial matches. Adding +G causes G to descend the RETE network
as far as possible. Memory nodes are updated with partial matches including
G. Removing −G is similar, except partial matches are removed from memory
nodes. For more information see [29].

The TREAT algorithm [63] is an alternative to RETE. Unlike RETE, TREAT
does not store partial matches, and matchings are calculated from scratch each
time +G is added. The advantages of TREAT over RETE are better memory
usage (no partial matches are stored) and faster deletion. In practice, TREAT
generally outperforms RETE.

The matching algorithm used in modern CHR compilers is essentially equiv-
alent to TREAT.12 Some of the issues related to TREAT, such as the order joins
are computed, are also issues for CHRs (and will be discussed later in Chapter 7).

Adapting RETE for CHRs is still an area of potential future research. The
biggest problem is adapting the algorithm such that it can handle CHR-style
guards which can “change” (e.g. initially fail, but then succeed when variables
become more bound).

12Note that the TREAT algorithm handles other types of matchings not relevant to CHRs,
e.g. matching rules with the condition that a token is not in working memory.

34 CHAPTER 2. BACKGROUND

Chapter 3

Operational Semantics

3.1 Introduction

The operational semantics of CHRs are to exhaustively apply a set of rules to
an initial set of constraints until a fixed point is reached. We refer to these
operational semantics as theoretical, because they describe how CHRs are allowed
to behave in theory. The theoretical semantics is highly nondeterministic, and
this is sometimes inconvenient from a programming language point of view. For
example, the theoretical semantics do not specify which rule to apply if more
than one possibility exists, and the final answer may depend on such a choice.

This chapter defines the refined operational semantics for CHRs: a more spe-
cific operational semantics which has been implicitly described in [46, 47], and
is used by almost all modern implementations of CHRs we know of (see Sec-
tion 2.3.3). Some choices are still left open in the refined operational semantics,
however both the order in which constraints are executed and the order which
rules are applied, is decided. Unsurprisingly, the decisions follow Prolog style and
maximise efficiency of execution. Later, Chapter 6 discusses the consequences of
the remaining choices left open in the refined semantics. Most of the content in
the rest of this thesis, especially CHR program analysis and optimisation, assumes
the refined operational semantics, hence the need for a formal definition.

It is clear that CHR programmers take the refined operational semantics into
account when programming. For example, some of the standard CHR examples
are non-terminating under the theoretical operational semantics.

Example 14 Consider the following simple program that calculates the greatest
common divisor (gcd) between two integers using Euclid’s algorithm:

gcd1 @ gcd(0) <=> true.

gcd2 @ gcd(N) \ gcd(M) <=> M >= N | gcd(M-N).

Rule gcd1 is a simplification rule. It states that a fact gcd(0) in the store can
be replaced by true. Rule gcd2 is a simpagation rule, it states that if there are
two facts in the store gcd(n) and gcd(m) where m ≥ n, we can replace the part

35

36 CHAPTER 3. OPERATIONAL SEMANTICS

after the slash gcd(m) by the right hand side gcd(m − n).1 The idea of this
program is to reduce an initial store of gcd(A), gcd(B) to a single constraint
gcd(C) where C will be the gcd of A and B.

This program, which appears on the CHR webpage [70], is nonterminating un-
der the theoretical operational semantics. Consider the constraint store gcd(3),

gcd(0). If the first rule fires, we are left with gcd(3) and the program termi-
nates. If, instead, the second rule fires (which is perfectly possible in the theoreti-
cal semantics), gcd(3) will be replaced with gcd(3-0) = gcd(3), thus essentially
leaving the constraint store unchanged. If the second rule is applied indefinitely
(assuming unfair rule application), we obtain an infinite loop. ⊓⊔

In the above example, trivial non-termination can be avoided by using a fair
rule application (i.e. one in which every rule that could fire, eventually does).
Indeed, the theoretical operational semantics given in [32] explicitly states that
rule application should be fair. Interestingly, although the refined operational
semantics is not fair (it uses rule ordering to determine rule application), its
unfairness ensures termination in the gcd example above. Of course, it could
also have worked against it, since swapping the order of the rules would lead to
nontermination.

The leq program of Example 1 is another example that relies on the refined
operational semantics to terminate, as was shown in Example 8. In this case, the
program is nonterminating even with a fair rule application.

The refined operational semantics allows us to use more programming idioms,
since we can now treat the constraint store as a queryable data structure.

Example 15 Consider a CHR implementation of a simple database:

l1 @ entry(Key,Val) \ lookup(Key,ValOut) <=> ValOut = Val.

l2 @ lookup(,) <=> fail.

where the constraint lookup represents the basic database operations of key lookup,
and entry represents a piece of data currently in the database (an entry in the
database). Rule l1 looks for the matching entry to a lookup query and returns in
ValOut the stored value. Rule l2 causes a lookup to fail if there is no matching
entry. Clearly the rules are non-confluent in the theoretical operational semantics,
since they rely on rule ordering to give the intended behaviour. ⊓⊔

The refined operational semantics also allows us to create more efficient pro-
grams and/or have a better idea regarding their time complexity.

Example 16 Consider the following implementation of Fibonacci numbers,
fib(N,F), which holds if F is the N th Fibonacci number:

f1 @ fib(N,F) <=> 1 >= N | F = 1.

f2 @ fib(N,F0) \ fib(N,F) <=> N >= 2 | F = F0.

f3 @ fib(N,F) ==> N >= 2 | fib(N-2, F1), fib(N-1,F2), F = F1 + F2.

1Unlike Prolog, function call “m− n” is evaluated as an integer subtraction.

3.2. THE THEORETICAL OPERATIONAL SEMANTICS ωT 37

The program is confluent in the theoretical operational semantics which, as we will
see later, means it is also confluent in the refined operational semantics. Under
the refined operational semantics it has linear complexity, while swapping rules
f2 and f3 leads to exponential complexity. Since in the theoretical operational
semantics both versions are equivalent, complexity is at best exponential. ⊓⊔

We believe that CHRs under the refined operational semantics provide a pow-
erful and elegant language suitable for general purpose computing. However, to
make use of this language, authors need support to ensure their code is confluent
within this context. In order to do this, we first provide a formal definition of
the refined operational semantics of CHRs as implemented in logic programming
systems. We then provide theoretical results linking the refined and theoretical
operational semantics. Essentially, these results ensure that if a program is con-
fluent and terminating under the theoretical semantics, it is also confluent and
terminating under the refined semantics.

For the rest of this thesis, we sometimes use symbol ‘ωt’ to represent the
“theoretical semantics”. Likewise, we use symbol ‘ωr’ to represent the “refined
semantics”.

3.2 The Theoretical Operational Semantics ωt

Constraints can be divided into either CHR constraints or built-in constraints
in some constraint domain D. Decisions about rule matchings will rely on the
underlying solver proving that the current constraint store for the underlying
solver entails a guard (a conjunction of built-in constraints). We will assume the
solver supports (at least) equality.

As was introduced in Chapter 2, there are three types of rules: simplification,
propagation and simpagation. For simplicity, we consider both simplification and
propagation rules as special cases of a simpagation rules. The general form of a
simpagation rule is:

r @ H1 \ H2 ⇐⇒ g | B

where r is the rule name, H1 and H2 are sequences of CHR constraints, g is a
sequence of built-in constraints, and B is a sequence of constraints. At least one
of H1 and H2 must be non-empty. Finally, a CHR program P is a sequence of
rules.

We shall sometimes treat multisets as sequences, in which case we nondeter-
ministically choose an order for the objects in the multiset.

Given a CHR program P , we will be interested in numbering the occurrences of
each CHR constraint predicate p appearing in the head of the rule. We number
the occurrences following the top-down rule order and right-to-left constraint
order. The latter is aimed at ordering first the constraints after the backslash (\)
and then those before it, since this is more efficient in general.

38 CHAPTER 3. OPERATIONAL SEMANTICS

Example 17 The following shows the gcd CHR program of Example 14, written
using simpagation rules and all occurrences numbered:

gcd1 @ [] \ gcd(0)1 <=> true | true.

gcd2 @ gcd(N)3 \ gcd(M)2 <=> M ≥ N | gcd(M-N).

⊓⊔

3.2.1 The ωt Semantics

Several versions of the theoretical operational semantics have already appeared
in the literature, e.g. [1, 32], essentially as a multiset rewriting semantics. This
section presents our variation,2 which subsumes previous versions, and is close
enough to our refined operational semantics to make proofs simple.

Firstly we define numbered constraints.

Definition 1 (Numbered Constraints) A numbered constraint is a constraint
c paired with an integer i. We write c#i to indicate a numbered constraint. ⊓⊔

Sometimes we refer to i as the identifier (or simply ID) of the numbered con-
straint. This numbering serves to differentiate among copies of the same con-
straint.

Now we define an execution state, as follows.

Definition 2 (Execution State) An execution state is a tuple of the form
〈G, S, B, T 〉Vn where G is a multiset (repeats are allowed) of constraints, S is a set
of numbered constraints, B is a conjunction of built-in constraints, T is a set of
sequences of integers, V is the set of variables and n is an integer. Throughout
this thesis we use symbol ‘σ’ to represent an execution state. ⊓⊔

We call G the goal, which contains all constraints to be executed. The CHR
constraint store S is the set3 of numbered CHR constraints that can be matched
with rules in the program P . For convenience we introduce functions cons(c#i) =
c and id(c#i) = i, and extend them to sequences and sets of numbered CHR
constraints in the obvious manner.

The built-in constraint store B contains any built-in constraint that has been
passed to the built-in solver. Since we will usually have no information about
the internal representation of B, we treat it as a conjunction of constraints. The
propagation history T is a set of sequences, each recording the identities of the
CHR constraints which fired a rule, and the name of the rule itself (which may
be represented as a unique integer, but typically we just use the name of the rule
itself). This is necessary to prevent trivial nontermination for propagation rules:
a propagation rule is allowed to fire on a set of constraints only if the constraints

2A brief comparison between this and previous formalisations of the semantics can be found
later in Section 3.6.

3Sometimes we treat the store as a multiset.

3.2. THE THEORETICAL OPERATIONAL SEMANTICS ωT 39

have not been used to fire the rule before. The set V contains all variables that
appeared in the initial goal. Its purpose will become clear in Section 3.4 where
we define the declarative semantics of execution states. Throughout this thesis
we will usually omit V unless we require it to be explicitly shown. Finally, the
counter n represents the next free integer which can be used to number a CHR
constraint.

We define an initial state as follows.

Definition 3 (Initial State) Given a goal G, which is a multiset of constraints,

the initial state with respect to G is 〈G, ∅, true, ∅〉
vars(G)
1 . ⊓⊔

A built-in solver determines if a logical formula F holds with respect to a
constraint theory D.

Definition 4 We model the built-in solver S by the test (D |=S F), where F
is an arbitrary logical formula. We require that D |=S F satisfies (at least) the
following conditions for all formulae G and H:

1. correctness: If D |=S F holds then D |= F holds.

2. monotonic: if D |=S (F → G) holds then D |=S (F ∧H → G) holds.

We also define the test (D 6|=S F), which holds iff D |=S F does not hold. ⊓⊔

A built-in solver S is complete if the test (D |=S F) is equivalent to (D |= F)
for all formulae F , otherwise S is incomplete. For a complete solver, the test
(D 6|=S F) is equivalent to (D |= ¬F).

The theoretical operational semantics ωt is based on the following three tran-
sitions which map execution states to execution states:

Definition 5 (Theoretical Operational Semantics)
1. Solve

〈{c} ⊎G, S, B, T 〉Vn 〈G, S, c ∧B, T 〉Vn

where c is a built-in constraint.
2. Introduce

〈{c} ⊎G, S, B, T 〉Vn 〈G, {c#n} ⊎ S, B, T 〉V(n+1)

where c is a CHR constraint.
3. Apply

〈G, H1 ⊎H2 ⊎ S, B, T 〉Vn 〈θ(C) ⊎G, H1 ⊎ S, B, T ′〉Vn

where there exists a (renamed apart) rule in P of the form

r @ H ′
1 \ H ′

2 ⇐⇒ g | C

40 CHAPTER 3. OPERATIONAL SEMANTICS

and the matching substitution θ is such that

cons(H1) = θ(H ′
1)

cons(H2) = θ(H ′
2)

D |=S B → ∃r(θ ∧ g)
id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r] 6∈ T

In the result T ′ = T ∪ {id(H1) ++ id(H2) ++ [r]}.4 ⊓⊔

The Solve transition adds a new built-in constraint from goal G to the built-
in store B. The Introduce transition adds a new numbered CHR constraint to
the CHR store S. The Apply transition chooses a rule from the program such
that matching constraints exist in the CHR store S, and the guard is entailed by
the built-in store B, and fires it. For readability, we usually apply the resulting
substitution θ to all relevant fields in the execution state, i.e. G, S and B. This
does not affect the meaning of the execution state, or its transition applicability,
but it helps remove the build-up of too many variables and constraints.

The theoretical operational semantics states that given a goal G, we nondeter-
ministically apply the transitions from Definition 5 until a final state is reached.
We define a final state as follows.

Definition 6 (Final States) An execution state σ = 〈G, S, B, T 〉n is a final
state if either no transition defined in Definition 5 is applicable to σ, or D |=S

¬∃̄∅B holds (often we simply use false to represent such a state). ⊓⊔

The sequence of execution states generated by continuously applying transi-
tion steps is called a derivation, which is formally defined as follows.

Definition 7 (Derivation) A derivation D is a non-empty (but possibly infi-
nite) sequence of execution states D = [σ0, σ1, σ2, ...] such that σi+1 is the result
of applying a transition from Definition 5 to execution state σi for all consecutive
states σi and σi+1 in D. ⊓⊔

Usually we write σ0 σ1 σ2 ... instead of [σ0, σ1, σ2, ...] to denote a
derivation, and the length of the derivation is the length of the sequence less
one. Sometimes we use the notation D = D0 ++ D1 to represent a partition of
derivation D.

Example 18 Figure 3.1 is a (terminating) derivation under ωt for the query
gcd(6), gcd(9) executed on the gcd program in Example 17. For brevity, B,
T and V have been removed from each tuple. No more transitions on state
〈∅, {gcd(3)#3}〉6 are possible, so this is the final state. ⊓⊔

4Note in practice we only need to keep track of tuples where H2 is empty, since otherwise
these CHR constraints are being deleted and the firing can not reoccur.

3.3. THE REFINED OPERATIONAL SEMANTICS ωR 41

〈{gcd(6), gcd(9)}, ∅〉1 (1)
introduce 〈{gcd(9)}, {gcd(6)#1}〉2 (2)
introduce 〈∅, {gcd(6)#1, gcd(9)#2}〉3 (3)

(gcd2 N = 6 ∧M = 9) apply 〈{gcd(3)}, {gcd(6)#1}〉3 (4)
introduce 〈∅, {gcd(6)#1, gcd(3)#3}〉4 (5)

(gcd2 N = 3 ∧M = 6) apply 〈{gcd(3)}, {gcd(3)#3}〉4 (6)
introduce 〈∅, {gcd(3)#3, gcd(3)#4}〉5 (7)

(gcd2 N = 3 ∧M = 3) apply 〈{gcd(0)}, {gcd(3)#3}〉5 (8)
introduce 〈∅, {gcd(3)#3, gcd(0)#5}〉6 (9)

(gcd1) apply 〈∅, {gcd(3)#3}〉6 (10)

Figure 3.1: ωt derivation for gcd.

3.3 The Refined Operational Semantics ωr

The refined operational semantics establishes an order for the constraints in G.
As a result, we are no longer free to pick any constraint from G to either Solve
or Introduce into the store. It also treats CHR constraints as procedure calls:
each newly added CHR constraint searches for possible matching rules in order,
until all matching rules have been executed or the constraint is deleted from the
store. As with a procedure, when a matching rule fires other CHR constraints
might be executed and, when they finish, the execution returns to finding rules
for the current constraint. Not surprisingly, this approach is used exactly because
it corresponds closely to that of the language we compile to.

Formally, the execution state of the refined semantics is the tuple

〈A, S, B, T 〉Vn

where S, B, T , V and n, representing the CHR store, built-in store, propagation
history, initial variables and next free identity number respectively, are exactly as
with Definition 2. The execution stack A is a sequence of constraints, numbered
CHR constraints and active CHR constraints, with a strict ordering in which
only the top-most constraint is considered for execution.5 We now define active
constraints, which represent a specific call to a CHR constraint.

Definition 8 (Active Constraints) An active constraint c#i : j is a numbered
CHR constraint c#i associated with an integer j which represents the occurrence
of predicate c in P the constraint c#i is allowed to match with. ⊓⊔

Unlike in the theoretical operational semantics, a numbered constraint may si-
multaneously appear in both the execution stack A and the store S.

5The execution stack is analogous to a call-stack in other programming languages, e.g. Prolog
etc.

42 CHAPTER 3. OPERATIONAL SEMANTICS

Given initial goal G, the initial state is as before, i.e. of the form

〈G, ∅, true, ∅〉
vars(G)
1

except this time G is an ordered sequence, rather than a constraint multiset. Just
as with the theoretical operational semantics, execution proceeds by exhaustively
applying transitions to the initial execution state until the built-in solver state is
unsatisfiable or no transitions are applicable.

The refined operational semantics treats CHR constraints with only fixed vari-
ables as a special case. We formally define fixed variable as follows.

Definition 9 (Fixed) Let B be a built-in store, then v ∈ fixed(B) if

D |=S ∀v∀ρ(v)(∃̄v(B) ∧ ∃̄ρ(v)ρ(B)→ v = ρ(v))

for arbitrary renaming ρ. ⊓⊔

Informally, a variable which can only take one value to satisfy B is fixed. We say
a constraint c is fixed if vars(c) ⊆ fixed(B).

When a built-in constraint is added to the built-in store, the refined semantics
wakes up a subset of the CHR store to be reconsidered for execution. The exact
subset is left open, however it must satisfy the conditions of a wakeup policy,
which is defined as follows.

Definition 10 (Wakeup Policy) Let S be a CHR store, c a built-in constraint
and B a built-in store, then a wakeup policy is a function wakeup policy(S, c, B) =
S1 where S1 is a finite multiset such that for all s ∈ S1 we have that s ∈ S, and
S1 satisfies the following further conditions:

1. lower bound: For all M = H1 ++ H2 ⊆ S such that there exists a rule

r @ H ′
1 \ H ′

2 ⇐⇒ g | C

and a substitution θ such that

cons(H1) = θ(H ′
1)

cons(H2) = θ(H ′
2)

D 6|=S (B → ∃r(θ ∧ g))
D |=S (B ∧ c→ ∃r(θ ∧ g))

then M ∩ S1 6= ∅

2. upper bound: If m ∈ S1 then vars(m) 6⊆ fixed(B).

⊓⊔

3.3. THE REFINED OPERATIONAL SEMANTICS ωR 43

Each implementation of the refined semantics provides its own wakeup policy.
The lower bound ensures that S1 is (at least) the minimum subset of the store
that actually needs to be reconsidered thanks to the addition of c. The upper
bound ensures that S1 contains no fixed constraints. This will ensure that fixed
constraints have a more deterministic behaviour, which is essential for confluence
(see Chapter 6). Note that the definition of a wakeup policy also allows the set
S1 to contain multiple (redundant) copies of constraints in S.6

We can now define the refined operational semantics of CHRs.

Definition 11 (Refined Operational Semantics)
1. Solve

〈[c|A], S, B, T 〉Vn 〈wakeup policy(S, c, B) ++ A, S, c ∧ B, T 〉Vn

where c is a built-in constraint.
2. Activate

〈[c|A], S, B, T 〉Vn 〈[c#n : 1|A], {c#n} ⊎ S, B, T 〉V(n+1)

where c is a CHR constraint (which has never been active).
3. Reactivate

〈[c#i|A], S, B, T 〉Vn 〈[c#i : 1|A], S, B, T 〉Vn

where c is a CHR constraint (re-added to A by Solve but not yet active).
4. Drop

〈[c#i : j|A], S, B, T 〉Vn 〈A, S, B, T 〉Vn

where c#i : j is an active constraint and there is no such occurrence j in P (all
existing ones have already been tried thanks to transition 7).
5. Simplify

〈[c#i : j|A], {c#i} ⊎H1 ⊎H2 ⊎H3 ⊎ S, B, T 〉Vn 〈θ(C) ++ A, H1 ⊎ S, B, T ′〉Vn

where the jth occurrence of the CHR predicate of c in a (renamed apart) rule in
P is

r @ H ′
1 \ H ′

2, dj, H
′
3 ⇐⇒ g | C

and there exists a matching substitution θ such that

c = θ(dj)
cons(H1) = θ(H ′

1)
cons(H2) = θ(H ′

2)
cons(H3) = θ(H ′

3)
D |=S B → ∃r(θ ∧ g)
id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r] 6∈ T

6This models the behaviour of a CHR constraint waking up more than once when a built-in
constraint is added to the store, which may happen in practice.

44 CHAPTER 3. OPERATIONAL SEMANTICS

In the result T ′ = T ∪ {id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r]}.7

6. Propagate

〈[c#i : j|A], {c#i} ⊎H1 ⊎H2 ⊎H3 ⊎ S, B, T 〉Vn
〈θ(C) ++ [c#i : j|A], {c#i} ⊎H1 ⊎H2 ⊎ S, B, T ′〉Vn

where the jth occurrence of the CHR predicate of c in a (renamed apart) rule in
P is

r @ H ′
1, dj, H

′
2 \ H ′

3 ⇐⇒ g | C

and the matching substitution θ is such that

c = θ(dj)
cons(H1) = θ(H ′

1)
cons(H2) = θ(H ′

2)
cons(H3) = θ(H ′

3)
D |=S B → ∃r(θ ∧ g)
id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r] 6∈ T

In the result T ′ = T ∪ {id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r]}.
The role of the propagation histories T and T ′ is exactly the same as with the

theoretical operational semantics, ωt.
7. Default

〈[c#i : j|A], S, B, T 〉Vn 〈[c#i : j + 1|A], S, B, T 〉Vn

if the current state cannot fire any other transition. ⊓⊔

Some of the transitions for the refined operational semantics are analogous
to transitions under the theoretical semantics. For example, the refined Solve
transition corresponds to the theoretical Solve transition, as they both intro-
duce a new built-in constraint into store B. Likewise, Active corresponds to
Introduce (add a new CHR constraint to the store), and Simplify and Prop-
agate correspond to Apply (fires a rule on some constraints in the store). This
correspondence is not accidental, and later in this chapter we formally define a
mapping between the semantics.

The main difference between the refined and theoretical semantics is the pres-
ence (and behaviour) of active constraints. A rule r can only fire (via Simplify
or Propagate) if the occurrence number of the current active constraint (on top
of the execution stack) appears in the head of rule r. An active constraint is only
allowed to match against the constraint in the head of r that shares the same
occurrence number.

Example 19 For example, an active constraint leq(A, B)#1 : 2 (with occur-
rence number 2) is only allowed to match against leq(Y, X)2 (also with occurrence
number 2) in the following rule.

7As with the theoretical semantics, it is not necessary to check the history if H2 is not empty.
We include the check anyway to simplify our proofs later in this chapter.

3.3. THE REFINED OPERATIONAL SEMANTICS ωR 45

leq(X,Y)1, leq(Y,X)2 <=> X = Y.

⊓⊔

This is very different to the theoretical semantics, where a rule is free to fire on
any subset of the current CHR store.

If the current active constraint cannot match against the associated rule, e.g.
if all matchings have already been tried, then the active constraint “moves” to
the next occurrence via the Default transition. This ensures that, assuming
termination, all occurrences will eventually be tried. When there are no more oc-
currences to check, i.e. the occurrence number associated to an active constraint
does not appear in P , then we can apply Drop. This pops off the current active
constraint, but does not remove anything from the store.

Initially there are no active constraints in the goal, but we can turn a non-
active constraint into an active constraint via the Activate transition. The
Activate transition associates the first occurrence (defined as occurrence number
1) with the constraint, and adds a copy of the constraint to the CHR constraint
store (just like Introduce under the theoretical semantics).

The Solve transition is also handled differently. After applying Solve, a
subset of the CHR store (defined by the wakeup policy) is appended to the front of
the execution stack. The intention is that these constraints will eventually become
active again (via the Reactivate transition), and will reconsider all rules in the
program P . These active constraints may fire against more rules than before,
because the addition of the new built-in constraint c may mean the underlying
solver can prove more guards hold than before.

Example 20 Consider the following rule from the leq program in Example 1.

leq(X,X)1 <=> true.

Assume the built-in store B is empty (i.e. B = true), then a constraint leq(J, K)
where J and K are distinct variables cannot fire this rule because D |= true →
∃X((J = X ∧K = X) ∧ true) is not equivalent to true (i.e. the guard does not
hold). However, if a new constraint J = K were to be added into the built-in store
via a Solve transition, then D |= (J = K) → ∃X(((J = X ∧ K = X) ∧ true)
always holds, thus the rule can now fire. Here, we are assuming that the built-in
solver is complete.

Under the refined semantics, the constraint leq(J, K) will be copied to the
execution stack during the Solve transition. Therefore eventually (assuming ter-
mination), the constraint will be Reactivated, and fire the rule. ⊓⊔

The refined operational semantics constrains the values a wakeup policy is allowed
to return. At the very minimum, a wakeup policy must contain a CHR constraint
from every new matching that is possible thanks to the addition of c into the
built-in store (the lower bound condition). At most, a wakeup policy returns all
non-ground constraints currently in the CHR store (the upper bound condition).
The exact implementations of the wakeup policy is left to the implementation.

46 CHAPTER 3. OPERATIONAL SEMANTICS

We now present some examples of derivations under the refined operational
semantics.

3.3.1 Extended Example: leq

In this section we present an extended example of the refined operational seman-
tics. Consider the leq program from Example 1, which defines a CHR constraint
leq(X, Y) representing the ordering relation X ≤ Y . Unlike with the gcd con-
straint, arguments for leq may be solver variables, hence we may need to wakeup
constraints if/when the built-in store changes. We will assume that the built-in
solver is complete.

The rules defining the leq constraint are given below.

reflexivity @ leq(X,X)1 <=> true.

antisymmetry @ leq(X,Y)2, leq(Y,X)3 <=> X = Y.

idempotence @ leq(X,Y)5 \ leq(X,Y)4 <=> true.

transitivity @ leq(X,Y)6, leq(Y,Z)7 <=> leq(X,Z).

Each occurrence in the program has been labelled a number between 1..7. Active
constraints are checked against occurrences in this order.

Our initial query is leq(A,B),leq(C,A),leq(B,C) (the same as that from
Example 2), which represents the ordering relations A ≤ B ∧ C ≤ A ∧ B ≤ C.
The initial state for this goal is

〈[leq(A, B), leq(C, A), leq(B, C)], ∅, true, ∅〉
{A,B,C}
1

As this is an initial state, the store S, built-in store B and propagation history
T are all empty. Now we exhaustively apply ωr transitions until either failure
is reached, or no more transitions can be applied. For brevity, the propagation
history T and variables V will be omitted for the rest of this example.

The very first transition activates the left-most CHR constraint on the exe-
cution stack.

activate

〈[leq(A, B)#1 : 1, leq(C, A), leq(B, C)], {leq(A, B)#1}, true〉2

Constraint leq(A,B) is now activated with new ID number 1. The constraints
now also appears in the CHR store.

The activated constraint is now ready to visit each occurrence, and check if the
corresponding rule can fire. Since the arguments to the leq constraint, namely
variables A and B, are distinct, the first rule cannot fire, since the guard A = B
is not satisfied (just as with Example 20 before). All other rules require at least
two leq constraints to be present in the CHR store. Currently there is only one,
therefore the only applicable transition is Default.

×7
default

〈[leq(A, B)#1 : 8, leq(C, A), leq(B, C)], {leq(A, B)#1}, true〉2

3.3. THE REFINED OPERATIONAL SEMANTICS ωR 47

As there is no occurrence number 8, the only applicable transition is Drop,
which simply removes the active constraint from the execution stack.

drop

〈[leq(C, A), leq(B, C)], {leq(A, B)#1}, true〉2

The constraint leq(A,B) has finished execution, so the next left-most con-
straint leq(C,A) must now be activated by the Activate transition. None of
the rules for occurrences 1...5 can fire on this new active constraint, hence the
Default transition is applied 5 times

activate
×5
default

〈[leq(C, A)#2 : 6, leq(B, C)], {leq(C, A)#2, leq(A, B)#1}, true〉3

The active constraint is currently at occurrence 6.
Now we find that the Propagate transition can be applied with the matching

substitution θ as (X = C ∧ Y = A∧ Y = A∧Z = B). A simple check verifies all
of the conditions for Propagate are satisfied, namely,

• the guard is satisfied, i.e. D |= true→ ∃X∃Y ∃Z(θ ∧ true) holds; and

• the application of the rule is not blocked by the propagation history, i.e.
[1, 2, r4] 6∈ T (as T is currently empty).

The resulting state after Propagate is:

〈[leq(C, B), leq(C, A)#2 : 6, leq(B, C)], {leq(C, A)#2, leq(A, B)#1}, true〉3

The top of the execution stack is the constraint leq(C,B) which is Acti-
vated, and assigned the ID 3. The new active constraint does not match any
occurrence, so Default is applied 7 times, then Drop.

activate
×7
defaultdrop

〈[leq(C, A)#2 : 6, leq(B, C)], {leq(C, B)#3, leq(C, A)#2, leq(A, B)#1}〉4

Now the active constraint leq(C, A)#2 : 6 is on top of the stack again.
It seems that Propagate could be applied again (just as before), however

there now exists an entry [r4, 1, 2] ∈ T which prevents this from happening.
There is no other choice but to apply Default, and ultimately Drop.

×2
defaultdrop

〈[leq(B, C)], {leq(C, B)#3, leq(C, A)#2, leq(A, B)#1}, true〉4

Now leq(B,C) is activated (with new ID 4), but no occurrence can fire until
occurrence 2.

activatedefault

〈[leq(B, C)#4 : 2], {leq(B, C)#4, leq(C, B)#3, leq(C, A)#2, leq(A, B)#1}〉5

48 CHAPTER 3. OPERATIONAL SEMANTICS

Now we find Simplify can be applied on the active constraint and leq(C,B)
from the store, with the matching substitution θ as (Y = B ∧ X = C ∧ X ′ =
C ∧Y ′ = B). The guard is satisfied and [4, 3, r2] 6∈ T . Both the active constraint
leq(B,C) and constraint leq(C,B) are deleted, and the built-in constraint
C = B is pushed onto the top of execution stack.

simplify

〈[C = B], {leq(C, A)#2, leq(A, B)#1}, true〉5

Next Solve is applied to the built-in constraint on the execution stack. This
moves the constraint C = B to the built-in store. We also assume a very simple
wakeup policy: all non-fixed CHR constraints from the store will be woken up.
The order that these constraints are added to the stack is not specified by the
refined semantics, so we pick the order arbitrarily. For simplicity, we also apply
constraint C = B to the CHR constraints, replacing variable B with C.

solve

〈[leq(C, A)#2, leq(A, C)#1], {leq(C, A)#2, leq(A, C)#1}, C = B〉5

We Reactivate constraint leq(C,A). No rule fires until occurrence 2.

reactivatedefault

〈[leq(C, A)#2 : 2, leq(A, C)#1], {leq(C, A)#2, leq(A, C)#1}, C = B〉5

We apply Simplify with the matching substitution θ = (X = A ∧ Y = C).
The guard is satisfied and [1, 2, r2] 6∈ T . Both CHR constraints are deleted and
the body constraint C = A is added to the execution stack.

simplify

〈[C = A, leq(A, C)#1], ∅, C = B〉

We apply Solve to the equation.

solve

〈[leq(A, C)#1], ∅, C = A ∧ C = B〉

Finally, we Reactivate the remaining CHR constraint. Since this constraint
no longer appears in the CHR store, no rule can fire. Therefore the constraint is
eventually Dropped.

reactivate
×7
defaultdrop

〈[], ∅, C = A ∧ C = B〉

Since the execution stack is empty, we have reached a final state. Therefore,
the solution to the original query (A ≤ B∧C ≤ A∧B ≤ C) is (C = A∧C = B),
as expected.

3.3.2 Small Example: gcd

Figure 3.2 shows the derivation under ωr semantics for the gcd program in Ex-
ample 17 and the goal gcd(6),gcd(9). For brevity B, T and V have been
eliminated.

3.4. DECLARATIVE SEMANTICS 49

〈[gcd(6), gcd(9)], ∅〉1 (1)
activate 〈[gcd(6)#1 : 1, gcd(9)], {gcd(6)#1}〉2 (2)

×3
default 〈[gcd(6)#1 : 4, gcd(9)], {gcd(6)#1}〉2 (2)

drop 〈[gcd(9)], {gcd(6)#1}〉2 (2)
activatedefault 〈[gcd(9)#2 : 2], {gcd(9)#2, gcd(6)#1}〉3 (3)
simplify 〈[gcd(3)], {gcd(6)#1}〉3 (4)
activate

×2
default 〈[gcd(3)#3 : 3], {gcd(3)#3, gcd(6)#1}〉3 (5)

propagate 〈[gcd(3), gcd(3)#3 : 3], {gcd(3)#3}〉4 (6)
activatedefault 〈[gcd(3)#4 : 2, gcd(3)#3 : 3], {gcd(3)#4, gcd(3)#3}〉5 (7)
simplify 〈[gcd(0), gcd(3)#3 : 3], {gcd(3)#3}〉5 (8)
activate 〈[gcd(0)#5 : 1, gcd(3)#3 : 3], {gcd(0)#5, gcd(3)#3}〉6 (9)
simplify 〈[gcd(3)#3 : 3], {gcd(3)#3}〉6 (10)
defaultdrop 〈[], {gcd(3)#3}〉6 (10)

Figure 3.2: ωr derivation for gcd.

3.4 Declarative Semantics

In this section, we establish the declarative semantics (logical interpretation) of
execution states and CHR programs. This is essentially a brief overview of the
declarative semantics that has appeared in past literature, e.g. in [32].

Firstly we give the definition for the logical interpretation of states under the
theoretical operational semantics.

Definition 12 (Logical Interpretation of Execution States) The logical in-
terpretation of an ωt execution state σ is given by the function JσK, which is
defined as

J〈G, S, B, T 〉Vi K = ∃̄V(JGK ∧ JSK ∧ B)
J{c} ⊎ SK = JcK ∧ JSK
Jc#iK = c
JcK = c (c not numbered)

⊓⊔

Basically, the logical interpretation of an execution state is the conjunction of
the goal G, store S and built-in store B. The purpose of V is to indicate which
variables are existentially quantified, i.e. variable v will be existentially quantified
if v 6∈ V.

The definition for the logical interpretation of execution states under the re-
fined operational semantics is delayed until later in this chapter, once the rela-
tionship between the two semantics has been defined.

We extend the function JK to give the logical interpretation of CHR programs.

50 CHAPTER 3. OPERATIONAL SEMANTICS

Definition 13 (Logical Interpretation of CHR programs) Let P be a CHR
program (a sequence of rules), then the logical interpretation JP K is defined as

J[]K = true
J[r|P]K = JrK ∧ JP K
J(H1 \ H2 ⇐⇒ g | C)K = ∀x̄((∃ȳ g)→ ∃z̄(JH1K ∧ JH2K↔ JCK ∧ JH1K)))

Here, x̄ = vars(H1 ∧ H2) (variables appearing in the head), ȳ = vars(g) − x̄
(variables in the guard only) and z̄ = vars(C) − x̄ (variables appearing in the
body only). ⊓⊔

For simplicity, this definition assumes that the guard and body do not share
variables that do not appear in the head. If is not the case, then we treat the
rule as

(H1 \ H2 ⇐⇒ g | ρ(g ∧ C))

where ρ renames all variables v ∈ vars(g) such that v ∈ vars(C) and v 6∈
vars(H2 ∧H2). We refer to this process as body normalisation.

The declarative semantics is important for many applications. For example,
the declarative semantics of a constraint solver implemented in CHRs usually
corresponds with the constraint theory D of that solver.

Example 21 The following is the (simplified) declarative semantics of the leq

program from Example 1.

∀X(leq(X, X)↔ true) ∧
∀X∀Y (leq(X, Y) ∧ leq(Y, X)↔ X = Y) ∧
∀X∀Y (leq(X, Y) ∧ leq(X, Y)↔ leq(X, Y)) ∧
∀X∀Y ∀Z(leq(X, Y) ∧ leq(Y, Z)→ leq(X, Z)))

Each formula on each line corresponds to a rule from the original program in
order. Notice that the first, second and fourth lines are a logical specification of
the reflexivity, antisymmetric and transitivity properties of a partial order.

The third rule implements the property of idempotence, which is really a
property of conjunction. In fact this rule is logically redundant. The idempotence
rule is included because of practical reasons, since CHRs allow multiple copies of
the same rule by default, even though (from a declarative perspective) one copy is
enough. ⊓⊔

It is sometimes the case that the logical interpretation of a program has little
to do with its operational behaviour. This is common when the program relies
on the refined operational semantics.

Example 22 For example, consider the declarative meaning of the simple pro-
gram presented in Example 15.

∀K∀V ∀V ′(entry(K, V) ∧ lookup(K, V ′)↔ V = V ′ ∧ entry(K, V)) ∧
∀X∀Y (lookup(X, Y)↔ false)

3.5. THE RELATIONSHIP BETWEEN ωT AND ωR 51

The last rule means all constraints lookup(X, Y) are logically equivalent to false,
yet calls to lookup(X, Y) may not immediately fail (if there is an appropriate
entry in the database). This example shows that the operational and declarative
semantics of a program may not always coincide. ⊓⊔

In this case we are using CHRs as a general rule-based rewrite programming
language, hence declarative semantics is not important.

3.5 The Relationship Between ωt and ωr

Once both semantics are established, we can define an abstraction function α
which maps execution states of ωr to ωt. Later, we use this abstraction function
to prove correctness of the refined semantics ωr with respect to the theoretical
semantics ωt.

Definition 14 (Correspondence of States) The abstraction function α is de-
fined as

α(〈A, S, B, T 〉Vn) = 〈no id(A), S, B, T 〉Vn

where no id(A) = {c | c ∈ A is not of the form c#i or c#i : j}. ⊓⊔

The abstraction function removes all numbered constraints from the execution
stack, and turns the stack into an unordered multiset.

Example 23 Consider the following ωr state from the gcd example.

〈[gcd(0), gcd(3)#3 : 3], {gcd(3)#3}〉5

After applying α we get

〈{gcd(0)}, {gcd(3)#3}〉5

We have simply removed the constraint gcd(3)#3 : 3 from the stack, as it was
identified with number 3, and turned the stack (which is a sequence) into a mul-
tiset. The rest of the state is unaffected. ⊓⊔

We now extend α to map a derivation D under ωr to the corresponding deriva-
tion α(D) under ωt, by mapping each state appropriately and eliminating adjacent
equivalent states.

Definition 15 (Correspondence of derivations) Function α is extended to
derivations in ωr as follows

α(σ1 D) =
α(D) if (D = σ2 D′ or D = σ2) and α(σ1) = α(σ2)
α(σ1) α(D) otherwise

⊓⊔

52 CHAPTER 3. OPERATIONAL SEMANTICS

Note that this definition is just syntactic, and we do not know if the result of
apply function α to a ωr derivation gives a valid ωt derivation. We rely on the
following theorem to show this.

Theorem 2 (Correspondence) For all ωr derivations D, α(D) is a ωt deriva-
tion.

Proof. By induction. We use Di to represent a derivation of length i, we also
let σj be the jth state in Di, so Di = σ0 σ1 ... σi. Derivations of length
i + 1 must be constructed from derivations of length i.
Base case: Derivations of zero length. Then α(D0) = α(σ0) is a ωt derivation of
zero length for all D0.
Induction Step: Assume that for all derivations Di of length i, α(Di) is a ωt

derivation. Let Di+1 be a ωr derivation of length i+1 constructed from a deriva-
tion Di by applying a ωr transition to σi (the last state in Di). We show that
α(Di+1) is a ωt derivation.

Let σi+1 be the last state in Di+1, we factor out two possible relationships
between α(σi) and α(σi+1) and show that these imply α(Di+1) is also a ωt deriva-
tion.

• Case 1: α(σi+1) = α(σi), then

α(Di+1) =
α(Di σi+1) =
α(Di)

Hence α(Di+1) is also a ωt derivation; or

• Case 2: α(σi)ωt
α(σi+1) holds for some ωt transitionωt

, then

α(Di+1) =
α(Di ωr

σi+1) =
α(Di)ωt

α(σi+1)

This means α(Di+1) is constructed from ωt derivation α(Di) by applying
a ωt transition to the last state α(σi), hence α(σi+1) is a ωt derivation by
definition.

It remains to be shown that if σi σi+1 under ωr, then either Case 1 or Case 2
holds for α(σi) and α(σi+1). For this we consider all possibilities for the ωr

transition from σi to σi+1.
CASE Solve: σi σi+1 is of the form

〈[c|A], S, B, T 〉n solve 〈wakeup policy(S, c, B) ++ A, S, c ∧ B, T 〉n

Where c is some built-in constraint. Then α(σi) = 〈{c}⊎no id(A), S, B, T 〉n. We
can apply the ωt version of Solve to α(σi).

〈{c} ⊎ no id(A), S, B, T 〉n solve 〈no id(A), S, c ∧ B, T 〉n

3.5. THE RELATIONSHIP BETWEEN ωT AND ωR 53

Now 〈no id(A), S, c∧B, T 〉n = α(σi+1), so α(σi)ωt
α(σi+1) where the transition

is ωt Solve. Hence Case 2 above is satisfied.
CASE Activate: σi σi+1 is of the form

〈[c|A], S, B, T 〉nactivate 〈[c#n : 1|A], {c#n} ⊎ S, B, T 〉(n+1)

Where c is some CHR constraint (not yet numbered). Then α(σi) = 〈{c} ⊎
no id(A), S, B, T 〉n. We can apply the ωt Introduce to α(σi).

〈{c} ⊎ no id(A), S, B, T 〉nintroduce 〈no id(A), {c#n} ⊎ S, B, T 〉(n+1)

Now 〈no id(A), {c#n}⊎S, B, T 〉(n+1) = α(σi+1), so α(σi)introduce α(σi+1) where
the ωt transition is Introduce. Hence Case 2 above is satisfied.
CASE Reactivate: σi σi+1 is of the form

〈[c#i|A], S, B, T 〉n reactivate 〈[c#i : 1|A], S, B, T 〉n

Then α(σi) = α(σi+1) = 〈no id(A), S, B, T 〉n. Hence Case 1 above is satisfied.
CASE Drop: σi σi+1 is of the form

〈[c#i : j|A], S, B, T 〉ndrop 〈A, S, B, T 〉n

Then α(σi) = α(σi+1) = 〈no id(A), S, B, T 〉n. Hence Case 1 above is satisfied.
CASE Simplify: σi σi+1 is of the form

〈[c#i : j|A], {c#i} ⊎H1 ⊎H2 ⊎H3 ⊎ S, B, T 〉n simplify

〈θ(C) ++ A, H1 ⊎ S, B, T ′〉n

where the jth occurrence of the CHR predicate of c in a (renamed apart) rule in
P is

r @ H ′
1 \ H ′

2, dj, H
′
3 ⇐⇒ g | C

and the matching substitution θ is such that c = θ(dj), cons(H1) = θ(H ′
1),

cons(H2) = θ(H ′
2), cons(H3) = θ(H ′

3), and D |=S B → ∃r(θ ∧ g), and the tuple
id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r] 6∈ T .

Then α(σi) = 〈no id(A), {c#i}⊎H1 ⊎H2 ⊎H3 ⊎S, B, T 〉n. We show that the
ωt Apply transition is applicable to α(σi), namely

• There exists a (renamed apart) rule in P of the form

r′′ @ H ′′
1 \ H ′′

2 ⇐⇒ g′′ | C ′′

This is satisfied by r = r′′, H ′′
1 = H ′

1, H ′′
2 = (H ′

2, dj, H
′
3), g′′ = g and

C ′′ = C. In other words, the same rule as above.

• There exists a matching substitution θ′′ such that cons(H1) = θ′′(H ′′
1) and

cons(H2, c, H3) = θ′′(H ′′
2). This is satisfied by θ′′ = θ, the same matching

substitution from above.

54 CHAPTER 3. OPERATIONAL SEMANTICS

• The guard g′′ is satisfied, i.e. D |=S B → ∃r′′(θ
′′ ∧ g′′). This is satisfied

because D |=S B → ∃̄r(θ ∧ g) holds, and r′′ = r, θ′′ = θ and g′′ = g.

• The tuple id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r] 6∈ T . This is directly
satisfied from above.

Hence

〈no id(A), {c#i}⊎H1⊎H2⊎H3⊎S, B, T 〉n apply 〈θ(C)⊎no id(A), H1⊎S, B, T ′〉n

Now 〈θ(C) ⊎ no id(A), H1 ⊎ S, B, T ′〉n = α(σi+1), so α(σi)apply α(σi+1) where
the ωt transition is Apply. Hence Case 2 above is satisfied.
CASE Propagate: σi σi+1 is of the form

〈[c#i : j|A], {c#i} ⊎H1 ⊎H2 ⊎H3 ⊎ S, B, T 〉n propagate

〈θ(C) ++ [c#i : j|A], {c#i} ⊎H1 ⊎H3 ⊎ S, B, T ′〉n

where the jth occurrence of the CHR predicate of c in a (renamed apart) rule in
P is

r @ H ′
1, dj, H

′
2 \ H ′

3 ⇐⇒ g | C

and the matching substitution θ is such that c = θ(dj), cons(H1) = θ(H ′
1),

cons(H2) = θ(H ′
2), cons(H3) = θ(H ′

3), and D |=S B → ∃r(θ ∧ g), and the tuple
id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r] 6∈ T .

Then α(σi) = 〈no id(A), {c#i}⊎H1 ⊎H2 ⊎H3 ⊎S, B, T 〉n. We show that the
ωt Apply transition is applicable to α(σi), namely

• There exists a (renamed apart) rule in P of the form

r′′ @ H ′′
1 \ H ′′

2 ⇐⇒ g′′ | C ′′

This is satisfied by r = r′′, H ′′
1 = (H ′

1, dj, H
′
2), H ′′

2 = H ′
3, g′′ = g and

C ′′ = C. In other words, the same rule as above.

• There exists a matching substitution θ′′ such that cons(H1, c, H2) = θ′′(H ′′
1)

and cons(H3) = θ′′(H ′′
2). This is satisfied by θ′′ = θ, the same matching

substitution from above.

• The guard g′′ is satisfied, i.e. D |=S B → ∃r′′(θ
′′ ∧ g′′). This is satisfied

because D |=S B → ∃r(θ ∧ g) holds, and r′′ = r, θ′′ = θ and g′′ = g.

• The tuple id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r] 6∈ T . This is directly
satisfied from above.

Hence

〈no id(A), {c#i} ⊎H1 ⊎H2 ⊎H3 ⊎ S, B, T 〉n apply

〈θ(C) ⊎ no id(A), {c#i} ⊎H1 ⊎H2 ⊎ S, B, T ′〉n

3.5. THE RELATIONSHIP BETWEEN ωT AND ωR 55

Now 〈θ(C) ⊎ no id(A), {c#i} ⊎H1 ⊎ H2 ⊎ S, B, T ′〉n = α(σi+1), so α(σi) apply

α(σi+1) where the ωt transition is Apply. Hence Case 2 above is satisfied.
CASE Default: σi σi+1 is of the form

〈[c#i : j|A], S, B, T 〉n default 〈[c#i : j + 1|A], S, B, T 〉n

Then α(σi) = α(σi+1) = 〈no id(A), S, B, T 〉n. Hence Case 1 above is satisfied.

Therefore, for all ωr derivations D, α(D) is a ωt derivation. ⊓⊔

We have shown that every ωr derivation has a corresponding ωt derivation
given by function α. But in order to show the correspondence of the semantics
we also need to show that the terminating ωr derivations map to terminating ωt

derivations. First we need to define what subset of all ωr execution states need
to be considered.

Definition 16 (Reachability) An execution state σ (of either semantics) is
reachable if there exists an initial state σ0 = 〈G, ∅, true, ∅〉1 such that there exists
a derivation σ0

∗ σ. ⊓⊔

Not all states are reachable.

Example 24 The following execution state is not reachable with respect to the
gcd program from Example 14.

〈[], {gcd(0)#1}〉2

If a gcd(0) constraint is present in the store, then at some stage in the derivation
that constraint must have been active. When it was active the first rule must have
fired, hence the constraint must have been deleted. Therefore the above program
state is not reachable. ⊓⊔

Reachability is generally undecidable for programming languages and this cer-
tainly applies to CHRs.

Before we state the main theorem we need to prove two lemmas related to
reachability of ωr states, i.e. given a state of a specified form, together with some
additional assumptions, can we find a future state in the derivation that matches
some other specified form.

The first lemma says that if we have some prefix of constraints on the top of
the execution stack, then eventually those constraints will be removed assuming
termination and non-failure.

Lemma 1 (Intermediate States 1) Let D be a finite ωr derivation from an
execution state σ of the form 〈Ap ++ As, S, B, T 〉n (for non-empty As) to some
non-false final state. Then there exists an intermediate state σk of the form
〈As, Sk, Bk, Tk〉nk

(the same As) in D.

56 CHAPTER 3. OPERATIONAL SEMANTICS

Proof. Direct proof. We define an abstraction function β which takes a suffix
A′

s and a state 〈A′
p ++ A′

s, S
′, B′, T ′〉n′ where the execution stack ends with the

suffix A′
s, and returns the length of the prefix A′

p.

β(A′
s, 〈A

′
p ++ A′

s, S
′, B′, T ′〉n′) = len(A′

p)

Where function len returns the length of a sequence defined in the standard way.
The function β(A′

s, σ
′) is undefined if the execution stack of σ′ does not end with

A′
s.

The function β(As, σ) is well-defined for suffix As and initial state σ from
above. Let σf be the final state in derivation D. Since σf is non-false, it must
be of the form 〈[], Sf , Bf , Tf〉nf

. As As is non-empty by assumption, function
β(As, σf) is undefined for σf . Therefore there must exist two consecutive states
σi and σi+1 in D such that β(As, σi) is defined but β(As, σi+1) is not.

We consider the possible transitions between σi and σi+1.
CASE Activate, Reactivate and Default: If β(As, σi) is defined then
β(As, σi+1) = β(As, σi) is also defined. Hence we can exclude these cases.
CASE Drop: If β(As, σi) is defined then β(As, σi+1) = β(As, σi)− 1 is defined if
β(As, σi) ≥ 1, otherwise β(As, σi+1) is undefined.
CASE Solve: If β(As, σi) is defined then β(As, σi+1) = β(As, σi) + len(S1) − 1
(where S1 represents that constraints woken up by the wakeup policy) is defined
if len(S1) ≥ 1 or β(As, σi) ≥ 1, otherwise β(As, σi+1) is undefined.
CASE Simplify: If β(As, σi) is defined then β(As, σi+1) = β(As, σi)+ len(C)−1
(where C is the body of the rule that fired) is always defined since len(C) ≥ 1
(the body of a rule must be at least of length 1). Hence we can exclude this case.
CASE Propagate: If β(As, σi) is defined then β(As, σi+1) = β(As, σi) + len(C)
(where C is the body of the rule that fired) is always defined. Hence we can
exclude this case.

Hence the only possible transitions between σi and σi+1 are

1. Drop when β(As, σi) = 0; and

2. Solve when β(As, σi) = 0 and len(S1) = 0.

In either case, β(As, σi) = 0 holds iff σi is of the form 〈As, Si, Bi, Ti〉ni
, hence

σk = σi directly satisfies our hypothesis. ⊓⊔

The second lemma says that if we have a newly activated constraint (with
occurrence number 1), and some occurrence k in the program for that constraint,
then the active constraint will eventually reach occurrence k assuming termina-
tion, non-failure and the active constraint is never deleted.

Lemma 2 (Intermediate States 2) Let σ = 〈[c#i : 0|A], {c#i}⊎S, B, T 〉n be
an ωr execution state and D a derivation from σ to some non-false final state
σf such that c#i ∈ Sf . Then for all programs P and occurrences k of predicate
c in P , there exists an intermediate state σk of the form 〈[c#i : k|A], {c#i} ⊎
Sk, Bk, Tk〉nk

in D.

3.5. THE RELATIONSHIP BETWEEN ωT AND ωR 57

Proof. By induction.
Base case: k = 1. Then σk = σ is of the appropriate form.
Induction Step: Assume that for all programs P and occurrences k of predi-
cate c in P , there exists an intermediate state σk of the form σk = 〈[c#i :
k|A], {c#i} ⊎ Sk, Bk, Tk〉n. We show how to find state σk+1 = 〈[c#i : k +
1|A], {c#i} ⊎ Sk+1, Bk+1, Tk+1〉nk+1

.
Note that because derivation D is finite, there can only be a finite number of

states of the form σk, so w.l.o.g assume σk is the last state in D of the required
form.

We consider all possible ωl transitions applicable to σk.
CASE Solve, Activate and Reactivate: None of these are applicable to a state
of the form σk;
CASE Drop: Not applicable since this means occurrence k does not exist, which
violates the induction hypothesis;
CASE Simplify: This will delete the active constraint which violates our as-
sumption that c#i is never deleted throughout derivation D.
CASE Propagate: Then

〈[c#i : k|A], {c#i}⊎Sk, Bk, Tk〉n propagate 〈C ++ [c#i : k|A], {c#i}⊎S ′
k, B

′
k, T

′
k〉n

We can now apply Lemma 1 to find a future state σ′
k in derivation D of the form

〈[c#i : k|A], {c#i} ⊎ S ′′
k , B′′

k , T ′′
k 〉n′′

But σ′
k is in the same form as σk, which contradicts our assumption that σk was

the last state in the derivation of that form.
Thus the only transitions applicable to σk is Default.

〈[c#i : k|A], {c#i} ⊎ Sk, Bk, Tk〉n default 〈[c#i : k + 1|A], {c#i} ⊎ Sk, Bk, Tk〉n

The new state is of the required form for k + 1.
Therefore for all programs P and occurrences k of predicate c in P , there

exists an intermediate state σk of the form 〈[c#i : k|A], {c#i} ⊎ Sk, Bk, Tk〉nk
in

D, provided D starts with state a state of the form 〈[c#i : 1|A], {c#i}⊎S, B, T 〉n,
and does not delete c#i. ⊓⊔

We can now show that reachable final ωr states map to reachable8 final states
under ωt.

Theorem 3 (Final States) Let σ be a reachable final state under ωr, then α(σ)
is a reachable final state under ωt.

Proof. By contradiction. Assume that α(σ) is not a final state, i.e. α(σ) can
fire at least one ωt transition.

8Reachability is obviously preserved thanks to Theorem 2

58 CHAPTER 3. OPERATIONAL SEMANTICS

Because σ is a reachable final state, these exists an initial state σ0 such that
σ0

∗
D σ for some ωr derivation D. For convenience, we rename σ = σf and

name every state in the derivation σi = 〈Ai, Si, Bi, Ti〉ni
for some i such that

D = σ0 σ1 ... σf . By Theorem 2, α(D) is a ωt derivation from α(σ0) to
α(σf).

Execution state σn is a final state, therefore σn = 〈[], Sf , Bf , Tf〉mf
(i.e. the

execution stack Af is empty). The other possibility is σn = false, but then
α(σn) = false which is also a final state. Hence α(σn) = 〈∅, Sf , Bf , Tf〉mf

, and
only the Apply transition is applicable to such a ωt state (the goal field is empty).

Let H1 ⊎ H2 ⊆ Sf , and let (r @ H ′
1 \ H ′

2 ⇐⇒ g | C) be the instance
of the rule that matches with substitution θ satisfying cons(H1) = θ(H ′

1) and
cons(H2) = θ(H ′

2). We also know that D |=S Bf → ∃r(θ ∧ g), and id(H1) ++
id(H2) ++ [r] 6∈ Tf otherwise Apply is not applicable.

Consider the derivation D. The built-in store is monotonically increasing
throughout the derivation, i.e. for all built-in stores Bi and Bj from states σi, σj ∈
D, if i < j then Bi ⊆ Bj (by treating Bi and Bj as multisets). This is easily
verified by observing none of the ωr derivations delete constraints from the built-
in store. If for some σi in D we have that D |=S Bi → ∃r(θ∧g), then for all j > i
we have that D |=S Bj → ∃r(θ∧ g) by the monotonicity requirement for (D |=S).

For final state σf , the guard holds, i.e. D |=S Bf → ∃r(θ ∧ g). Therefore
there must exist a first state σb ∈ D such that the guard holds, i.e. D |=S Bb →
∃r(θ ∧ g), but not for σj where j < b, i.e. D 6|=S Bj → ∃r(θ ∧ g). Note the index
‘b’ in σb stands for “built-in” – the first state where the built-in store entails the
guard g.

Let σs be the first execution state in D where H1 ⊎H2 ⊆ Ss where Ss is the
CHR store of σs. Such a state must exist because H1 ⊎H2 ⊆ Sf , where Sf is the
CHR store of final state σf . Here the ‘s’ stands for “CHR store” – the first state
where all constraints H1 ⊎H2 are in the CHR store.

We know that in derivation D, the states σb and σs must be present. There
are two cases we need to consider, namely b ≤ s and b > s.
CASE b ≤ s: Let c#i ∈ H1 ⊎H2 be the CHR constraint such that c#i ∈ Ss (the
store for σs) but c#i 6∈ Ss−1 (the store for σs−1), i.e. c#i is the last constraint in
H1⊎H2 to be added to the store. The ωr transition between σs−1 and σs must be
Activate, since this is the only transition that will add a CHR constraint into
the store. Activate also activates the topmost constraint, so for some A′

s and S ′
s

we have σs = 〈[c#i : 1|A′
s], {c#i} ⊎ S ′

s, Bs, Ts〉ns
.

Let k be the occurrence of predicate c in rule r (from above) that matched
with c when we applied the Apply transition to α(Sf). By Lemma 2 there exists
at least one future state σt of the form 〈[c#i : k|A′

t], {c#i} ⊎ S ′
t, Bt, Tt〉nt

. Since
D is finite, there must be a last state in the form σt, so w.l.o.g. assume that σt

is the last state in D of the above form. The only possible applicable transition
that doesn’t violate one of our assumptions is Propagate, because:

1. Solve, Activate, Reactivate and Drop are directly not applicable to a
state in the form of σt;

3.5. THE RELATIONSHIP BETWEEN ωT AND ωR 59

2. Default is not applicable, since we know this state could potentially fire
the Propagate transition on rule r because H1 ⊎H2 ⊆ St matches against
the head of rule r with matching substitution θ (where θ is exactly the same
as the one from above). We know that D |=S Bt → ∃r(θ∧ g) because of the
assumption b ≤ s and id(H1) ++ id(H2) ++ [r] 6∈ Tt because no such entry
appears in the final state;

3. Simplify is not applicable since it will delete the active c#i constraint,
violating our assumption that c#i appears in the final store of σf .

So the transition applied to σt in D must be Propagate (on a different matching).

〈[c#i : k|A′
t], {c#i} ⊎ S ′

t, Bt, Tt〉nt
propagate

〈C ++ [c#i : k|A′
t], {c#i} ⊎ S ′

t, B
′
t, T

′
t〉nt

We can now apply Lemma 1 to find a future state σu in derivation D of the
form 〈[c#i : k|A′

t], {c#i} ⊎ S ′
u, Bu, Tu〉nu

. But σu is in the same form as σt which
contradicts our assumption that σt was the last such state.

CASE b > s:

Consider the state σb−1, i.e. the state just before the built-in store satisfies
the guard g.

The only transition that modifies the built-in constraint store is Solve, hence
this must be the transition between σb−1 and σb. By the lower bound condition
of a wakeup policy used by Solve, there must be a constraint c#i ∈ H1 ⊎ H2

such that c#i is an element of the constraints woken up by the wakeup policy.
Therefore σb must be of the form 〈Ap ++ [c#i|As], {c#i}⊎S ′

b, Bb, Tb〉nb
. In other

words, after applying Solve on σb−1, the constraint c#i must appear somewhere
on the execution stack.

We can now apply Lemma 1 to derive a future state σ′
b of the form

〈[c#i|As], {c#i} ⊎ S ′′
b , B′

b, T
′
b〉n′

b
. The only transition applicable to such a state

is Reactivate, hence

〈[c#i|As], {c#i} ⊎ S ′′
b , B′

b, T
′
b〉n′

b
reactivate 〈[c#i : 1|As], {c#i} ⊎ S ′′

b , B′
b, T

′
b〉n′

b

Now this new state is in the same form as σs from the b ≤ s case (see above),
hence we can apply the same argument as before to derive the same contradiction.
⊓⊔

Theorem 2 and Theorem 3 show that the refined operational semantics cor-
rectly implement the theoretical operational semantics. Hence, the soundness
and completeness results for CHRs under the theoretical operational semantics
hold under the refined operational semantics ωr.

First we define the logical interpretation of execution states for the refined
operational semantics.

60 CHAPTER 3. OPERATIONAL SEMANTICS

Definition 17 (Logical Interpretation of Refined Execution States) The
logical interpretation of an ωr execution state σ is

JσK = Jα(σ)K

⊓⊔

Now we can (re)state the soundness and completeness results for the refined
operational semantics (the results for the theoretical semantics is in [32]).

Corollary 1 (Soundness) Let P be a CHR program, σ0 be an initial state and
σf be a state such that σ0

∗ σf under the ωr semantics, then (JP K ∧ D) |=
∀(Jσ0K↔ Jσf K).

Proof. Directly from Theorem 2, the soundness result for CHRs [32] and the
identity Jα(σ)K = JσK. ⊓⊔

Corollary 2 (Completeness) Let P be a CHR program, σC and σ0 be initial
states, σf be a state such that σ0

∗ σf under the ωr semantics and (JP K∧D |=
∀(σC ↔ Jσ0K), then (JP K ∧ D |= ∀(σC ↔ Jσf K).

Proof. Directly from Theorem 2, the soundness result for CHRs [32] and the
identity Jα(σ)K = JσK. ⊓⊔

3.5.1 Termination

Termination of CHR programs is obviously a desirable property. Thanks to The-
orems 2 and 3, termination of ωt programs ensures termination of ωr.

Firstly we need to show that all ωr derivations consisting only of Reactivate,
Drop and Default transitions are finite. Notice that these are the transitions
that disappear after function α has been applied to a ωr derivation (see the proof
of Theorem 2).

Lemma 3 Let σ be an ωr execution state, then there is no infinite ωr derivation
σ∞ consisting of only Reactivate, Drop and Default transitions.

Proof. By constructing a well founded order over such derivations. Firstly define
a ranking (abstraction) function rank that maps ωr execution states and a CHR
program P to a triple of non-negative integers.

rank(〈A, S, B, T 〉i, P) = (len(A), len(nums(A)), total(P)− occ(A))

Where function len maps a sequence to the length of that sequence, defined in
the standard way. Function nums maps a sequence of constraints to a sequence
of numbered constraints by filtering out all non-numbered and active constraints.

nums([]) = []
nums([c|A]) = nums(A)
nums([c#i|A]) = [c#i] ++ nums(A)
nums([c#i : j|A]) = nums(A)

3.5. THE RELATIONSHIP BETWEEN ωT AND ωR 61

Function occ maps a sequence of constraints A to the occurrence number of the
top-most active constraint if it exists; or 0 otherwise.

occ([]) = 0
occ([c|A]) = 0
occ([c#i|A]) = 0
occ([c#i : j|A]) = j

Finally function total maps a program P to the total number of constraints in
the heads of every rule plus one.

total([]) = 1
total([(r @ H1 \ H2 ⇐⇒ g | C)|P]) = len(H1) + len(H2) + total(P)

Let ≺ be the standard lexicographical tuple ordering. For all reachable ex-
ecution states σ and programs P , rank(σ, P) � (0, 0, 0). This directly follows
from the fact that len(A) ≥ 0 for all sequences A, and total(P) ≥ occ(A) for
all sequences of constraints A and programs P . Thus ordering over the ranks of
execution states is well-founded, i.e. no infinite decreasing chains of execution
state rankings rank(σ0, P) ≻ rank(σ1, P) ≻

Next we show that for all execution states σ and σ′ such that σ σ′ by
transition Reactivate, Drop or Default, then rank(σ′, P) ≺ rank(σ, P).
CASE Drop: σ σ′ is of the form

〈[c#i : j|A], S, B, T 〉ndrop 〈A, S, B, T 〉n

If rank(σ, P) = (x1, x2, x3), then rank(σ′, P) = (x1−1, x2, x
′
3) for some x′

3. Hence
rank(σ′, P) ≺ rank(σ, P).
CASE Reactivate: σ σ′ is of the form

〈[c#i|A], S, B, T 〉n reactivate 〈[c#i : 1|A], S, B, T 〉n

If rank(σ, P) = (x1, x2, x3), then rank(σ′, P) = (x1, x2−1, x′
3) for some x′

3. Hence
rank(σ′, P) ≺ rank(σ, P).
CASE Default: σ σ′ is of the form

〈[c#i : j|A], S, B, T 〉n default 〈[c#i : j + 1|A], S, B, T 〉n

If rank(σ, P) = (x1, x2, x3), then rank(σ′, P) = (x1, x2, x3 − 1). Hence
rank(σ′, P) ≺ rank(σ, P).

Thus we have established a termination order, thus proving derivations con-
sisting of only Reactivate, Drop and Default must be finite. ⊓⊔

We can now state the main termination result.

Lemma 4 Let σ0 be an ωr execution state. If every derivation for α(σ0) termi-
nates under ωt, then every derivation for σ0 also terminates under ωr.

62 CHAPTER 3. OPERATIONAL SEMANTICS

Proof. By contradiction. Assume α(σ0) terminates under ωt, but not for σ0 with
respect to ωr. Then there exists an infinite ωr derivation D starting from σ0. By
Theorem 2 there must be a corresponding derivation α(D) from initial state α(σ0)
with respect to ωt. By assumption, α(D) must be finite.

We partition derivation D into infinitely many subderivations D0 ++ D1 ++
D2 ++ ... as follows. Each Di is a finite sub-derivation of D starting from the
last state in Di−1 for i > 0 (or σ0 otherwise) to a state σi such that the transition
between the state proceeding σi and σi in D is either Solve, Activate, Sim-
plify or Propagate. All other transitions in Di must be Reactivate, Drop and
Default. In other words, Di = D′

i i σi where D′
i is a (possibly trivial) sub-

derivation of D consisting only of Reactivate, Drop and Default transitions,
and transitioni to state σi is either Solve, Activate, Simplify or Propagate.

Note that it is always possible to partition D in this way. Otherwise suppose
that D = D0 ++ D1 ++ D2 ++ ... ++ Dn ++ D′ where it is not possible to
further partition D′, then D′ must not contain a Solve, Activate, Simplify
or Propagate transition. Then Lemma 3 implies D′ is finite, thus D is finite,
which directly contradicts our initial assumption that D is infinite. So D =
D0 ++ D1 ++ D2 ++ ... for infinitely many Di.

Now α(D) = α(D0 ++ D1 ++ D2 ++ ...) = α(D0) ++ α(D1) ++ α(D2) ++
.... Each Di contains one Solve, Activate, Simplify or Propagate transition,
hence each α(Di) has non-zero length (see the proof of Theorem 2). As the
length of α(D) is the sum of the (non-zero) lengths of every α(Di), and there are
infinitely many α(Di), then α(D) has infinite length which is a contradiction. ⊓⊔

The converse is clearly not true, as shown in Example 14.
In practice, proving termination for CHR programs under the theoretical op-

erational semantics is quite difficult (see [33] for examples and discussion). It is
somewhat simpler for the refined operational semantics but, just as with other
programming languages, this is simply left to the programmer.

3.5.2 Confluence

Both operational semantics for CHRs are nondeterministic, therefore the property
of confluence (which guarantees the same result no matter the order transitions
are applied) is essential from a programmer’s point of view. Without it the
programmer cannot anticipate the answer that will arise from a goal.

There are two main sources of nondeterminism from the refined semantics.
The first is from the Solve transition, where the order (and number of repeats)
of the woken up constraints are (re)added to the execution stack is unspecified.
The second is from the Simplify and Propagate transitions, where there may
be more than one choice for choosing matching partner constraints.

Example 25 Consider the database program from Example 15. The occur-
rences for lookup have been labelled.

3.5. THE RELATIONSHIP BETWEEN ωT AND ωR 63

l1 @ entry(Key,Val) \ lookup(Key,ValOut)1 <=> ValOut = Val.

l2 @ lookup(,)2 <=> fail.

Consider the following (simplified) execution state with two database entries for
the same key, and an active lookup constraint on the stack.

〈[lookup(key, V)#3 : 1], {lookup(key, V)#3,
entry(key, cat)#2, entry(key, dog)#1}, true〉4

Now the active lookup constraint is at occurrence 1 from rule l1 above, so Sim-

plify is applicable matching against either entry(key, cat) or entry(key, dog)
from the store. Depending on what matching is chosen (both are equally valid),
the resulting state after Simplify is

〈[], {entry(key, cat)#2, entry(key, dog)#1}, V = cat〉4

or
〈[], {entry(key, cat)#2, entry(key, dog)#1}, V = dog〉4

Since these are both final states are not the same result, it follows that the
database program is non-confluent. ⊓⊔

In order to properly formalise the property of confluence first we need to de-
fine what it means to get the “same result”. Unfortunately, a straightforward
syntactic comparison is too strong in general, since we do not care about con-
straint numbering and similar things. We do however care about propagation
histories, because “equivalent” states should be similarly applicable to the same
set of rules. We define a mapping which extracts the part of a propagation history
that we care about as follows.

Definition 18 (Live History) Function alive is a bijective mapping from a
CHR store S and a propagation history to a propagation history defined as follows.

alive(S, ∅) = ∅
alive(S, {t} ⊎ T) = alive(S, t) ⊎ alive(S, T)
alive(S, t ++ []) = ∅ if ∃i ∈ t such that ∀c(c#i 6∈ S)
alive(, t) = {t} otherwise

⊓⊔

In other words, alive(S, T) is propagation history T where all entries with num-
bers for deleted (i.e. not alive) constraints have been removed. Interestingly,
alive(S, T) can only have entries on propagation rules (otherwise one of the num-
bers in the entry must be dead).

We can now formally define variance between two states.

Definition 19 (Variants) Two states

σ1 = 〈A1, S1, B1, T1〉
V
i1

and σ2 = 〈A2, S2, B2, T2〉
V
i2

(from either semantics) are variants if there exists a renaming ρ on variables not
in V and a mapping ̺ on constraint numbers such that

64 CHAPTER 3. OPERATIONAL SEMANTICS

1. ρ ◦ ̺(A1) = A2 (sequence equality for ωr, multiset equality for ωt);

2. ρ ◦ ̺(S1) = S2;

3. D |=S (∃̄Vρ(B1)↔ ∃̄VB2); and

4. ̺ ◦ alive(S1, T1) = alive(S2, T2).

Otherwise the two states are variants if D |=S ¬∃̄∅B1 and D |=S ¬∃̄∅B2 (i.e. both
states are false). ⊓⊔

In other words, we consider two (non-false) states σ1 and σ2 to be variants (i.e.
the “same result”) if the two goals (or execution stacks) and CHR stores are the
same, the built-in solver can prove that the built-in stores are logically equivalent,
and the “live” parts of the propagation histories are the same, all modulo variables
not appearing in V and constraint numbering.

We can now define joinability, which is the property that two execution states
reduce to the same answer.

Definition 20 (Joinable) Two states σ1 and σ2 are joinable if there exists
states σ′

1 and σ′
2 such that σ1

∗ σ′
1 and σ2

∗ σ′
2 and σ′

1 and σ′
2 are vari-

ants. ⊓⊔

Now we can formally define confluence as follows.

Definition 21 (Confluence) A CHR program P is confluent with respect to
operational semantics ω if the following holds for all states σ0, σ1 and σ2 where
σ0 is a reachable state: If σ0

∗
ω σ1 and σ0

∗
ω σ2 then σ1 and σ2 are joinable

with respect to σ0. ⊓⊔

This definition is slightly stronger than the classical definition in [1] since we
require σ0 to be a reachable state. This is important, since the programmer gen-
erally only cares about reachable states. Our definition is stronger, so confluence
under the classical definition implies confluence under our new definition.

Example 26 The gcd program from Example 14 is confluent under both opera-
tional semantics (although it may not terminate under the theoretical semantics).
This is because any final state derived from the initial goal gcd(i1), ..., gcd(in)
must contain only the constraint gcd(gcd(i1, ..., in)) in the store. The built-in
stores must also be equivalent once all temporary variables (created by matching
constraints against rules) are renamed. Hence the gcd program is confluent. ⊓⊔

Confluence of the theoretical operational semantics of CHR programs has been
extensively studied [32, 1, 4]. Abdennadher [1] provides a decidable confluence
test for the theoretical semantics of terminating CHR programs. Essentially,
it relies on computing critical pairs where two rules can possibly be used, and
showing that each of the two resulting states lead to equivalent states.

Just as with termination, confluence under ωt implies confluence under ωr

provided the program also terminates under ωr.

3.5. THE RELATIONSHIP BETWEEN ωT AND ωR 65

Corollary 3 If CHR program P is terminating under ωr, and confluent under
ωt, then it is also confluent under ωr.

Proof. By contradiction. Assume that P is confluent under ωt, but not confluent
with respect to ωr. Then there exists a reachable ωr state σ0 such that σ0

∗ σ′
1

and σ0 σ′
2 where σ′

1 and σ′
2 are not joinable. Let σ1 and σ2 be final states

derived from σ′
1 and σ′

2 respectively, i.e.

σ′
1

∗ σ1 = 〈A1, S1, B1, T1〉
V
i1

σ′
2

∗ σ2 = 〈A2, S2, B2, T2〉
V
i2

Where A1 = A2 = [] or both σ1 and σ2 are false. Note that it always possible
to find σ1 and σ2 because of the assumption of termination under ωr. As σ′

1

and σ′
2 are not joinable both σ1 and σ2 cannot be variants. Note also that by

construction σ0
∗ σ1 and σ0

∗ σ2.
By Theorem 2, there exists two derivations under ωt:

α(σ0)
∗ α(σ1) = 〈no id(A1), S1, B1, T1〉

V
i1

α(σ0)
∗ α(σ2) = 〈no id(A2), S2, B2, T2〉

V
i2

By assumption P is confluent under the theoretical operational semantics, there-
fore both α(σ1) and α(σ1) must be joinable. By Theorem 3 both α(σ1) and α(σ2)
are final states, therefore to be joinable they must be variants.

There are two cases to consider.
CASE 1: D |=S ¬∃̄∅B1 and D |=S ¬∃̄∅B2:
(I.e. both states are false). Then σ1 and σ2 must be variants since the built-in
store is unaffected by abstraction function α.
CASE 2: There exists a renaming ρ on variables not in σ0 and a mapping ̺
on constraint numbers such that ρ ◦ ̺(S1) = S2, D |=S (∃̄Vρ(B1) ↔ ∃̄VB2) and
̺ ◦ alive(S1, T1) = alive(S2, T2). Note that because σ1 and σ2 are final states,
their execution stacks are empty, i.e. A1 = A2 = []. Therefore σ1 and σ2 are
variants by definition.

Both cases directly contradict our assumption that σ1 and σ2 are not variants.
Therefore if program P which is terminating under ωr is confluent under ωt, then
it is also confluent under ωr. ⊓⊔

Example 27 Both the gcd and leq programs (from Example 14 and Example 1)
are terminating under ωr, and are confluent under ωt. Therefore, by Corollary 3,
confluence under ωr immediately follows. ⊓⊔

The converse of Corollary 3 is not true, as shown by the following simple
example.

Example 28 The following program is confluent under ωr (since an active p

constraint always fires rule r1).

r1 @ p <=> true.

r2 @ p <=> false.

66 CHAPTER 3. OPERATIONAL SEMANTICS

However the program is not confluent under ωt (since p can fire either r1 or r2

resulting in non-joinable states). ⊓⊔

This shows that the set of confluent programs under ωr is larger than the same
set under ωt.

Later in this thesis, Chapter 6 is devoted to a practical analysis for confluence
under the refined semantics.

3.6 Related Work

The presentation of the theoretical operational semantics of CHRs differs from
others that have appeared in past literature, e.g. in [32, 1], in several ways. In
this section we argue that our formalisation subsumes the previous versions.

The main difference is the interpretation of simpagation rules. Previous ver-
sions of the operational semantics treated simpagation rules as shorthand for
simplification rules. Specifically, a simpagation rule of the form

h1, . . . , hl\hl+1, . . . , hn ⇐⇒ g | b1, . . . , bm

is treated as a simplification rule of the form

h1, . . . , hl, hl+1, . . . , hn ⇐⇒ g | h1, . . . , hl, b1, . . . , bm

This translation does not necessarily preserve operational equivalence under (our
version of) ωt, since the copies of h1, . . . , hl will be assigned new constraint num-
bers when they are (re)executed in the body. This may effect the behaviour of
the propagation history.

The new interpretation of simpagation rules effectively extends the opera-
tional semantics in [32, 1] (the old interpretation can be emulated under ωt by
translating simpagation rules explicitly). It should be noted that some theoretical
results for CHRs, e.g. Abdennadher’s confluence test [1], may depend on the old
interpretation of simpagation rules.

Another difference between the semantics is the modelling of the built-in
solver. Previous versions of the operational semantics assume the built-in solver
is complete, whereas we have generalised the semantics to handle incomplete
solvers.

Most of the other differences are trivial. For example, we represent the con-
straint store as a (multi)set of c#i tuples where each i is unique. In the formal-
isation presented in [1], the constraint store is represented as a conjunction of
constraints, where repeats in the conjunction are allowed (i.e. not idempotent
conjunction). Both formalisations of the constraint store are isomorphic.

Propagation histories are also handled differently. In our approach, entries in
the propagation history are tuples of constraint numbers (and the rule token),
whereas in other versions of the operational semantics (e.g. [1]), entries record
the CHR constraints themselves. This is implemented as follows. When a new

3.7. SUMMARY 67

constraint c is introduced into the store (via the Introduce transition), a so-
called token set9 is generated for constraint c. Each token is of the form r@H ′,
where (r @ H =⇒ g | B) is a propagation rule in P (r is the rule identifier),
and H ′ is a conjunction of constraints in c ∧ S and c is a conjunct in H ′. When
propagation rule r fires on constraints H ′ ⊆ S, a corresponding token r@H ′ must
be present in the propagation history, and is removed when the rule fires. Notice
this is the the opposite approach, removing elements, rather than adding elements
to propagation history as the derivation progresses.

Example 29 For example, consider the following propagation rule.

transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

Under our representation, firing the propagation rule on the following matching
constraints, leq(A, B)#1, leq(B, C)#2, adds the entry [1, 2, transitivity] to
the propagation history.

Under the alternative formalisation, a token transitivity@(leq(A, B) ∧
leq(B, C)) is present in the propagation history and removed when the rule fires.
⊓⊔

These approaches are isomorphic, that is the operational semantics are equivalent
no matter which formalisation of the propagation history is chosen, however our
approach more closely mimics what most CHRs systems actually implement.

3.7 Summary

In this chapter we have presented the refined operational semantics of CHRs,
which are a popular semantics used by almost all current CHR implementations
that we are aware of. The refined operational semantics define a powerful and
expressive language, where simple database operations and fixed-point computa-
tions are straightforward to implement.

We have proved several important results, such as correctness, soundness,
completeness, termination and confluence. The correctness results state that
every derivation in the refined semantics map to a derivation under the theoretical
semantics with the same answer. Also, every reachable final state in the refined
semantics maps to a reachable final state in the theoretical semantics, therefore
the refined semantics correctly implement the theoretical semantics. The other
results including soundness, completeness, termination and confluence follow from
correctness. Soundness and completeness are important results from a theoretical
point of view.

Termination is an essential property of any program, including CHR programs.
The termination result ensures that a termination proof in the theoretical seman-
tics immediately applies to the refined semantics. This is useful since termination

9Although it is called the token “set”, it is really a multiset of tokens (repeats are allowed).

68 CHAPTER 3. OPERATIONAL SEMANTICS

of CHRs has been looked at in [33], and therefore these results carry to the refined
semantics. It may be easier to prove termination under the refined semantics be-
cause of the increased determinism, hence there are less derivations to consider,
however it is still left to the programmer.

Although the refined semantics is far more deterministic than the theoretical
semantics, some choices such as what order matchings are chosen, and what order
non-ground constraints are (re)added to the stack (by Solve) are left open. This
means that confluence is still important for the programmer to consider. Our
confluence result presented in the chapter is of somewhat limited use, but in
general we would like a stronger test. Later in Chapter 6 we look at a better
confluence analysis for the refined operational semantics of CHRs.

This chapter forms the theoretical basis for the rest of this thesis.

Chapter 4

Basic Compilation

4.1 Introduction

This chapter forms the practical basis of this thesis. Here, we explain the basic
compilation of CHRs into a CLP language such as HAL. We present all of the
information required to make a simple “no-frills” CHR compiler that gives reason-
able performance on many programs. This will form the basis for more advanced
compilation, including optimisation, which is covered later in this thesis.

The specification of the refined operational semantics (see Definition 11) de-
scribes a state machine with (reasonably complicated) transitions between states.
It is straightforward to implement a naive interpreter for this state machine, and
the Chameleon programming language [81] uses such an interpreter. Interpre-
tation is generally slower than compilation, since much of the specification is
implemented manually, e.g. the execution stack is a notable example. For com-
piled CHRs large chucks of the functionality required may already be provided
by the target language, e.g. the execution stack becomes the call stack, etc.

Compilation of CHRs is very similar to compiling other programming lan-
guages in that it is a multi-phase process: The first phase is parsing and nor-
malisation (desugaring), followed by analysis, optimisation and then finally code
generation. Usually analysis and optimisation are optional, and are not covered
here. We will briefly look at parsing and program normalisation, but the main
focus of this chapter will be on code generation.

Ideally the output of the CHR compiler should be as efficient or better than
the code a human would write.

Example 30 Consider the following program originally from Example 14.

gcd(0) <=> true.

gcd(M) \ gcd(N) <=> M =< N | gcd(M-N).

The following is a similar program written in Prolog by a human. It is provided
as a benchmark for comparison later on.

69

70 CHAPTER 4. BASIC COMPILATION

gcd(N,M,R) :-

(M =< N ->

(M = 0 ->

R = N

; gcd(N-M,M,R)

)

; gcd(M,N,R)

).

⊓⊔

Unfortunately the result of the basic compilation of gcd will be very different than
the human implemented version above, but this shall improve in later chapters.

The rest of this chapter is divided up as follows. First we will briefly look
at parsing and program normalisation in section 4.2. Section 4.3 will describe
our simple runtime system in preparation for Section 4.4, which describes code
generation. Next we devote Section 4.5 to the surprisingly tricky problem of
compiling guards. Finally we conclude.

4.2 Parsing and Normalisation

Parsing and normalisation are the first phases in any compilation process. We
briefly describe parsing and normalisation of CHR programs.

4.2.1 Parsing

The general problem of parsing any programming language, including CHRs, is
well-studied and there are many tools that help automate this process. Since
CHRs are usually embedded in a host language (in this case a logic programming
language), usually the language’s parser is adapted to recognise CHRs. This is
the case with all HAL and Prolog implementations of CHRs.

Usually the result of the parsing, assuming no syntax errors, is a list of some
representation of the rules in the program. For example, we can represent the rule
(r @ H1 \H2 ⇐⇒ g | B) as the term rule(r,H1,H2,g,B). We also translate the
head, guard and body into lists of terms, where each term represents a constraint
from the original rule. The rule name r is optional, so if it is omitted by the
programmer usually the parser will generate one (making sure it is unique with
respect to the other rules).

Example 31 Consider the gcd program from Example 14. After parsing the
program under our scheme the result is the following list of rules.

[rule(gcd1,[],[gcd(0)],[],[true]),

rule(gcd2,[gcd(M)],[gcd(N)],[M =< N],[gcd(M-N)])]

⊓⊔

4.2. PARSING AND NORMALISATION 71

4.2.2 Head and Guard Normalisation

Normalisation is a preprocessing step aimed at making all guards explicit, since
non-variable terms and matching variables appearing in the head of a rule or guard
actually indicate more guards. Head normalisation is achieved by iteratively
applying the following steps

1. Rewrite each constraint c(t1, . . . , ti, . . . , tn) where c is an n-ary constraint
symbol and ti is a non-variable term, to c(t1, . . . , X, . . . , tn) and add the
constraint X = ti to the guard.

2. If variable X appears as an argument more than once in the head of a rule,
replace one occurrence with a new variable, say X ′, and add the constraint
X = X ′ to the guard.

After normalisation, each head simply provides the multiset of names of con-
straints which can match that rule, while the guard indicates which such multisets
actually match.

To simplify analysis and compilation, guards are also normalised.

1. Rewrite each constraint c(t1, . . . , ti, . . . , tn) where c is an n-ary constraint
symbol and ti is either a non-variable term or a variable which appears as
an argument elsewhere in the guard, to X ′ = ti∧c(t1, . . . , X

′, . . . , tn) where
X ′ is a new variable.

2. Rewrite each equation X = f(t1, . . . , ti, . . . , tn) where f is an n-ary func-
tion and ti is either a non-variable term or a variable which appears as an
argument elsewhere in the guard, to X ′ = ti ∧ X = f(t1, . . . , X

′, . . . , tn),
where X ′ is a new variable.

3. Add explicit existential quantification for each existentially quantified vari-
able in the guard.

Recall that a variable that appears in the guard but not in the rule head is implic-
itly existentially quantified.1 For explicit existential quantification we introduce
the notation

exists [X1, ..., Xn] (g)

to indicate that variables X1, ..., Xn are existentially quantified in guard g. Tech-
nically, Xi 6∈ vars(C) (where C is the rule body) for each Xi ∈ X1, ..., Xn in order
for Xi to be existentially quantified under Definition 13. If this is not the case, we
can use body normalisation (see Section 3.4) to rewrite the rule into an equivalent
version where the shared variables have been renamed, and the (renamed) guard
is (re)executed in the body. For example, the rule

1See Definition 13, where existentially quantified variables ∃ȳ are precisely the variables in
the guard not appearing in the head.

72 CHAPTER 4. BASIC COMPILATION

elems(Xs) <=> exists [X,Ys] (Xs = [X|Ys]) | e(X), elems(Ys).

is equivalent to

elems(Xs) <=> exists [X,Ys] (Xs = [X|Ys]) |

Xs = [A|Bs], e(A), elems(Bs).

In practice CHR compilers do not perform such transformations, since it means
the guard is executed twice. Instead we assume body normalisation has been im-
plicitly applied where appropriate (i.e. we effectively consider the non-normalised
rule to be shorthand for the normalised version).

After guard normalisation, each constraint is either an equation of the form
X = Y , X = f(Y1, ..., Yn), or a constraint c(Y1, ..., Yn) where X, Y, Y1, ..., Yn are all
distinct variables. Both head and guard normalisation preserve the operational
and declarative meanings of the program. Note that sometimes multiple normal-
isations are possible, e.g. the head leq(X,X) can be normalised as leq(X,N)

or leq(N,X) with guard X = N . Such normalisations are always unique up to
variable renaming, hence any normalisation can be used.

Example 32 Consider the following CHR program defining a length(Xs,L)

constraint which holds if L is the length of list Xs. Unlike the standard length/2
predicate, this version works in any mode, including when both arguments are
fresh variables.

length([],L) <=> L = 0.

length(Xs,0) <=> Xs = [].

length([|Xs],L) <=> L = L1+1, length(Xs,L1).

length(Xs,L) <=> 1 =< L | Xs = [|Ys], length(Ys,L-1).

length(,L) ==> 0 =< L.

The following is the same program after head and guard normalisation has
been applied.

length(Xs,L) <=> Xs = [] | L = 0.

length(Xs,L) <=> L = 0 | Xs = [].

length(Xs1,L) <=> exists [A,Xs] (Xs1 = [A|Xs]) |

L = L1+1, length(Xs,L1).

length(Xs,L) <=> exists [L1] (L1 = 0, L > L1) |

Xs = [|Ys], length(Ys,L-1).

length(,L) ==> true | L >= 0.

Thanks to head normalisation all variables appearing in the rule heads are distinct
variables. Guard normalisation has made all implicit existential quantification
explicit and reduced the guard into the simplified form. ⊓⊔

4.3. RUNTIME ENVIRONMENT 73

4.2.3 Program Normalisation

Our representation still closely resembles the original program, but this is not
very helpful for the later phases of compilation. Since the refined operational
semantics treats a constraint as a call, and checks each occurrence in order, it is
useful to create a mapping between the constraint and a list of occurrences for
that constraint. This mapping is the normal form of our program.

First we must define a data structure to represent an individual occurrence for
a constraint. Suppose we have a rule rule(r,H1 ++ [c] ++ H2,H3,g,B), then
our representation of the occurrence in that rule for c is occ(c,remain,n,H1 ++
H2,H3,g,B,r). The first field contains the constraint from the head that must
match the active constraint. The second field is the constant remain, which
represents the fact that this occurrence does not delete the active constraint (in
the other case, this field will contain the constant delete). The third field n
is the occurrence number, which must be calculated during normalisation. For
example, if the occurrence of c is the third in the program, then n = 3. The
fourth field contains the non-deleted part of the head. The rest of the fields, e.g.
H3, g, etc., are exactly the same as in the original rule.

The other case is where the occurrence for c is in the deleted part of the
head, i.e. rule(r,H1,H2 ++ [c] ++ H3,g,B), then the representation of the
occurrence is occ(c,delete,n,H1,H2 ++ H3,g,B,r).

Example 33 The list of occurrences for constraint gcd/1 from Example 31 is
the following.

[occ(gcd(X),delete,1,[],[],[X = 0],[true],gcd1),

occ(gcd(N),delete,2,[gcd(M)],[],[M =< N],[gcd(M-N)],gcd2),

occ(gcd(M),remain,3,[],[gcd(N)],[M =< N],[gcd(M-N)],gcd2)]

Notice that the head of the first occurrence has been normalised. ⊓⊔

The advantage of the normal form this that all of the information required to
compile an individual occurrence is now in one place.

4.3 Runtime Environment

The refined operational semantics defines an execution state to be a tuple con-
taining an execution stack, CHR store, built-in store and propagation history. In
this section we show how to implement each of these in a pure logic programming
language with minimal extensions.

4.3.1 Execution Stack

In the formalisation of the refined operational semantics of CHRs we explicitly
represented the execution stack as a sequence of constraints, numbered constraints

74 CHAPTER 4. BASIC COMPILATION

and active constraints. In practice the execution stack is nothing more than the
ordinary program call stack in HAL or Prolog.

The execution stack starts off as a sequence of (non-numbered) constraints
and built-in constraints. Built-in constraints are not treated specially in any way,
they are just ordinary HAL procedure calls. CHR constraints are different in
the sense that the CHR compiler must generate the required code. Given a CHR
constraint in the original CHR program, the CHR compiler generates a predicate,
which implements the constraint, with exactly the same interface as the original.
The predicate that the compiler generates is called the top-level predicate and
will be explained in the code generation section.

The execution stack also contains active constraints. An active constraint
p(X1, ..., Xn)#I : m will be implemented by an occurrence predicate with interface
p m(I,X1,...,Xn). The occurrence predicate will contain the code generated by
the compiler for finding matches for the occurrence m of constraint p. Occurrence
predicates are also chained, i.e. p m calls p (m + 1) if the rule cannot fire (i.e.
the Default transition). Exactly how this is done is left for the code generation
section.

Finally, the execution stack contains numbered constraints, which are woken
up from the store after a Solve transition. In the implementation the Solve
and Reactivate transitions are implemented together, so there is no special
representation of numbered constraints on the stack, only active constraints.

4.3.2 CHR Store

CHR constraints in the store are of the form c#i where i a unique number. A
naive implementation of constraint identifiers could use ordinary integers (as in
the specification of the refined semantics), however there are reasons why this is
an inefficient approach. The operation of testing if a constraint identifier belongs
to a deleted constraint turns out to be a useful and common operation. While
an ordinary integer has no memory of if it has been deleted or not, a cleverer
implementation is to use a fresh Herbrand variable as a constraint identifier. The
advantage is that when a constraint is deleted, the variable identifier is bound to
some pre-defined atom, e.g. ‘deleted’, and then testing if a CHR constraint has
been deleted is reduced to testing if the identifier is still a variable (a very fast
operation in HAL/Prolog). This approach was first used by the ECLiPSe CHR
compiler [36].

The HAL implementation of constraint identifiers is similar except that in-
stead of using variables a special mutable2 data structure is used. This data
structure has two states: either the constraint identifier belongs to a deleted con-
straint or not. We refer to an identifier belonging to a deleted constraint as a
dead identifier, otherwise it is alive.

We define the following operations on constraint identifiers.

2Changes to this data structure are trailed, so they will be undone on backtracking.

4.3. RUNTIME ENVIRONMENT 75

• new(Id) – creates a new constraint identifier Id;

• kill(Id) – marks the constraint identifier Id as being dead; and

• alive(Id) – succeeds if Id is alive, otherwise fails.

In the case of the fresh variable implementation, new(Id) is equivalent to a NOP
(No OPeration), as this implicitly creates a fresh variable, and alive(Id) is
equivalent to Prolog’s var(Id) which succeeds if Id is a variable.

A numbered constraint in the CHR store will be represented as the special
tuple c # i, where c is the constraint and i is the identifier. Our representation
of the global CHR store will be a single global list for simplicity. Searching for
matching constraints against some rule will involve iterating through this global
list. The cost of this simplicity is that searching for matching partners in a list
is an O(N) operation, where N is the length of the list.

The CHR store is usually implemented by global variables, which are sup-
ported by HAL and some implementations of Prolog.3 We assume the following
abstract operations on the global store.

• insert(C,Id) – Insert constraint C # Id into the global CHR store;

• delete(Id) – Delete the constraint associated with identifier Id from the
global CHR store and mark Id as dead ; and

• get iterator(Ls) – Binds Ls to be a list of all constraints in the global
CHR store;

The get iterator operation will be used by the code for finding matchings.
One obvious improvement is to specialise get iterator for each of the pred-

icate symbols of the constraints in the program. For example, if the program
defines a constraint p/3, then a specialised get iterator p 3 returns an iterator
containing only p/3 constraints. For simplicity, we will use the non-specialised
version for the time being.

4.3.3 Built-in Store

CHR programs may extend zero or more built-in solvers. In all current Prolog
implementations of CHRs it is always assumed that there is exactly one built-in
solver: the Herbrand equation solver (i.e. ordinary Prolog unification). In general
any number of different built-in solvers are possible, but for an implementation,
there must be communication between compiled CHR code and these solvers.

Example 34 (Length Constraint) Consider the length program from Exam-
ple 32 which extends both Herbrand and finite domain solvers. Consider the

3Global variables were originally supported by Quintus Prolog [67], but most (if not all)
Prologs have something similar.

76 CHAPTER 4. BASIC COMPILATION

goal length(Xs,L), L = 1. Its execution will first add the CHR constraint
length(Xs,L) to the store. This constraint cannot by itself cause the application
of any of the rules except rule (5) which adds the additional constraint L ≥ 0.
Next we add the finite domain constraint L = 1 to the finite domain solver store.
This affects rule (4) which can now be applied: Xs is bound to [|Ys] and CHR
constraint length(Xs,L) is replaced by length(Ys,L1) where L1 = L − 1 = 0.
The second rule simplifies length(Ys,L1) to the Herbrand constraint Ys = [].
Hence, the final solution is Xs = [], L = 1. ⊓⊔

We can see three kinds of interaction between the CHR solver and the built-in
solvers in the example above.

1. The CHR solver adds new constraints to the built-in solvers.

2. The CHR solver asks the built-in solvers whether constraints are entailed.
This is for testing the guard holds in the Simplify and Propagate transi-
tions.

3. The built-in solvers must alert the CHR solver whenever non-trivial changes
to the built-in store occur. This is to correctly implement the Solve tran-
sition, which requires all non-ground CHR constraints to be woken up.

Constraint solvers, by definition, provide methods that allow new constraints
to be added to their store. The second kind of interaction that needs a well
defined interface if we wish to extend an arbitrary built-in solver. We will defer
consideration of this until Section 4.5.

For the third type of interaction we use a very simple form of dynamic schedul-
ing. We assume the existence of a special predicate delay(Term,Id,Goal),
which delays Goal on the condition that any variable in Term has changed pro-
vided Id, which is a constraint identifier, is still alive. This is very similar to the
delay/2 predicate introduced in Section 2.3.3, except the first argument may be
any term (as opposed to a list of variables) and the Id argument. Thus, with
the appropriate delayed goals set, constraints from the CHR store are in effect
re-added to the execution stack each time a constraint is added to the built-in
store.

It is usually the solver writer’s responsibility to implement the delay predi-
cate, because the implementation requires intimate knowledge of the inner work-
ings of that solver. If there are multiple solvers then we assume that delay/3 is
overloaded. Advanced implementations of delay are discussed later in Chapter 8.
In Prolog the delay predicate can be implemented in terms of existing dynamic
scheduling constructs, e.g. with attributed variables [44].

In Chapter 8 we also show that the set of constraints woken up by delay/3
satisfies the conditions for a wakeup policy (see Definition 10), as required by the
refined semantics.

4.4. CODE GENERATION 77

4.3.4 Propagation History

The propagation history is very easy to implement naively, but quite challenging
to implement efficiently. A naive implementation uses some efficient queryable
data structure (e.g. balanced tree or hash table) over the entries. The advantage
is that testing if an entry is in the propagation history is very fast, however
as program execution proceeds, the propagation history grows in size. Ideally,
whenever a constraint is deleted, any entry in the propagation history which
contains the corresponding number should also be deleted. We need a mechanism
for determining all entries that are associated with a given identifier. In our naive
implementation above, there is no better solution than to search through the
entire history, which is a relatively expensive O(N) operation (where N is the
size of the propagation history).

One solution is to maintain two data structures. One is the propagation
history itself, and the other is a mapping from constraint identifiers to entries in
the history. The problem with this approach is that is uses more memory.

A better solution is to do amortised update. This works as follows: after
some n deletions, the propagation history is purged of all entries containing dead
identifiers. Although this is a O(N) operation the number n is configurable: small
n means the history will have fewer dead entries but at a higher cost of updating
the history more often, whereas large n is the opposite (a classic space versus
time tradeoff). Those keen on optimal performance should rely on experimental
results in determining the best value for n.

Another approach is to delete entries lazily. For example, if we are searching
for an entry in the history and happen to come across a dead entry, then we could
delete that entry in-place. This approach is more difficult to implement, and it is
possible that dead entries are never deleted (i.e. we may never perform a search
that happens to find the dead entry). The current HAL CHR compiler uses this
approach.

We will assume a global propagation history, and all interactions with it go
through one operation: check history(Entry) which fails if Entry (which is a
list of constraint identifiers and the rule name) is already in the global propagation
history, or adds it otherwise. In other words, for a unique new entry Entry, the
first call to check history(Entry) will succeed, but all subsequent calls with
the same Entry will fail. Note that for simplicity, the rule name is encoded as a
constraint identifier.

4.4 Code Generation

Code generation is the final stage in any compilation process. In this section we
give pseudo code and describe what exactly needs to be generated. The only
exception is the implementation of the guard test, which is covered by the next
section.

78 CHAPTER 4. BASIC COMPILATION

:- pred p(t1,...,tn). (1)
:- mode p(m1,...,mn) is d. (2)
p(X1,...,Xn) :- (3)

new(Id), (4)
C = p(X1,...,Xn), (5)
insert(C,Id), (6)
delay(C,Id,p 1(Id,X1,...,Xn)), (7)
p 1(Id,X1,...,Xn). (8)

Figure 4.1: Pseudo code for a top-level predicate.

4.4.1 Top-level Predicate

The top-level predicate is called in place of the original CHR constraint after
compilation. Its role is to perform the necessary initialisation, i.e. allocating a
new constraint identifier, insertion into the CHR store and setting up appropriate
delayed goals on any free variables. Naturally the top-level predicate has the same
interface as the original CHR constraint.

For CHR constraint of functor/arity p/n, Figure 4.1 shows the corresponding
top-level predicate the CHR compiler generates. Lines (1)-(2) show the pred

and mode declarations. Here t1, ..., tn, m1, ..., mn and d are exactly the argument
types, argument modes and determinism for the original CHR constraint p/n.
The interface, shown in line (3), is a list of distinct variables X1,...,Xn which
are the arguments to the CHR constraint. Line (4) allocates a new constraint
identifier. Line (5) constructs the constraint C ready for insertion into the store,
whereas line (6) actually does the insertion. Line (7) sets up any necessary
delayed goals on any solver variables in C. Notice that the same identifier Id is
used for setting up the delayed goals and as the constraint identifier. Finally, the
constraint becomes active in line (8) by calling the first occurrence predicate p 1.

4.4.2 Occurrence Predicates

The main purpose of an occurrence predicate is to implement the behaviour of
the Simplify or Propagate transitions from the refined operational semantics.
For all CHR constraints p/n from the CHR program, and all occurrences m of
p/n, the CHR compiler generates an occurrence predicate by the name p m. This
is usually the bulk of the code generated by the compiler.

The skeleton of an occurrence predicate (for the ith occurrence) is shown in
Figure 4.2. Lines (1)-(2) show the pred and mode declarations, which are identical
to the same declarations for the top-level predicate, except for an extra argument
for the constraint identifier (which we assume has type ‘id’). Line (3) is the
interface, where the first argument is the constraint’s identifier, followed by the
constraint’s actual arguments. Note that all of X1,...,Xn are the same set of
distinct variables (because of normalisation) from the original rule. Line (4)

4.4. CODE GENERATION 79

:- pred p i(id,t1,...,tn). (1)
:- mode p i(in,m1,...,mn) is d. (2)
p i(Id,X1,...,Xn) :- (3)

<find-matches-and-call-body> (4)
(alive(Id) -> (5)

p (i + 1)(Id,X1,...,Xn) (6)
; true (7)
).

Figure 4.2: Pseudo code for the ith occurrence predicate.

represents the main purpose of this predicate, which is to find matching partners
and fire the rule. We leave this part for now. After line (4) we can assume that
all possible matchings have been tried. The rest of the occurrence predicate, lines
(5)-(7) decides whether or not the next occurrence predicate, p (i+1), should be
called. Line (5) tests if the active constraint has been deleted. If not then the
next occurrence predicate is called in line (6) (in effect we are applying Default
to the active constraint), otherwise the active constraint is effectively Dropped
in line (7). Note that for the last occurrence lines (5)-(7) are omitted.

The rest of this section is concerned with compiling the join, and firing the
rule. Thanks to head and guard normalisation the head of the rule contains CHR
constraints with only variable arguments, and none of those variables are re-
peated anywhere else in the head. This simplifies the problem of finding partner
constraints considerably, since all constraints in the store with the same func-
tor/arity as the partner constraint will always potentially match. The job of
selecting which of these matches are valid is now entirely decided by the guard.
The disadvantage of this approach is efficiency, but we (as usual) will postpone
this problem until the optimisation chapter.

Because of program normalisation the CHR compiler has a list of partner
constraints for a given active constraint and occurrence. We can break down the
problem of finding a match (for the rule) into the problem of finding a match for
individual partner constraints. Basically, given an iterator, we iterate through all
potential matches for the first partner, and if a potential match is found, then
we iterate through all potential matches for the second partner, and so on. If
all partners have been matched, then the rule may fire provided the guard and
propagation history tests succeed. After the rule fires, or after it failed to fire
(e.g. if the guard failed), we return to the iterator for the last partner to find a
new match. Either we find a new match for the last partner, or we return to the
iterator for the previous partner, and so on. This system of iteration avoids the
need to start the search for a set of matching constraints from scratch each time
the rule fires, hence we avoid redundant work.

The code generated by the compiler that attempts to find a match for an
individual partner is contained within a special join-loop predicate. Basically

80 CHAPTER 4. BASIC COMPILATION

a join-loop predicate iterates through all potential matches for some partner.
If/when a matching is found, we either call the next join-loop predicate if there
are more partners, or we call the call-body predicate which does the final checks
before firing the rule. Likewise, execution only returns to a join-loop predicate
once all matches for the remainder of the join have been tried.

For the implementation of a join-loop predicate there are complications to
consider. Firstly, the operational semantics of CHRs disallows the same constraint
from the store to be matched against more than one partner.4 Secondly, the
partner constraints that we select from the iterator may have been deleted since
the original call to get iterator. The problem arises because get iterator is
called once, then we iterate through the list, possibly firing the rule as we go.
Unfortunately, it is possible that whilst firing the rule we “delete” some of the
constraints in our iterator. Note that deletion removes the constraint from the
global CHR store, and not from any (local) iterators, which are in effect a copy
of an older store. Similarly, it is possible that any constraint from our partial
match has been deleted in a similar fashion.

If deletion is a problem with iterators then it seems that insertion may also
be a problem, i.e. whilst firing a rule we create new constraints that are potential
matches. In fact there is no problem because of the call-based behaviour of the
refined operational semantics. Any new CHR constraints created by a rule must
have finished being active before we return from the firing of the rule. This means
that all matches which include the new constraint must have already been tried,
so there is no need to update the iterators. Actually this is another advantage
of using iterators, since we never consider these constraints we save redundant
work.

The pseudo code for a join-loop predicate is shown in Figure 4.3. Here we
assume that for an active p constraint (at the ith occurrence) we are trying to
find matching partner q(A, B, C) (the code is similar for any other constraint).
Lines (1)-(2) show the pred and mode declarations. Line (3) handles the case of
an empty iterator, where no action is necessary. Line (4) handles the other case,
and also demonstrates the interface for a join-loop predicate. The first argument
is the iterator itself, which we assume has type ‘iterator’ defined as follows:

:- typedef iterator = list(numbered).

:- typedef numbered -> constraint # id.

This means an iterator is a list of numbered constraints, where type ‘constraint’
is the type given to the constraints in the CHR store. Next is Id1,...,Idn which
are the constraint identifiers from the active constraint and from any matches
of partners so far (the partial match). Similarly, X1,...,Xk are the combined
arguments from the partial match. Here we assume that t1, ..., tk and m1, ..., mk

are the types and modes associated with X1,...,Xk (based on the types and

4This was the purpose of the multiset union ⊎ in the specification of Simplify and Prop-

agate.

4.4. CODE GENERATION 81

:- pred p i join loop(iterator,id,...,id,t1,...,tk). (1)
:- mode p i join loop(in ,in,...,in,m1,...,mk) is d. (2)
p i join loop([], ,...,). (3)
p i join loop([C # Id|Ls],Id1,...,Idn,X1,...,Xk) :- (4)

(

C = q(A,B,C), (5)
alive(Id), (6)
Id \= Id1, (7)
...

Id \= Idn -> (8)
<find-matches-and-call-body> (9)

; true (10)
),

(

alive(Id1), (11)
...

alive(Idn) -> (12)
p i join loop(Ls,Id1,...,Idn,X1,...,Xk) (13)

; true (14)
).

Figure 4.3: Pseudo code for the join loop predicate.

modes of the constraints involved in the partial match). In line (4) we have also
extracted a new constraint C with identifier Id from the iterator.

The rest of the code is split into two parts. The first part, lines (5)-(10), de-
cides if the constraint C matches against the partner (i.e. if C is a q/3 constraint),
and takes appropriate action if so. Line (5) deconstructs the newly acquired con-
straint C, and fails if it is not a q/3. Line (6) tests if the identifier Id has not been
deleted (recall that deletion is possible). Lines (7)-(8) test if the new identifier
Id has not been matched earlier in this join (this is to ensure multiset matching).
If all of these tests pass, then in line (9) we call the code for finding a match for
the next partner if necessary, or the call the call-body predicate otherwise.

The second part of the join-loop predicate, in lines (11)-(14), decides if we are
allowed to continue looking for partners, or if we must abort because a constraint
from our partial match has been deleted. The invariant we are maintaining is
that all constraints in the partial match have not been deleted. Lines (11)-(12)
test if all the identifiers from the partial matching are still alive. If so then we
recursively call the join-loop predicate with the same arguments except with the
tail of the original iterator, otherwise no action is necessary.

We can now give a simple example of a join-loop predicate.

Example 35 Consider occurrence number six for the leq constraint in the fol-

82 CHAPTER 4. BASIC COMPILATION

:- pred leq 6 join loop(iterator,id,hint,hint).

:- mode leq 6 join loop(in,in,in,in) is semidet.

leq 6 join loop([], , ,).

leq 6 join loop([C#J|Ls],I,X,Y) :-

(

C = leq(W,Z),

alive(J),

J \= I ->

leq 6 call body(I,J,X,Y,W,Z)

; true

),

(

alive(I) ->

leq 6 join loop(Ls,I,X,Y)

; true

).

Figure 4.4: Join loop predicate for the transitivity rule’s first occurrence.

lowing (normalised) rule.

leq(X,Y)6, leq(W,Z) ==> Y = W | leq(X,Z).

To find matching constraints for the partner leq(W,Z) the compiler generates the
join-loop predicate as shown in Figure 4.4. Here, we assume that the type of the
arguments to the leq constraints is hint (Herbrand int). ⊓⊔

After a set of matching constraints has been found we need to check the guard
and propagation history, then delete any constraints if necessary, before calling
the code in the body. This is the role of the body-call predicate, whose pseudo
code is shown in Figure 4.5. Lines (1)-(2) are the pred and mode declarations.
The interface to the body call predicate, shown by line (3), is very similar to that
of the join-loop predicate. All of Id1,...,Idn are constraint identifiers, and all
of X1,...,Xk are arguments of the matching respectively. Note that the interface
could be improved by eliminating arguments that are not actually required by
the predicate’s body.

Line (4) tests the guard and line (5) checks the propagation history. Exactly
how the guard is tested is left for the next section. Checking the propagation
history involves constructing an entry and then calling check history described
previously. The history check is omitted whenever rule r is not a propagation
rule. The order of the identifiers in the history entry is defined by the auxiliary
function order, which is evaluated at compile time. We assume that function
order sorts the identifiers based on the textual order of the constraints in the
rule head. It is important that all call-body predicates use the same order for the
same rule.

4.5. COMPILING THE GUARD 83

:- pred p i call body(id,...,id,t1,...,tk). (1)
:- mode p i call body(in,...,in,m1,...,mk) is d. (2)
p i call body(Id1,...,Idn,X1,...,Xk) :- (3)

(

<test-guard>, (4)
check history([order(Id1,...,Idn),r]) -> (5)

delete(Id′1), (6)
...

delete(Id′j), (7)
<body> (8)

; true

).

Figure 4.5: Pseudo code for the call body predicate.

If both the guard test and history check pass then the rule can fire. If the rule
is not a propagation rule then some of the matching constraints need to be deleted.
Let {Id′1,...,Id

′
j} ⊆ {Id1,...,Idn} be the identifiers of these constraints, then

lines (6)-(7) explicitly do the deletions. Finally, the body of the rule is called in
line (6). The body is usually copied verbatim from the original rule.

We are now ready for a complete example.

Example 36 (Compiled gcd Program) The compiled version of the gcd pro-
gram is given in Figure 4.6. Note that we gloss over guard compilation (the guards
are inserted “as-is” into the compiled code) for the time being. Also, we omit the
pred and mode declarations for brevity. The new program consists of one top-level
predicate, three occurrence predicates, two join-loop predicates and three body-call
predicates. ⊓⊔

The compiled version of the gcd program is much larger than the original CHR
version, and this is generally true for all CHR compilation. Several improvements
are possible, e.g. inlining the body-call predicates, and inlining the first occur-
rence predicate with the top-level predicate. After optimisation, the resulting
code will be considerably more compact.

4.5 Compiling the Guard

Let r be a normalised CHR rule with guard g. The operational semantics of
CHRs dictates that (a renamed copy of) r can only fire iff D |=S B → ∃r(θ ∧ g)
holds, where B is the current builti-n store, θ is the matching substitution, and
the (possibly incomplete) test (D |=S) (see Definition 4) represents the solver.

In practice the built-in solver must not only provide a procedure for telling
a constraint (adding it to the built-in store) whenever it appears in the body of

84 CHAPTER 4. BASIC COMPILATION

gcd(X) :-

C = gcd(X),

new(I),

insert(C,I),

delay(C,I,gcd 1(I,X)),

gcd 1(I,X).

gcd 1(I,X) :-

gcd 1 call body(I,X),

(alive(I) ->

gcd 2(I,X)

; true

).

gcd 1 call body(I,X) :-

(X = 0 ->

delete(I)

; true

).

gcd 2(I,N) :-

get iterator(Ls),

gcd 2 join loop(Ls,I,N),

(alive(I) ->

gcd 3(I,X)

; true

).

gcd 2 join loop([], ,).

gcd 2 join loop([C # J|Ls],I,N) :-

(

C = gcd(M),

alive(J),

J \= I ->

gcd 2 call body(I,N,M)

; true

),

(alive(I) ->

gcd 2 join loop(Ls,I,N)

; true

).

gcd 2 call body(I,N,M) :-

(M =< N ->

delete(I),

gcd(M-N)

; true

).

gcd 3(I,M) :-

get iterator(Ls),

gcd 3 join loop(Ls,I,M).

gcd 3 join loop([], ,).

gcd 3 join loop([C # J|Ls],I,M) :-

(

C = gcd(N),

alive(J),

J \= I ->

gcd 3 call body(J,N,M)

; true

),

(alive(I) ->

gcd 3 join loop(Ls,I,M)

; true

).

gcd 3 call body(J,N,M) :-

(M =< N ->

delete(J),

gcd(M-N)

; true

).

Figure 4.6: Compiled version of the gcd program.

4.5. COMPILING THE GUARD 85

the rule, but also a procedure for asking a constraint (determining if the guard
is entailed by the current built-in store) whenever it appears in the guard of the
rule. Formally an ask constraint c holds iff D |=S B → c. For example, in the case
of the Herbrand solver, the only tell constraint (=/2) has the known associated
ask constraint ==/2.

This section presents how guard entailment is implemented in the HAL CHR
compiler. We will first assume that the guard g contains no existentially quanti-
fied variables (i.e., all variables in the guard also appear in the head). Existentially
quantified variables in the guard are dealt with in the next subsection.

4.5.1 Basic Guards

Solvers in HAL must define a type for the solver variables (e.g., fdint), and
code to initialise new solver variables. Often a solver variable will be some form
of pointer into a global store of variable information. The solver also defines
predicates for the constraints supported by the solver. These predicates define
tell constraints for that solver (e.g., they provide the code for predicate X =< Y

which adds constraint X ≤ Y to the solvers store). Often the solver is also
packaged as an appropriate instance of a solver type class, and thus the solver
is known to provide at least the constraints included in the type class interface.
For more details on HAL solver classes see e.g., [17].

In order for a constraint solver to be extended by CHRs, the solver needs to
provide ask versions of the constraints that it supports. It is the ask version of
the constraints that should be used in guards.

Example 37 For example, consider the following CHR program that implements
a min/3 constraint over a finite domain solver.

min(A,B,C) <=> A =< B | C = A.

min(A,B,C) <=> A >= B | C = B.

Consider the compilation of the first rule. The constraint A =< B will be replaced
by some predicate which implements the ask version of the finite domain =< con-
straint, e.g, ’ask =<’(A,B). ⊓⊔

Every CHR implementation that we are aware of automatically translates tell
to ask constraints in the guards. However, these implementations only deal with
one built-in solver (Herbrand). When arbitrary solvers are used, the compiler
needs a general method for determining the relationship between the tell and ask
versions of each constraint so that it can automatically transform one into the
other. In HAL this general method is achieved by the following asks declaration.

:- <ask-constraint> asks <tell-constraint>.

which defines a mapping from a tell to an ask constraint.
The asks declaration is effectively a macro definition on which the following

restrictions apply. First, each tell constraint can only have one associated ask

86 CHAPTER 4. BASIC COMPILATION

constraint (although an ask constraint can be associated to more than one tell).
Second, the arguments of the tell-constraint must be distinct variables, and only
these and anonymous variables can appear in the corresponding ask-constraint.
And finally, the ask constraint must be defined for the type of arguments of the
associated tell constraints, it must be usable in any mode in which the associated
tell constraints are, and must have semidet determinism.

Example 38 The following are asks declarations that might be declared by a
finite domain solver.

:- ’ask =<’(X,Y) asks X =< Y.

:- ’ask =<’(Y,X) asks X >= Y.

The CHR compiler uses this information to translate the guards from Example 37
into appropriate ask constraints. ⊓⊔

A predicate is recognised by the compiler as a tell constraint iff it has been
declared as having an associated ask constraint. The compiler automatically
replaces each such tell constraint which textually appears in a guard with its
ask version. In addition, HAL (and Prolog CHR implementations) also allow
arbitrary predicates in the guard. This means that tell constraints nested inside
the guard will be treated as tells, when perhaps this was not the intention of the
programmer. The HAL compiler warns if this can occur.

4.5.2 Guards with Existential Variables

So far guard entailment testing only deals with the case where the variables in the
guard appear in the rule head. All other variables in the guard being existentially
quantified. Existential quantification can change the operational behaviour of an
ask constraint, hence guards with existential variables must be specially dealt
with.

Example 39 Consider the ask constraint X = Y which asks if two variables
X and Y are equal. Obviously, this ask constraint may fail if X and Y differ.
Now consider a “similar” looking ask constraint ∃X.X = Y , where X is now
existentially quantified. This ask constraints always (trivially) succeeds, since
setting X to be equal to Y is a solution. ⊓⊔

Many existential variables arise from normalisation due to limitations of the
built-in solver.

Example 40 Consider the following CHR constraint before after used in task
scheduling which extends a finite domain solver. Basically, the constraint
before after(T1,D1,T2,D2) holds if the task with start time T1 and duration
D1 does not overlap with the task with start time T2 and duration D2.

before after(T1,D1,T2,D2) <=> T1 + D1 > T2 | T1 >= T2 + D2.

before after(T1,D1,T2,D2) <=> T2 + D2 > T1 | T2 >= T1 + D1.

4.5. COMPILING THE GUARD 87

Normalisation of the guard results in:

before after(T1,D1,T2,D2) <=> exists [N] (N = T1 + D1, N > T2) |

T1 >= T2 + D2.

before after(T1,D1,T2,D2) <=> exists [N] (N = T2 + D2, N > T1) |

T2 >= T1 + D1.

thus introducing a new existential variable N . ⊓⊔

Unfortunately, it is difficult to automatically handle ask constraints with ex-
istential variables. Only the built-in solver can answer general questions about
existential guards.

Example 41 Consider an integer solver which supports the constraint X =< Y.
Consider the following (somewhat contrived) rule for a CHR constraint my fail

my fail(X) <=> X =< N, N =< X | fail.

The logical reading of the guard is ∃N(X ≤ N∧N ≤ X) which always holds (e.g.,
try N = X). Hence, a my fail constraint should reduce to the built-in fail.
However, it is impossible to separate the two primitive constraints occurring in
the ask formula into two independent ask constraints. Instead, we would have to
ask the solver to treat the entire conjunction at once. ⊓⊔

There is always a programming solution to handling guards with general ex-
istential variables. For example, the CHR compiler could reject the rule from
Example 41 (e.g. by throwing a compiler error), thereby forcing the programmer
to rewrite the guard and remove the existential variable. More generally, the
programmer may have to redesign the solver itself in order to handle more com-
plicated ask constraints, including conjunctions of ask constraints. Obviously,
this solution is not very practical, and we expect the CHR compiler to be able to
handle at least some subset of all guards with existential variables.

Although normalisation can lead to proliferation of existential variables in
the guard, in many cases such existential variables can be compiled away without
requiring extra help from the solver. Consider determining whether a constraint
store B implies a guard g of the following form

v = f(y1, . . . , yn) ∧ g′

Where g′ represents the rest of the guard, and variable v is existentially quantified.
Let x̄ be the list of existentially quantified variables excluding v. If f is a total
function, such a v always exists and is unique, then as long as none of the variables
y1, . . . , yn are existentially quantified (i.e. appear in x̄) then the question D |=S

B → ∃x̄∃v.g is equivalent5 to the question

D |=S (B ∧ v = f(y1, . . . , yn))→ (∃x̄g′)

5For incomplete solvers, equivalence is effectively a condition on (D |=S). In HAL, where
logical connectives (e.g. ∧) are handled by the compiler rather than the built-in solver, we can
assume that equivalence holds.

88 CHAPTER 4. BASIC COMPILATION

Now v is no longer existential in g′.
This translation gives the first hint of how to compile guards with existential

quantification. Basically the formula v = f(y1, . . . , yn) can be compiled to a
tell constraint which constrains a (fresh) variable v to be the result of applying
function f to y1, . . . , yn, followed by the code for the rest of the guard g′. Note
that order is now important, we execute the tell constraint v = f(y1, . . . , yn)
before g′.

Example 42 Returning to Example 40. The call-body predicate (including the
guard test) for the first rule is as follows.

before after 1 call body(I,T1,D1,T2,D2) :-

(

N = T1 + D1, % TELL constraint

’ask >’(N,T2) -> % ASK constraint

delete(I),

T1 >= T2 + D2 % Body

; true

).

Here we assume that the ask version of the (</2) constraint is ’ask <’/2 with the
same arguments. In the first rule the ask constraint ∃N(N = T1 + D1) becomes
a tell constraint, because neither T1 nor D1 are existentially quantified, and the
function + is total. The same reasoning applies to the second rule. ⊓⊔

There are other common cases that allow us to compile away existential vari-
ables, but require some support from the built-in solver. Consider a guard g of
the same form as before:

v = f(y1, . . . , yn) ∧ g′

Where g′ represents the rest of the guard, variable v is existentially quantified
and none of y1, . . . , yn are existentially quantified, except this time f is a partial
function. Then the question D |=S B → ∃x̄∃v.g is equivalent to

D |=S (B → ∃w.w = f(y1, ..., yn)) ∧ ((B ∧ v = f(y1, ..., yn))→ (∃x̄g′))

since if there exists a w of the form f(y1, . . . , yn), then it is unique. Hence, the
function f in the context of this test is effectively total, and can thus become a
tell constraint. This may not seem to be a simplification, but if we provide an
ask version of the constraint ∃w, w = f(y1, . . . , yn) then we can indeed handle
partial functions in the guard.

Example 43 Consider the rule

g(X,Y,B) <=> X + 2^Y ≥ 2 | gg(X,Y,B)

which is normalised to

4.5. COMPILING THE GUARD 89

g(X,Y,B) <=> exists [Z,N,M] (Z = 2^Y, N = X + Z, M = 2, N ≥ M) |

gg(X,Y,B).

If the compiler knows that the ask version of the constraint ∃Z.Z = 2Y is equiv-
alent to nonneg(Y) (which holds if Y is not negative), then the rule has the
following call-body predicate

g 1 call body(I,X,Y,B) :-

(

nonneg(Y), % ASK constraint

Z = 2^Y, % TELL constraint

N = X + Z, % TELL constraint

M = 2, % TELL constraint

’ask >=’(N,M) -> % ASK constraint

delete(I),

gg(X,Y,B)

; true

).

The constraint Z = 2Y is, in effect, a total function (since we know that Y ≥ 0),
and is thus compiled as a tell constraint. ⊓⊔

To use this simplification we need ask versions of constraints for partial func-
tions. These can be provided using the already introduced mechanisms for map-
ping tell constraints to ask constraints.

Example 44 For example, the mapping for z = 2y for a finite domain solver
can be defined as

:- nonneg(Y) asks exists [Z] Z = 2^Y.

⊓⊔

To apply either of the simplifications above we also require information about
total and partial functions. The HAL compiler already receives this information
from the solver by means of mode declarations. For example, the following mode
declarations

:- mode oo + oo --> no is det.

:- mode oo ^ oo --> no is semidet.

show the totality of function + (since the function is declared to be det, i.e. have
one and only one solution for every two input arguments) and the partialness
of function ^ (since the function is declared to be semidet, i.e. have either one
solution or none for every two input arguments). Since functions in HAL are
really predicates with an additional argument, it is straightforward to extend
these simplifications to use predicate rather than functional notation.

90 CHAPTER 4. BASIC COMPILATION

Example 45 Consider the constraint predicate munion(A,B,C) which constrains
C to be the multiset resulting from the union of the two multisets A and B.
Consider also that the following declarations for munion are provided:

:- mode munion(oo,no,oo) is semidet.

:- msub(A,C) asks exists [B] munion(A,B,C).

indicating a partial function behaviour, and its corresponding asks-test. Also con-
sider the following normalised rule.

h(A,C,D) <=> exists [B] (munion(A,B,C), B 6= D) | hh(A,D).

The call-body predicate for this rule is

h 1 call body(I,A,C,D) :-

(

msub(A,C), % ASK constraint

munion(A,B,C), % TELL constraint

ask neq(B,D) -> % ASK constraint

delete(I),

hh(A,D)

; true

).

⊓⊔

Partial functions are common in Herbrand constraints. Consider the con-
straint x = f(y1, . . . , yn), where f is a Herbrand constructor. This constraint
defines, among others, a partial (deconstruct) function f−1

i from x to each yi, 1 ≤
i ≤ n. For this reason the compiler produces new ask tests bound f(X) for each
Herbrand constructor f , which check whether X is bound to the function f .
Herbrand term deconstructions are then compiled as if the asks declaration

:- bound f(X) asks exists [Y1,..,Yn] X = f(Y1,..,Yn).

appeared in the program.

Example 46 Consider the compilation of the guard from Example 32.

length(Xs1,L) <=> exists [A,Xs] (Xs1 = [A|Xs]) |

L = L1+1, length(Xs,L1).

We will compile this guard to the call ’bound [|]’(Xs1). ⊓⊔

It is interesting to note that tell constraints in guards mean that each time
the guard is tested, new tell constraints must be added to the built-in store.
In theory this is no problem, since the new constraints do not effect the logical
meaning of the store, and can safely be projected out once the guard has been

4.6. SUMMARY 91

tested (hence we refer to these constraints as temporary constraints). In practice
however, projection is typically not done, and temporary constraints remain in
the built-in store for the rest of the derivation. This may be inefficient, since each
constraint typically consumes resources (e.g. memory).

Example 47 Consider the following CHR extending a finite domain solver.

p(X,Y), q(Y,Z) ==> X + Z < Y | s(Z).

which normalised and simplified gives

p(X,Y), q(Y1,Z) ==> exists [W] (Y = Y1, W = X + Z, W < Y) | s(Z).

For an active p(X,Y) constraint, the finite domain constraint W = X +Z (which
will be compiled as a tell constraint) will be added to the store for each matching
q(Y,Z) currently in the CHR store. If the (overall) guard succeeds k times then
k copies will remain in the store. ⊓⊔

This problem is not new, nor CHR-specific. Any CLP program that creates
temporary variables/constraints may suffer from a similar inefficiency. Some so-
lutions already exist, for example [58] proposes a program analysis that explicitly
projects out “dead” (temporary) variables once they are no longer needed. If a
HAL solver supported projection, and we performed the associated dead vari-
able elimination analysis, then this could be applied to the output of the CHR
compiler, solving the problem.

Not all solvers suffer terribly from this problem. Garbage collection for Her-
brand solvers will remove dead variables and their associated constraints. Cur-
rently the HAL CHR compiler does nothing to remove temporary constraints
and variables arising from asks. We leave improvement to future work. Fortu-
nately, many CHR programs (including the key examples from this thesis) are
not affected by this problem.

4.6 Summary

In this chapter we have described how to compile a CHR program into a logic pro-
gramming language, specifically HAL. Like most other programming languages,
compiling CHRs in a multi-phase process, including phases for parsing and nor-
malisation, guard compilation and code generation, which were all covered here.
Also, a reasonably simple runtime environment was described, which implements
the execution state for the refined semantics.

Parsing CHR rules is not much different than parsing any other programming
language. The only difference is that as CHRs are usually an embedded language,
the job of parsing CHRs is left to the parser for the host language. Normalisation
is an important as it helps simplify later compilation phases. With CHRs we have
identified two distinct types of normalisation: guard normalisation and program
normalisation. Guard normalisation helps significantly simplify the compilation

92 CHAPTER 4. BASIC COMPILATION

of the guard later, and program normalisation is especially useful for code gener-
ation.

Guard compilation is a surprisingly involved aspect of CHR compilation. This
is for several reasons. Firstly, in order to make compilation work for arbitrary
built-in solvers a general solver interface was devised, namely mapping tell con-
straints to ask constraints via a special asks declaration. Guards with existen-
tially quantified variables occur often in practice, so a CHR compiler should be
able to handle them. Existential variables which are functionally defined by non-
existential variables in the guard can be compiled without any additional help
from the solver. Unfortunately, a more general solution would require a more
complicated interface with the built-in solver.

With the program normalised and the guard compiled, the final phase of
CHR compilation is code generation. Many aspects of the CHR execution state
map neatly into similar concepts in the HAL language, e.g. the execution stack
becomes the program stack, and the built-in store is implicit as ordinary HAL
solvers.

The output of the CHR compiler is a series of HAL predicates that manipulate
a global CHR constraint store. The CHR compiler replaces each constraint with
a so-called top-level predicate that performs the necessary overhead before calling
the first occurrence. Later, the occurrence predicates actually do the rule match-
ing. This mostly involves iterating through the store for matches to individual
partners to the active constraint, and this is the role of the join-loop predicates.
Finally, once potential matches are found, the call-body predicate tests the guard
and checks the history before actually firing the rule.

The compilation scheme presented in this chapter is very simple, and should
give reasonable performance provided the rules themselves have small heads (no
more than two heads) and the CHR store never grows too large at runtime.
If either of these conditions do not hold then the result is likely to be a very
inefficient program. Fortunately many improvements can be made which should
improve performance somewhat and this is the focus for much of the rest of this
thesis.

Chapter 5

Analysis

5.1 Introduction

Program analysis is a very important phase in CHR compilation. It is where we
discover useful information about the program, which is mainly used for optimi-
sation and (in the case of CHRs) confluence testing.

All of the program analysis presented in this chapter is based on abstract
interpretation [16]. Abstract interpretation is a general methodology for program
analysis by abstractly executing the program code. It provides the remedy for
the current difficulties in correctly analysing CHR programs, and should enable
optimising CHR compilers to reach a new level of complexity and correctness.

We will present an abstract interpretation framework based on a slightly dif-
ferent formulation of the refined operational semantics. The new semantics is the
call-based operational semantics for CHRs. The call-based semantics is equivalent
to the refined semantics (and we provide results to that effect), however they help
simplify the abstract interpretation framework.

We will present two main kinds of CHR analysis based on our abstract inter-
pretation framework. These include

• Late storage analysis – decides when the active constraint should be stored;

• Functional dependency analysis – decides if there exist functional depen-
dencies between arguments of CHR constraints.

Both of these analyses are relevant and useful to the rest of this thesis.

The rest of this chapter is structured as follows. First, Section 5.2 presents
the call-based operational semantics of CHR that will be abstractly interpreted.
Section 5.3 establishes equivalence of the call-based and refined operational se-
mantics. Section 5.4 defines the general abstract interpretation framework. Sec-
tions 5.5 and 5.6 present two instances of the framework, implementing late stor-
age and functional dependency analysis respectively. Finally, we conclude.

93

94 CHAPTER 5. ANALYSIS

5.2 The Call-based Operational Semantics ωc

In this section we define the call-based operational semantics for CHRs, which
we shall refer to as ωc. They are a variant of the refined operational semantics of
Chapter 3, but are designed to make the analysis more straightforward. For the
analysis of logic programs, we do not directly analyse over the derivations based
operational semantics, instead we introduce a call based semantics which makes
the number of abstract goals to be considered finite (see e.g. [60]). We introduce
the call-based operational semantics for CHRs for exactly the same reason.

The main difference between the two semantics lies in their formulation. The
transition system of ωr linearises the dynamic call-graph of CHR constraints
into the execution stack. On the other hand, under ωc constraints are treated
as procedure calls: each new active constraint searches for possible matching
rules in order, until all matching rules have been executed or the constraint is
deleted from the store. As with a procedure, when a matching rule fires other
CHR constraints may be executed as subcomputations and, when they finish,
the execution returns to finding rules for the current active constraint. The latter
semantics is much closer to the procedure-based target languages, like Prolog and
HAL, of the current CHR compilers.1

Much of the basic framework for the refined semantics still applies under the
call-based semantics. For example, the definition of built-in constraints, CHR
store, propagation history, etc. is exactly the same as before. Likewise the
definition of fixed(B) (the set of variables fixed by B), and the wakeup policy
have not changed.

There are differences between the two semantics. For example, the definition
of an execution state has changed.

Definition 22 (Call-based execution state) Formally, the execution state of
the call-based semantics is the tuple 〈G, A, S, B, T 〉Vn where G is the current goal,
A is a sequence of active constraints (called the activation stack), S is a set of
numbered constraints, B is a conjunction of built-in constraints, T is a set of
sequences of integers, V is the set of variables and n is an integer. The goal is
either a single constraint, or a sequence of built-in or CHR constraints. ⊓⊔

The role of S, B, T , V and n is the same as in the refined semantics. The goal
G roughly corresponds to the top of a refined execution stack, and may be any
type of constraint, e.g. built-in, CHR, active, etc. The activation stack A roughly
corresponds to the tail of the execution stack under the refined semantics, except
it only contains active constraints.

Given initial goal G, the initial state is

〈G, [], ∅, true, ∅〉vars(G)
1

1It can be argued that the basic compilation is more closely related to the call-based seman-
tics, since each active constraint is compiled into a procedure call.

5.2. THE CALL-BASED OPERATIONAL SEMANTICS ωC 95

Execution proceeds by exhaustively applying transitions to the initial execution
state until the built-in solver state is unsatisfiable or no transitions are applicable.

The possible transitions for the call-based semantics are as follows:

Definition 23 (Call-based Operational Semantics)
1. Solve

〈c, A, S, B, T 〉Vn 〈�, A, S ′, B′, T ′〉Vn′

where c is a built-in constraint. If D |=S ¬∃̄∅c ∧ B, then S ′ = S, B′ = c ∧ B,
T ′ = T , n′ = n. Otherwise (D |=S ∃̄∅c ∧ B), where

〈wakeup policy(S, c, B), A, S, c ∧B, T 〉Vn
∗ 〈�, A, S ′, B′, T ′〉Vn′ (5.1)

Note that the wakeup policy is a function satisfying Definition 10, just as in the
refined semantics.
2. Activate

〈c, A, S, B, T 〉Vn 〈c#n : 1, A, {c#n} ⊎ S, B, T 〉V(n+1)

where c is a CHR constraint (which has never been active).
3. Reactivate

〈c#i, A, S, B, T 〉Vn 〈c#i : 1, A, S, B, T 〉Vn

where c is a CHR constraint.
4. Drop

〈c#i : j, A, S, B, T 〉Vn 〈�, A, S, B, T 〉Vn

where c#i : j is an active constraint and there is no such occurrence j in P .
5. Simplify

〈c#i : j, A, {c#i} ⊎H1 ⊎H2 ⊎H3 ⊎ S, B, T 〉Vn 〈�, A, S ′, B′, T ′′〉Vn′

where
〈θ(C), A, H1 ⊎ S, B, T ′〉Vn

∗ 〈�, A, S ′, B′, T ′′〉Vn′ (5.2)

where the jth occurrence of the CHR predicate of c in a (renamed apart) rule in
P is

r @ H ′
1 \ H ′

2, dj, H
′
3 ⇐⇒ g | C

and there exists matching substitution θ is such that

c = θ(dj)
cons(H1) = θ(H ′

1)
cons(H2) = θ(H ′

2)
cons(H3) = θ(H ′

3)
D |=S B → ∃r(θ ∧ g)
id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r] 6∈ T

96 CHAPTER 5. ANALYSIS

In the intermediate transition sequence T ′ = T ∪ {id(H1) ++ id(H2) ++ [i] ++
id(H3) ++ [r]}.

If no such matching substitution θ exists then

〈c#i : j, A, S, B, T 〉Vn 〈c#i : j + 1, A, S, B, T 〉Vn

6. Propagate

〈c#i : j, A, {c#i} ⊎ S, B, T 〉Vn 〈G, A, Sk, Bk, Tk〉
V
nk

where the jth occurrence of the CHR predicate of c in a rule in P is

r @ H ′
1, dj, H

′
2 \ H ′

3 ⇐⇒ g | C

Let S0 = S ⊎ {c#i}, B0 = B, T0 = T, n0 = n. Now assume, for 1 ≤ l ≤ k and
k ≥ 0, the series of transitions

〈θl(Cl), [c#i : j|A], H1l⊎{c#i}⊎H2l⊎S ′
l−1, Bl−1, Tl−1∪{tl}〉

V
nl−1

∗ 〈�, [c#i : j|A], Sl, Bl, Tl〉
V
nl

(5.3)

where {c#i}⊎H1l⊎H2l⊎H3l⊎S ′
l−1 = Sl−1 and there exists a matching substitution

θl, and a renamed copy of rule r

r @ H ′
1l, djl, H

′
2l \ H ′

3l ⇐⇒ gl | Cl

such that

c = θl(djl)
cons(H1l) = θl(H

′
1l)

cons(H2l) = θl(H
′
2l)

cons(H3l) = θl(H
′
3l)

D |=S B → ∃r(θl ∧ gl)
tl = id(H1l) ++ [i] ++ id(H2l) ++ id(H3l) ++ [r] 6∈Tl−1

Furthermore, for k + 1 no such transition is possible.

The resulting goal G is either G = � if D |=S ∃̄∅(¬Bk) (i.e. failure occurred)
or G = c#i : j + 1 otherwise.

7. Goal

〈[c|C], A, S, B, T 〉Vn 〈G, A, S ′, B′, T ′〉Vn′

where [c|C] is a sequence of built-in and CHR constraints

〈c, A, S, B, T 〉n
∗ 〈�, A, S ′, B′, T ′〉n′ (5.4)

and G = � if D |=S ∃̄∅¬B
′ (i.e. calling c caused failure) or G = C otherwise. ⊓⊔

5.2. THE CALL-BASED OPERATIONAL SEMANTICS ωC 97

Some of the call-based transitions are very similar to the refined semantics
version. For example, the Activate, Reactivate and Drop transitions are very
similar. Other transitions, such as Propagate, are radically different. Also, the
Default transition has disappeared, and a new transition Goal has appeared.
The Goal transition is for executing sequences of constraints in order.

The main difference from the refined transitions is the notion of a subcompu-
tation. A subcomputation is defined to be the subderivation used by the Solve,
Simplify, Propagate or Goal transitions in order to calculate the final state.
The subcomputations are marked (5.1), (5.2), (5.3) and (5.4) above in Defini-
tion 23. Subcomputations are the key to the call-based semantics, since they
represent the calling (and execution) of a subgoal.

There is no Default transition under the call-based semantics. Instead the
Default transition has effectively been merged into the Simplify and Prop-
agate transitions. This means that once a rule cannot fire, these transitions
automatically moves the active constraint to the next occurrence. This will sim-
plify the abstract interpretation framework somewhat.

A sequence of Propagate transitions under the refined semantics has simi-
larly been merged into a single Propagate transition under the call-based seman-
tics. The new Propagate effectively tries all possible rule firings before moving
to the next occurrence (see the sequence of subcomputation in (5.3)). This means
that, unlike the refined semantics, after a call-based Propagate transition has
finished, the propagation rule is no longer applicable to any matching including
the active constraint for the given occurrence.

Now we illustrate the call-based semantics on a small example program:

Example 48 Consider the following (somewhat contrived) CHR program:
p1 ==> q.

p2, t1 <=> r.

p3, r1 ==> true.

p4 ==> s.

p5, s1 <=> true.

All the occurrences of constraints in the above program are indexed with their
respective occurrence numbers. Starting from an initial goal p the derivation un-
der the call-based operational semantics is shown in Figure 5.1. Note that for
brevity we omit the built-in store B, V, and propagation history T .

We have abbreviated Activate with A, Drop with Dp, Simplify with Si and
Propagate with P . For both the simplification Si transitions, we annotate the
name with ¬ if the transition did not find a match (i.e. a Default transition
under the refined semantics). ⊓⊔

Whilst the call-based semantics is useful for abstract interpretation, for the
rest of the thesis (excluding this chapter) we revert back to the refined semantics.

98 CHAPTER 5. ANALYSIS

〈p, [], ∅〉1
A 〈p#1 : 1, [], {p#1}〉2
P 〈p#1 : 2, [], {p#1, q#2}〉2

〈q, [p#1 : 1], {p#1}〉2 (q′s subcomputation)
∗ 〈�, [p#1 : 1], {p#1, q#2}〉3

¬Si 〈p#1 : 3, [], {p#1, q#2}〉3
¬P 〈p#1 : 4, [], {p#1, q#2}〉3
P 〈p#1 : 5, [], {q#2}〉4

〈s, [p#1 : 4], {p#1, q#2}〉3 (s′s subcomputation)
∗ 〈�, [p#1 : 4], {q#2}〉4

¬Si 〈p#1 : 6, [], {q#2}〉4
Dp 〈�, [], {q#2}〉4

q′s subcomputation :

〈q, [p#1 : 1], {p#1}〉2
A 〈q#2 : 1, [p#1 : 1], {p#1, q#2}〉3
Dp 〈�, [p#1 : 1], {p#1, q#2}〉3

s′s subcomputation :

〈s, [p#1 : 4], {p#1, q#2}〉3
A 〈s#3 : 1, [p#1 : 4], {p#1, q#2, s#3}〉4
Si 〈�, [p#1 : 4], {q#2}〉4

〈�, [s#3 : 1, p#1 : 4], {p#1, q#2, s#3}〉4
∗ 〈�, [s#3 : 1, p#1 : 4], {p#1, q#2, s#3}〉4

Figure 5.1: Example derivation under the call-based operational semantics of
CHRs

5.3 Equivalence of ωc and ωr

In this section we present a proof of equivalence between the call-based ωc and
refined ωr operational semantics. This involves showing that a derivation under
the call-based semantics can be mapped to an equivalent derivation under the
refined semantics, and vice versa.

Note that a ωc derivation does not always neatly map to an equivalent ωr

derivation because of the notion of a subcomputation. The proof is complicated
by this fact.

5.3.1 From Call-based to Refined

In this subsection we show that some call-based derivations can be associated
with equivalent refined derivations.

5.3. EQUIVALENCE OF ωC AND ωR 99

For simplicity, we will overload the sequence concatenation operator (++) as
follows.

Definition 24 The usual definition of ++ applies if both arguments are se-
quences, otherwise

c ++ T = [c|T] (c constraint)
� ++ T = T

⊓⊔

The purpose is so we can easily construct a (refined) execution stack based on a
call-based goal, which is not always a sequence. This modified definition of (++)
will be implicitly used throughout the rest of this section.

Next we define the property that a ωc derivation maps to an equivalent ωr

derivation. In which case we say that the ωc derivation is refined.

Definition 25 (Refined) We say a ωc derivation

〈G, A, S, B, T 〉n
∗ 〈H, A, S ′, B′, T ′〉n′

is refined if for all A′ the following are ωr derivations (assuming the same wakeup
policy is used):

〈G ++ A′, S, B, T 〉n
∗ 〈H ++ A′, S ′, B′, T ′〉n′

⊓⊔

The following lemma states that given a ωc derivation (of a particular form)
where each subcomputation is refined, is also refined.

Lemma 5 All ωc derivations

〈G, A, S, B, T 〉n
∗ 〈H, A, S ′, B′, T ′〉n′

where all subcomputations are refined, are refined.

Proof. By induction.
Base Case: Derivations containing no ωc transitions, thus 〈G, A, S, B, T 〉n =

〈H, A, S ′, B′, T ′〉n′ so it immediately follows that 〈G ++ A′, S, B, T 〉n = 〈H ++
A′, S ′, B′, T ′〉n′ which is a trivial ωr derivation.

Induction Step: Suppose all ωc derivations Di consisting of i transitions (and
where all subcomputations are refined), are refined. We show that the same is
true for similar derivations of i + 1 transitions.

Let σc
i = 〈Gi, A, Si, Bi, Ti〉ni

be the last state in Di. Let Dr
i be the corre-

sponding ωr derivation that exists because Di is refined, and let σr
i = 〈Gi ++

A′, Si, Bi, Ti〉ni
be the last state in Dr

i . We consider all possible transitions be-
tween σc

i and σc
i+1 in constructing a Di+1, then show how to construct an ωr

100 CHAPTER 5. ANALYSIS

derivation Dr
i+1 which satisfies the definition of refined.

CASE Solve: Then Gi = c where c is a built-in constraint. Hence

σc
i+1 = 〈�, A, Si+1, Bi+1, Ti+1〉ni+1

where Si+1, Bi+1, Ti+1 and ni+1 are given by the subcomputation

〈wakeup policy(Si, c, Bi), A, Si, c∧Bi, Ti〉ni

∗ 〈�, A, Si+1, Bi+1, Ti+1〉ni+1
(5.5)

if D |=S ∃̄∅(c∧B), otherwise Si+1 = Si, Bi+1 = c∧Bi, Ti+1 = Ti and ni+1 = ni if
D |=S ¬∃̄∅(c ∧B). By assumption, subcomputation (5.5) is refined, hence

〈wakeup policy(Si, c, Bi) ++ A′, Si, c ∧ Bi, Ti〉ni

∗ 〈A′, Si+1, Bi+1, Ti+1〉ni+1

(5.6)
Notice the last state is in the appropriate form for σr

i+1.
Let σr be the result of applying ωr Solve to σr

i , then

σr = 〈wakeup policy(Si, c, Bi) ++ A′, Si, Bi, Ti〉ni

Furthermore,

Dr
i+1 = Dr

i solve σr
∗ σr

i+1

by derivation (5.6). Hence Di+1 is also refined.
CASE Activate: Then Gi = c where c is a (non-numbered) CHR constraint.
Hence

σc
i+1 = 〈c#ni : 1, A, {c#n} ⊎ Si, Bi, Ti〉(ni+1)

and

σr
i+1 = 〈[c#ni : 1|A′], {c#n} ⊎ Si, Bi, Ti〉(ni+1)

after applying ωr Activate to σr
i . Hence Di+1 is also refined.

CASE Reactivate: Then Gi = c#j a numbered CHR constraint. Hence

σc
i+1 = 〈c#j : 1, A, Si, Bi, Ti〉ni

and

σr
i+1 = 〈[c#j : 1|A′], Si, Bi, Ti〉ni

after applying ωr Reactivate to σr
i . Hence Di+1 is also refined.

CASE Drop: Then Gi = c#j : k where there is no such occurrence k of predicate
c in P . Hence

σc
i+1 = 〈�, A, Si, Bi, Ti〉ni

and

σr
i+1 = 〈A′, Si, Bi, Ti〉ni

after applying ωr Drop to σr
i . Hence Di+1 is also refined.

5.3. EQUIVALENCE OF ωC AND ωR 101

CASE Simplify: Then Gi = c#j : k and the conditions for ωc Simplify hold.
Assuming that the rule can fire, we have that

σc
i+1 = 〈�, A, Si+1, Bi+1, Ti+1〉ni+1

where the appropriate fields are given by the following subcomputation.

〈θ(C), [c#j : k|A], Si −H2 −H3 − {c#j}, Bi, T
′
i 〉ni

∗ 〈�, [c#j : k|A], Si+1, Bi+1, Ti+1〉ni+1

(5.7)

Where C, H2, H3, θ and Ti+1 are defined by ωc Simplify (see Definition 23). By
assumption, subcomputation (5.7) is refined, hence

〈θ(C) ++ A′, Si −H2 −H3 − {c#j}, Bi, T
′
i 〉ni

∗ 〈A′, Si+1, Bi+1, Ti+1〉ni+1
(5.8)

Notice the last state is in the appropriate form for σr
i+1.

Let σr be the result of applying ωr Simplify to σr
i , then

σr = 〈θ(C) ++ A′, Si −H2 −H3 − {c#j}, Bi, T
′
i 〉ni

Furthermore,
Dr

i+1 = Dr
i simplify σr

∗ σr
i+1

by derivation (5.8). Hence Di+1 is also refined.
The other case is when the rule is not applicable. Then

σc
i+1 = 〈c#j : k + 1, A, Si, Bi, Ti〉ni

and
σr

i+1 = 〈[c#j : k + 1|A′], Si, Bi, Ti〉ni

after applying ωr Default. Hence Di+1 is also refined.
CASE Propagate: Then Gi = c#j : k and the conditions for ωc Propagate
hold. We have that

σc
i+1 = 〈G, A, Si+1, Bi+1, Ti+1〉ni+1

where the appropriate fields are given by the following series of subcomputations.

〈θ(C), [c#j : k|A], Sl−1 −H3l, Bl−1, Tl−1〉nl−1
∗

〈�, [c#j : k|A], Sl, Bl, Tl〉nl

(5.9)

Where all of the appropriate fields are defined by ωc Propagate (see Defini-
tion 23). By assumption, each subcomputation (5.9) is refined, hence

〈θ(C) ++ [c#j : k|A′], Sl−1 −H3l, Bl−1, Tl−1〉nl−1
∗

〈[c#j : k|A′], Sl, Bl, Tl〉nl

(5.10)

Suppose that there are k sub-derivations, then we can construct ωr derivation
Dr

i+1 as follows

Dr
i+1 = Dr

i propagate Dl=1 propagate ...propagate Dl=k default σr
i+1

102 CHAPTER 5. ANALYSIS

where each sub-derivation Dl is constructed by applying Propagate (whose ap-
plicability is easily verified) to the last state in Dl−1 (or σr

i if l = 1), and then
the proceeding derivation defined by (5.10). Hence Di+1 is also refined.
CASE Goal: Then Gi = [c|C] is a sequence of constraints. Hence

σc
i+1 = 〈C, A, Si+1, Bi+1, Ti+1〉ni+1

where Si+1, Bi+1, Ti+1 and ni+1 are given by the subcomputation

〈c, A, Si, Bi, Ti〉ni

∗ 〈�, A, Si+1, Bi+1, Ti+1〉ni+1
(5.11)

By assumption, subcomputation (5.11) is refined, hence

〈[c|C] ++ A′, Si, Bi, Ti〉ni

∗ 〈C ++ A′, Si+1, Bi+1, Ti+1〉ni+1
(5.12)

Notice the last state is in the appropriate form for σr
i+1.

Now σr
i = 〈[c|C] ++ A′, Si, Bi, Ti〉ni

, so we can now construct Dr
i+1 as follows

Dr
i+1 = Dr

i
∗ σr

i+1

by derivation (5.12). Hence Di+1 is also refined.
Therefore ωc derivations D where all subcomputations are refined, are refined.

⊓⊔

The next Lemma is the same as the previous one except some assumptions
are removed.

Lemma 6 All ωc derivations D, of the form

〈G, A, S, B, T 〉n
∗ 〈H, A, S ′, B′, T ′〉n′

are refined.

Proof. By induction over subcomputations.
Base Case: D0 has no subcomputations, then by Lemma 5 all possible D0 are

refined.
Induction Step: Suppose that for all ωc derivations Di where the maximum

depth of nested subcomputations of Di is less than or equal to i, are refined.
Then we show that similarly defined Di+1, which has at least one Di subcom-
putation, is also refined. This also immediately follows from Lemma 5, since all
subcomputations for Di+1 are refined by construction.

Therefore all ωc derivations D, of the form

〈G, A, S, B, T 〉n
∗ 〈H, A, S ′, B′, T ′〉n′

are refined. ⊓⊔

5.3. EQUIVALENCE OF ωC AND ωR 103

5.3.2 From Refined to Call-based

In this subsection we show that some refined derivations can be associated with
equivalent call-based derivations.

First we define the notion of a subcomputation under the refined semantics.
These will correspond with call-based subcomputations.

Definition 26 (Refined Subcomputation) Let σ = 〈C ++ A, S, B, T 〉n be
the result after applying a Solve, Simplify or Propagate transition under ωr

to some refined execution state. We interpret C as the result of the wakeup policy
in the case of Solve, or C as the (renamed) body of the rule otherwise. We define
a subcomputation to be the derivation

σ∗ 〈A, S ′, B′, T ′〉n′ = σ′

where σ′ is the first state in this form (i.e. the first state with just A as the
execution stack). ⊓⊔

Now we given the definition of a call-based ωr derivation. This is analogous
to Definition 25, which defined a refined ωc derivation.

Definition 27 (Call-based) We say a ωr derivation

〈G ++ A, S, B, T 〉n
∗ 〈A, S ′, B′, T ′〉n′

is call-based if for all A′ the following are ωc derivations (assuming the same
wakeup policy is used):

〈G, A′, S, B, T 〉n
∗ 〈�, A′, S ′, B′, T ′〉n′

⊓⊔

The following lemma shows that a derivation which executes a single con-
straint is called-based, assuming that all subcomputations are also call-based.

Lemma 7 All derivations of the form 〈[C|A], S, B, T 〉n
∗ 〈[C ′|A], S ′, B′, T ′〉n′

(where C and C ′ is a built-in, CHR, numbered or active constraint) are call-based
if

1. the derivation contains no Solve, Drop or Simplify transitions, except in
subcomputations; and

2. all subcomputations are call-based.

Proof. By induction.
Base Case: Derivations containing no ωr transitions, thus 〈[C|A], S, B, T 〉n =

〈[C ′|A], S ′, B′, T ′〉n′ so it immediately follows that 〈C, A′, S, B, T 〉n =
〈C ′, A′, S ′, B′, T ′〉n′ which is a trivial ωc derivation.

104 CHAPTER 5. ANALYSIS

Induction Step: Suppose all ωr derivations Di (which satisfy our conditions),
are call-based. Here i is the number of transitions in the corresponding ωc deriva-
tion for Di. We show that the same is true for similar derivations Di+1 transitions
constructed from some Di.

Let σr
i = 〈[Ci|A], Si, Bi, Ti〉ni

be the last state in Di. Let Dc
i be the cor-

responding ωc derivation that exists because Di is call-based, and let σc
i =

〈Ci, A
′, Si, Bi, Ti〉ni

be the last state in Dc
i . We consider all possible transitions

applicable to σr
i , then show how to construct a ωr derivation Di+1 and a corre-

sponding ωc derivation Dc
i+1 which satisfies the definition of call-based. Let σr

i+1

be the last state in the resulting Di+1.
CASE Activate: Then Ci = c where c is a (non-numbered) CHR constraint.
Hence

σr
i+1 = 〈[c#ni : 1|A], {c#ni} ⊎ Si, Bi, Ti〉(ni+1)

and
σc

i+1 = 〈c#ni : 1, A′, {c#ni} ⊎ Si, Bi, Ti〉(ni+1)

after applying ωc Activate. Hence Di+1 is also call-based.
CASE Reactivate: Then C = c#j a numbered CHR constraint. Hence

σr
i+1 = 〈[c#j : 1|A], Si, Bi, Ti〉ni

and
σc

i+1 = 〈c#ni : 1, A′, Si, Bi, Ti〉ni

after applying ωc Reactivate. Hence Di+1 is also call-based.
CASE Propagate: Then Ci = c#j : k and the conditions for ωr Propagate
hold.

Consider the derivation Di+1 constructed by exhaustively applying ωr Propa-
gate to given the rule and active constraint until no further application is possible.

Di+1 = Dr
i propgate Dl=1propgate ...propgate Dl=k default σr

i+1

where each subcomputation Dl is of the from

〈θ(C) ++ [c#j : k|A], Sl−1 −H3, Bl−1, T
′
l−1〉nl−1

∗ 〈[c#j : k|A], Sl, Bl, Tl〉nl

where C, H3, θ and T ′
i are defined by ωr Propagate. Here S0 = Si, B0 = Bi,

T0 = Ti, n0 = ni from σr
i . After the kth subcomputation and the Default

transition, the resulting state σr
i+1 is

〈[c#j : k + 1|A], Sk, Bk, Tk〉nk

By assumption, each Dl is call-based, hence the following are ωc derivations.

〈θ(C), [c#j : k|A′], Sl−1 −H3, Bl−1, T
′
l−1〉nl−1

∗ 〈�, [c#j : k|A′], Sl, Bl, Tl〉nl

The resulting state after executing each of these (call-based) subcomputations is
therefore 〈�, [c#j : k|A′], Sk, Bk, Tk〉nk

.

5.3. EQUIVALENCE OF ωC AND ωR 105

We observe that we can apply ωc Propagate to σc
i and arrive at the state

σc
i+1 = 〈c#j : k + 1, A′, Sk, Bk, Tk〉nk

by using the sequence of subcomputations defined above. Hence Di+1 is also
call-based.
CASE Default: Then C = c#j : k and no other transitions is applicable to σr

i .
Hence

σr
i+1 = 〈[c#j : k + 1|A], Si, Bi, Ti〉ni

and
σc

i+1 = 〈c#j : k + 1, A′, Si, Bi, Ti〉ni

after applying ωc Simplify or Propagate (depending on whether occurrence k
deletes the active constraint or not). Hence Di+1 is also refined.

Therefore ωc derivations D which satisfy our conditions are call-based. ⊓⊔

The following is similar to the previous lemma.

Lemma 8 All derivations D of the form

〈[C|A], S, B, T 〉n
∗ 〈A, S ′, B′, T ′〉n′ = σf

(where C can be a built-in, CHR, numbered or active constraint) are call-based if

1. σf is the only state in D of that form; and

2. and all subcomputations are call-based.

Proof. Direct proof. We can divide up D as follows.

σ = 〈[C|A], S, B, T 〉n
∗ 〈[C ′|A], S ′′, B′′, T ′′〉n′′ = σ′

(solve∨drop∨simplify)
∗ σf

The first part of the derivation σ∗ σ′ satisfies the conditions for Lemma 7, and
hence is call-based. Therefore

〈C, A′, S, B, T 〉n
∗ 〈C ′, A′, S ′′, B′′, T ′′〉n′′ = σ′c

under the ωc semantics.
We consider all possible transitions applicable to σ′ (i.e. Solve, Drop or

Simplify), and show that D must be call-based.
CASE Solve: Then C ′ = c where c is a built-in constraint. Hence

σ′
solve 〈wakeup policy(S ′′, c, B′′) ++ A, S ′′, c ∧B′′, T ′′〉n′′

By assumption, the subcomputation

〈wakeup policy(S ′′, c, B′′) ++ A, S ′′, c ∧ B′′, T ′′〉n′′
∗ 〈A, S ′, B′, T ′〉n′

106 CHAPTER 5. ANALYSIS

is call-based, thus
σ′c
solve 〈�, A′, S ′, B′, T ′〉n′

Hence D is call-based.
CASE Drop: Then C ′ = c#j : k where there is no such occurrence k of predicate
c in P . Hence

σ′
drop 〈A, S ′′, B′′, T ′′〉n′′ = σf

and
σ′c
 〈�, A′, S ′′, B′′, T ′′〉n′′

after applying ωc Drop. Hence D is call-based.
CASE Simplify: Then C ′ = c#j : k and the conditions for ωr Simplify hold.
Hence

σ′
solve 〈θ(C) ++ A, S ′′ −H2 −H3 − {c#j}, B′′, T ′′′〉n′ = σ′′

where C, H2, H3, θ and T ′′′ are defined by ωr Simplify (see Definition 11). By
assumption, the subcomputation

σ′′

∗ 〈A, S ′, B′, T ′〉n′

is call-based, thus
σ′c
simplify 〈�, A′, S ′, B′, T ′〉n′

Hence D is call-based.
Therefore, all such derivations D are call-based. ⊓⊔

This lemma is similar (but more general) than the previous two.

Lemma 9 All derivations D of the form

〈A ++ A′, S, B, T 〉n
∗ 〈A′, S ′, B′, T ′〉n′ = σf

(where A contains only built-in or CHR constraints) are call-based if

1. σf is the only state in D of that form; and

2. all subcomputations are call-based.

Proof. By induction.
Base case: Derivations containing no ωr transitions, i.e. A = [], thus 〈A ++

A′, S, B, T 〉n = 〈A′, S ′, B′, T ′〉n′ and so it immediately follows that 〈A′, A′′, S, B, T 〉n
= 〈A′, A′′, S ′, B′, T ′〉n′ which is a trivial ωc derivation.

Induction step: Suppose that Di is call-based for all derivations Di of the
following form

〈Ai ++ A′, Si, Bi, Ti〉ni

∗ 〈A′, S ′, B′, T ′〉n′

where the length of Ai is i, and Di satisfies the same conditions as D. We show
the same is true for all similarly defined derivations Di+1. Note Ai+1 = [C|Ai] for
some C.

5.3. EQUIVALENCE OF ωC AND ωR 107

Let the first state in Di+1 be 〈[C|Ai], Si+1, Bi+1, Ti+1〉ni+1
. Let Dc

i be the ωc

derivation of the form

〈Ai, A
′′, Si, Bi, Ti〉ni

∗ 〈A′, A′′, S ′, B′, T ′〉n′

that exists because Di is call-based.

By Lemma 8 the following is also a call-based derivation:

〈C, A′′, Si+1, Bi+1, Ti+1〉ni+1

∗ 〈�, A′′, Si, Bi, Ti〉ni
(5.13)

Consider the call-based state

σc
i+1 = 〈[C|Ai], A

′′, Si+1, Bi+1, Ti+1〉ni+1

then

σc
i+1 goal 〈Ai, A

′′, Si, Bi, Ti〉ni

by using the subcomputation in (5.13). Thus we have constructed a derivation
Dc

i+1 of the required form to show that Di+1 is call-based.

Therefore, all derivations D which satisfy our conditions are call-based. ⊓⊔

The final lemma is equivalent to the previous one, except the additional as-
sumptions have been removed.

Lemma 10 All ωr derivations D, of the form

〈A ++ A′, S, B, T 〉n
∗ 〈A′, S ′, B′, T ′〉n′

where A contain only built-in or CHR constraints, are call-based.

Proof. By induction over subcomputations.

Base Case: D0 has no subcomputations, then by Lemma 9 all possible D0 are
call-based.

Induction Step: Suppose that for all ωr derivations Di where the maximum
depth of nested subcomputations of Di is less than or equal to i, are call-based.
Then we show that similarly defined Di+1, which has at least one Di subcompu-
tation, is also call-based. This also immediately follows from Lemma 9, since all
subcomputations for Di+1 are call-based by construction.

Therefore all ωr derivations D, of the form

〈A ++ A′, S, B, T 〉n
∗ 〈A′, S ′, B′, T ′〉n′

are call-based. ⊓⊔

108 CHAPTER 5. ANALYSIS

5.3.3 Main Result

Theorem 4 (Equivalence of Semantics) For an initial goal G;

〈G, ∅, true, ∅〉1
∗ 〈[], S, B, T 〉n

under the refined semantics iff

〈G, [], ∅, true, ∅〉1
∗ 〈�, [], S, B, T 〉n

under the call-based semantics.

Proof. Immediately follows from Lemma 6 and Lemma 10. ⊓⊔

5.4 Abstract Interpretation Framework

In this section we present the generic abstract interpretation framework for CHRs.
The framework for CHRs is based on an abstraction of the call-based operational
semantics given in the Section 5.2. Instead of a concrete state, an abstract state
is used. Similarly, abstract transition rules are used instead of concrete ones.

5.4.1 Abstract State

Every instance of the abstract interpretation framework should define a domain
Σa of abstract states. The abstract domain Σa has to be a lattice with partial
ordering �, least upper bound ⊔ and greatest lower bound ⊓ operations.

Furthermore an abstraction function α has to be defined from a concrete state
σ, as defined in Section 5.2, to an abstract state s and a concretisation function
γ from an abstract state to a set of concrete states.2 It should be possible to
determine from the abstract state whether it is a final state, i.e. with an empty
goal �.

5.4.2 Abstract Transitions

The abstract domain must provide the following abstract operations correspond-
ing to the transitions in the call based semantics: AbstractSolve, AbstractActi-

vate, AbstractReactivate, AbstractDrop, AbstractSimplify, AbstractPropagate and
AbstractGoal. These abstract operations are abstractions of the transition rules
defined by the call-based operational semantics of CHR, as given in Section 5.2.

With the exception of AbstractSimplify, the abstract transitions are transitions
of the form Σa Σa. In order for the abstract transition rules to be consistent
abstractions of the concrete transition rules, we impose the connection depicted
below:

2Typically γ is defined in terms of α, e.g. γ(s) = {σ|α(σ) = s}.

5.4. ABSTRACT INTERPRETATION FRAMEWORK 109

σ1

α

��

 σ2

s1 s2

γ

OO

In other words, if σ1 σ2 then if α(σ1) s under the abstract semantics, we
have that σ2 ∈ γ(s).

The AbstractSimplify transition is of the form Σa Σa∪(Σa×Σa), We denote
Σa ∪ (Σa × Σa) as answers which is defined as:

answers ::= one(Σa) | two(Σa, Σa)

Its meaning is clear, there are either one or two possible resulting states. The
following conditions must hold: for all concrete states σ1 and σ2 such that
σ1 simplify σ2 we have that

• if α(σ1)AS one(s) then σ2 ∈ γ(s); and

• if α(σ1)AS two(s1, s2) then σ2 ∈ γ(s1) or σ2 ∈ γ(s2).

The way multiple resulting states are combined by the framework is discussed
below.

5.4.3 The Generic Abstract Semantics

Here we explain the generic semantics of the framework, based on the analysis-
specific implementations of the abstract domain and abstract transition rules.

The concrete operational semantics specify that a program starts from an
initial state and transition rules are applied until a final state is reached. In the
following we describe what initial state is used by the framework and how the
final state is obtained by applying abstract transition rules. In particular the
issues of nondeterminism are discussed.

Generic initial state

For any CHR program, an infinite number of concrete initial states are possible,
namely any 〈G, [], ∅, ∅, ∅〉1 where G is any finite list of CHR and built-in con-
straints. This infinite number of initial states may lead to an infinite number of
abstract states, depending on the definition of α.

One approach for handling an infinite number of initial states is to use the
following fix-point computation. Say {ci|1 ≤ i ≤ n} are all the possible distinct
abstract CHR and built-in constraints, then starting from abstract state s0 =
α(〈�, [], ∅, true, ∅〉n), the final state sf is sk, where:

sj =
⊔

{si
j|new goal(sj−1, ci)

∗ si
j ∧ final(si

j) ∧ 1 ≤ i ≤ n}

for j > 0 and k is the smallest integer such that sk = sk+1. In the above formula,
new goal is the function that replaces the empty goal in a final abstract state with
a new goal ci, and final is a test that succeeds if the given state is a final state.
This approach only works if the number of abstract built-in constraints is finite.

110 CHAPTER 5. ANALYSIS

Transition application

The generic framework applies the abstract transitions on an initial state until a
final state is reached. For most abstract states, the result of applying a transition
is another single abstract state, so the framework’s task is straightforward. The
AbstractSimplify is an exception, as already mentioned in Section 5.4.2.

It is the framework’s task to take the determinism into account and compute
the appropriate results from the two alternate possibilities. Consider an abstract
state s0 where the AbstractSimplify transition applies. If s0 AS one(s1) then s1

is the resulting state. If s0 two(s1, s2) then there are two possible results. In
order to find a least upper bound we must extend the states to final states and
then build the least upper bound. The framework then computes the following
final state s∗ for s0:

s∗ =

s1 if s0 AS one(s1)
s∗1 ⊔ s∗2 if s0 AS two(s1, s2)

and s1
∗ s∗1, s2

∗ s∗2

withAS an application of the AbstractSimplify Rule.

Nondeterminism in the Simplify and Propagate transitions

While the above accounts for the nondeterminism in simplification matching
caused by abstraction, it does no account for the inherent nondeterminism of
these transitions in the concrete semantics.

Namely, for a simplification transition, if more than one combination of part-
ner constraints are possible, the concrete semantics do not specify what particular
combination is chosen. To account for this nondeterminism the formulation of the
AbstractSimplify transition should capture all possible concrete transitions. In par-
ticular, if for concrete state σ there n different possible resulting states σ1, . . . , σn,
then α(σ)AS one(s) or α(σ)AS two(s,) such that

⊔n
i=1 α(σi) � s.

Similarly, for a propagation transition, multiple combination transitions are
possible. In addition, for a propagation transition, multiple applications are pos-
sible in a sequence. However, the order of the sequence is not specified by the
concrete semantics either. Hence, an abstract propagation transition has to cap-
ture all possible partner combinations and all possible sequences in which they
are dealt with.

Nondeterminism in the Solve transition

The nondeterminism inherent in the concrete Solve transition lies in the order
the woken up constraints (the ones chosen by the wakeup policy) are executed: all
possible orderings are allowed. An abstract domain has to provide an abstraction
that takes into account all possible orderings.

First, the abstraction of the wakeup policy itself must be considered. Usually
the abstraction over approximates the set of constraints that are woken up. One

5.5. LATE STORAGE ANALYSIS 111

possible safe approximation is to wakeup all potentially non-fixed constraints.
In HAL, we can use mode information to decide which constraints are always
fixed/ground at runtime, i.e. when all arguments to the constraint have mode
‘in’. We will assume the existence of a test is ground(c), which succeeds if c must
be ground. We define the default abstract wakeup policy as

wakeup policy(S) = {c | c ∈ S ∧ ¬is ground(c)}

where S is the abstract store.3

If the abstract wakeup policy wakes up a non-empty set of constraints during
a AbstractSolve, then the order these constraints are executed must be considered.
One approach would be, if the abstract domain permits, to compute the final state
so for all o ∈ O with O the set of all possible orderings and to combine these final
states to a single final state s as follows: s =

⊔

o∈O so. However, this requires
sufficiently concrete information about the number of woken up constraints in the
abstract domain. Typically the abstract domain cannot provide any quantitative
bound on the number of woken up constraints. Hence an infinite number of
orderings are possible: all possible permutations of constraint sequences of any
integer length.

A possible finite approximation of this infinite number of possibilities is to
perform a fix-point computation similar to the one used for the initial goal. Say
{ci|1 ≤ i ≤ n} are all the possible distinct abstract CHR constraints woken up by
the abstract wakeup policy, then starting from abstract state s0, the final state
sf after waking up all constraints in any quantity is sk, where:

sj =
⊔

{si
j|new goal(sj−1, ci)

∗ si
j ∧ final(si

j) ∧ 1 ≤ i ≤ n}

for j > 0 and k is the smallest integer such that sk = sk+1. This generic approach
is illustrated in the functional dependency analysis (see Section 5.6). Due to
its generality, this approach may cause a huge loss of precision as well as an
exponential number of intermediate states. Hence, in practice, better domain
specific techniques should be studied.

5.5 Late Storage Analysis

In this section we illustrate the use of the abstract interpretation framework for
CHR with a CHR-specific analysis: late storage. This is a useful analysis that
drive some CHR optimisations, which are discussed in Chapter 7.

3This abstract wakeup policy does not take into consideration the built-in constraint used
in the AbstractSolve, nor the abstract built-in store. Of course, if the domain permits, a more
accurate abstract wakeup policy which takes these into consideration may be possible.

112 CHAPTER 5. ANALYSIS

5.5.1 The Observation Property

Late storage analysis returns information about what CHR constraints are ob-
served during a given subcomputation. We formally define the property of ob-
served as follows.

Definition 28 (Observed) An identified constraint c#i is observed in a sub-
computation D if there exists a transition in D, or any subcomputation of D, of
any of the following forms:

1. There exists a transition

〈c′, A, S, B, T 〉n solve 〈�, A, S ′, B′, T ′〉n′

and c#i ∈ wakeup policy(S, c, B)

2. There exists a transition

〈c′#i′ : j, A,⊎H1 ⊎H2 ⊎H3 ⊎ S, B, T 〉n simplify 〈�, A, S ′, B′, T ′〉n′

where H1, H2 and H3 are the constraints from the store that match H ′
1,

H ′
2 and H ′

3 from the (renamed copy of the) rule (see Definition 23), and
c#i ∈ H1 ∪H2 ∪H3.

3. There exists a transition

〈c′#i′ : j, A, S, B, T 〉n propagate 〈G, A, S, B, T 〉n

which has at least one subcomputation with H1l, H2l and H3l from Sl−1 (see
Definition 23), and c#i ∈ H1l ∪H2l ∪H3l

⊓⊔

Informally, a constraint in the constraint store is observed, if it is reactivated by
a built-in constraint or if it serves as a matching partner to an active constraint.

Observation is an interesting property because if a constraint c#i remains
unobserved during a derivation D, we can construct a new derivation D′ by
removing c#i from the CHR store of all states in D and subcomputations of D.
Since c#i does not affect the applicability of any transitions (by definition), D′

is a valid ωc derivation.
One application for this information is program optimisation. If the compiler

knows that any subcomputation for the first occurrence (of some constraint)
will not observe the active constraint, then the compiler can delay inserting the
constraint in the store to the next occurrence. This is opposed to the basic
compilation, which always inserts active constraints in the top-level predicate.
We refer to this as the late storage optimisation, which lends its name to the late
storage analysis of this section. The advantage of late storage is that if the active
constraint is deleted before it has been inserted into the store, we have saved the

5.5. LATE STORAGE ANALYSIS 113

cost of an insertion and deletion. The implementation of this optimisation will
be discussed later in Section 7.3.2.

To correctly define the analysis of observation as an abstract interpretation
we have to extend the call-based operational semantics to make this visible. We
will only be interested in finding the observed occurrences of constraints in the
activation stack.

Definition 29 We denote an observed occurrence c#i : j by marking it with a
star ∗, e.g. c#i : j∗, and define

obs(c#i : j) = c#i : j∗

obs(c#i : j∗) = c#i : j∗

obs([], S) = []
obs([c#i : j|G], S) = [obs(c#i : j)|obs(G, S)] c#i ∈ S
obs([c#i : j|G], S) = [c#i : j|obs(G, S)] c#i 6∈ S

⊓⊔

We only need to redefine the Solve, Simplify and Propagate transitions
slightly. We modify the activation stack to record which constraints have been
observed by any of these transitions.

Definition 30 (Extended Call-based Operational Semantics)
1. Solve

〈c, A, S, B, T 〉Vn 〈�, A′, S ′, B′, T ′〉Vn′

where c is a built-in constraint. If D |=S ¬∃̄∅(c ∧ B), then S ′ = S, B′ = c ∧ B,
T ′ = T , n′ = n. Otherwise D |=S ∃̄∅(c ∧ B), where

〈S1, obs(A, S1), S, c ∧ B, T 〉Vn
∗ 〈�, A′, S ′, B′, T ′〉Vn′

and S1 = wakeup policy(S, c, B).
5. Simplify

〈c#i : j, A, {c#i} ⊎H1 ⊎H2 ⊎H3 ⊎ S, B, T 〉Vn 〈�, A′, S ′, B′, T ′′〉Vn′

where

〈θ(C), obs(A, H1 ∪H2 ∪H3), H1 ⊎ S, B, T ′〉Vn
∗ 〈�, A′, S ′, B′, T ′′〉Vn′

where the jth occurrence of the CHR predicate of c in a (renamed apart) rule in
P is

r @ H ′
1 \ H ′

2, dj, H
′
3 ⇐⇒ g | C

and there exists matching substitution θ is such that

c = θ(dj)
cons(H1) = θ(H ′

1)
cons(H2) = θ(H ′

2)
cons(H3) = θ(H ′

3)
D |=S B → ∃r(θ ∧ g)
id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r] 6∈ T

114 CHAPTER 5. ANALYSIS

In the intermediate transition sequence T ′ = T ∪ {id(H1) ++ id(H2) ++ [i] ++
id(H3) ++ [r]}.

If no such matching substitution θ exists then

〈c#i : j, A, S, B, T 〉Vn 〈c#i : j + 1, A, S, B, T 〉Vn

6. Propagate

〈c#i : j, A, {c#i} ⊎ S, B, T 〉Vn 〈G, Ak, Sk, Bk, Tk〉
V
nk

where the jth occurrence of the CHR predicate of c in a rule in P is

r @ H ′
1, dj, H

′
2 \ H ′

3 ⇐⇒ g | C

Let A0 = A, S0 = S ⊎ {c#i}, B0 = B, T0 = T, n0 = n. Now assume, for
1 ≤ l ≤ k and k ≥ 0, the series of transitions

〈θl(Cl), [c#i : j|A′
l−1], H1l⊎{c#i}⊎H2l⊎S ′

l−1, Bl−1, Tl−1∪{tl}〉
V
nl−1

∗ 〈�, [|Al], Sl, Bl, Tl〉
V
nl

where A′
l−1 = obs(Al−1, H1l ∪ H2l ∪ H3l), {c#i} ⊎ H1l ⊎ H2l ⊎ H3l ⊎ S ′

l−1 = Sl−1

and there exists a matching substitution θl, and a renamed copy of rule r

r @ H ′
1l, djl, H

′
2l \ H ′

3l ⇐⇒ gl | Cl

such that

c = θl(djl)
cons(H1l) = θl(H

′
1l)

cons(H2l) = θl(H
′
2l)

cons(H3l) = θl(H
′
3l)

D |=S B → ∃r(θl ∧ gl)
tl = id(H1l) ++ [i] ++ id(H2l) ++ id(H3l) ++ [r] 6∈Tl−1

Furthermore, for k + 1 no such transition is possible.
The resulting goal G is either G = � if D |=S ∃̄∅(¬Bk) (i.e. failure occurred)

or G = c#i : j + 1 otherwise.
2. Activate, 3. Reactivate, 4. Drop and 7. Goal
Same as Definition 23. ⊓⊔

Example 49 When examining the derivation shown in Example 48 the altered
versions of the transitions above make one change. After the Simplify transition
in the derivation for s, the p in the store is observed, so the new state is

Si 〈�, [p#1 : 4∗], {q#2}〉4

⊓⊔

5.5. LATE STORAGE ANALYSIS 115

5.5.2 Abstract Domain

We formally define the abstraction function αls for late storage analysis as follows.

Definition 31 Let c be a built-in constraint and p a CHR constraint, and S a
set or multiset of CHR constraints, then

αls(c) = builtin (c built-in)
αls(p(t1, . . . , tn)) = p

αls(p(t1, . . . , tn)#i) = p
αls(p(t1, . . . , tn)#i : j) = p :j

αls([]) = []
αls([c|G]) = [αls(c)|αls(G)]

αls(S) = {αls(c)|c ∈ S} (S set)
αls(〈G, A, , , 〉) = 〈αls(G), unobserved(A)〉

where unobserved(A) = A− observed(A), and observed(A) is defined as

observed(A) = {p | p(t1, . . . , tn)#i : j∗ ∈ A}

⊓⊔

The abstract state used for this analysis is rather simple. We abstract CHR con-
straints by their predicate names, and built-in constraints as simply the special
predicate name builtin.4 We abstract non-active CHR constraints by keeping
the predicate. We abstract active CHR constraints by removing the identity num-
ber, but we still keep the occurrence number. We eliminate observed constraints
from the execution stack using the auxiliary function unobserved.

The partial ordering on states is 〈G, A〉 �ls 〈G
′, A′〉 iff G = G′ and A′ ⊆ A.

Clearly the abstract domain forms a lattice with the ordering relation �ls. The
least upper bound operator ⊔ls can be defined as follows:

〈G, A1〉 ⊔ls 〈G, A2〉 = 〈G, (A1 ∩ A2)〉

The concretisation function γls is defined as γls(s) = {σ | αls(σ) �ls s}. Note
that the analysis is imprecise, i.e. it only tracks which constraints are possibly
observed on the constraint predicate level.

5.5.3 Abstract Transitions

Each abstract operation must provide two things:
(a) whether it is applicable at the current state s0, and
(b) the resulting state afterwards s.

4We assume that no CHR constraint uses the special predicate name builtin.

116 CHAPTER 5. ANALYSIS

Definition 32 (Abstract Transitions for Late Storage)
1. AbstractSolve

s0 = 〈builtin, A〉

Let S1 = wakeup policy(S), where S is the set of all possible abstract CHR con-
straints (which represents the weakest possible abstraction for the CHR store).
Then

A0 = A− S1

sj = 〈�, Aj〉 = ⊔ls{s
i
j | 〈pi, Aj−1〉

∗ si
j ∧ final(si

j) ∧ 1 ≤ i ≤ n}, j ≥ 1

where pi are predicates of all potentially nonground constraints, i.e. those that
satisfy is ground(pi). Then

s = 〈�, Ak〉

2. AbstractActivate and 3. AbstractReactivate

s0 = 〈c, A〉 〈c :1, A〉 = s

Applicable if c is a CHR constraint (but not active).
4. AbstractDrop

s0 = 〈c :j, A〉 〈�, A〉 = s

Applicable if no occurrence j exists for CHR predicate c.
5. AbstractSimplify

s0 = 〈c :j, A0〉

Applicable if occurrence j is a simplification occurrence

r @ H ′
1 \ H ′

2, dj, H
′
3 ⇐⇒ g | C

Let O = αls(H
′
1 ∪H ′

2 ∪H ′
3) and let A1 = A0 − O. Assume that

〈αls(C), A1〉
∗ 〈�, A2〉

Then s1 = 〈�, A2〉.
We consider the following two cases for deriving the resulting state s.

• If rule r is an unconditional simplification rule (i.e. the guard is true) of
the form

p(x1, ..., xn)j ⇐⇒ C

Rule application only fails when the active constraint is not in the constraint
store, this leads to a state 〈�, A0〉 which when lubbed with s1 gives s1.
Hence s = one(s1).

• Otherwise

s = two(s1, 〈p : (j + 1), A0〉)

5.5. LATE STORAGE ANALYSIS 117

6. AbstractPropagate

s0 = 〈c :j, A0〉

Applicable if occurrence j is a propagation occurrence

r @ H ′
1, dj, H

′
2 \ H ′

3 ⇐⇒ g | C

Let O = αls(H
′
1 ∪H ′

2 ∪H ′
3), A1 = A0 −O. Let A2 = A1 ∪ {αls(c)}. Assume

〈αls(C), A2〉
∗ 〈�, A3〉

Let A4 = A3 \ ({αls(c)} \ A1), removing αls(c) from the execution stack if it was
not present initially. Then the result of the rule is

s = 〈c :j + 1, A4〉

Note that the active constraint c may have been observed while executing C
iff c 6∈ A3.

Note here we treat the rule as if it always could have fired. This is clearly
safe.

7. AbstractGoal

s0 = 〈[c|G], A〉 〈G, A′〉 = s

where

〈c, A〉∗ 〈�, A′〉

⊓⊔

5.5.4 Example Analysis

Consider the execution of the goal p with respect to the following (numbered)
CHR program

p1 ==> q.

p2, t1 <=> r.

p3, r1 ==> true.

p4 ==> s.

p5, s1 <=> true.

The example derivation is shown in Figure 5.2. For simplification rules we
show the states s1 and s2 in the answer two(s1, s2) after lines labelled first and
second, and then give the two derivations that lead to the lub.

Note that we observe the p only in the derivation for s hence we can safely
delay storage of p until just before the execution of this body.

118 CHAPTER 5. ANALYSIS

〈p, ∅〉
AA 〈p :1, ∅〉
AP 〈p :2, ∅〉 〈q, {p}〉∗ 〈�, {p}〉

first
ASi 〈�, ∅〉 〈r, ∅〉∗ 〈�, ∅〉

second
¬ASi 〈p :3, ∅〉
AP 〈p :4, ∅〉 〈�, {p}〉∗ 〈�, {p}〉
AP 〈p :5, ∅〉 〈s, {p}〉∗ 〈�, ∅〉

first
ASi 〈�, ∅〉 〈�, ∅〉∗ 〈�, ∅〉

second
¬ASi 〈p :6, ∅〉
ADp 〈�, ∅〉

lub
⊔ 〈�, ∅〉

lub
⊔ 〈�, ∅〉

〈q, {p}〉
AA 〈q :1, {p}〉
ADp 〈�, {p}〉

〈r, ∅〉
AA 〈r :1, ∅〉
AP 〈r :2, ∅〉 〈�, {r :1}〉∗ 〈�, {r :1}〉
ADp 〈�, ∅〉

〈s, {p}〉
AA 〈s :1, {p}〉

first
ASi 〈�, ∅〉 〈�, ∅〉∗ 〈�, ∅〉

second
¬ASi 〈s :2, {p}〉
ADp 〈�, {p}〉

lub
⊔ 〈�, ∅〉

Figure 5.2: Example abstract derivation for late storage analysis

5.6. FUNCTIONAL DEPENDENCIES 119

5.6 Functional Dependencies

5.6.1 The Functional Dependency Property

A functional dependency is a relationship between the arguments of a CHR con-
straint. The notation we use for functional dependencies is

p(x1, ..., xn) :: {xi0 , ..., xil} {xj0 , ..., xjm
}

which indicates that the arguments {xi0 , ..., xil} functionally determine the value
of arguments {xj0 , ..., xjm

}, where both {xi0 , ..., xil} and {xj0, ..., xjm
} are subsets

of {x1, ..., xn}. We sometimes refer the domain {xi0 , ..., xil} as the key for the
functional dependency. Several optimisations discussed later in this thesis rely
on functional dependencies, so an accurate analysis is important.

The key to detecting functional dependencies is the following utility function,
which counts the number of constraints satisfying a particular form in the given
CHR store.

Definition 33 Given a functor/arity of a constraint p/n, a set of positive inte-
gers {i0, ..., ij}, CHR store S and a built-in store B, we define function
count(p, n, {i0, ..., ij}, S, B) to be the following. Let S ′ ⊆ S be the maximal (in
size) subset of S such that all p(x1, ..., xn)#i ∈ S ′ and p(y1, ..., yn)#i′ ∈ S ′ satisfy

D |=S B → (xi0 = yi0 ∧ ... ∧ xij = yij)

Then count(p, n, {i0, ..., ij}, S, B) = |S ′|. ⊓⊔

Example 50 For example, given the following CHR store

S = {p(1, 2)#1, p(1, 3)#2, p(1, 4)#3}

then count(p, 2, {1}, S, true) = 3 since there is at most three constraints which
share the same first argument. Similarly, count(p, 2, {2}, S, true) = 1 since there
is at most one constraint which share the same second argument. ⊓⊔

We can formally define a functional dependency in terms of the count function
as follows.

Definition 34 (Set Semantic Functional Dependency) Given a CHR store
S, and built-in store B, we say constraint p/n has a set semantic functional de-
pendency

p(x1, ..., xn) :: {xi0 , ..., xij} {x1, ..., xn}

if count(p, n, {i0, ..., ij}, S, B) ≤ 1. ⊓⊔

Example 51 Consider the CHR store S from Example 50. Then the set seman-
tic functional dependency p(x, y) :: {y} {x, y} holds since each possible value

120 CHAPTER 5. ANALYSIS

of y is associated with at most one value of {x, y} in the store. For example,
y = 3 is only associated with {1, 3} from the constraint p(1, 3)#2, etc.

On the other hand, the set semantic functional dependency p(x, y) :: {x}
{x, y} does not hold since there exists a value for x, namely x = 1, which is
associated with multiple values for {x, y}, i.e., {1, 2}, {1, 3}, etc. ⊓⊔

This definition is only concerned with full functional dependencies, i.e. the
domain of the functional dependency determines all other arguments. A more
general functional dependency only needs to determine some subset of all ar-
guments greater than the domain, e.g., p(x, y, z) :: {x} {x, y} is a non-full
functional dependency. Currently, we only analyse for full functional dependen-
cies. Some optimisations, such as indexing, require full functional dependencies.

Also, our definition differs from the usual mathematical definition of a func-
tional dependency. Strictly speaking, a functional dependency is a relationship
between arguments of constraints, namely what arguments determine the values
of other arguments. In a set semantic functional dependency, we require both a
traditional functional dependency, and the requirement that there is at most one
copy of a constraint with the same key in the CHR store. For example, the CHR
store

{p(1, 2)#1, p(1, 2)#2}

has a functional dependency between the first and second arguments of the p

constraint, because given the value to the first argument we can determine the
value of the second. However, there is no set semantic functional dependency,
because two constraints with the same first argument simultaneously appear in
the store at once. Set semantic functional dependencies are stronger than the tra-
ditional functional dependencies. All optimisations discussed later in this thesis
specifically rely on set semantic functional dependencies, hence the distinction.
For brevity, we will often refer “set semantic functional dependencies” as simply
“functional dependencies” from now on. We will also occasionally use the term
set semantic to indicate that only one copy of the constraint is present in the
store at one time. This is equivalent to the set semantic function dependency
p(x̄) :: x̄ x̄.

5.6.2 Abstract Domain

In this section we describe the abstract domain for functional dependency anal-
ysis. Also the partial ordering over abstract states, and the least upper bound
operator is explained.

The abstract store is a set of lookups, which are defined by the following lookup
function.

Definition 35 (Lookup Function) The lookup function lookup(p, n, K), where
p is a predicate symbol, n is the arity of p and K ⊆ {1, ..., n} a set of integers, is

5.6. FUNCTIONAL DEPENDENCIES 121

defined as follows.

lookup(p, n, K) = p(lookup(1, K), ..., lookup(n, K))
lookup(i, K) = ∗ i ∈ K
lookup(i, K) = i 6∈ K

⊓⊔

Consider the constraint p/2, then the set of possible lookups are

{p(∗, ∗), p(∗,), p(, ∗), p(,)}

Note that lookup(p, n, K) is isomorphic to K, and its usage is mainly syntactic.
The concept of a lookup will become relevant to CHR optimisation. The set of
arguments represented by the ∗s are referred to as the key of the lookup.

We can now define an abstraction function αfd−S over the CHR store.

Definition 36 Let S be a CHR store, and let p/n be the functor/arity of a
CHR constraint of interest (e.g. any CHR constraint appearing in program P).
Let K ⊆ {1, ..., n} be a set of integers, let c = lookup(p, n, K), let count =
count(p, n, K, S, B) and let count′ = count(p, n, K, S ′, B) where S ′ is defined as
follows. Let p(x1, ...xn)#i : j be the first active constraint in A with predicate
p, then S ′ = S − {p(x1, ...xn)#i}, otherwise (if no such active constraint exists)
S ′ = S. Then

• c0 ∈ αfd−S(A, S, B) if count = 0

• if count = 1 then

– c1a ∈ αfd−S(A, S, B) if count′ = 0

– c1 ∈ αfd−S(A, S, B) otherwise

• if count = 2 then

– c2a ∈ αfd−S(A, S, B) if count′ = 1

– c∗ ∈ αfd−S(A, S, B) otherwise

• c∗ ∈ αfd−S(A, S, B) otherwise.

We define αfd−S(A, S, B) to be the smallest possible set satisfying the above con-
ditions. ⊓⊔

We refer the superscript associated with each lookup as the counter for that
lookup. The counters 0, 1 and ∗ are fairly intuitive, as they mean that there is at
most 0, 1 or many constraints in the CHR store with the same key as the lookup.
The special counters, 1a and 2a are slightly more complicated. The counter 1a is
equivalent to 1 except that if we were to remove the top-most active constraint
of the same functor/arity from the concrete store, then the new counter will be

122 CHAPTER 5. ANALYSIS

0. Similarly, the counter 2a is equivalent to 2 (although we treat 2 the same as
∗), but if the top-most active constraint were to be removed, then the counter
will be 1. We shall refer to these special counters as marked counters, and other
counters as unmarked counters. Marked counters are necessary since functional
dependency analysis relies on improving the counters (i.e. moving to a lower
counter) if possible.

Example 52 Consider the following CHR store from the database program
from Example 15.

S = {entry(key, cat)#2, entry(key, dog)#1}

Assume that the built-in store is trivial, i.e. B = true, and the given execution
stack is A = [entry(key, cat)#2 : 1], then

S ′ = {entry(key, dog)#1}

hence

αfd−S(A, S, B) = {entry(∗, ∗)1, entry(∗,)2a, entry(, ∗)1, entry(,)2a}

Both entry(∗, ∗) and entry(, ∗) have the counter 1, since there is at most one
entry that shares the same key {1, 2} or {2}. One the other hand, both entry(∗,)
and entry(,) have the marked counter 2a. This is because there are two entry

constraints that share the same key {1} or ∅, however there would be only one
such constraint if we were to remove entry(key, cat) (the current active con-
straint) from consideration.

If the given activation stack had been empty, i.e. A = [], then S = S ′ hence

αfd−S(A, S, B) = {entry(∗, ∗)1, entry(∗,)∗, entry(, ∗)1, entry(,)∗}

There are still 2 constraints sharing the same key {1} or ∅. However there is
no current active constraint to remove from consideration, thus the counter for
entry(∗,) and entry(,) is now ∗. ⊓⊔

We can now define the main abstraction function for set semantic functional
dependencies.

Definition 37 (Abstraction Function) We define function αfd as follows

αfd(〈c, A, S, B, 〉) = 〈αfd−c(c), αfd−S([c|A], S, B)〉

where αfd−c is defined as

αfd−c(�) = �
αfd−c(c) = builtin (c built-in)
αfd−c(p(, ...,)) = p
αfd−c(p(, ...,)#i) = p#
αfd−c(p(, ...,)#i : j) = p :j
αfd−c([c|G]) = [αfd−c(c)|αfd−c(G)]

⊓⊔

5.6. FUNCTIONAL DEPENDENCIES 123

Example 53 Consider the following execution state σ for the database program
in Example 15.

〈entry(key, cat)#2 : 1, [], {entry(key, cat)#2, entry(key, dog)#1}true, ∅〉3

The CHR and built-in stores are the same as in Example 52. Then

αfd(σ) = 〈entry :1, {entry(∗, ∗)1, entry(∗,)2a, entry(, ∗)1, entry(,)∗}〉

⊓⊔

We also require a partial order on abstract states.

Definition 38 (Partial Ordering) Let s0 = 〈G0, S0〉 and s1 = 〈G1, S1〉, then
s0 �fd s1 iff G0 = G1 and S0 �fdS

S1. The partial order �fdS
over abstract CHR

stores is defined as follows. If for all cn ∈ S0, there exists a cm ∈ S1 (with the
same c), and cn � cm, then S0 �fdS

S1. Here we define

c0 ≺ c1a ≺ c1 ≺ c2a ≺ c∗

Otherwise �fdS
is undefined if S0 and S1 contain different lookups.5 ⊓⊔

We can use the definition of the partial ordering to define the concretisation
function of this abstract domain as γfd(s) = {σ | αfd(σ) �fd s}.

The least upper bound operation over abstract stores is defined as follows.

Definition 39 (Least Upper Bound) Let s0 = 〈G0, S0〉 and s1 = 〈G1, S1〉,
then s0 ⊔fd s1 = S0 ⊔fd−S S1 if G0 = G1, otherwise it is undefined. The operator
⊔fd−S over abstract CHR stores is defined as follows. If for all cn ∈ S0, there
exists a cm ∈ S1 (with the same c), then max�fd−S

(cn, cm) ∈ S0 ⊔fd−S S1. The set
S0⊔fd−S S1 must be the minimal set satisfying the above condition. Here, function
max�fd−S

is a maximum function using the ordering �fd−S given in Definition 38.
Otherwise ⊔fd−S is undefined if S0 and S1 contain different lookups. ⊓⊔

5.6.3 Abstract Transitions

Like before, the abstract transitions decide whether the transition is applicable
to the current state s0, and define the resulting state s afterwards.

We can now define the abstract transitions for functional dependency analysis.

Definition 40 (Abstract Transitions for Functional Dependencies)
1. AbstractSolve

s0 = 〈builtin, S〉

5In the abstract interpretation, S0 and S1 will always have the same set of lookups.

124 CHAPTER 5. ANALYSIS

Let Sg be the maximal subset of S such that for all p(, ...) ∈ Sg we have
that is ground(p) holds. Note that the underscore superscript, e.g. c , is allowed
to match any counter for c. Let Sng = S − Sg, then

S0 = Sg ⊎multi(Sng)
sj = 〈�, Sj〉 = ⊔fd{s

i
j | 〈pi#, Sj−1〉

∗ si
j ∧ final(si

j) ∧ 1 ≤ i ≤ n}, j ≥ 1

where pi are predicates of all potentially nonground constraints. Let k be the
smallest positive integer such that sk = sk−1. Then s = 〈�, Sk〉.

Adding a built-in constraint, e.g. an equation to the built-in store has the
potential to increase the counts of lookups for nonground constraints arbitrarily.
Therefore, we use function multi on the nonground lookups, which overwrites any
count by ∗.

multi(S) = {c∗ | c ∈ S}

In effect, we are assuming the weakest possible information for these lookups.
2. AbstractActivate

s0 = 〈p, S〉 〈p :1, increase(p, S)〉 = s

A new constraint is added to the store, hence we must increase the counts for p.
Here we define

increase(p, S) =

{

c′
∣

∣

∣

∣

c ∈ S ∧
if functor(c) = p then c′ = increase(c)
otherwise c′ = c

}

where
increase(c0) = c1a

increase(c1a) = c2a

increase(c1) = c2a

increase(c2a) = c∗

increase(c∗) = c∗

Notice that the resulting counts are always marked (except for ∗).
3. AbstractReactivate

s0 = 〈p#, S〉 〈p :1, S〉 = s

Unlike AbstractActivate, the new active constraint is already present in the
store, hence there is no need to call function increase on the abstract store.
4. AbstractDrop

s0 = 〈p :j, S〉 〈�, unmark(p, S)〉 = s

No such occurrence j for predicate p.
Because the active constraint for p no longer exists, we must unmark all of

the counters for p.

unmark(p, S) =

{

c′
∣

∣

∣

∣

c ∈ S ∧
if functor(c) = p then c′ = unmark(c)
otherwise c′ = c

}

5.6. FUNCTIONAL DEPENDENCIES 125

where
unmark(c0) = c0

unmark(c1a) = c1

unmark(c1) = c1

unmark(c2a) = c∗

unmark(c∗) = c∗

In effect, the (former) active constraint is now treated the same as any other
constraint in the store.
5. AbstractSimplify

s0 = 〈p :j, S〉

Let r be the rule which contains the jth occurrence of predicate p. If we
assume that the rule fired, then

〈αfd−c(C), decrease(p, S)〉∗ s1 = 〈�, S1〉

Because the active constraint has been deleted, we must decrease all of the coun-
ters for p.

decrease(p, S) =

{

c′
∣

∣

∣

∣

c ∈ S ∧
if functor(c) = p then c′ = decrease(c)
otherwise c′ = c

}

where
decrease(c0) = c0

decrease(c1a) = c0

decrease(c1) = c1

decrease(c2a) = c1

decrease(c∗) = c∗

Note that we can only alter the marked counters. Also, the resulting counts are
unmarked, since the active constraint has been deleted.

We consider the following three cases for deriving the resulting state s.

1. If rule r is of the form

p(x1, ..., xn)[\,]p(y1, ..., yn)j ⇐⇒ xi0 = yi0 ∧ ... ∧ xim = yim | C

(where occurrence j is shown).

If we assume the rule did not fire, then the resulting state is

s2 = 〈p : (j + 1), not fired(p, {i0, ..., im}, S)〉

We use function not fired to improve the counts of lookups which contain
key {i0, ..., im}, where

not fired(p, n, K, S) =

c′

∣

∣

∣

∣

∣

∣

∣

∣

c ∈ S ∧
if ∃K ′ ⊇ K such that c = lookup(p, n, K ′)

then c′ = not fired(c)
otherwise c′ = c

126 CHAPTER 5. ANALYSIS

and
not fired(c0) = c0

not fired(c1a) = c1a

not fired(c1) = c1

not fired(c2a) = c1

not fired(c∗) = c∗

We can make this improvement since if c2a were in the abstract store for
some lookup c with a key containing {i0, ..., im}, then the rule must have
fired. This kind of improvement is the essential part of functional depen-
dency analysis.

For the resulting state we have s = two(s1, s2).

2. If rule r is an unconditional simplification rule (i.e. the guard is true) of
the form

p(x1, ..., xn)j ⇐⇒ C

then s = one(s1).

3. Otherwise (r is not in any of the above forms), then

s = two(s1, 〈p : (j + 1), S〉)

6. AbstractPropagate

s0 = 〈p :j, S〉

Applicable if occurrence j is a propagation occurrence

r @ H ′
1, dj, H

′
2 \ H ′

3 ⇐⇒ g | C

Let
S0 = S
〈αfd−c(C), Sj−1〉

∗ 〈�, Sj〉 = sj

Let k be the smallest positive integer such that sk = sk−1, then

s = 〈p : (j + 1), Sk〉

7. AbstractGoal

s0 = 〈[c|G], S〉 〈G, S ′〉 = s

where
〈c, S〉∗ 〈�, S ′〉

⊓⊔

For any given program point, we can determine which functional dependencies
exist by interpreting the counts on the lookups. In general, a lookup with a count
of 1 represents a functional dependency. For example, the lookup p(∗,)1 indicates
the functional dependency p(x, y) :: {x} {x, y} holds for the given program

5.7. SUMMARY 127

point. The marked count of 2a can also represent a functional dependency if we
also consider the results of late storage analysis. If, at a given program point,
the active constraint has not been stored, then a lookup with a count of 2a can
be treated the same as a count of 1. Otherwise, a count of 2a represents no
functional dependency.

We may also derive bonus information from functional dependency analysis.
It is possible that all lookups have a count of 0 at a given program point.6 This
means that no constraint associated with these lookups can be present in the CHR
store for any corresponding concrete state. We call this property never-stored,
and some optimisations are based on it. The interpretation of 1a is analogous to
the interpretation of 2a if we take late storage into consideration: if the active
constraint has not been stored, then 1a can be treated the same as 0.

5.6.4 Example Analysis

Consider the following additional rule on the entry constraint we could add to
the database program in Example 15.

entry(X,Y)2 \ entry(X,Z)1 <=> Y=Z.

The abstract derivations for executing a single entry constraint are shown in
Figure 5.3. For brevity, we have abbreviated entry to e, and we have omitted
the subcomputations for the AbstractPropagate. In each instance, the Abstract-

Propagate does not change the abstract store. We are also assuming that the
entry constraint is a ground constraint.

After three iterations we arrive at a fixed point for the final state. The result-
ing abstract store is

{entry(∗, ∗)1, entry(∗,)1, entry(, ∗)∗, entry(, ∗)∗}

This indicates that after an entry constraint has finished being active, the set se-
mantic functional dependencies entry(X, Y) :: {X} {X, Y } and entry(X, Y) ::
{X, Y } {X, Y } hold.

5.7 Summary

In this chapter we have presented a general abstract interpretation framework
for the call-based operational semantics for CHRs. We have also presented two
instances of the framework, which determine useful information from CHR pro-
grams that will be used in later chapters of this thesis.

In order to make abstract interpretation of CHRs feasible, it was necessary
to construct a variant of the refined operational semantics. The call-based oper-
ational semantics was introduced so the number of abstract goals can be made

6Because of dependencies between lookups, if one lookup has a count of 0, then all lookups
must have a count of 0.

128 CHAPTER 5. ANALYSIS

〈e, {e(∗, ∗)0, e(∗,)0, e(, ∗)0, e(,)0}〉
AA 〈e :1, {e(∗, ∗)1a, e(∗,)1a, e(, ∗)1ae(,)1a}〉

first
ASi 〈�, {e(∗, ∗)0, e(∗,)0, e(, ∗)0, e(,)0}〉

second
¬ASi 〈e :2, {e(∗, ∗)1a, e(∗,)1a, e(, ∗)1ae(,)1a}〉
AP 〈e :3, {e(∗, ∗)1a, e(∗,)1a, e(, ∗)1ae(,)1a}〉
ADp 〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)1, e(,)1}〉

lub
⊔ 〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)1, e(,)1}〉

〈e, {e(∗, ∗)1, e(∗,)1, e(, ∗)1, e(,)1}〉
AA 〈e :1, {e(∗, ∗)2a, e(∗,)2a, e(, ∗)2ae(,)2a}〉

first
ASi 〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)1, e(,)1}〉

second
¬ASi 〈e :2, {e(∗, ∗)1, e(∗,)1, e(, ∗)2ae(,)2a}〉
AP 〈e :3, {e(∗, ∗)1, e(∗,)1, e(, ∗)2ae(,)2a}〉
ADp 〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗, e(,)∗}〉

lub
⊔ 〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗, e(,)∗}〉

〈e, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗, e(,)∗}〉
AA 〈e :1, {e(∗, ∗)2a, e(∗,)2a, e(, ∗)∗e(,)∗}〉

first
ASi 〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗, e(,)∗}〉

second
¬ASi 〈e :2, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗e(,)∗}〉
AP 〈e :3, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗e(,)∗}〉
ADp 〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗, e(,)∗}〉

lub
⊔ 〈�, {e(∗, ∗)1, e(∗,)1, e(, ∗)∗, e(,)∗}〉

Figure 5.3: Example abstract derivation for functional dependency analysis

finite. Also, transitions under the call-based semantics moved from program point
to program point, which further simplifies the framework. We presented a proof
that the call-based semantics is equivalent to the original refined semantics.

Next we presented the abstract framework itself. The framework itself is fairly
simple: starting from an initial abstract goal we continually apply abstract tran-

5.7. SUMMARY 129

sitions until a final state is reached. The only exception to this is AbstractSimplify,
which may return two states: two(s1, s2), where s1 is the state when the rule fired,
and s2 when the rule did not fire. The framework handles the split by calculating
the final state for s2, and calculating the lub with s1.

We presented two non-trivial and useful instances of the framework. The
first is late storage analysis, which determines when an active constraint needs
to be stored based on when it is first observed. The second is functional depen-
dency analysis, which attempts to discover functional dependency relationships
between arguments of constraints in the CHR store. The results from both of
these analyses will be used later in the thesis.

Not all analysis for CHRs has been formalised as instances of the framework,
and some of these analyses will be mentioned later on. These include the analysis
for continuation optimisation (see Chapter 7) and delay avoidance (see Chap-
ter 8), etc. However, these types of analysis are less complex, hence a more ad
hoc analysis is sufficient. These will be introduced as required.

130 CHAPTER 5. ANALYSIS

Chapter 6

Confluence

6.1 Introduction

The refined operational semantics is still nondeterministic, hence the property
of confluence is important. There are two sources of nondeterminism under the
refined operational semantics. The first arises from the Solve transition, where
the order in which the woken up constraints are (re)added to the execution stack
is left open.

Example 54 Consider the following state for the leq program.

〈[C = B], {leq(C, A)#2, leq(A, B)#1}, true〉5

Assume that the wakeup policy includes all non-fixed CHR constraints. Solve

requires constraints leq(C, A) and leq(A, B) to be (re)added to execution stack.
The order is arbitrary, hence

〈[leq(C, A)#2, leq(A, C)#1], {leq(C, A)#2, leq(A, B)#1}, C = B〉5

or

〈[leq(A, C)#1, leq(C, A)#2], {leq(C, A)#2, leq(A, B)#1}, C = B〉5

are equally valid states after applying Solve. ⊓⊔

In this example the choice of the states after Solve is inconsequential, because
the leq program is confluent under the refined semantics.

The other source of nondeterminism arises the Simplify and Propagate
transitions, which do not specify which partner constraints (i.e. H1, H2 and H3

from Definition 11) should be chosen for the transition (if more than one possi-
bility exists). Example 25 shows how this choice can result in two non-variant
final states.

Both sources of nondeterminism could be removed by further “refining” the
operational semantics. For example, we could impose an order on matchings for

131

132 CHAPTER 6. CONFLUENCE

Simplify and Propagate, or an order on the constraints woken up after Solve.
The advantage is that all programs are trivially confluent under a deterministic
operational semantics.

There are two main reasons against this idea. The first is that different CHR
implementations use different data structures to (efficiently) represent the store,
and this usually affects the order partner constraints are matched against the
head of a rule. By imposing an artificial order on partner constraints may have
an adverse effect on efficiency, since we have restricted or complicated the data
structures that can be used. The second reason is that it not clear how further re-
fining the semantics benefits the programmer. Many CHR programs have already
been implemented using the refined operational semantics without any additional
assumptions about orderings, etc. Therefore if a program is not confluent under
the refined semantics then this generally indicates a bug, and ideally the compiler
should detect this if possible.

We provided a theoretical result in Chapter 3 which ensures that terminating
(under ωr) and confluent (under ωt) programs are confluent under the refined
semantics. Sometimes this is useful, e.g. with the leq program, but in general
programs under the refined semantics are not confluent under the theoretical
semantics. This directly follows from the fact that the refined semantics is more
deterministic. In this chapter we look at testing for confluence under the refined
semantics alone. We propose several static analyses designed to detect non-
confluent programs. A confluence checker has been implemented in the HAL
CHR compiler, and we test it on several “large” CHR programs.

The rest of the chapter is structured as follows. Section 6.2 presents the theory
behind the confluence check. Section 6.3 shows how the confluence test can be
implemented inside a CHR compiler. Section 6.4 uses the confluence test on three
large CHR programs. Finally, we conclude.

6.2 Checking Confluence for ωr

Confluence is tested under the theoretical operational semantics by calculating
all critical pairs between rules, and showing that these critical pairs are joinable
(see Section 2.3.2 or [32, 1] for details). It is tempting to think that this could be
adapted to the refined operational semantics, e.g. by checking joinability of all
critical pairs between rules and themselves,1 however this is not the case.

Example 55 Consider the following (somewhat contrived) CHR program.

r1 @ p, q() <=> r.

r2 @ q(), q() \ r <=> true.

r3 @ r \ q() <=> true.

r4 @ r <=> true.

1Under the refined operational semantics, critical pairs between rules makes no sense, since
it is impossible to construct a state that can fire two distinct rules.

6.2. CHECKING CONFLUENCE FOR ωR 133

The following (reachable) state in analogous to the non-trivial direct common
ancestor state of r1 and itself

σ = 〈[p#3 : 1], {p#3, q(A)#2, q(B)#1}〉4

This state is reachable from the initial goal [q(B), q(A), p]. No matter the deriva-
tion chosen, this state will always be reduced to the empty state 〈[], ∅〉5, hence it
appears that the critical pair for r1 and itself is joinable. We can similarly verify
all other rules in this program.

Unfortunately, the program is still not confluent, as is easily demonstrated by
the following (reachable) state.

σ′ = 〈[p#4 : 1], {p#4, q(A)#3, q(B)#2, q(C)#1}〉5

This state is reachable from the initial goal [q(C), q(B), q(A), p]. The two possible
(distinct) final states are 〈[], {q(A)#3, q(B)#2}〉6 and 〈[], {q(B)#2, q(C)#1}〉6
because of three possible matches for q(A) in the first state. We note that state σ′

is not a non-trivial direct common ancestor state of any rule in the program. ⊓⊔

The example illustrates how extending the notion of critical pairs does not appear
to work under the refined operational semantics. Under the theoretical semantics
more critical pairs would be considered, i.e. critical pairs between different rules,
and non-confluence will be detected (e.g. consider the critical pair between rule
r1 and r3, etc.).

We present a different approach, based on the sources of nondeterminism
under the refined semantics. We will identify some conditions, which if satisfied,
guarantee confluence.

6.2.1 Nondeterminism in the Solve Transition

The first source of nondeterminism under the refined semantics occurs when de-
ciding the order on the the set of woken up constraints during a Solve transition.
To avoid this nondeterminism we will require this set to be empty.2 This is a
very common case, as it occurs when the all CHR constraints are fixed/ground at
runtime. We will generalise this slightly by imposing conditions on the wakeup
policy used by the implementation.

To formalise this we define the trivial wakeup policy that does not wakeup
any CHR constraint on a Solve transition.

Definition 41 (Trivial Wakeup Policy) Given a CHR store S, built-in con-
straint c and built-in store B, we define the trivial wakeup policy as

trivial(S, c, B) = ∅

⊓⊔

2Another possibility is to require this set to be singleton.

134 CHAPTER 6. CONFLUENCE

For trivial(S, c, B) to satisfy the definition of a wakeup policy (see Definition 10),
the constraints in S must always be fixed.3 The HAL CHR compiler determines
this information from mode declarations, i.e. a constraint will always be fixed if
each argument has the declared mode of ‘in’.

For programs that really do interact with a built-in constraint solver (e.g. the
leq solver from Example 1), we currently have no better test other than relying
on the confluence test of the theoretical operational semantics. In this case it is
very hard to see how the programmer can control execution sufficiently.

6.2.2 Nondeterminism in the Simplify and Propagate Tran-
sitions

The second source of nondeterminism occurs when there is more than one set of
partner constraints in the CHR store that can be matched against when applying
the Simplify or Propagate transitions.

We formalise this as follows. A matching is a sequence of numbered constraints
from the CHR store that match with the head of a rule when applying Simplify
or Propagate.

Definition 42 (Matching) A matching M of occurrence j with active CHR
constraint c in state 〈[c#i : j|A], S, B, T 〉n is a named tuple of numbered con-
straints from S that match against the head of rule r of occurrence j. These
are

M = prop(H1, c#i, H2, H3) for Propagate
M = simp(H1, H2, c#i, H3) for Simplify

where H1, H2 and H3 are the matching constraints as defined by Definition 11
(the refined semantics). ⊓⊔

Note that the order of the constraints in a matching M exactly corresponds with
the order of the constraints in the rule that matched with it.

Most of the time we will treat matchings as sequences or multisets. For
example, the matching prop(H1, c#i, H2, H3) can be treated as the sequence
(H1 ++ [c#i] ++ H2 ++ H3). Similarly, simp(H1, H2, c#i, H3) is treated as
(H1 ++ H2 ++ [c#i] ++ H3).

The definition of the refined operational semantics does not specify which
matching to choose if more than one is available. Non-confluence arises when
given a state σ, there are more than one possible matchings M1 and M2 (w.r.t.
some rule r) such that firing r on M1 results in a different answer than firing r
on M2.

To help simplify things further, we define the following helper functions which
map matchings to useful information about matchings. These will be useful later.

3There may be other restrictive circumstances where the usage of trivial(S, c, B) as a wakeup
policy is correct.

6.2. CHECKING CONFLUENCE FOR ωR 135

We define function delete(M) which returns the multiset of constraints in M
which are deleted by occurrence, i.e.

delete(prop(H1, c#i, H2, H3)) = H3

delete(simp(H1, H2, c#i, H3)) = H2 ⊎ {c#i} ⊎H3

We also define entry(r, M) which returns the propagation history entry associated
with a rule r and a matching M , i.e.

entry(r, prop(H1, c#i, H2, H3)) =
ids(H1) ++ [i] ++ ids(H2) ++ ids(H3) ++ [r]

entry(r, simp(H1, H2, c#i, H3)) =
ids(H1) ++ ids(H2) ++ [i] ++ ids(H3) ++ [r]

We also similarly define θ(r, M) to be the matching substitution, such that M is
unified with the head of r, and

goal(r, M) = θ(r, M)(C) where r = (H1\H2 ⇐⇒ g | C)

to be the body of the renamed rule used by the transition. Using these func-
tions, we can write the result of applying Simplify or Propagate to a state
〈[c#i : j|A], S, B, T 〉n and matching M ⊆ S as as 〈goal(r, M) ++ A, S −
delete(M), B, {entry(r, M)} ∪ T 〉n where r is the renamed copy of the rule used
by the transition.

Non-confluence can arise when multiple matchings exist for a rule r, and r is
not allowed to eventually try them all. This may happen when firing r with one
matching results in the deletion of a constraint in another matching.

Definition 43 (Matching Completeness) An occurrence j in (renamed) rule
r is matching complete if for all reachable states 〈[c#i : j|A], S, B, T 〉n with
M1, ..., Mm possible matchings, then for all Mi ∈ {M1, ..., Mm} if

〈goal(r, Mi), S − delete(Mi), B, {entry(r, Mi)} ∪ T 〉n
∗ 〈A′, S ′, B′, T ′〉n′

then for all Mj ∈ {M1, ..., Mm} − {Mi} we have that Mj ⊆ S ′. ⊓⊔

In other words, firing rule r for any matching Mi and executing goal(r, Mi) does
not result in the deletion of a constraint occurring in a different matching Mk, k 6=
i. The intention is that rules will always try all possible matchings unless failure
occurs.

Note that r itself may directly delete the active constraint (via the Simplify
transition). If so, r will only be matching complete if there is only one possible
matching, i.e., m = 1.

Example 56 Consider the database confluence problem from Example 25. This
can be expressed as a matching completeness problem since there exists a state,
namely

〈[lookup(key, V)#3 : 1], {lookup(key, V)#3,
entry(key, cat)#2, entry(key, dog)#1}, true〉4

136 CHAPTER 6. CONFLUENCE

with two matchings M1 = [entry(key, cat)#2, lookup(key, V)#3] and M2 =
[entry(key, dog)#1, lookup(key, V)#3] such that firing the rule on M1 deletes
constraint lookup(key, V)#3 (the active constraint) which also appears in M2.
Therefore the occurrence for lookup cannot be matching complete.

This occurrence will be matching complete if all states where there are multiple
matchings for a given lookup are unreachable. This can be achieved by adding a
rule that enforces a functional dependency, e.g. by adding the following rule to
the start of the program.

killdup @ entry(Key,Val1) \ entry(Key,Val2) <=> Val1 = Val2.

This rule throws away duplicate entries for the same key. Now the occurrence is
matching complete, since only one matching will ever be possible. ⊓⊔

Matching completeness can also be broken if the body of a rule indirectly
deletes constraints from other matchings.

Example 57 Consider the following CHR program

r1 @ p1, q(X) ==> r(X).

r2 @ p2, r(a) <=> true.

The occurrence 1 of p in r1 is not matching complete because of the (reachable)
state

〈[p#3 : 1], {p#3, q(a)#2, q(b)#1}〉4

with matchings M1 = [p#3, q(a)#2] and M2 = [p#3, q(b)#1]. Firing r1 against
M1 calls the new constraint r(a) which in turn deletes p#3 (which appears in
both matchings) by firing rule r2. Therefore occurrence 1 for p is not matching
complete. ⊓⊔

A matching complete occurrence is guaranteed to eventually try all possible
matchings for a given execution state. However, matching completeness is some-
times too strong if the programmer does not care which matching is chosen. This
is common when the rule body does not depend on the matching.

Example 58 For example, consider the following rule from a simple ray tracer
(see Appendix A.2).

shadow @ sphere(C,R,) \ light ray(L,P, ,) <=>

blocks(L,P,C,R) | true.

This rule calculates if point P is in shadow by testing if the ray from light L

is blocked by a sphere at C with radius R. Consider an active light ray con-
straint: there may be more than one sphere blocking the ray, however we do not
care which sphere blocks, just if there is a sphere which blocks. This rule is not
matching complete, but since the matching chosen does not affect the resulting
state, it is matching independent. ⊓⊔

6.2. CHECKING CONFLUENCE FOR ωR 137

We define matching independence as the property that the matching chosen
does not matter.

Definition 44 (Matching Independence) A matching incomplete occurrence
for (renamed) rule r that deletes the active constraint only is matching indepen-
dent if for all reachable states 〈[c#i : j|A], S, B, T 〉n with M1, . . . , Mm possible
matchings, then all of

〈goal(r, Mi), S − delete(Mi), B, {entry(r, Mi)} ∪ T 〉n

for each Mi ∈ {M1, ..., Mm} are joinable (see Definition 20). ⊓⊔

The rule shadow in Example 58 satisfies the definition since goal(r, M) = true for
all possible matchings M , i.e. the goal does not depend on the matching chosen.

Suppose that a rule is matching complete, and there are multiple possible
matchings. The ordering in which the matchings are tried is still chosen nonde-
terministically. Hence, there is still potential of non-confluence. For this reason
we also require order independence, which ensures the choice of order does not
affect the result.

Definition 45 (Order Independence) A matching complete occurrence j in
rule r is order independent if for all reachable states 〈[c#i : j|A], S, B, T 〉n with
M1, . . . , Mm possible matchings, the states

〈goal(ri, Mi), Sj − delete(Mi), Bj, {entry(ri, Mi)} ∪ Tj〉nj

and
〈goal(rj, Mj), Si − delete(Mj), Bi, {entry(rj, Mj)} ∪ Ti〉ni

(where ri and rj are distinct renamings of r) are joinable for all Mi, Mj ∈
{M1, . . . , Mm} where Si, Sj, Bi, Bj, Ti, Tj, ni and nj are given by final states
arising from subcomputations

〈goal(ri, Mi), S − delete(Mi), B, {entry(ri, Mi)} ∪ T 〉n
∗

〈Ai, Si, Bi, Ti〉ni
= σi

and
〈goal(rj, Mj), S − delete(Mj), B, {entry(rj, Mj)} ∪ T 〉n

∗

〈Aj, Sj , Bj, Tj〉nj
= σj

where σi and σj are final states. ⊓⊔

The following is a typical example of order independence.

Example 59 Consider the following fragment of code for summing colours from
the ray tracer.

add1 @ add color(C1), color(C2) <=> C3 = C1 + C2, color(C3).

add2 @ add color(C) <=> color(C).

138 CHAPTER 6. CONFLUENCE

Assume the colours are encoded as ordinary integers (e.g. for a gray scale image).
All occurrences of color and add color are matching complete. Furthermore,
calling add color(C1), ..., add color(Cn) results in color(C1 + ... + Cn).
Since addition is symmetric and associative, it does not matter in what order
the add color constraints are called. Consider the occurrence of output in

render @ output(P) \ light ray(,P,C,) <=> add color(C).

Here, calling output(P) calculates the (accumulated) color at point P where any
light rays (a ray from a light source) may intersect. If there are multiple light
sources, then there may be multiple light ray constraints. The order add color

is called does not matter, hence the occurrence is order independent. ⊓⊔

6.2.3 Confluence Test

We claim is that if a program P can is shown to satisfy the conditions outlined
above, then it is confluent. In this section we present a formal proof of this fact.

Before we present the main result, we prove two useful lemmas.

Lemma 11 (Parallel Derivations I) For all execution stacks A1 and A2 the
following holds: σ = 〈G ++ A1, S, B, T 〉n

∗ 〈G′ ++ A1, Sk, Bk, Tk〉nk
= σk iff

σ′ = 〈G ++ A2, S, B, T 〉n
∗ 〈G′ ++ A2, Sk, Bk, Tk〉nk

= σ′
k or both states σk and

σ′
k are false, provided no states in either derivation is of the form 〈A1, S

′, B′, T ′〉n′

or 〈A2, S
′, B′, T ′〉n′ respectively.

Proof. Note that it suffices to prove one direction of the “iff” only, since the
other direction is symmetric (i.e. obtained by substituting A1 with A2 and vice-
versa). We prove the “ =⇒ ” direction by induction over derivations of length
k.

Base case: Derivations of zero length (k = 0). Then σ0 = σ and σ′
0 = σ are

zero length derivation of the required form.
Induction step: Assume that for all derivations of length k that if σ = 〈G ++

A1, S, B, T 〉n
∗ 〈Gk ++ A1, Sk, Bk, Tk〉nk

= σk then for all A2 we have that
σ′ = 〈G ++ A2, S, B, T 〉n

∗ 〈Gk ++ A2, Sk, Bk, Tk〉nk
= σ′

k. We show the same
holds for derivations of length k + 1.

We consider all ωr derivation steps from σk to σk+1 and show the same deriva-
tion step can be applied to σ′

k to derive σ′
k+1 of the required form.

By assumption Gk is non-empty, otherwise σk is of the form 〈A1, S
′, B′, T ′〉n′

which is not allowed. Therefore the top-most constraint on the respective execu-
tion stacks for σk and σ′

k are the same.
The k + 1 case easily verified by inspection over all of the transition steps

for the refined operational semantics (Definition 11). All of these transitions
only depend on the top-most constraint of the execution stack, and all transition
preserve the tail of the execution stack. Thus, if σk σk+1 then σ′

k σ′
k+1 by

the same transition step.

6.2. CHECKING CONFLUENCE FOR ωR 139

Therefore if σ = 〈G ++ A1, S, B, T 〉n
∗ 〈Gk ++ A1, Sk, Bk, Tk〉nk

= σk then
for all A2 we have that σ′ = 〈G ++ A2, S, B, T 〉n

∗ 〈Gk ++ A2, Sk, Bk, Tk〉nk
=

σ′
k provided the conditions noted in the Lemma above hold. By symmetry the

other direction of the “iff” also holds. ⊓⊔

This next Lemma is almost identical to the previous one, except that it handles
the case where all of goal G has finished executing.

Lemma 12 (Parallel Derivations II) For all execution stacks A1 and A2 the
following holds: σ = 〈G ++ A1, S, B, T 〉n

∗ 〈A1, Sk, Bk, Tk〉nk
= σk iff σ′ =

〈G ++ A2, S, B, T 〉n
∗ 〈A2, Sk, Bk, Tk〉nk

= σ′
k or both states σk and σ′

k are
false, provided no states in either derivation (apart from σk and σ′

k) are of the
form 〈A1, S

′, B′, T ′〉n′ or 〈A2, S
′, B′, T ′〉n′ respectively.

Proof. As with the proof of Lemma 12, it suffices to prove one direction of the
“iff” only, since the other direction is symmetric. We prove the “ =⇒ ” direction
by direct proof.

There are two cases to consider. The first is that the derivation is of zero
length, i.e. σ = σk, then σ′

k = σ′ satisfies the hypothesis.
The second case is derivations of non-zero length. Let Dk be the derivation

σ σk above. We can write Dk = Dk−1 σk, where the last state in Dk is
σk−1 = 〈G ++ A1, Sk−1, Bk−1, Tk−1〉nk−1

for some non-empty G. By Lemma 11
there is a derivation from σ′ to the state σ′

k−1 = 〈G ++ A2, Sk−1, Bk−1, Tk−1〉nk−1
.

Call this derivation Dk−1.
Consider the transition from σk−1 to σk. We can apply exactly the same

transition to σ′
k−1 to derive σ′

k of the above form (using the same argument as in
the proof of Lemma 12).

Therefore if σ = 〈G ++ A1, S, B, T 〉n
∗ 〈A1, Sk, Bk, Tk〉nk

= σk then for all
A2 we have that σ′ = 〈G ++ A2, S, B, T 〉n

∗ 〈A2, Sk, Bk, Tk〉nk
= σ′

k provided
the conditions noted in the Lemma above hold. By symmetry the other direction
of the “iff” also holds. ⊓⊔

We are ready for the main result. First we give a formal definition of the
confluence test.

Definition 46 (Confluence Test) A program P passes our confluence test if

1. P is terminating;

2. All occurrences in P are matching complete or matching independent; and

3. All matching complete occurrences in P are order independent.

Also, the implementation uses trivial(S, c, B) as the wakeup policy. ⊓⊔

We show that the test outlined above actually proves confluence. First we
show that it at least proves local confluence, which is a weaker form of confluence.

140 CHAPTER 6. CONFLUENCE

Definition 47 (Local Confluence) A CHR program is local confluent if the
following holds for all states σ0, σ1 and σ2 where σ0 is a reachable state: If
σ0 σ1 and σ0 σ2 then σ1 and σ2 are joinable with respect to σ0. ⊓⊔

The only difference between local confluence and confluence is that states σ1 and
σ2 are derived after a single transition step, rather than an arbitrary number of
steps. We can now state the Lemma.

Lemma 13 (Local Confluence Test) Let P be a CHR program that satisfies
Definition 46, then P is locally confluent.

Proof. Direct proof. We show that all reachable states σ such that if σ 1 σ1

and σ 2 σ2 then σ1 and σ2 are joinable. Note the notation 1 and 2

representing the transitions from σ to σ1 and σ2 respectively.
By inspection, all of the conditions for ωr transitions are pairwise mutually

exclusive. In other words, it is not possible that 1 and 2 are different tran-
sitions, thus 2=1.

Assume 1 and 2 are one of Activate, Reactivate, Drop or Default.
By inspection, all of these transitions are deterministic, hence σ1 = σ2 thus the
two states are trivially joinable.

The remaining cases for1 (and2) are as follows.
CASE Solve:

Then σ is of the form 〈[c|A], S, B, T 〉n, where c is a built-in constraint, and σ1

and σ2 are both of the form

〈trivial(S, c, B) ++ A, S, c ∧ B, T 〉n = 〈A, S, c ∧ B, T 〉n

The other case is that σ1 = σ2 = false. Either way σ1 = σ2 and hence are
trivially joinable.
CASE Simplify:

State σ is of the form 〈[c#i : j|A], S, B, T 〉n and there are two (possibly
identical) matchings M1 and M2 which satisfy the conditions for Simplify. Then
σ1 and σ2 are given by

σm = 〈goal(rm, Mm) ++ A, S − delete(Mm), B, {entry(rm, Mm)} ∪ T 〉n

for m = 1 and m = 2 respectively. Here, r1 and r2 are two distinct renamings of
the rule used in the transition.

There are two possible cases to consider for the occurrence j.

1. j is matching complete: By the definition of Simplify the active constraint
c#i is deleted, thus c#i ∈ delete(M1) and c#i ∈ delete(M2). Thus the
only way for occurrence j to be matching complete is that there is only one
possible matching, i.e. M1 = M2. Then σ1 and σ2 must be variants and
therefore are trivially joinable.

6.2. CHECKING CONFLUENCE FOR ωR 141

2. j is matching independent (and matching incomplete): Matching indepen-
dence requires the states given by

σ′
m = 〈goal(rm, Mm), S − delete(Mm), B,

{entry(rm, Mm)} ∪ T 〉n

for m = 1 and m = 2 are joinable. This means that there exists variant
states σ′′

1 and σ′′
2 such that σ′

1
∗ σ′′

1 and σ′
2

∗ σ′′
2 . We write σ′′

1 and σ′′
2 as

σ′′
m = 〈A′′

m, S ′′
m, B′′

m, T ′′
m〉n′′

m

for m = 1 and m = 2. Then by Lemma 12, we have that σ1
∗ σ3 and

σ2
∗ σ4 where σ3 and σ4 are given by

σm = 〈A′′
m ++ A, S ′′

m, B′′
m, T ′′

m〉n′′

m

for m = 3 and m = 4. Clearly if σ′′
1 and σ′′

2 are variants then σ3 and σ4 are
variants, therefore σ1 and σ2 are joinable.

CASE Propagate:
Matching independence is not applicable because Propagate does not delete

the active constraint.
State σ is of the form 〈[c#i : j|A], S, B, T 〉n and there are two (possibly

identical) matchings M1 and M2 which satisfy the conditions for Propagate.
Then σ1 and σ2 are given by

σm = 〈goal(rm, Mm) ++ [c#i : j|A], S − delete(Mm),
B, {entry(rm, Mm)} ∪ T 〉n

for m = 1 and m = 2 respectively. Once again, r1 and r2 are two distinct
renamings of the rule used in the transition.

Thanks to order independence, we know that the states given by

σ(m1,m2) = 〈goal(rm1
, Mm1

), Sm2
− delete(Mm1

),
Bm2

, {entry(rm1
, Mm1

)} ∪ Tm2
〉nm2

are joinable where Sm2
, Bm2

, Tm2
and nm2

are given by final states arising from

〈goal(rm2
, Mm2

), S − delete(Mm2
), B, {entry(rm2

, Mm2
)} ∪ T 〉n

∗

〈Am2
, Sm2

, Bm2
, Tm2

〉nm2

for (m1, m2) = (1, 2) and (m1, m2) = (2, 1). This means that there exists variant
states σ′′

1 and σ′′
2 such that σ(1,2)

∗ σ′′
1 and σ(2,1)

∗ σ′′
2 . We write σ′′

1 and σ′′
2 as

σ′′
m = 〈A′′

m, S ′′
m, B′′

m, T ′′
m〉n′′

m

for m = 1 and m = 2.

142 CHAPTER 6. CONFLUENCE

Consider σ1 defined above. Then by Lemma 1 we have that

σ1
∗ 〈[c#i : j|A], S1, B1, T1〉n1

= σ′
1

By matching completeness M2 ⊆ S1. W.l.o.g. we can assume entry(r2, M2) 6∈ T1

and the guard still holds (because the built-in store in monotonic by assumption).
Thus

σ′
1 propagate 〈goal(r2, M2) ++ [c#i : j|A], S1 − delete(M2),

B1, {entry(r2, M2)} ∪ T1〉n1

By Lemma 12 we have that

σ1
∗ σ′

1
∗= 〈A′′

1 ++ [c#i : j|A], S ′′
1 , B′′

1 , T
′′
1 〉n′′

1

We can apply a symmetric argument to similarly derive

σ2
∗ 〈A′′

2 ++ [c#i : j|A], S ′′
2 , B′′

2 , T
′′
2 〉n′′

2

These states must be variants because σ′′
1 and σ′′

2 (defined above) are also variants.
Therefore σ1 and σ2 are joinable.

We have shown that if σ σ1 and σ σ2 then σ1 and σ2 are joinable.
Therefore P is locally confluent. ⊓⊔

Finally, we can state the main result.

Theorem 5 (Confluence Test) Let P be a CHR program that satisfies Defini-
tion 46, then P is confluent.

Proof. By Lemma 13 program P is locally confluent. By definition P is termi-
nating. Therefore by Newman’s Lemma [64] P is confluent. ⊓⊔

6.3 Implementation of Confluence Test

So far we have introduced some conditions, e.g. matching completeness etc., and
shown that if these conditions hold for a given program P , then P is conflu-
ent. The confluence test is undecidable in general, since it relies on termination,
however in this section we discuss how a modern CHR compiler can test (with
some assumptions) if these conditions hold based on information it collects from
program analysis discussed in Chapter 5. We allow the tests to be inaccurate, in
that it is allowed to reject programs that are confluent, but not the other way
around. Later in this chapter we try the confluence tests on several examples in
order to estimate accuracy.

The tests outlined below have been implemented as part of the HAL CHR
compiler, which we will refer to as confluence checker from now on. The conflu-
ence checker implements partial tests for fixedness of CHR constraints, matching

6.3. IMPLEMENTATION OF CONFLUENCE TEST 143

completeness and matching independence, and relies on user annotation for deter-
mining order independence except for a few cases discussed below. The confluence
checker assumes termination, which (as usual) is left to the programmer to decide.

The first part of the confluence test the HAL CHR compiler tests for is ground-
ness/fixedness, since this is required for the usage of the trivial wakeup policy to
be correct. The HAL compiler already has access to this information, since the
user must write a mode declaration for each CHR constraint. If the modes for
every argument for each CHR constraint are ‘in’, then the program passes this
part of the confluence test.

In HAL CHR, constraints are allowed to have mode ‘out’ under restricted
conditions. Let c be a CHR constraint with an ‘out’ argument represented by v
(which must be a ‘new’ variable at runtime). The restrictions are:

1. c is never-stored anywhere in the program (see Section 5.6.3);

2. all possible rule bodies called by c (by firing a rule) either bind v to a ground
value or fail.

The never-stored requirement will ensures that c is never in the CHR store when-
ever a built-in constraint is Solved, hence we avoid the nondeterminism.

Example 60 The lookup(Key,Val) constraint in Example 15 is a classic ex-
ample of a constraint with a argument with mode ‘out’. Its mode declaration
provided by the programmer is as follows.

:- mode lookup(in,out) is semidet.

When called, variable Val will be ‘new’, but will be bound to the corresponding
value for the given key if it exists, or otherwise failure occurs. ⊓⊔

Since constraints with ‘out’ modes can never be woken up, the usage of the trivial
wakeup policy is still correct. Therefore, such programs also pass the confluence
checker.

The confluence checker also uses information about never-stored and func-
tional dependencies (see Section 5.6) to determine how many possible matchings
(0, 1 or ∗) there are for each occurrence in a given rule. If there is only zero
or one possible matchings, then the occurrence is trivially matching complete.
These are very common cases in many programs. Otherwise if there are multiple
possible matchings, it then checks for matching completeness as follows. Sup-
pose that there are at least two matchings M1 and M2 for a given occurrence,
then for matching completeness there are are two cases to consider: applying the
Simplify or Propagate transition on M1 directly deletes a constraint c#i ∈M2

(e.g. Example 25); or executing the rule body indirectly deletes c#i ∈ M2 (e.g.
Example 57).

For the first part, we check for direct deletion as follows. Let (H1\H2) be the
head of the rule, and let c be the active constraint, then there are two cases to
consider. The first case is when the active constraint is deleted by the occurrence

144 CHAPTER 6. CONFLUENCE

(i.e. a member of H2). To be matching complete, it must be that there can only
ever be zero or one possible matchings (since c must is present in all matchings).
To check this we use never-stored and functional dependency information to check
if either one of cons(H1)∪ cons(H2)−{c} is never-stored (therefore there cannot
be any matchings) or the head cons(H1) ∪ cons(H2) is functionally determined
by c (therefore there can only be one possible matching).

The other case where active c is not deleted by the occurrence is more com-
plicated. We allow for four possible sub-cases:

1. the rule is a propagation rule, i.e. H2 = ∅;

2. one of cons(H1) ∪ cons(H2)− c is never-stored;

3. the active constraint c functionally determines cons(H1) ∪ cons(H2);

4. for all d ∈ cons(H2) we have that d functionally determines cons(H1) ∪
cons(H2) − {c} and for all d1, d2 ∈ (cons(H1) ∪ cons(H2) − {c}) we have
that the predicate symbols of d1 and d2 are distinct.

Propagation rules can never directly delete constraints from any matching by
definition, so they are safe. The second case and third cases are also trivially safe,
since they imply there is only ever zero or one possible matchings. The forth case
is more complicated. Suppose that for active c#i there is a constraint d#j and
two matchings M1 and M2 such that d#j ∈ delete(M1) and d#j ∈ delete(M2).
Then it must be that M1 − {c#i} = M2 − {c#i}, hence M1 = M2, otherwise d
does not functionally determine the matching. Therefore, for all matchings M1

and M2 it must be that delete(M1) ∩ delete(M2) = ∅.

Example 61 Consider the following rule with three constraints in the head, and
assume that all of these constraints are set semantic (at most one copy of each
constraint).

p \ q, r(X) <=> true.

Firstly note that the body cannot indirectly delete any constraint from any match-
ing. The occurrence for r(X) is matching complete because p and q are both
(trivially) functionally determined by the active constraint (thanks to set seman-
tics).

The occurrence of p is not matching complete because p nor q do not func-
tionally determine r(X). However, if we were to modify the rule to the following,
then the occurrence of p is matching complete.

p \ q(X), r(X) <=> true.

Now both q(X) and r(X) functionally determine each other. ⊓⊔

The second part of the matching completeness check tests if the body can
indirectly delete a constraint from another matching. This information can be
read from a call-graph of CHR constraints, and by examining the heads of rules
to determine which CHR constraints can delete other CHR constraints.

6.3. IMPLEMENTATION OF CONFLUENCE TEST 145

Example 62 For example, consider the program from Example 57.

r1 @ p, q(X) ==> r(X).

r2 @ p, r(a) <=> true.

The call graph reveals that the body of rule r1 calls constraints of predicate symbol
r/1. By examining the heads of the rules, we see that an active r/1 constraint
may delete a p constraint. Therefore calling the body of rule r1 may delete the
active p constraint, hence the matching completeness check must fail. ⊓⊔

If an occurrence fails matching completeness, then the confluence checker
will try and prove matching independence, i.e. the choice of matching does not
matter. Recall that matching independence is only applicable to occurrences
where the active constraint is the only constraint deleted by the rule. A very
simple matching independence test is to check if the free variables in the rule
body are contained in the free variables of the active constraint. This was trivially
true in Example 58, where the set of free variables in the body is empty. We can
improve the matching completeness check by also allowing variables that are
functionally determined by the active constraint.

Example 63 Consider the following rule.

r(Z), q(X,Y) \ p(X) <=> t(X,Y).

The occurrence for p(X) is not matching independent because variable Y appears
in the body, but not in the active constraint. If however there exists a functional
dependency q(X, Y) :: {X} {X, Y } then the occurrence is matching indepen-
dent. ⊓⊔

Currently the HAL confluence checker assumes all occurrences are order in-
dependent by default, however the programmer can turn on order independence
checking via a flag to the compiler. The order independence check is currently
very weak, it involves finding all occurrences with more than one possible match-
ing, and then checking if the rule body contains only built-in constraints (this is a
surprisingly common case), or if the rule body is functionally determined by the
active constraint. The programmer can also declare certain constraints and/or
rules as “order independent”, which narrows the checking to potential problem
areas.

The order independence test could be improved by automatically checking
some common CHR programming idioms. One such idiom is using constraints to
accumulate some value, as was the case in Example 59. This can be generalised
as follows. Suppose we have a rule of the form:

p(X), p(Y) <=> p(X op Y).

Where op is some binary operator that is symmetric and associative, e.g. addition
X + Y or set union X ∪ Y , etc., then it does not matter which order goals of the
form p(X1), ..., p(Xn) are called. Therefore any rule body consisting of a p(X)
constraint is order independent.

146 CHAPTER 6. CONFLUENCE

6.4 Case Studies: Confluence Test

This section investigates the confluence of four CHR programs using our conflu-
ence checker. The programs are

• ray – a simple ray tracer;

• bounds – an extensible bounds propagation solver;

• compiler – Christian Holzbaur’s bootstrapping CHR compiler; and

• union – union find algorithm implemented in CHRs (see [72]).

These particular programs are chosen because they were implemented before the
confluence test and checker were invented. Therefore we can assume the pro-
grammer was not influenced by knowledge of the confluence test, which may
affect design decisions, programming styles, etc.

6.4.1 Confluence of ray

The ray tracer is implemented in HAL [20] and has a total of 30 rules, 16 CHR
constraints and 49 occurrences of CHR constraints on the left hand side of rules.
The full source code (of a more updated version) is given in Appendix A.2. It
can draw spheres, planes, multiple light-sources (of arbitrary colours) and handles
simple shadowing. Primitive concepts, such as spheres and light rays, are given
as input CHR constraints, while colours, shadows, etc. are calculated based on
interactions between these constraints.

The confluence checker finds one matching problem (an occurrence that is
neither matching complete nor order independent), and 3 order independence
problems (occurrences that are matching complete but not necessarily order in-
dependent). The matching completeness problem appeared in:

lr1 @ intersection(IP,Id,D) \ light(LP,C) <=>

light ray(LP,IP,C,Id).

The intersection constraint is in fact an accumulator which keeps track of the
nearest intersection with an object and the ray from the eye point.

int near @ intersection(, ,D1) \ intersection(, ,D2) <=>

D1 =< D2 | true.

This rule ensures that there is at most one possible intersection constraint in
the store at once, however the functional dependency analysis in the compiler
is too weak to detect this (because it currently does not take the guard into
account). This can be fixed by the user asserting the functional dependency to
the compiler, which currently is managed by adding the following rule.

int fd @intersection(, ,) \ intersection(, ,) <=> true.

6.4. CASE STUDIES: CONFLUENCE TEST 147

Of the five constraints that need to be verified as order independent, one is
intersection, which is order independent since multiple copies will be reduced
to the constraint with the minimum last argument. Other examples include
constraints color(C) and add color(C) whose behaviour was explained in Ex-
ample 59. All five constraints had to be annotated as order independent.

6.4.2 Confluence of bounds

The bounds propagation solver is implemented in HAL and has a total of 83
rules, 37 CHR constraints and 113 occurrences. This version implements HAL’s
dynamic scheduling interface (which will be discussed in Chapter 8), as well as
supporting ask constraints. A simpler bounds propagation solver is shown in
Appendix A.1, however this version does not support dynamic scheduling nor
ask constraints.

The confluence checker finds 4 matching problems, and 3 order independence
problems. One of the matching problems indicated a bug (see below), the others
are attributed to the weakness in the compiler’s analysis. We only had to annotate
one constraint as order independent.

The confluence analysis complained that the following rule is matching incom-
plete and non-independent when kill(Id) is active since there are (potentially)
many possible matchings for the delayed goals partner.

kill @ kill(Id), delayed goals(Id,X, ,...,) <=> true.

Here delayed goals(Id,X, ,...,) represents the delayed goals for bounds solver
variable X. The code should be

kill1 @ kill(Id) \ delayed goals(Id,X, ,...,) <=> true.

kill2 @ kill() <=> true.

This highlights how a simple confluence analysis can be used to discover bugs.
The confluence analysis also complains the rules for bounds propagation them-

selves, e.g. the following rule handles bounds propagation for a leq/2 constraint.

leq @ leq(X,Y), bounds(X,LX,UX), bounds(Y,LY,UY) ==>

bounds(X,LX,UY), bounds(Y,LX,UY).

The problem is that the constraint bounds(X,L,U) which stores the lower L
and upper U bounds of variable X has complex self-interaction. Two bounds

constraints for the same variable can interact using, for example,

b2b @ bounds(X,L1,U1), bounds(X,L2,U2) <=>

bounds(X,max(L1,L2),min(U1,U2)).

Imagine an active bounds constraint visiting one of the occurrences for rule leq.
The body of leq calls a new bounds which may delete the active constraint, and
therefore the occurrences are indeed not matching complete.

148 CHAPTER 6. CONFLUENCE

Our program contains rules which are not matching complete and the conflu-
ence checker has identified them, however unlike before, matching incompleteness
does not indicate a bug (the rules are still confluent). In this case confluence can
be established by showing that the propagation rules, together with the other
rules for the bounds constraint, are confluence under the theoretical semantics.
Confluence under the refined semantics then follows because of Corollary 3. Un-
fortunately, proving confluence under the theoretical semantics is beyond the
current implementation, so this is left for the programmer.

The confluence checker also reports potential order independence problems for
the propagation rules. Technically order independence is irrelevant because these
rules are not matching complete. Besides, if confluence under the theoretical
semantics is established, order independence problems can be ignored.

6.4.3 Confluence of compiler

The bootstrapping compiler is implemented in SICStus Prolog (using the CHR
library), including a total of 131 rules, 42 CHR constraints and 232 occurrences.
It performs ad hoc analysis similar to that described in Chapter 5. After boot-
strapping it has similar speed to the original compiler written in Prolog and
produces more efficient code due to the additional analysis performed. During
the bootstrap, when compiling itself the first time, the new code outperformed
the old code (the SICStus Prolog CHR compiler, 1100 lines of Prolog) by a factor
of five. This comparison is rather crude, measuring the costs and effects of the
optimisations based on the additional analysis and the improved runtime sys-
tem at once. Yet it demonstrates the practicality of the bootstrapping approach
for CHRs and that CHRs as a general purpose programming language under the
refined semantics can be used to write moderately large sized verifiable programs.

Bootstrapping CHRs as such aims at easier portability to further host lan-
guages and as an internal reality check for CHRs as a general purpose program-
ming system. To the best of our knowledge, the bootstrapping compiler is the
largest single CHR program written by hand. (Automatic rule generators for con-
straint propagation algorithms [8] can produce large CHR programs too, but from
the point of the compiler their structure is rather homogeneous in comparison to
the compiler’s own code).

In order to use the confluence checker the compiler was (hastily) ported to
HAL. This involved adding just enough HAL declarations to pass type, mode and
CHR analysis (including confluence analysis).

The confluence checker finds 16 matching problems, and 45 order indepen-
dence problems. 4 of the matching problems are removed by making functional
dependencies explicit. The others are attributed to the weakness in the compiler’s
analysis. We had to annotate 18 constraints as order independent.

4 of the 16 matching problems turn out to be directly caused by undeclared
functional dependencies, which were easily fixed. There were other matching
problems, for example consider the rule.

6.4. CASE STUDIES: CONFLUENCE TEST 149

merge kvp @ key value pairs(Task,In), merge(Task,Key,Val) <=>

key value pairs(Task,[Key-Val|In]).

This rule is a tricky loop, which accumulates (into the second argument of
key value pairs) a list of Key − V al pairs for every merge constraint asso-
ciated with Task. For an active key value pairs constraint, there may be many
possible matchings for the merge partner, hence the problem. The functional de-
pendency on a merge(Task,Key,V al) constraint was explicitly given (elsewhere
in the program) as (Task,Key) determines V al. Therefore, an undeclared func-
tional dependency is not at fault.

Technically, this rule is non-confluent, since the ordering of the final list does
depend on the order of the matchings. However this is not a bug either, since
the programmer is really representing an (un-ordered) set as a list (as is common
practice). Hence, the final order of the list is irrelevant. To avoid the confluence
warning, the rule can be re-written as a simpagation rule (which will try every
matching), and an accumulator.

mkvp1 @ make key value pairs(Task) \ merge(Task,Val) <=>

key value pairs(Task,[Key-Val]).

mkvp2 @ make key value pairs() <=> true.

key value pairs(Task,Ps1), key value pairs(Task,Ps2) <=>

append(Ps1,Ps2,Ps3), key value pairs(Task,Ps3).

The main difference is the introduction of make key value pairs(Task) which
must be called to generate the list. These rules pass the confluence test provided
we also declare that key value pairs is order independent.

All other matching problems are caused by weakness in the current compiler’s
analysis. For example, consider the following program fragment which caused
one of the warnings.

calls1 @ na constraint(NA) \ calls(R,p(NA)) <=> calls(R,NA).

calls2 @ calls(R,p(NA)) <=> calls(R,any(NA)).

calls uniq @ calls(R,any()) \ calls(R,) <=> true.

The constraint calls(R,C) represents the relation that rule R calls C, which
can be of the form p(NA), any(NA) or just NA. Initially, all calls/2 are of
the form calls(R,p(NA)), but are later refined to either calls(R,NA) or
calls(R,any(NA)) depending on whether NA represents the name/arity of a
CHR constraint, or a predicate (in which case we assume it can call any CHR
constraint).

For active na constraint(NA), there may be many possible matchings for
calls(R,p(NA)). The body of the rule calls another calls constraint, which in
turn deletes other calls constraint by the third rule. This leads to the problem of
potential matching incompleteness, since the body calls constraints calls which
may delete matching partners, also calls constraints.

150 CHAPTER 6. CONFLUENCE

A more careful analysis reveals that for active na constraint(NA) there
cannot be any possible matching for a calls(R,p(NA)) constraint. The rea-
son is that the second rule will always delete an active constraint of the form
calls(R,p(NA)), hence by the time na constraint(NA) is active, there are
no such constraints in the store. If there are no matching partners, this cannot
be a universal search. The confluence checker doesn’t detect this because its
current analysis does not analyse individual arguments of any matching/called
constraints.

To overcome this weakness, the above program fragment can be rewritten to
split the calls constraint into two more specialised constraints, e.g. calls p and
calls. Hence our code fragment becomes.

na constraint(NA) \ calls p(R,NA) <=> calls(R,NA).

calls p(R,NA) <=> calls(R,any(NA)).

calls uniq @ calls(R,any()) \ calls(R,) <=> true.

Now the checker can determine that calls p will never be stored after it is
active, and that an active na constraint will have no matching partners, hence
no confluence warning is reported.

Unlike the ray and bounds examples, there were a relatively large number
of rules/constraints that need to be verified and annotated order independent.
This is because of the design of the compiler, which performs various analysis,
the results of which affect other parts of the compilation process.

There are some easy cases to verify order independence. For example, key -

value pairs constraint needs to be verified order independent, which it is because
its usage does not depend on the order of the resulting list. There are many
other similar examples where the constraints are order independent because they
implement some sort of accumulator.

There are some cases of where order independence is much harder to verify.
For example, consider the following rule

not set @ set(NA1,no), interact(NA1,NA2) ==> set(NA2,no).

The constraint set(NA,Y N) represents whether or not constraint NA has set
semantics. Constraint interact(NA1,NA2) represents if NA1 and NA2 are
both present in the head of some rule. The rule states that if NA1 does not have
set semantics, and NA1 interacts with NA2, then NA2 also does not have set
semantics. For active set(NA1,no) there can be many possible matchings for
interact(NA1,NA2), hence we want to ensure that the order set(NA2,no)
constraints are generated does not matter.

The first rule for set constraint is

first value @ set(NA,) \ set(NA,) <=> true.

Generally, such a rule would guarantee set(NA,) constraint is not order inde-
pendent, e.g. consider executing set(f/1,yes), set(f/1,no) and in the reverse
order.

6.5. SUMMARY 151

Despite this, the rule not set is order independent for active set constraint.
The reason it that the rule generates constraints of the form set(NA2,no),
where the second argument is always fixed to no. Also, two set constraints with
different first arguments are not considered by the first value rule. Therefore,
this restricted form of set constraints is indeed order independent in their limited
usage. A majority of the other rules were verified order independent by similar
reasoning.

It also became clear in our exploration of the bootstrapping CHR compiler
using the confluence checker that had the confluence checker been available during
the writing of the bootstrapping compiler it could well have been written in a
substantially different way in order to avoid some of the problems reported by
the checker.

6.4.4 Confluence of union

The naive union find algorithm was originally implemented for the K.U.Leuven
CHR system [71], but now has been ported to HAL. It consists of 7 rules, 6 CHR
constraints and 11 occurrences.

The confluence checker finds 2 matching completeness problems. Both of
these problems exposed implicit assumptions about functional dependencies and
never-stored constraints.

For example, the confluence checker complains that the following rule is not
matching complete (for any occurrence).

link @ link(A,B), root(A), root(B) <=> arrow(B,A), root(A).

This is solved by the addition of two rules: the first declares root/1 to be set
semantic and the second explicitly deletes unused link/2 constraints (the pro-
grammer was implicitly assuming that link/2 will always fire the link rule,
however the confluence checker cannot be expected to detect this). Thus the
result is

root(A) \ root(A) <=> true.

link @ link(A,B), root(A), root(B) <=> arrow(B,A), root(A).

link(,) <=> true.

which passes the confluence checker.

6.5 Summary

The refined operational semantics for Constraint Handling Rules provides a pow-
erful and expressive language, ideal for applications such as compilers, since fix-
point computations and simple database operations are straightforward to pro-
gram. The disadvantage of CHRs over other possible languages is that CHRs do
not have a fully deterministic operational semantics, so to counter this problem

152 CHAPTER 6. CONFLUENCE

the programmer usually aims to write confluent CHRs programs. Unfortunately,
the Abdennadher confluence test is too strong for the refined operational seman-
tics, so we have presented a novel static confluence checker based on information
obtained from standard CHR program analysis.

The confluence test identifies four properties that if satisfied, guarantees con-
fluence under the refined semantics. These are: termination, trivial wakeup
policy, matching completeness or independence, and order independence. The
termination requirement is solely left for the programmer, and order indepen-
dence typically requires help from the programmer (in current implementations).
Groundness and matching completeness/independence can be checked automat-
ically in modern CHR compilers.

We implemented a confluence checker for HAL CHR based on the confluence
test, and evaluated the checker on four CHR programs: a simple ray tracer, a
bounds propagation solver, a bootstrapping CHR compiler and the CHR version
of the union find algorithm. By far testing for matching completeness or inde-
pendence is the most useful, since the majority of all occurrences the case studies
were either matching complete, matching independent, or in one instance indi-
cated a bug. The exceptions occur when the programmer is relying on confluence
under the theoretical semantics, as with some of the rules in the bounds example.

Matching completeness exposes the programmer’s implicit assumptions about
functional dependencies, as was shown by the case studies. This is good because
it encourages the programmer to declare functional dependencies explicitly, which
has other benefits, such as optimisation (this will be discussed in the next chap-
ter).

Order independence remains a difficult property to test for, hence the conflu-
ence checker usually requires help in the form of user annotations. In order not
to overwhelm the programmer, the compiler can try its best to exclude as many
occurrences as possible, for example, when the body of the rule contains only
built-in constraints, and when the body is functionally determined by the active
constraint. A more sophisticated compiler can also try to exclude some other
cases, e.g., when the body of a rule is calling constraints that just accumulate
some value, etc.

Unfortunately the confluence test performs poorly when the programmer
writes code with complex interactions, e.g. the bounds constraint and propa-
gators. In these cases the programmer is usually relying on confluence under
the theoretical operational semantics, which our current implementation cannot
detect (although this may be future work). In such cases the programmer can
ignore, or disable the confluence checker, or reformulate the program so that it
complies with the confluence test in Definition 46.

Chapter 7

Optimisation

7.1 Introduction

In this chapter we discuss how to improve the basic compilation of CHRs by using
additional information derived either from declarations provided by the user or
from the analysis of the CHRs themselves. The major improvements we discuss
are:

• finding a good order for calculating joins and scheduling guards during the
join;

• general index structures which are specialised for the particular joins re-
quired in the CHR execution;

• continuation optimisation, where we use matching information from rules
earlier in the execution to avoid matching later rules; and

• removal or postponement of overhead/initialisation

We illustrate the advantages of the various optimisations experimentally on a
number of example programs in the HAL implementation of CHRs. We also
discuss how the extra information required by HAL in defining CHRs (that is,
type, mode and determinism information) is used to improve the execution.

The remainder of this chapter is organised as follows. We divide the opti-
misations into two main groups. Local optimisation in Section 7.2 looks at how
to optimise each individual occurrence in isolation. Global optimisation in Sec-
tion 7.3 we show how to further optimise the program by taking into account the
context of each occurrence with respect to other occurrences. In Section 7.4 we
give our experimental results illustrating the advantages of the optimised compi-
lation. Finally, we conclude.

153

154 CHAPTER 7. OPTIMISATION

7.2 Local Optimisation

The bulk of the execution time for any given rule (H1 \ H2 ⇐⇒ g | C) is spent in
determining which constraints H ′

1 and H ′
2 from the store match against the head

of the rule. Under the basic compilation, this is the role of the occurrence, join-
loop and call-body predicates. This section is concerned with local optimisations
which are applicable to the set of predicates generated per occurrence. We will
show how different kinds of compile-time information can be used to improve the
resulting code in the HAL version of CHRs.

7.2.1 Overhead Removal

We very loosely define overhead to be any part of the generated code which is
not directly involved in the algorithm defined by the original CHR program, e.g.
history checks, liveness checks, etc. Under the basic compilation, the generated
code is usually riddled with various forms of overhead, which can penalise runtime
performance. In this section we look at removing some of this overhead under
favourable conditions. This is particularly important for simple CHR programs,
because the amount of overhead is generally disproportionate to the actual work
the program does. For example, the compiled version of gcd in Figure 4.6 is
much larger than the hand written version of Example 30 mainly because of the
amount of overhead.

Universal vs. existential Searches

Under the basic compilation, the collection of join-loop predicates are designed
to search through all possible matches for a given occurrence. This is fine for
some rules, e.g. propagation rules, where all possible matches are actually re-
quired. However only one match is required for simplification rules, since once
the rule fires the active constraint is deleted (hence no more matches are needed).
We now differentiate between two kinds of searches for matchings: A universal
search which iterates over all possible matchings, and an existential search which
looks for the first possible match. Under the basic compilation, we are essen-
tially approximating existential searches using universal searches, and this adds
unnecessary overhead.

We can generalise universal/existential searches even further: let (H1 \H2 ⇐⇒
g | C) be a rule. The partner search uses universal search behaviour, up to and
including the first constraint in the join which appears in H2 (the part of the head
deleted by the rule). From then on the search is existential. If the constraint has a
functional dependency that ensures that there can be only one matching partner,
we can replace universal search by existential search.

For existential searches we can use HAL nondeterministic search inside the
condition-part of an if-then-else to find (and then commit to) a single matching
partner. The simplified join-loop predicate for existential searches is shown in
Figure 7.1. The interface in line (1) is exactly the same as under the basic

7.2. LOCAL OPTIMISATION 155

p 1 join loop(Ls,Id1,...,Idi,X1,...,Xn) :- (1)
(member(Ls,C # Id), (2)
C = q(A,B,C), (3)
alive(Id), (4)
Id \= Id1, (5)
...

Id \= Idi -> (6)
<find-matches-and-call-body> (7)

; true

).

Figure 7.1: Simplified join-loop predicate based on nondeterministic search

compilation. Line (2) is the call to member/2, which nondeterministically searches
for a potential matching partner. Lines (3)-(7) exactly correspond to lines (3)-
(7) in Figure 4.3 under the basic compilation. We have completely removed the
overhead of the recursive call to p 1 join loop and the associated liveness tests
for Id1,...,Idi (see lines (9)-(12) from Figure 4.3). This is because after line (7)
we have either found no matchings, or found one matching and successfully fired
the rule.

Example 64 Consider the compilation of the first occurrence of the bounds/3

constraint in the following rule (the fourth occurrence overall in the program in
Appendix A.1)

intersect @ bounds(X,L1,U1)4, bounds(X,L2,U2)5 <=>

bounds(X,max(L1,L2),min(U1,U2)).

Since the active constraint is deleted the entire search is existential. The com-
pilation produces the code in Figure 7.2. Predicate bounds 4 join loop iterates
nondeterministically through the bounds/3 constraints in the store, and then com-
mits to the first matching. ⊓⊔

The idea of replacing universal with existential searches first appeared in [47]1

and was implemented in the SICStus CHR compiler. The older version of the
optimisation is very similar to ours, except that it did not take into account func-
tional dependency information (which is not available to the SICStus compiler).
It was also shown that the optimisation is beneficial for the SICStus CHR system.

Removal of propagation histories

Even with a clever implementation, the propagation history is still a relatively
expensive data structure to maintain. Under the basic compilation we assumed a

1In [47] a deterministic recursive loop is synonymous to a universal search, and nondeter-

ministic backtracking search is synonymous to an existential search.

156 CHAPTER 7. OPTIMISATION

bounds 4(Id,X,L1,U1) :-

get iterator(Ls),

bounds 4 join loop(Ls,Id,L1,U1),

(alive(Id) ->

bounds 5(Id,X,L1,U1)

; true

).

bounds 4 join loop(Ls,Id,L1,U1) :-

(member(Ls,C # Id1), %% nondet search

C = bounds(X,L2,U2), %% match?

alive(Id1), %% alive?

Id1 \= Id %% different?

-> %% commit

delete(Id), %% delete active

delete(Id1), %% delete match

bounds(X,min(L1,L2),max(U1,U2)) %% Body

; true

).

Figure 7.2: Existential search code for the fourth occurrence of a bounds/3 con-
straint

single monolithic propagation history for all rules (as is the case with the specifi-
cation of the refined operational semantics). We can improve on this slightly by
generating a propagation history on a per propagation rule basis, i.e. generate
a specialised check history r(Entry) per propagation rule r. While this is of
some benefit, checking the history remains a costly operation. Fortunately, there
are cases where a propagation history can be removed altogether, thanks mainly
to the way the iteration works.

Let p(x̄) be a CHR constraint that is never woken up during a Solve transi-
tion at runtime. This is the case whenever all of x̄ are ground (see Definition 11).
We now consider how constraint p(x̄) becomes active, which must be by either
an Activate or Reactivate transition. Since Reactivate is only applicable
to numbered constraints, which have been woken up by Solve, we can exclude
this case. Thus p(x̄) is active only once during a derivation via the Activate
transition.

Let (r @ h1, ..., hn =⇒ g | B) be a propagation rule in program P . Suppose
that h1, ..., hn contains the kth occurrence for CHR constraint c in P . We can
omit the propagation history check for occurrence k if the following holds for all
possible matchings c#i ∈M for h1, ..., hn.

1. M is ground/fixed at runtime; and

7.2. LOCAL OPTIMISATION 157

2. For all c′#i′ ∈ M such that i′ 6= i, it is not possible that constraint c called
constraint c′ before occurrence k.

Suppose that c = p(x̄). These conditions ensure that once p(x̄) becomes ac-
tive (only possible by Activate thanks to the first condition) no new potential
matches for rule h1, ..., hn are created before active p(x̄) reaches occurrence k.
We give a semi-formal argument of why these conditions remove the need for a
propagation history check.

The active constraint p(x̄)#i : k is implemented by the call p k(i,x̄) under
the basic compilation. At this point a global iterator Ls, which is essentially a
copy of the CHR store, is obtained. A universal search over Ls is performed, i.e.
iterating through all possible matches in Ls. Assume that there are M0, ..., Mm

matches in Ls. Thanks to iteration, when p(x̄) is active we only consider each
M ∈ {M0, ..., Mm} once before trying other matches, hence each M fires the rule
at most once during the entire iteration for occurrence k. We can extend this even
further: Condition 1 ensures that p(x̄) is only ever active once, therefore each M
fires the rule at most once for active p(x̄) throughout the entire derivation. This
is exactly the correct behaviour (match M firing the rule at most once), with or
without an explicit propagation history.

So far we have only solved half the problem: when other constraints in M are
active, they may fire the rule r with the same match M as well. This is where
Condition 2 is useful. Assume that M may fire rule r when p(x̄) is active (as
in the previous paragraph). Let q(ȳ) be another constraint in M that may fire
rule r with the same match M when q(ȳ) is active. Usually the propagation
history will prevent this from happening. Without loss of generality, assume that
q(ȳ) became active after p(x̄). Then p(x̄) must have (directly or indirectly)
called q(ȳ). Furthermore, p(x̄) must have called q(ȳ) before occurrence k of p
(otherwise p(x̄) could not have fired rule r with M , since q(ȳ) was not yet in
the store). Therefore we have violated Condition 2.

Here is a simple example of violation of Condition 2, which also demonstrates
the need for a propagation history.

Example 65 Consider the following program where the second rule violates Con-
dition 2 (an active p may call q before the propagation rule).

r1 @ p \ s <=> q.

r2 @ p, q ==> r.

Under the HAL CHR implementation, without an explicit propagation history for
rule r2, a call to p incorrectly calls r twice (if there is a matching s for rule r1 in
the store). In this situation the HAL CHR compiler will generate a propagation
history. If, however, rule r1 were a simplification rule, e.g.,

r1 @ p, s <=> q.

Then rule r2 does not require a propagation history. Although it is possible that
an active p calls q, the active p is deleted in the process, and therefore it is safe
to remove the propagation history for rule r2. ⊓⊔

158 CHAPTER 7. OPTIMISATION

The current HAL implementation removes propagation histories whenever
possible. Groundness (Condition 1) information comes from the mode declara-
tions for CHR constraints, and Condition 2 can be directly read off a CHR call
graph.

Other improvements

There are other simple improvements over the basic compilation. These include

1. Removal of the call to delay/3 if a CHR constraint does not extend any
solvers, e.g. gcd/1 does not extend any solver, so a call to delay/3 is not
required;

2. Removal of constraint identifier difference tests, i.e. the tests Id \= Id1 etc.
from join-loop predicates (see Figure 4.3), if the compiler can prove that
the constraints must be different, e.g. if they have different functor/arities;

3. Removal of redundant liveness tests, i.e. alive(Id) etc. from join-loop
predicates, if the compiler can prove that the test will always succeed. This
is possible if the body of a rule cannot cause the deletion of a constraint
from any of the iterators;

4. Remove calls to delete/1 in call-body predicates if the body of the rule
calls fail before any CHR constraint;

5. Reducing the number of arguments to join-loop and body-call predicates to
the actual arguments that are used (e.g. by the guard or body).

6. Inlining predicates, e.g. inlining the call-body predicates, etc.

Another benefit is that the size of the resulting code is reduced, which can make
the code more readable, and make compilation faster.

7.2.2 Join Ordering and Early Guard Scheduling

The head of a rule together with the guard defines a multi-way join with selec-
tions (the guard) that could be processed in many possible ways, starting from
the active constraint. Under the basic compilation of Chapter 4, the order at
which partner constraints are matched (i.e. the caller/callee relationship between
join-loop predicates) is unspecified. In most older CHR compilers, e.g. the orig-
inal SICStus CHR compiler, the calculation of partner constraints is performed
in textual order. In both cases the guards are evaluated once all partners have
been identified, i.e. inside the call-body predicate. By testing guards as part-
ners are matched, i.e. inside join-loop predicates, and finding a better order for
matching partners, we can dramatically improve the run-time performance of
CHR programs.

7.2. LOCAL OPTIMISATION 159

The problem of join ordering has been studied before, e.g. in the context of
production systems using the TREAT matching algorithm [63]. Join ordering for
CHRs is more complicated because the compiler needs to consider more complex
guards. A similar problem has also been extensively addressed in the database
literature, however most of this work is not applicable since in the database con-
text they assume the existence of information on cardinality of relations (number
of stored constraints) and selectivity of various attributes. Since we are dealing
with a programming language we have no access to such information, nor rea-
sonable approximations. Another important difference is that, often, we are only
looking for the first possible join partner (i.e. an existential search), rather than
all.

Since we have no cardinality or selectivity information we will select a join
ordering by using the number of unknown attributes in the join to estimate its
cost. Functional dependencies are used to improve this estimate, by eliminating
unknown attributes from consideration that are functionally defined by known
attributes.

The function fdclose(Fixed,FDs) closes a set of fixed variables Fixed under
the finite set of functional dependencies FDs. Note that for full functional de-
pendencies fdclose(Fixed,FDs) will either do nothing or add all variables in FDs
to the result.

We assume an initial set Fixed = vars(c) of known variables (where c is
the active constraint), together with the set of (as yet unprocessed) partner con-
straints and guards. We also assume that all partner constraints and guards have
been normalised (see Section 4.2.2). The algorithm measure shown in Figure 7.4,
takes as inputs the set Fixed, the sequence Partners of normalised partner con-
straints in a particular order, the set FDs of functional dependencies and the set
Guards of guards, and returns the triple (Measure, Goal, Lookups).

Measure is an ordered pair representing the cost of the join for the particular
order given by the n partner constraints in Partners. It is made up of the
weighted sum (n − 1)w1 + (n − 2)w2 + · · · + 1wn−1 of the costs wi for each
individual join with a partner constraint. The weighting encourages the cheapest
joins to be earliest.

The cost of joining the ith partner constraint to pre-join expression (the join
of the active constraint plus the first (i− 1) partners), wi, is defined as the pair
(u, f): u is the number of arguments in the new partner which are unfixed before
the join; and f is the negative of the number of arguments which are fixed in the
pre-join expression. The motivation for this costing is based on the worst case
size of the join, assuming each argument ranges over a domain of the same size
s. In this case the number of join partners (tuples) in the partner constraint for
each set of values for the pre-join expression is su, and there are sm−f tuples in
the pre-join expression (where m is the total number of variables in the pre-join
expression). The total number of tuples after the ith partner is joined are thus
sm−f+u. The numbers hence represent the exponents of the join size, a kind of
“degrees of freedom” measurement. The sum of the first components u gives the

160 CHAPTER 7. OPTIMISATION

Condition Guard Selectivity

fixed(X) and fixed(Y) X = Y 1.0
¬fixed(X) or ¬fixed(Y) X = Y 0.0

fixed(X) X = f(...) 1.0
¬fixed(X) X = f(...) 0.0

p is failure p(...) ∞
fixed(X) and (p is semidet) p(..., X, ...) 0.25 per X
¬fixed(X) or (p is det) p(..., X, ...) 0.0 per X

Figure 7.3: Example selectivity approximations of various guards.

total size of the join and the role of the second component is to prefer orderings
which keep the intermediate results smaller.

We also take into account the selectivity of the guards we can schedule directly
after the new partner. The role of selectivity is to encourage the early scheduling
of guards which are likely to fail. This is achieved via the selectivity(Guards)
function which returns the sum of the selectivities of the Guards. The selectivity
function for the HAL CHR compiler is shown in Figure 7.3, where the selectivity
of an equation guard X = Y is 1.0 provided X and Y are both fixed, otherwise the
selectivity is 0.0. An equation with both X and Y fixed immediately eliminates
one degree of freedom (reduces the number of tuples by 1/s), hence the selectivity
of 1.0. When one variable is not fixed, the guard never removes any answers, hence
the selectivity of 0.0. The case where the guard is a function call, i.e. X = f(...),
is similar: selectivity is 1.0 if X is fixed, or 0.0 otherwise. The last three cases
handle arguments to predicate calls (including built-in constraints) and function
calls in the guard. Here, we guess the selectivity based on the determinism of
the predicate. If the determinism is failure, then this indicates the strongest
possible selectivity (nothing is ever selected), hence ∞ (or a very large number)
is returned.2 Otherwise if the determinism is semidet, our approximation of
the selectivity is 0.25 per fixed argument (as motivation, the constraint X > Y
with two fixed arguments can be considered to remove 0.5 degrees of freedom).
Finally, if the determinism is det, which is weakest possible selectivity (everything
is selected), hence 0.0 is returned.

Example 66 Consider the guard X = 2 ^ Y where X and Y are integers (hence
function (2^) is semidet) with X and Y fixed. In HAL, this guard will be
assigned a selectivity of 1.25 (1.0 for X being fixed plus 0.25 for Y being a fixed
argument to a semidet function).

Notice how the assigned selectivity is always just an approximation. A better
value could always be chosen if we take into account more information. For
example, if Y was known to be always positive (e.g. the guard Y ≥ 2 was scheduled

2If the determinism is failure, then the occurrence will be removed by the success contin-

uation optimisation, which is described later in Section 7.3.1.

7.2. LOCAL OPTIMISATION 161

measure(Fixed,Partners,FDs,Guards)
Lookups := ∅
score := (0, 0)
sum := (0, 0)
Goal := tell to asks(Guards)
Guards := Guards \Goal
while true

if Partners = ∅
return (score,Goal ++ tell to asks(Guards), Lookups)

let Partners ≡ [p(x̄)|Partners1]
Partners := Partners1
FDp := {p(x̄) :: fd ∈ FDs}
Fixedp := fdclose(Fixed, FDp)
f̄ := x̄ ∩ Fixedp

Fixed := Fixed ∪ x̄
GsEarly := schedule guards(Fixed, Guards)
cost := (max(|x̄ \ f̄ | − selectivity(GsEarly), 0),−|f̄ | − selectivity(GsEarly))
score := score + sum + cost
sum := sum + cost
Lookups := Lookups ∪ {p((xi ∈ f̄ ? xi :) | xi ∈ x̄)}
Goal := Goal ++ [p(x̄)] ++ GsEarly
Guards := Guards \GsEarly

endwhile

return (score,Goal, Lookups)

schedule guards(Fixed,Guards)
GsEarly := []
repeat

Guards0 := Guards
foreach g ∈ Guards

if invars(g) ⊆ Fixed
GsEarly := GsEarly ++ [g]
Fixed := Fixed ∪ outvars(g)
Guards := Guards \ {g}

until Guards0 = Guards
return tell to asks(GsEarly)

Figure 7.4: Algorithm for evaluating join ordering

earlier in the join), then the function (2^) is effectively total, hence a better
approximation for the selectivity is 1.0. ⊓⊔

Goal gives the ordering of partner constraints and guards (with guards sched-
uled as early as possible). Finally, Lookups gives the lookups (or queries). Queries
will be made from partner constraints, where a variable name indicates a fixed

162 CHAPTER 7. OPTIMISATION

value, and an underscore () indicates an unfixed value. For example, lookup
p(X, ,Y,Z,) indicates a search for p/5 constraints with a given value in the
first, third, and fourth argument positions.

The function schedule guards(Fixed,Guards) returns which guards in Guards
can be scheduled given the fixed set of variables Fixed. Here we see the usefulness
of mode information which allows us to schedule guards as early as possible. For
simplicity, we treat mode information in the form of two functions: invars and
outvars which return the set of input and output arguments of a guard procedure.
We also assume that each guard has exactly one mode (it is straightforward to
extend the approach to multiple modes3 and more complex instantiations). The
schedule guards keeps adding guards to its output argument while they can be
scheduled. We assume the function tell to asks converts any tell constraints in
the scheduled guards to the corresponding ask constraint version as per described
in Section 4.5.

The function measure works as follows: beginning from an empty goal, we first
schedule all possible guards. We then schedule each of the partner constraints
p(x̄) in Partners in the order given, by determining the number of fixed (f̄) and
unfixed (x̄\ f̄) variables in the partner, and the selectivity of any guards that can
be scheduled immediately afterwards. With this we the calculate cost pair for
the join which is added into the score. The Goal is updated to add the join p(x̄)
followed by the guards that can be scheduled after it. When all partner joins are
calculated the function returns.

Example 67 Consider the compilation of the (normalised) rule:

p(X,Y), q(Y1,Z,T,U), flag, r(X1,X2,U1) \ s(W) <=>

U = U1, X = X1, X1 = X2, Y = Y1, W = U + 1, linear(Z)

| p(Z,W).

for active constraint p(X,Y) and Fixed = {X, Y }. The individual costs calcu-
lated for each join in the left-to-right partner order illustrated in the rule are
(2.75,−1.25), (0, 0), (0,−3), (0,−1) giving a total cost of (10,−12) together with
goal

Y = Y1, X = X1, X1 = X2, q(Y1,Z,T,U), W = U + 1, U = U1, linear(Z),

flag, r(X1,X2,U1), s(W)

and lookups q(Y1, , ,), flag, r(X1,X2,U1), s(W). The best order has total
cost (4.75,−8.25) resulting in goal

Y = Y1, X = X1, X1 = X2, flag, r(X1,X2,U1), U = U1, W = U + 1, s(W),

q(Y1,Z,T,U), linear(Z)

and lookups flag, r(X1,X2,), s(W), q(Y1, , ,U).
For active constraint q(Y1,Z,T,U), the best order has total cost (2,−9) re-

sulting in goal

3The HAL CHR compiler supports guards with multiple modes.

7.2. LOCAL OPTIMISATION 163

Y = Y1, U = U1, W = U + 1, linear(Z), s(W), flag, p(X,Y), X = X1,

X1 = X2, r(X1,X2,U1)

and lookups s(W), flag, p(,Y), r(X1,X2,U1). ⊓⊔

Aliased variables introduced because of normalisation can be removed by ap-
plying the appropriate substitution. For example, we can simplify the last goal
in Example 67 to

W = U + 1, linear(Z), s(W), flag, p(X,Y), r(X,X,U)

with (more specialised) lookups s(W), flag, p(,Y), r(X,X,U). We call this pro-
cess denormalisation, which helps reduce the number of arguments for join-loop
and call-body predicates. The HAL CHR compiler denormalises all goals after
join ordering.

For rules with large heads where examining all permutations is too expensive
we can instead use heuristics to search for a permutation of the partners that
is likely to be cost effective. The current HAL CHR compiler uses a hybrid
approach. Assume that there are m partners to schedule, then the first m −
n partners are scheduled greedily, for some user configurable number n. The
remaining n partners are scheduled by brute force by trying all permutations.4

Note that since m is usually at most 3 in practice, this is rarely an issue and the
most optimal permutation is chosen.

7.2.3 Index Selection

Once join orderings have been determined, we must select a set of indexes for
each constraint in the store. Under the basic compilation, where no indexing was
used, a call to get iterator always returns a list iterator which contains every
CHR constraint in the store. This is clearly inefficient, since (in general) very few
of the constraints in the iterator actually represent valid matches. The aim of
indexing is to specialise calls to get iterator such that the iterator only contains
constraints of a particular form, namely the form of a given lookup. For example,
an iterator from an index for the lookup p(,X) will only contain constraints of
the form p(,X). The advantage is that the amount of iteration is reduced when
calculating the join, which can decrease the runtime complexity of the program.
In this section we examine how to chose suitable indexes given a set of lookups,
and how these indexes are actually implemented in HAL.

The current Prolog CHR implementations5 use only two index mechanisms:
Constraints for a given functor/arity are grouped, and variables shared between
heads in a rule index the constraint store because matching constraints must

4Note that is better to use brute force before the greedy algorithm, however this is not
currently implemented.

5The exception is the Schrijvers’ CHR implementation, which uses general indexing for
ground constraints based on [45] (an earlier version of this work).

164 CHAPTER 7. OPTIMISATION

correspondingly share a (attributed) variable (see Section 2.3.3). In the HAL
CHR compiler, we put extra emphasis on more general indexes.

For simplicity, we will assume that the constraints in the store (and hence
also in the indexes) are always ground, because variable bindings will change
the correct position of data in the index. Later, in Chapter 8, we will overcome
this restriction and allow indexes on non-ground data as well. As this requires
additional non-trivial help from the underlying solver, we postpone consideration
until later.

The data structure used to implement an index (or index structure from now
on) consumes memory, so one of our aims is to generate as few index structures
as possible. To achieve this, usually the compiler will perform lookup reduction:
given a set of lookups for constraint p/k we reduce the number of lookups (and
hence the number of indexes) by using information about properties of p/k. The
rules for lookup reduction used by HAL are:

• lookup generalisation: rather than build specialised indexes for lookups that
share variables we simply use more general indexes. Thus, we replace any
lookup p(v1, . . . , vk) where vi and vj are the same variable by a lookup
p(v1, . . . , vj−1, v

′
j, vj+1, . . . , vk) where v′

j is a new variable. Of course, we
must add an extra guard vi = vj for rules where we use generalised lookups.
For example, the lookup r(X,X,U) can use the lookup for r(X,Y,U), fol-
lowed by the guard X = Y.

• functional dependency reduction: we can use functional dependencies to re-
duce the requirement for indexes. We can replace any lookup p(v1, . . . , vk)
where there is a functional dependency p(x1, . . . , xk) :: {xi1 , . . . , xim}
{x1, . . . , xk} and vi1 , . . . , vim are fixed variables (i.e. not) by an equiva-
lent lookup where each (non-fixed) v 6∈ vi1 , . . . , vim is replaced by ‘ ’. For
example, consider the constraint bounds/3 from the bounds program (see
Appendix A.1). Given functional dependency bounds(X, L, U) :: {X}
{X, L, U}, the lookup bounds(X,L,) can be replaced by bounds(X, ,).

After lookup reduction, the compiler generates an index structure for every re-
maining lookup. The rest of this section is concerned with choosing the right
index for a given lookup.

Each index for p(v1, . . . , vk), where say the fixed variables are vi1 , . . . , vim ,
needs to support the operations shown in Figure 7.5. for initialising a new index,
inserting and deleting constraints from the index and returning an iterator for
a given lookup. The name index is a unique string used to identify the index
(recall that multiple indexes are possible for the same constraint). Unlike basic
compilation, where iterators are always lists of identified constraints, the type of
iterator will depend on the data-structure used to implement the index. We also
allow a call to p index get iterator to fail, which indicates an empty iterator.
We are assuming that the type of a constraint identifier is chr id, which is re-
quired for insertion and deletion. In HAL, indexes are stored in global variables,

7.2. LOCAL OPTIMISATION 165

:- pred p index init.

:- mode p index init is det.

:- pred p index insert(arg1, ..., argk, chr id).

:- mode p index insert(in, ..., in, in) is det.

:- pred p index delete(arg1, ..., argk, chr id).

:- mode p index delete(in, ..., in, in) is det.

:- pred p index get iterator(argi1, ..., argim, iterator).
:- mode p index get iterator(in, ..., in, out) is semidet.

Figure 7.5: Operations that need to be supported for each index.

Index Structure Iterator Type

yesno T
tree T
tree* list(T)

hashtable T
hashtable* list(T)

list list(T)

Figure 7.6: Supported index structures and corresponding iterator types

which are destructively updated for initialisation, deletions and insertions. The
compiler generates code for the predicates p insert and p delete which insert
and delete the constraint p from each of the indexes in which it is involved.

The HAL CHR compiler supports several kinds of index structures as shown
with their corresponding iterator types in Figure 7.6. Here T represents the type
of identified CHR constraints, i.e. the type of the terms C # Id. Unlike basic
compilation, where all iterators where of the type list(T), some index structures
(i.e. yesno, tree, etc.) always return a singleton iterator, hence the type T . The
main advantage is that existential searches can be determinised by replacing the
(nondeterministic) call to member(Ls,C#Id) with the (deterministic) deconstruc-
tion (Ls = C#Id). In HAL, deterministic predicates are usually faster than a
similar nondeterministic alternative because of less overhead.

By far the simplest index structure is yesno, which can have two states: a
no state (meaning nothing is currently stored) or a yes(C) state, where C is
the only (numbered) constraint currently in the store. The yesno index is an
example of an index structure that always returns a singleton iterator, i.e. when
the state is yes(C). The compiler will generate a yesno index structure whenever

166 CHAPTER 7. OPTIMISATION

it detects that it is not possible for multiple6 p(x̄) constraints to exist in the
store at once. This is the case whenever constraint p(x̄) has has the set semantic
functional dependency p(x̄) :: ∅ x̄ for the current occurrence. An example is
the constraint gcd/1 from the gcd program in Example 14. Here the rule

gcd(N) \ gcd(M) <=> M >= N | gcd(M-N).

ensures one of the two gcd/2 constraints (one must be active) will be deleted.7

Therefore only one can ever actually be in the store at once, hence a yesno index
structure may be used.

If constraint p(x̄) has the set semantic functional dependency of the form
p(x1, . . . , xi, xi+1, . . . , xk) :: {x1, . . . , xi} {x1, ..., xk} for the current occurrence,
then the compiler will generate a tree index structure, which in HAL is a bal-
anced 234 tree. In this case the constraint p(x̄) can be thought of as defining a
function from the key (x1, . . . , xi) to the constraint p(x̄) itself. For example, the
bounds(X,L,U) constraint from the bounds program from Appendix A.1 has the
functional dependency bounds(X, L, U) :: {X} {X, L, U} hence the compiler
builds a 234 tree index structure with X as the key, and the numbered constraints
bounds(X,L,U) # Id as the value.

Even without functional dependencies we can still use tree indexes. Instead
of mapping a key to a unique constraint, a key maps to a list of constraints which
share the same key. This is the purpose of the tree* index structure, which is
a 234 tree from keys to list iterators. For example, the X < Y constraint from
the bounds program has no functional dependencies between X and Y . For the
lookup (X <) we can use a tree* index, which maps the key X to a list iterator
of all constraints of the form (X <) in the store.

The big advantage of tree index structures is O(log(n)) lookups compared with
O(n) lookups for unsorted lists used in the basic compilation. Another advantage
of tree indexes is that it is possible to do a form of tree index elimination: suppose
that for a constraint p(X,Y,Z) we need to generate indexes with keys (X, Y) and
X corresponding to lookups p(X,Y,) and p(X, ,). For the index where (X, Y)
is the key, all keys of the form (X,) will group together in the tree index because
of HAL’s default lexicographical term ordering. This eliminates the need for
generating a separate index for the lookup p(X, ,), since we can use the index
for p(X,Y,) together with a special search, i.e. search for the largest subtree
where the key for the root node is of the form (X,) (this is an O(log(n)) operation
because we can prune large sections of the tree that are not of interest). From this
subtree we build an iterator by collecting all nodes from the root of the subtree
of the required form (we take advantage of the fact that all such nodes must be
connected in the subtree).

Example 68 For example, consider the following rules from the bounds program

6These constraints do not have to be identical.
7Note that we assume that the active constraint is not present in the store. How/when this

occurs is explained in Section 7.3.

7.2. LOCAL OPTIMISATION 167

X =< Y \ X =< Y <=> true.

X =< Y, bounds(X,LX,UX), bounds(Y,LY,UY) ==>

bounds(Y,LX,UY), bounds(X,LX,UY).

which require the lookups (X =< Y), (X =<) and (=< Y). Usually the compiler
will generate three indexes, one for each lookup. With our special kind of index
elimination, we only require indexes for lookups (X =< Y) and (=< Y), and
lookups of the form (X =<) use the same index as the lookup for (X =< Y). ⊓⊔

The other main type of index structure is the hash table. Hash tables and
the balanced tree indexes are interchangeable (i.e. a hash table index can be
used instead of a tree index and vice versa). There are two main disadvantages
of hash tables over tree index structures. Firstly, a hash table requires a hash
function8 over the domain of keys, and secondly, the tree index elimination is
simply not applicable to hash tables, so usually more indexes are generated. The
HAL CHR compiler uses a hash table if the types of each argument in the key
have an associated hash function with it. This is achieved by a special typeclass
hash(T) which defines a function of the same name. The type of the function is

:- func hash(T) = int.

The hash value of a tuple is just the exclusive-OR of the hash values of each
element.

The advantage of hash tables is an average complexity of O(1) for lookups,
although a worse case of O(n) is possible. This means that hash tables indexes on
average have the same complexity as some of the best-case usages of attributed
variable indexing, although hash tables generally have more overhead (e.g. com-
puting the hash function etc.).

The final type of index structure is an unsorted list. A list is chosen for
lookups of the form p(,...), i.e. when the key is empty. Such lookups require
all p(x̄) constraints currently in the store, so a list index is sensible.

Guarded index structures

Rather than generalising lookups, sometimes it makes sense to generate more
specialised index structures. We briefly look at one such idea, namely guarded
indexes.

Consider the lookup p(X,X,). Lookup generalisation will reduce this lookup
to the more general lookup p(X,Y,) along with the guard X = Y which is sched-
uled before the lookup. We could create a more specialised index structure by
testing the guard X = Y before insertion into the (more specialised) index. In
fact, this can be generalised to any type of guard, provided the variables in the
guard appear in the lookup. For example, suppose join ordering schedules a

8Tree indexes similarly require a comparison function between terms. In HAL, virtually all
types are comparable, so this is not a problem.

168 CHAPTER 7. OPTIMISATION

lookup p(X,Y,) followed by the guard X < Y, then a similar specialised index is
possible, where entries are only inserted into the index if the guard X < Y holds.

Guarded indexes are generally smaller, which makes lookups faster in the case
of tree and list indexes. The cost of insertion is reduced, since not all constraints
will be inserted into the index. Over use of guarded indexes may lead to a large
number of index structures generated per constraint, which is undesirable. One
solution is to use guarded indexes whenever lookup generalisation does not reduce
the number of indexes. Currently the HAL CHR compiler does not support
guarded index structures.

7.3 Global Optimisation

While local optimisation examines each occurrence in isolation, this section looks
at global optimisation, which take into account the context of an occurrence (with
respect to other occurrences) in order to make further improvements.

7.3.1 Continuation Optimisation

We can improve the simple strategy for joining the code generated for each oc-
currence of a constraint by noticing correspondences between rule matchings for
various occurrences. If the current occurrence fails finds a match, we can use this
information to show that subsequent occurrences will also fail to find a match.
We define fail continuation as the next occurrence to be called when the current
occurrence fails to match. Similarly if the occurrence successfully finds a match,
we can also use this information. We define success continuation as the next
occurrence to be called when the current occurrence finds at least one match.
Under the basic compilation, both the success and fail continuations were simply
the next occurrence.

Suppose we have two consecutive occurrences which we represent in the pro-
gram normalised form (see Section 4.2.3).

occ(p(x̄), ,n ,H1,H2,g, ,)

occ(p(ȳ), ,n + 1,H ′
1,H

′
2,g

′, ,)

Here n is the occurrence number, H1 and H2 are the non-deleted and deleted
parts of the head (excluding the active constraint) and g is the guard. Similarly,
H ′

1, H ′
2 and g′ are heads and guard for the second occurrence. Let c = H1 ⊎H2

be the partners for occurrence n, and c′ = H ′
1⊎H ′

2 be the partners for occurrence
n+1. We will assume that expressions g and g′ already contain explicit existential
quantification for variables not appearing in the rule head. We will also assume
that the built-in solver used by the program is complete.

Suppose the CHR compiler can prove that there exists a renaming ρ such that
x̄ = ρ.ȳ and the following conditions hold

1. c ⊆ ρ.c′ (multiset inclusion)

7.3. GLOBAL OPTIMISATION 169

2. D |= ρ.g′ → g

Then, anytime the first occurrence fails to match the second occurrence will also
fail to match, since the store has not changed meanwhile. Hence, the fail contin-
uation for the first occurrence can skip over the second occurrence. We can use
whatever reasoning we please to prove the implication. Currently, the HAL CHR
compiler uses very simple implication reasoning about Herbrand equations (since
the Herbrand solver is known to be complete) and identical CHR constraints.

Example 69 Consider the (normalised) rule from the bounds program (see Ap-
pendix A.1) which contains the 4th and 5th occurrence of bounds/3.

bounds(X,L1,U1)4, bounds(Y,L2,U2)5 <=> X = Y |

bounds(X,max(L1,L2),min(U1,U2)).

Consider the substitution ρ = (X = Y ∧ L1 = L2 ∧ U1 = U2) which satisfies

1. {bounds(Y, L2, U2)} ⊆ ρ.{bounds(X, L1, U1)}; and

2. D |= ρ.(X = Y)→ (X = Y).

Note that ρ.(X = Y) ≡ (Y = X). Hence, the 5th occurrence will never succeed
if the 4th fails. Since if the 4th succeeds the active constraint is deleted, the 5th

occurrence can be omitted entirely. ⊓⊔

We can similarly improve success continuations. Suppose we have two con-
secutive occurrences, as before, but now the first occurrence does not delete the
active constraint (otherwise the success continuation is irrelevant, since the ac-
tive constraint would have been deleted). Let ga be the maximal subset of g such
that vars(ga) ⊆ x̄. Similarly we define g′

a as the maximal subset of g′ such that
vars(g′

a) ⊆ ȳ. If the compiler can prove that

D |= (x̄ = ȳ ∧ ga)→ ¬g
′
a

then if the p(x̄) occurrence succeeds the p(ȳ) occurrence will not. Hence, the
success continuation of p(x̄) can skip the p(ȳ) occurrence. Again, we can use
whatever form of reasoning we please to prove the unsatisfiability.

Example 70 Consider the two occurrences of p/2 in the rules:

p(X,Y), q(Y,Y,X,T) ==> X >= Y | ...

r(A,B,C), p(C,D) ==> C < D | ...

We see that
D |= (X = C ∧ Y = D ∧X ≥ Y)→ ¬(C < D)

is clearly satisfiable and the success continuation of the first occurrence of p/2
can skip the second. ⊓⊔

170 CHAPTER 7. OPTIMISATION

The conditions for success continuation optimisation are far stronger than fail
continuation, and for this reason success continuation is less useful in practice.

There are subtle complications to consider for both kinds of continuation
optimisation. Firstly, if a rule is prevented from firing because of the propaga-
tion history, then the success continuation (not the fail continuation) must be
called. Secondly, for universal searches using iteration, there are difficulties stem-
ming from deciding if the head of the rule fires or not, which is information that
this optimisation relies upon. For the existential case there is no problem, since
matching is already a mere semidet test. However a universal search may succeed
multiple times, so some additional mechanism for recording the number of times
a rule fires must be introduced. One possible solution is thread a counter through
the code for the universal search, and count the number of times the search suc-
ceeds. If the counter is zero after the universal search code exists, then proceed
with the fail continuation, otherwise proceed with the success continuation. Cur-
rently the HAL CHR compiler only implements continuation optimisation over
existential searches.

Continuation optimisation was originally implemented for the SICStus CHR
before the HAL CHR compiler, however (to the best of our knowledge) it was
not formally reported at the time. All of the modern CHR compilers currently
support some form of continuation optimisation.

7.3.2 Lateness Optimisations

Under the basic compilation, the top-level predicate for constraint p/k will per-
form three operations:

1. call new/1 to allocate a new identifier;

2. call p insert/2 to insert the active constraint into the store; and

3. call delay/3 to set up appropriate delayed goals.

The aim of lateness optimisation is to postpone each of these operations until
somewhere in the occurrence predicates if possible. The advantage is that if the
active constraint is deleted before some operation occurs, then we save the cost
of doing that operation. For example, if an active constraint is deleted before it
is inserted into the store, then we save the cost of the insertion. In this section
we look at the three kinds of lateness optimisations: late ID, late storage and late
delay, which correspond to postponement of new/1, p insert/2 and delay/3
respectively.

The late ID optimisation takes advantage of the fact that not all occurrences
use the constraint identifier of the active constraint. We can therefore postpone
the call to new/1 until the beginning of the first occurrence predicate that actu-
ally requires the identifier. The late ID optimisation works particularly well in
conjunction with some of the overhead removal optimisations (see Section 7.2.1),
which remove history checks, liveness checks, etc., requiring the active constraint’s

7.3. GLOBAL OPTIMISATION 171

identifier. Both of the calls to p insert and delay/3 also require the identifier,
so the late ID optimisation relies on late storage and late delay to be effective.

The late storage optimisation (unsurprisingly) relies on the late storage anal-
ysis of Chapter 5. Basically, the body of a rule (for a given occurrence) can
observe the active constraint, then the active constraint must be inserted before
the body is called. The question remains of where to place the call to p insert.
A naive approach is to place the call at the beginning the of first occurrence
that requires the constraint to be stored, but this is problematic. Some index
structures, e.g. the yesno index structure, require constraints to be inserted af-
ter (partner) deletion if applicable, otherwise two constraints may appear in the
store at once.

A better approach is to call p insert just before the body is called in the
call-body predicate. The benefit is that if no matches are found, then the con-
straint will not be stored until even later occurrences (remember the later the
better). However this does mean that p insert may be called multiple times,
e.g. once for each matching, as opposed to being called once under the basic
compilation. We need a way of making sure the active constraint is inserted into
the indexes exactly once. Similarly, it is possible that p delete may be called
when the active constraint has not actually been inserted. We need a way of only
deleting the active constraint from the indexes if we know the active constraint
has actually been inserted. The HAL CHR runtime system solves these problems
by its implementation of the constraint identifier, which supports the following
operations:

1. store(Id) – marks Id as belonging to a constraint that has been inserted
(i.e. stored); and

2. stored(Id) – tests if Id belongs to a constraint that has already been
inserted.

The pseudo code for p insert9 and p delete is shown in Figure 7.7, which shows
the usage of store/1 and stored/1.

Example 71 Consider the compilation of the gcd program from Example 14.
The first and second occurrences (gcd 1 and gcd 2) delete the active constraint.
Thus, the new gcd/1 constraint need not be stored before they are executed. It is
only required to be stored during the code for the third occurrence (gcd 3). The
calls to gcd delete in gcd 1 and gcd 3 can be removed (since the compiler knows
the active constraint has not been stored yet). Note that we must be careful to
call gcd insert after gcd delete in occurrence three, in order to maintain the
invariant that only one gcd/1 constraint exists in the store at once (so a yesno

index may be used). Similarly, we have delayed the allocation of a new identifier

9The interface for p insert has changed slightly from the basic compilation. The old version,
p insert/2 expects two arguments, where the first points to C, which is some representation of
the active constraint. The new version passes the arguments to the active constraint directly,
avoiding the need to construct C each time p insert is called.

172 CHAPTER 7. OPTIMISATION

p insert(X1,...,Xk,Id) :-

(stored(Id) -> %% already stored?

true %% no action

; store(Id) %% else mark as stored

<insert-into-indexes> %% do insertion

).

p delete(X1,...,Xk,Id) :-

(stored(Id) -> %% actually stored?

<delete-from-indexes> %% do deletion

; true %% else no action

),

kill(Id). %% mark as deleted

Figure 7.7: Pseudo code for p insert and p delete

for the active constraint until the start of the third occurrence. The code for gcd/1
has now been simplified considerably, as illustrated in Figure 7.8, and is now more
comparable to the hand-implemented version in Example 30. Note that we have
inlined all join-loop and body-call predicates. ⊓⊔

A simple form of the late storage optimisation was also implemented for the
SICStus CHR compiler, where storage is delayed until the first occurrence that
does not delete the active constraint. Our analysis-based approach is more pow-
erful, as it often delays storage even further.

The final kind of lateness optimisation is late delay. We can postpone the call
to delay/3 until the first occurrence where the body of the rule can “change” (i.e.
further constrain) a variable appearing in the active constraint. Unfortunately,
this is a fairly strong condition, and difficult to analyse accurately for. The reason
is because CHRs manipulate global data (i.e. the CHR store), and therefore it is
always possible to indirectly update variables mentioned anywhere in the body.
For example, say the active constraint contains a variable X and the body of
the current occurrence does not mention X, but the body does call some CHR
constraint q/3. It is possible that when q/3 is active, it looks up another CHR
constraint which contains variable X, and subsequently modifies it. This shows
that calling any CHR constraint potentially modifies a variable. Currently, the
late delay optimisation in HAL is very simple: we can postpone calling delay/3
if the body does not mention any variables (i.e. fully grounded) and does not call
any CHR constraint.

Example 72 Consider the first two rules from the leq program (see Example 1).

leq(X,X)1 <=> true.

leq(X,Y)3 \ leq(X,Y)2 <=> true.

7.3. GLOBAL OPTIMISATION 173

gcd(N) :-

gcd 1(N).

gcd 1(N) :-

(N = 0 -> %% Guard

true, %% Body

true %% success continuation

; gcd 2(N,CN1) %% fail continuation

).

gcd 2(M) :-

(gcd yesno get iterator(I), %% get yesno iterator

I = gcd(N) # Id, %% match?

M >= N -> %% Guard

gcd(M-N), %% Body

true %% success continuation

; gcd 3(M) %% fail continuation

).

gcd 3(N) :-

new(Id), %% late ID

(gcd yesno get iterator(I), %% get yesno iterator

I = gcd(M) # Id1, %% match?

M >= N -> %% Guard

gcd delete(Id1), %% delete match

gcd insert(N,Id), %% late storage

gcd(M-N) %% Body

; gcd insert(N,Id), %% late storage

).

Figure 7.8: Simplified code for gcd/1 with late storage and late ID optimisations

...

Both of these rules have true as the body. Since the body does not mention any
variable nor call any CHR constraints it is safe to postpone the call to delay/3
until the fourth occurrence. ⊓⊔

7.3.3 Never Stored

A CHR constraint is never-stored (for a given occurrence) if it cannot appear in
the CHR store. Information about never-stored is a consequence of the functional
dependency analysis in Section 5.6, where the counts on the constraints are 0.
For a given occurrence, if one of the matching partners is never-stored, then we
know at compile time the search for partners will always fail. Hence an active
constraint can skip such occurrences.

174 CHAPTER 7. OPTIMISATION

Example 73 Consider the constraint add color/1 from the ray tracer (see Ex-
ample 59).

add1 @ add color(C1), color(C2) <=> C3 = C1 + C2, color(C3).

add2 @ add color(C) <=> color(C).

Consider the occurrence for color/1 in the first rule. Functional dependency
analysis reveals that the add color/1 constraint is never-stored (because of the
add2 rule). An active color/1 constraint will never match rule add1, since there
can never be a matching add color/1 in the store. Thus, we can remove the
occurrence of color/1 from consideration when compiling the ray tracer program.
⊓⊔

7.4 Experimental Results

In this section we show the benefit of CHR optimisation on several example
programs and benchmarks. The current HAL CHR compiler supports most of
the optimisations mention in this chapter, including

• overhead removal;

• join ordering and early guard scheduling;

• index selection;

• continuation optimisation;

• lateness optimisation; and

• never-stored optimisation

In order to implement these optimisations, the HAL CHR compiler uses informa-
tion from HAL’s type, mode and determinism declarations, and from the results
of program analysis described in Chapter 5.

The HAL CHR compiler implements an ad hoc version of the late storage and
set semantic functional dependency analyses described in Chapter 5.10 The ad
hoc versions of the analyses are essentially equivalent to the formal versions, e.g.
functional dependency analysis still relies on detecting rules of a certain form and
collecting constraints on the “shape” of the CHR store.

For the experiments, we will use the following test suite:

• gcd – The gcd program from Example 14, where the benchmark gcd(a,b)
computes gcd(a),gcd(b).

10The HAL CHR compiler was fully implemented before work on the abstract interpretation
for CHRs begun. The abstract interpretation framework and the analyses have been imple-
mented as part of the K.U.Leuven CHR system (see [73] for more details) and will be included
in any future CHR compiler for HAL/Mercury.

7.4. EXPERIMENTAL RESULTS 175

• cycle – Detects 5-cycles in directed graphs using the propagation rule

edge(X,Y),edge(Y,Z),edge(Z,W),edge(W,T),edge(T,X) ==> cycle.

The benchmark cycle(n) counts the number of cycles in a fully connected
graph of n nodes. This example also appears in [47].

• database – An extended version of the database program in Example 15.
Benchmark database(n,m) inserts and deletes n entries, and performs m
lookups.

• boolean – A simple Boolean solver. Benchmark queens(n) finds a solution
for the classic n-queens problem.

• bounds – The simple bounds propagation solver from Appendix A.1. Bench-
mark job(n) schedules jobs for bridge construction using data from [85].
Here, job(113) has solutions, and job(79) has none.

• stack – A stack data structure implemented purely in CHRs. Benchmark
stack(n) pushes n elements, then pops the same n elements.

• queue – Similar to stack but implements a queue data structure. Bench-
mark queue(n) adds n elements, then retrieves the same n elements.

• union – An implementation of the naive union find algorithm in CHRs [72].
Benchmark union(n) creates, unions, and then finds n nodes.

• union opt – An optimised implementation of union find with path com-
pression and union-by-size [72].

• graph – A visual parser for directed graphs. Benchmark graph(n) con-
structs a fully connected graph with n nodes from geometric primitives
such as circles and lines.

• ray – The ray program from Appendix A.2. Benchmark ray renders a
512×512 image of a scene consisting of 3 light sources, 7 spheres and 1
plane.

• compiler – Part of a bootstrapping CHR compiler11 which analyses for
never-stored and set-semantics. Benchmark database(n) analyses the
database program, where each rule is (redundantly) repeated n times.

11This is a different bootstrapping compiler from Christian Holzbaur’s version. The Holzbaur
compiler has not been (fully) ported to HAL (to do so would require significant work), and hence
it is not currently possible to use it as an example program.

176 CHAPTER 7. OPTIMISATION

Table 7.1: Statistics from each of the example programs

Prog. |c| <=> \ ==> |r| |H|

gcd 1 1 0 1 2 2
cycle 3 2 0 1 3 5
database 4 3 3 0 6 2
boolean 11 3 24 0 27 3
bounds 12 8 5 5 18 4
stack 4 5 1 0 6 3
queue 5 5 2 0 7 3
union 6 6 4 0 10 3
union opt 6 8 3 0 11 3
graph 7 1 4 0 5 5
ray 16 13 13 4 30 3
compiler 30 9 42 16 67 5

Note that none of these programs use a built-in solver. Experiments on programs
that do extend a built-in solver will be covered later in Section 8.6.

Table 7.1 summarises relevant information about each program. The |c| col-
umn is the number of CHR constraints defined by each program. Next the <=>

column is the number of simplification rules, \ is the number of simpagation
rules, and ==> is the number of propagation rules. Next the |r| column is the
total number of rules. Finally, the |H| column is the maximum head size (i.e.
number of CHR constraints in the rule head) for any rule in the program. This
is relevant for join ordering and early guard scheduling.

The results are shown in Table 7.2–Table 7.6 respectively. All timings are
the average over 10 runs on a 1.2GHz AMD Athlon Processor with 1.5Gb of
RAM running under Linux (Debian) with kernel version 2.4.22 and are given in
milliseconds. SICStus Prolog 3.8.6 is run under compact code (no fastcode for
Linux). We compare to SICStus CHRs where possible just to illustrate that the
HAL CHR implementation is mature and competitive.

Table 7.2 shows timings for progressively more-optimised versions of the gcd

program. The basic version is closest to the output of the basic compilation for
gcd given in Example 36. The main difference is that the call to delay/3 has
been removed.12 In the version +late both late storage and late ID have been
applied. This means that an active gcd/1 constraint will not be stored, nor will
the constraint identifier be allocated, until the third occurrence. Since (for these
benchmarks) the active constraints are generally deleted by the second occur-
rence, the lateness optimisation is highly beneficial, with an 80% improvement.
The +yesno version uses a yesno index instead of a list index by taking advantage
of the functional dependency gcd(X) :: ∅ {X}. This version is similar to the

12For technical reasons: since delay/3 is not defined for type int.

7.4. EXPERIMENTAL RESULTS 177

Table 7.2: Execution times (ms) for various optimised versions of the gcd program

Benchmark basic +late +yesno hand

gcd(5000000,3) 1566 321 65 41
gcd(5000000,1) 4739 962 196 126
gcd(10000000,7) 1348 274 56 35
gcd(10000000,3) 3148 642 131 85
geom. mean 2369 20% 4% 3%

compiled version of gcd shown in Example 71. The usage of a yesno over a list

index is also beneficial, with a further 16% improvement. Finally, the hand ver-
sions is the human implemented gcd program of Example 30. Interestingly, the
fully optimised +yesno version has comparable performance to the hand version.
All other experiments in this section include overhead removal optimisations.13

Table 7.3 shows the benefit of using more efficient index structures to represent
the CHR store. For this experiment we assume that all non-index related CHR
optimisations (e.g join ordering, lateness, etc.) are enabled. The list version
uses a list index for each individual CHR constraint. The +tree version uses
tree indexes (and yesno indexes where appropriate). Finally, the hash version
replaces the tree indexes with hash tables. Both tree and hash indexes are more
efficient than list indexes in general, with a 93% improvement for trees and a
95% improvement for hash tables.

The stack and ray programs had the least benefit from tree/hash indexes. In
fact, the stack program performs best with a list index. The reason is because
of the way the list index is used by the stack program, i.e. the order elements
are inserted into the list index (i.e. when an element is pushed onto the stack)
is also the order elements are removed from the list. Therefore all list index
operations are O(1). On the other hand, the queue program retrieves elements
from the tail of the list index, which results in much poorer performance. The
ray program also showed little benefit from tree/hash indexing. The reason is
that the CHR store never grows beyond a few dozen constraints, hence the benefit
from using more efficient index structures is minimal.

Finally, the SICS version is provided to show how the HAL CHR compiler
compares with an existing CHR implementation. All of the bounds, graph and
cycle programs take too long to complete, so these are excluded from the results.
For the programs that are included, the SICS version is considerably slower than
the equivalent HAL list version. Note that this is partly because of the differences
between the HAL compiler and SICStus Prolog, i.e. HAL is a faster programming
language in general.

13All overhead removal optimisations are tightly integrated with the HAL CHR compiler.
Thus disabling overhead removal is not currently possible.

178 CHAPTER 7. OPTIMISATION

Table 7.3: Execution times (ms) for various benchmarks testing indexing

Prog. Benchmark list +tree +hash SICS

bounds queens(15) 62330 914 570 –
bounds job(113) 1530 94 61 –
bounds job(79) 9555 526 339 –
graph graph(25) 1746 295 300 –
boolean queens(8) 9287 1419 886 5986
boolean queens(10) 35543 3303 1680 13566
cycle cycle(14) 4573 591 512 –
database database(5000,5) 6816 56 29 102958
database database(10000,5) 43558 123 61 434691
stack stack(100000) 316 911 510 7610
queue queue(5000) 4402 38 24 17003
union union(100) 1181 208 137 10617
union opt union(180) 1137 172 89 12386
ray ray 14087 13126 13262 436326
compiler database(100) 6404 190 94 84893

geom. mean 5478 7% 5% 652%∗

Table 7.4 shows the benefit of join ordering and early guard scheduling. We
test four programs with large rule heads: cycle (5 heads), bounds (4 heads),
compiler (5 heads) and graph (5 heads). The other programs do not benefit
from this optimisation, since either the maximum head size for any rule is less
than 3, or coincidently, a good join order is always chosen. All other optimisations
are enabled, except index selection (since join ordering affects index selection), so
list indexes are used for a fairer comparison. The orig version does not apply
join ordering or early guard scheduling (including guards that result from head
normalisation). The order used in the joins is essentially arbitrary (i.e. what
ever the compiler happens to chose). Not surprisingly, the resulting executables
have very bad runtime performance. Some benchmarks, e.g. cycle(12), were
aborted after 10 minutes of execution time. The +guard version allows guards
to be scheduled early, but still using the arbitrary join order. The benefit largely
depends on the number of guards scheduled early. For example, we see a large
improvement for the cycle program and a much smaller improvement for the
bounds program. Finally the +join uses the brute-force algorithm to find a better
join ordering according to the heuristic. Note that the +join version is equivalent
to the list version in Table 7.3. The cycle, bounds and graph programs benefit,
however join ordering chooses a worse order for the compiler program. This
can be attributed to the join ordering heuristic finding a non-optimal join order
based on (inaccurate) assumptions about selectivity or cardinality of constraints.
In general, join ordering and early guard scheduling is highly beneficial, with a

7.4. EXPERIMENTAL RESULTS 179

Table 7.4: Execution times (ms) for various benchmarks testing join ordering and
early guard scheduling

Prog. Benchmark orig +guard +join

cycle cycle(7) 8673 32 16
cycle cycle(8) 41824 98 51
cycle cycle(12) – 2519 1391
bounds queens(3) 2458 2284 5
bounds queens(4) 42108 40474 22
compiler database(40) 8406 79 425
compiler database(60) 28490 180 1427
graph graph(8) 36279 20 15
graph graph(9) 98103 37 26
graph graph(20) – 1796 688

geom. mean∗ 20565 1% 0.2%

99.8% overall improvement.

Table 7.5 shows the benefit of continuation optimisation. All other optimi-
sations are enabled, and all programs use hash indexes. The −cont (+cont) has
continuation optimisation disabled (enabled). The +cont is equivalent to the
+hash version in Table 7.3. Overall, continuation optimisation sees a modest
3% improvement. This is mainly because only fail continuation was applicable to
rules of the form

p(x̄) \ p(ȳ) <=> ...

In this case, the second occurrence, p(x̄), can be removed from consideration, thus
removing the need for a (redundant) hash table lookup. The union opt program
had the most benefit from continuation optimisation, with a 10% improvement.
This shows that continuation optimisation is worthwhile for some programs.

Table 7.6 shows the benefit of lateness optimisation. All other optimisations
are enabled, and all programs use hash indexes. The −late (+late) has lateness
optimisation disabled (enabled).14 The +late is equivalent to the +late version
in Table 7.3. We see an overall 50% improvement, showing that lateness optimi-
sation is worthwhile. Note that some of the improvement is because of indirect
consequences of disabling late storage. For example, without late storage, the
interpretation of functional dependencies and never-stored changes, thus weaker
indexes are be used and never-stored optimisation is effectively disabled. This
explains why some programs, e.g. the boolean program, benefit greatly from
lateness optimisation.

14Note that this optimisation cannot be disabled for CHR constraints with at least one
argument with an ‘out’ mode. This is because such constraints must be never-stored.

180 CHAPTER 7. OPTIMISATION

Table 7.5: Execution times (ms) for various benchmarks testing continuation
optimisation

Prog. Benchmark −cont +cont

bounds queens(18) 14591 14337
boolean queens(12) 8588 8482
database database(100000,1) 428 405
database database(100000,5) 641 625
stack stack(500000) 2581 2513
queue queue(500000) 2509 2482
union union(160) 560 555
union opt union(500) 768 695
ray ray 13324 13262
compiler database(300) 1223 1210

geom. mean 2086 97%

Table 7.6: Execution times (ms) for various benchmarks testing lateness optimi-
sation

Prog. Benchmark −late +late

bounds queens(18) 27144 14337
graph graph(30) 603 589
boolean queens(12) 176337 8482
cycle cycle(14) 526 512
database database(100000,5) 1660 625
stack stack(500000) 2967 2513
queue queue(500000) 2950 2482
union union(160) 578 555
union opt union(500) 947 695
ray ray 29799 13262
compiler database(300) 5078 1210

geom. mean 3709 50%

7.5 Summary

In this chapter we have optimised the basic compilation of Chapter 4 which
has greatly improved the runtime performance of many CHR programs. Several
optimisations were discussed, and these could be grouped into two categories:
local optimisation, which aims to optimise each occurrence in isolation, and global
optimisation, which applies further improvements based on the context of an
occurrence with respect to other occurrences.

7.5. SUMMARY 181

Local optimisation includes overhead removal, join ordering and index selec-
tion. Overhead removal attempts to specialise universal searches to existential
searches when only one match is required. Also, propagation histories can be
removed altogether under certain conditions, and other forms of overhead, e.g.
liveness checks, difference checks, etc., can sometimes be removed with help from
information available to the compiler.

While overhead removal is useful, the core of compiling CHRs is a multi-way
join compilation. But, unlike the usual database case, we have no information
on the cardinality of relations and index selectivity. We show how to use type
and mode information to compile efficient joins, and automatically utilise appro-
priate indexes for supporting the joins. We show how set semantics, functional
dependencies and symmetries can improve this compilation process. The HAL
CHR compiler which applies these techniques produces highly efficient CHR ex-
ecutables.

Global optimisation enriches compilation further with continuation optimisa-
tion, lateness optimisation and never stored optimisation. Continuation optimi-
sation attempts to prove that a failed/successful match implies later occurrences
will fail to match, and hence can be avoided. Lateness optimisation attempts to
postpone active constraint initialisation as far as possible, with the hope that the
active constraint will be deleted before the initialisation occurs. Finally the never-
stored optimisation further removes occurrences from consideration by proving
certain CHR constraints will never be present in the CHR store.

182 CHAPTER 7. OPTIMISATION

Chapter 8

Extending Solvers

8.1 Introduction

A CHR program extends another solver if the CHR constraints are allowed to
contain non-fixed solver variables at runtime. Typically, the CHR constraints are
viewed as new constraints defined in terms of existing constraints, hence we have
“extended” the existing solver by adding new constraints. For example, the leq

solver from Example 1 extends a Herbrand solver, because the leq/2 constraint
is defined in terms of Herbrand constraints, and leq/2 constraints are allowed to
be non-fixed at runtime.

For a CHR program that extends another solver, the Solve transition may
wakeup a non-empty subset of the CHR store. So far we have only briefly cov-
ered the implementation of CHR programs that extend other solvers (see Sec-
tion 4.3.3). In this chapter we explore the implementation of CHRs extending
other solvers in far greater detail, including:

• formalising the wakeup policy (see Definition 10) used by most CHR imple-
mentations (including Prolog implementations);

• Optimising the delay/3 code by various kinds of specialisation;

• Building indexes over non-fixed data;

• Implementing dynamic scheduling in HAL.

We also provide some experimental results that show the effectiveness of various
approaches.

Under the basic compilation, we relied upon the existence of a simple form
of dynamic scheduling to wakeup an appropriate subset of the CHR store during
a Solve transition. After a call to the special predicate delay(Term,Id,Goal)
the Goal (which is the first occurrence predicate) is called each time a variable
in Term (which is the CHR constraint) “changes”. In this chapter we formally
define what “changes” means, and show that our implementation satisfies the
necessary conditions for a wakeup policy.

183

184 CHAPTER 8. EXTENDING SOLVERS

One of the aims of this thesis is to optimise the compilation of CHRs. Often,
the set of CHR constraints woken up using our simple form of dynamic scheduling
is far greater that the minimum set that is actually required. This is clearly inef-
ficient, since it means redundant rule checking. We will discuss ways of reducing
the size of the set of constraints that are woken up based on a simple analysis of
the guards, and some additional help from the built-in solver.

Another one of our aims is build a CHR system that can extend arbitrary
solvers. While the semantic basis of CHRs assumes an arbitrary built-in con-
straint solver, in practice, implementations of CHRs only extend Herbrand equa-
tion solvers. In this chapter we look at generalising the solver interface, so CHRs
can extend any solver that implements that interface. We will also look at some
examples implementations of the interface.

One issue that has been delayed until this chapter is building index struc-
tures over solver variables. Efficient index structures are an essential part of any
optimised CHR implementation. However, indexes implicitly ask equality con-
straints, and the result of an ask equality can change throughout a derivation if
the data is non-fixed. In this chapter we discuss a way of fixing index structures
so that they do not become corrupted when the data changes. Once again our
approach is based on dynamic scheduling.

The rest of the chapter is organised as follows. Section 8.2 formalises and
then proves the correctness of the wakeup policy based on the simple dynamic
scheduling. Section 8.3 discusses how to use specialisation to reduce the number
of constraints that are woken up during a Solve transition. Section 8.4 discusses
the use of indexes for CHRs that use solver variables. Section 8.5 discusses how
the delay interface is implemented by solvers in HAL. Section 8.6 presents the
results of some experiments illustrating the benefits of specialised rechecking and
indexes. Finally, we conclude.

8.2 Wakeup Policy

In this section we officially formalise the usage of delay/3 as described in Sec-
tion 4.3.3 as a wakeup policy as defined by Definition 10. This involves showing
that the set of constraints woken up by our implementation satisfies the lower
and upper bound conditions of a wakeup policy. For simplicity, we will initially
assume the complete built-in solvers (e.g. a Herbrand solver), thus (D |=S) is
equivalent to (D |=). We will discuss incomplete solvers later in this section.

Consider the call delay(Term,Id,Goal), first we need to formally define
exactly when Goal is called, i.e. when Term has “changed”. A Term has changed
if there exists a variable v ∈ vars(Term) such that v has “changed”. We define
the set of changed variables changed(c, B) as the following.

Definition 48 (Changed) Let c be a built-in constraint, and let B be a built-in
store. Let x̄ be a set of variables satisfying

D |= ¬∀x̄(∃̄x̄B → ∃̄x̄(B ∧ c)) (8.1)

8.2. WAKEUP POLICY 185

and all ȳ ⊂ x̄ satisfy

D |= ∀ȳ(∃̄ȳB → ∃̄ȳ(B ∧ c)) (8.2)

then x̄ ⊆ changed(c, B). The set changed(c, B) is constructed by considering all
possible x̄. ⊓⊔

Informally, (8.1) ensures that for some set of variables x̄, there exists values for
x̄ such that a solution to B exists, but a solution to B ∧ c does not exist for the
same values. Therefore, the values we can assign to x̄ has changed. The second
part of the definition ensures that x̄ is a minimal set satisfying (8.1), i.e. there
does not exists a proper subset of x̄ that has also changed.

Example 74 Consider an execution state with an empty built-in store (B =
true) over a Boolean solver, and let X, Y and Z be (unconstrained) Boolean
variables. Suppose we add the constraint X = Y into the built-in store by a
Solve transition. We see that

D |= ¬∀X∀Y (true→ ∃Z(X = Y))

clearly holds (try X = 0 and Y = 1), therefore the set of variables {X, Y } has
changed. Also, each proper subset of {X, Y }, i.e. ∅, {X} and {Y } have not
changed, e.g. for the subset {X} we see that

D |= ∀X(true→ ∃Z∃Y (X = Y))

holds (try Y = X for given X), etc. Therefore {X, Y } ⊆ changed(X = Y, true).
Proving that Z 6∈ changed(X = Y, true) is slightly more difficult. We can

easily prove that {Z} 6⊆ changed(X = Y, true) by showing that

D |= ¬∀Z(true→ ∃X∃Y (X = Y))

does not hold (try X = 0 and Y = 0 for given Z). Also, for any set of variables
containing Z that has changed, we can find a subset not containing Z that has
also changed. Therefore Z 6∈ changed(X = Y, true), so changed(X = Y, true) =
{X, Y }. ⊓⊔

It is usually the case that vars(c) ⊆ changed(c, B), unless c is already implied
by B.

We can use Definition 48 to formally define the subset of the CHR store that
is woken up by delay/3, i.e. the wakeup policy of the basic compilation.

Definition 49 Let σi and σi+1 be ωr execution states such that σi solve σi+1.
Let c be the built-in constraint such that Bi+1 = c ∧ Bi, then we define

delay wakeups(Si, c, Bi) = {d ∈ Si | vars(d) ∩ changed(c, Bi) 6= ∅}

⊓⊔

186 CHAPTER 8. EXTENDING SOLVERS

In other words delay wakeups(Si, c, Bi) is the subset of Si containing constraints
which contains at least one variable that changed as a result of adding c into the
built-in store.

We now give a lemma which shows that delay wakeups(S, c, B) satisfies the
conditions for a wakeup policy in Definition 10.

Lemma 14 For all consecutive ωr states σi and σi+1 such that σi solve σi+1,
the set delay wakeups(S, c, Bi) satisfies the conditions for a wakeup policy in
Definition 10, otherwise σi+1 = false.

Proof. The set delay wakeups(σi) must satisfy the lower bound and upper bound
conditions from Definition 10.

• lower bound : Direct Proof. Suppose that there exists a M = H1 ++ H2 ⊆
Si, a rule (r @ H ′

1 \ H ′
2 ⇐⇒ g | C) and a matching substitution θ such that

cons(H1) = θ(H ′
1)

cons(H2) = θ(H ′
2)

D |= ¬(Bi → ∃r(θ ∧ g))
D |= (Bi ∧ c→ ∃r(θ ∧ g))

(8.3)

Let ϑ be a partial solution to Bi on the non-existential variables in (θ ∧ g)
such that ϑ is not a solution of the guard, i.e.

D |= ¬∃̄ϑϑ(θ ∧ g)

One such ϑ must exist, otherwise the guard g must be equivalent to the
trivial constraint true by definition. Clearly, such a g could never satisfy
(8.3).

Then by (8.3)
D |= ¬∃̄ϑϑ(Bi ∧ c)

and
D |= ∃̄ϑϑ(Bi)

Hence
D |= ¬ϑ(∃̄ϑBi → ∃̄ϑ(Bi ∧ c))

Therefore
D |= ¬∀̄ϑ(∃̄ϑBi → ∃̄ϑ(Bi ∧ c))

by existential introduction.

This is in the required form (8.1) from Definition 48, where x̄ = vars(ϑ) is
the set of all non-existential variables in (θ ∧ g).

Clearly, there exists a subset ȳ of vars(ϑ) such that ȳ ⊆ changed(c, Bi). If
ȳ = ∅, then

D |= ¬(∃̄∅Bi → ∃̄∅(Bi ∧ c))

8.2. WAKEUP POLICY 187

which means (Bi ∧ c) is unsatisfiable, hence σi+1 = false.

Otherwise ȳ 6= ∅. Since ȳ are non-existential variables from the guard by
construction, then ȳ ⊆ vars(M). Thus, there exists a h ∈ M such that
vars(h) ∩ changed(c, Bi) 6= ∅. Therefore h ∈ delay wakeups(S, c, Bi), and
the lower bound condition is satisfied.

• upper bound : By contradiction.

We show that if vars(h) ⊆ fixed(Bi), then h 6∈ delay wakeups(S, c, B)
because vars(h) ∩ changed(c, Bi) = ∅.

Assume that vars(h) ∩ changed(c, Bi) 6= ∅, i.e. there is a variable x such
that x ∈ vars(h) (and therefore x ∈ fixed(Bi)) and x ∈ changed(c, Bi).
Therefore there exists a set of variables x̄, with x ∈ x̄, such that x̄ satisfies
(8.1) and ȳ = x̄− {x} satisfies (8.2) from Definition 48.

From (8.1) we have that

D |= ∃x∃ȳ¬(∃̄x̄B → ∃̄x̄(B ∧ c)) (8.4)

Let ϑx̄ = ϑx.ϑȳ be a partial solution to (8.4). Hence

D |= ϑxϑȳ¬(∃̄∅B → ∃̄∅(B ∧ c)) (8.5)

From (8.2) we have that

D |= ∀ȳ(∃̄ȳB → ∃̄ȳ(B ∧ c))

and therefore
D |= ϑȳ(∃̄∅ϑxB → ∃̄∅ϑ

′
x(B ∧ c)) (8.6)

using the same ϑȳ and ϑx from above, and ϑ′
x a new partial solution for x.

We note that ϑx 6= ϑ′
x, otherwise (8.6) contradicts (8.5).

From (8.5) we derive
D |= ϑxϑȳ(∃̄∅B) (8.7)

and from this and (8.6) we derive

D |= ϑ′
xϑȳ(∃̄∅(B ∧ c))

which derives
D |= ϑ′

xϑȳ(∃̄∅B) (8.8)

We combine (8.7), (8.8) and ϑx 6= ϑ′
x together with existential introduction

to derive
D |= ∃x∃ρ(x)(∃̄xB ∧ ∃̄ρ(x)ρ(B) ∧ x 6= ρ(x))

for a renaming ρ. This clearly contradicts Definition 9 (for a complete
solver), therefore x 6∈ fixed(B) which contradicts our original assumption.
Therefore the upper bound condition is satisfied.

188 CHAPTER 8. EXTENDING SOLVERS

Therefore delay wakeups satisfies the conditions for a wakeup policy in Defini-
tion 10. ⊓⊔

In practice, the solver usually decides the set of changed variables based on
those that have been internally updated by the addition of the new tell constraint
c. For example, in a Herbrand solver using the WAM representation [87, 6], the
set of changed variables are those whose pointer representation has been updated
by a unification.

For an incomplete solver, the set of woken up constraints is usually smaller
than that of delay wakeups from Definition 49. For example, HAL’s finite domain
solver defines the set of changed variables to be those whose domains have changed
(i.e. reduced). This is weaker definition to that from Definition 48. For example,
consider a built-in B ≡ (X = Y) and the new constraint c ≡ (Y = Z). If the
domains of X, Y and Z are all equal, then the addition of c into B will cause no
new domain propagation, and thus none of X, Y and Z have “changed”. Under
the stronger Definition 48, all of X, Y and Z must have changed.

The task of showing that a wakeup policy from an incomplete solver is correct
with respect to the definitions is solver dependent. However, most of the time
we can use more ad hoc reasoning to argue for correctness. For example, the
ask constraints provided by the finite domain solver are incomplete, since they
only consider the domains of input arguments, e.g. ask version of X = Y only
succeeds if the domains of X and Y are the same singleton set. Therefore, a finite
domain ask constraint in a guard can only succeed where it previously failed if
the domain of (at least) one of variables change. Therefore waking up constraints
on domain change is appropriate.

8.3 Rechecking Rules

In this section we look at ways of improving the simple strategy of rechecking all
occurrences when a variable changes.

8.3.1 Optimising Delay

The wakeup policy delay wakeups of Section 8.2 is often inefficient, since con-
straints are woken up on any change on any variable that appears in that con-
straint. A better approach is to wakeup constraints on more specialised condi-
tions, based on analysis of the actual guards to be tested. Our aim is to reduce
the number of constraints that are woken up when an actual change does occur,
which is beneficial since this means less work (re)checking if rules can fire. The
complexity arises from deciding if/when more specialised conditions can be used.

The simplest form of this optimisation occurs when all guards for a given
CHR constraint are trivial, i.e., all guards are true.

Example 75 Consider the following rules from Example 59 from the ray tracer.

8.3. RECHECKING RULES 189

add1 @ add color(C1), color(C2) <=> C3 = C1 + C2, color(C3).

add2 @ add color(C) <=> color(C).

The guard for each of these rules is trivial, hence never fails, and is never af-
fected to be addition of any tell constraints into the store. Assuming the color/1
constraint was allowed to be non-fixed at runtime, then we never need to wakeup
such a constraint since for any built-in constraint c both

D 6|=S (B → true) and D |=S (B ∧ c→ true)

can never hold.1 Therefore a call to delay/3 is never required. ⊓⊔

In general this optimisation requires the ability to delay goals on more spe-
cialised conditions, so we need a more sophisticated version of dynamic schedul-
ing. Fortunately, HAL’s actual implementation of dynamic scheduling is far richer
than the simple version of delay/3 we introduced in Section 4.3.3. In HAL,
delay/3 allows goals to be delayed on more specific conditions other than “vari-
able has changed”. For example, it is possible to delay goals on conditions such as
“the variable X has become ground” or “the lower bound of X has changed”, etc.
The syntax for the new version of dynamic scheduling is delay(Event,Id,Goal)
where Event is a solver event (as opposed to a solver term, as in the previous
version of delay/3). Solver events are of the form event(Term) where Term is
a solver term, and event is the name of the event.

Example 76 Consider HAL’s finite domain solver which supports the new ver-
sion of dynamic scheduling. The solver events supported by this solver (the usual
ones for a finite domain solver) are

fixed(X) the domain of X is reduced to a single value.
lbc(X) the lower bound of X changes (increases).
ubc(X) the upper bound of X changes (decreases).
dc(X) the domain of X changes (reduces).

Note that these solver events are not mutually exclusive. For example, if the
domain of X changes from {1, 3, 5} to {1}, then the events fixed(X), ubc(X)

and dc(X) all hold.

HAL’s Herbrand solver supports two solver events, which are

touched(X) variable X has been unified (to a variable or non-variable).
bound(X) variable X has been unified with a non-variable.

⊓⊔

1This can never hold for any built-in solver implemented in HAL, since the constraint true
is treated specially. In general, it is possible to define an incomplete test (D |=S) that violates
this assumption.

190 CHAPTER 8. EXTENDING SOLVERS

HAL’s finite domain and Herbrand solvers will be the focus for the rest of this
section. The main reason is that these are the only solvers that have been fully
implemented (with dynamic scheduling) so far.

We will also assume that some solver events are shared by multiple solvers.
The solver event changed(X) will wakeup the goal each time a variable in solver
term X changes. In fact, the call delay(Term,Id,Goal) under the old dynamic
scheduling is equivalent to the call delay(changed(Term),Id,Goal) under the
new version.

The naive re-execution of the basic compilation rechecks every possible oc-
currence each time the solver state for the variables involved changes. This often
causes no new rules to fire. We can improve upon this by (a) determining a set
of solver events which more accurately signal the possible entailment of an ask
constraint, and (b) building code that only reconsiders occurrences associated to
those ask constraints.

Example 77 Consider the following implementation of the ask ‘≤’ constraint
for the fdint finite domain solver:

’ask =<’(X,Y) :-

UBX = fd max(X), %% get current X upper bound

LBY = fd min(Y), %% get current Y lower bound

UBX =< LBY. %% integer comparison

where functions fd max/1 and fd min/1, respectively, return the (integer) upper
and lower bounds of a variable’s current domain. Note that this is an incomplete
test since, even if the constraint X ≤ Y has been added to the store, the ask
constraint may not succeed. Given this definition, the answer to the ask constraint
will only change if either of the solver events ubc(X) or lbc(Y) occur. Other
events will never signal a possible change in the answer to the ask constraint,
unless one of these events also occurs. Note that using ubc(X) and lbc(Y) is
much more accurate than using changed(X) and changed(Y) as done under the
basic compilation.

Consider now the following implementation of the ask =/2 constraint for the
fdint solver:

X == Y :-

val(X,Value), %% get fixed value for X

val(Y,Value). %% is same fixed value for Y?

The ask constraint for X = Y (X == Y) will only succeed if X and Y are both
fixed to the same value. As in most finite domain solvers the implementation of
the ask =/2 constraint is quite incomplete. Given this definition, the only solver
events where we should recheck a X = Y guard are fixed(X) or fixed(Y).

A list of finite domain ask constraints and their corresponding solver events
is given in Figure (8.1). X ≥ Y ask constraints may change answers on lbc(X)

or ubc(Y), the opposite for ≤ constraints. Disequality ask constraints (6=) may
change answers on any generic domain change. ⊓⊔

8.3. RECHECKING RULES 191

Constraint Events
X = Y fixed(X), fixed(Y)

X 6= Y dc(X), dc(Y)

X ≤ Y ubc(X), lbc(Y)

X ≥ Y lbc(X), ubc(Y)

Figure 8.1: Relationship between finite domain ask constraints and solver events.

In order to allow each solver to provide a list of the relevant solver events for
each ask constraint, we extend the asks declaration (introduced in Section 4.5.1)
as follows

:- <ask-constraint> asks <tell-constraint> [wakes <solver-event>∗].

The first part of the declaration is the same as before, where a mapping between
an ask and tell constraint is defined. The new part, prefixed by token ‘wakes’,
provides a list of solver events that may cause the ask constraint to succeed. We
shall refer to this as the wakes list. The wakes list is optional, and by default it
will be empty. The HAL compiler uses type analysis to ensure that each solver
event is supported by the solver.

Example 78 Our finite domain solver fdint provides the following declarations:

:- ’ask =<’(X,Y) asks X =< Y wakes [ubc(X),lbc(Y)].

:- X == Y asks X = Y wakes [fixed(X),fixed(Y)].

indicating that the ask X =< Y constraint only needs to be rechecked whenever the
ubc(X) or lbc(Y) events occur. Similarly, the ask X = Y constraint only needs
to be rechecked whenever the fixed(X) or fixed(Y) events occur. ⊓⊔

As before, explicit existential quantification is allowed in asks declarations.

Example 79 The extended form of the asks declaration given in Example 44 is

:- nonneg(Y) asks exists [Z] Z = 2^Y wakes [lbc(Y)].

Likewise, the extended form of asks declarations for the bound f functions (see
Section 4.5.2) are

:- bound f(X) asks exists [Y1,...,Yn] X = f(Y1,...,Yn)

wakes [bound(X)].

⊓⊔

In creating a wakes list, the solver writer should endeavour to use a complete
set of solver events, so that any change in the solver state is captured by a solver
event which could indicate that the ask constraint now succeeds.

192 CHAPTER 8. EXTENDING SOLVERS

Example 80 The following asks declaration has an incomplete wakes list.

:- ’ask =<’(X,Y) asks X =< Y wakes [fixed(X),lbc(Y)].

An upper bound change on X that doesn’t fix X may change the answer to the ask
constraint, therefore this declaration is incomplete. ⊓⊔

Failure to provide a complete list will result in a system that does not meet the
lower bound condition of a wakeup policy (see Definition 10), hence is a violation
of the refined semantics.2 The completeness property is therefore important.

The solver writer should also endeavour to use a minimal set of solver events
in order to generate more efficient code. When a wakes list is not minimal the
resulting delayed goals may be called more often than required.

The extended asks declarations allow the HAL CHR compiler to determine
more accurately which occurrences need to be rechecked for which solver events.
In order to do this, the compiler examines every possible solver event for each vari-
able, and determines the subset of occurrences that must be examined if a solver
event become true. It then uses this information to produce more specialised
code when possible. For example, suppose the compiler needs to generate code
that sets up the delayed goals for a CHR constraint p(A,B,C). Suppose that all
of the guards that use variable A only need to be rechecked on a lbc(A) event,
then we can replace the general call to delay(changed(A),Id,p 1(A,B,C))

with the more specialised call delay(lbc(A),Id,p 1(A,B,C)). The advantage
is that if only the upper bound of A changes, we avoid reactivating the constraint
p(A,B,C) over again.

Example 81 Consider a Boolean solver implemented in CHRs extending a Her-
brand solver (over integers 1 or 0 representing true and false respectively). The
definition of an and(X,Y ,Z) constraint is below, where Z is the result of the
logical-AND of X and Y .

and(X,Y,Z) <=> X = 0 | Z = 0.

and(X,Y,Z) <=> Y = 0 | Z = 0.

and(X,Y,Z) <=> X = 1, Y = 1 | Z = 1.

and(X,Y,Z) <=> Z = 1 | X = 1, Y = 1.

and(X,Y,Z) <=> Z = 0 | not both(X,Y).

The constraint not both(X,Y) (defined elsewhere) fails if both X and Y are
true.

All of the guards are conjunctions of constraints of the form V = 1 or V = 0,
where V represents either X, Y or Z. The wakes list for guards of that form
is [bound(V)], as in Example 79. The result is (more specialised) predicate
and delay which sets up the delayed goals for and/3.

2Note that this is still correct with respect to the declarative semantics of CHRs, in the
sense that the resulting final state is still logically equivalent to the original goal. The problem
is that the CHR store might not be as reduced as it otherwise should be.

8.3. RECHECKING RULES 193

and delay(X,Y,Z,Id) :-

Goal = and 1(X,Y,Z,Id),

delay(bound(X),Id,Goal),

delay(bound(Y),Id,Goal),

delay(bound(Z),Id,Goal).

A call to and delay(X,Y,Z,Id) replaces the call to delay/3 under the basic
compilation. ⊓⊔

Sometimes an argument is never mentioned in any guard. For example, the
argument C2 for is not mentioned in any guard of the color/1 constraint in
Example 75. This removes the need to call delay/3 altogether. Another example
is the Fibonacci constraint of Example 16. Assuming that both arguments may
be solver variables, there is no need to call delay/3 on the second argument F
of a fib/2 constraint. This is because the second argument F is not mentioned
in any guard.

8.3.2 Accurate Specialisation

If a CHR program does not rely on the refined operational semantics, e.g. it is
confluent under the theoretical semantics, then we can specialise the implemen-
tation of delay even further. In particular, we can specialise the delayed goal so
that it does not check occurrences the compiler can prove will not match, even
after a variable has changed.

Example 82 Consider the definition of the and/3 constraint in Example 81, and
consider the constraint and(A,B,C) where A, B and C are unbound Herbrand
variables.

Adding the constraint C = 0 into the built-in store causes the bound(C)

solver event to occur. Under the implementation of and delay presented in Ex-
ample 81, the goal and 1(A,B,0,Id) is called, which checks all occurrences 1–4
before checking occurrence 5 (which finally fires the rule). This means a total of
5 occurrences were checked in total. Observe that the guards for occurrences 1–3
do not even mention the third argument Z, therefore the reactivated constraint
need not check these occurrences. If we avoid checking these occurrences, then a
total of 2 occurrences are checked in total. ⊓⊔

It is generally desirable to avoid rechecking occurrences which we know are still
doomed to fail, since this avoids redundant work. The optimised re-execution can
be arbitrarily faster than the naive approach since checking an occurrence could
be arbitrarily difficult.

We can generalise this optimisation as follows. For each solver event e the
compiler determines a sequence of occurrences n1, ..., nm that need to be rechecked
when e occurs (based on the analysis of the guards). Next a specialised wakeup
predicate is generated that checks only those occurrences. We use the name

194 CHAPTER 8. EXTENDING SOLVERS

p wakeup n1 ... nm to represent a specialised wakeup goals that only checks oc-
currences n1, ..., nm.

There are however tradeoffs in creating the specialised delay code. In order to
avoid code explosion, the compiler separates each occurrence predicate as opposed
to chaining them together. This means that occurrence predicate p n no longer
calls occurrence predicate p (n + 1) (as is the case under the basic compilation).
The control logic for deciding if the next occurrence should be called is moved to
the caller of the occurrence predicates, i.e. the wakeup predicate(s) and the top-
level predicate (which now calls all occurrences). We can straightforwardly create
the different sequences of occurrences that are required for each solver event.

Example 83 Consider the following min program similar to that in Example 37
except with a third rule for adding redundant constraints and a fourth rule for
enforcing a functional dependency.

min(A,B,C)1 <=> A =< B | C = A.

min(A,B,C)2 <=> A >= B | C = B.

min(A,B,C)3 ==> C =< A, C =< B.

min(A,B,C)5 \ min(A,B,D)4 <=> C = D.

For the constraint min(X,Y,Z) if the upper bound of X changes (ubc(X)), only
the occurrence in the first rule needs to be rechecked because of the guard X ≤ Y .
No other guard is affected by the ubc(X) event. Similarly, if variable X becomes
fixed (fixed(X)) then only occurrences 4 and 5 from the last rule need to be
rechecked,3 since the guard (after normalisation) contains equality constraints.
The resulting optimised implementation of delay min is shown in Figure 8.2.

Each solver event causes the execution of a specialised wakeup predicate which,
in turn, rechecks occurrences linked to the guards possibly affected by the event.
The wakeup predicate min wakeup 1 for event ubc(X) and lbc(Y) only rechecks
occurrence min 1 from the first rule. Similarly, the wakeup predicate
min wakeup 4 5 for event fixed(X) or fixed(Y) only rechecks occurrences min 4

and min 5. Notice that for some events, such as dc(Z), no occurrences ever need
to be rechecked, since variable Z never appears in any of the guards.

Using this version of delay min the execution of the goal

[X,Y,Z] in 0..9, min(X,Y,Z), Z 6= 2, Y ≤ 3, X ≥ 5.

would proceed as follows. The first constraint sets the domains of the variables
are set to 0..9. Next min(X,Y,Z) is executed, the delay goal set up, and each rule
checked. Only the third rule fires adding the finite domain constraints Z ≤ X and
Z ≤ Y into the built-in store, which does not change any domains. Now, when
we add Z 6= 2 to the built-in store, the domain of Z changes. However, no guard
mentions Z and therefore there is no delayed goal that wakes when Z’s domain
changes. When we add Y ≤ 3 to the fdint store, only the upper bounds of Y and

3We could use continuation optimisation to remove occurrence 5, however we will keep it in
for the sake of this example.

8.3. RECHECKING RULES 195

delay min(X,Y,Z,Id) :-

delay(ubc(X),Id,min wakeup 1(X,Y,Z,Id)),

delay(ubc(Y),Id,min wakeup 2(X,Y,Z,Id)),

delay(lbc(X),Id,min wakeup 2(X,Y,Z,Id)),

delay(lbc(Y),Id,min wakeup 1(X,Y,Z,Id)),

delay(fixed(X),Id,min wakeup 4 5(X,Y,Z,Id)),

delay(fixed(Y),Id,min wakeup 4 5(X,Y,Z,Id)).

min wakeup 1(X,Y,Z,Id) :-

min 1(X,Y,Z,Id).

min wakeup 2(X,Y,Z,Id) :-

min 2(X,Y,Z,Id).

min wakeup 4 5(X,Y,Z,Id) :-

min 4(X,Y,Z,Id),

(alive(Id) ->

min 5(X,Y,Z,Id)

; true).

Figure 8.2: Optimised compiled min/3 delay and wakeup handling code.

Z change. This causes the goal min wakeup 2 to execute, which checks the second
occurrence of min only. Similarly, when the constraint X ≥ 5 is added to the built-
in store, the lower bound of X changes and, again, only the second occurrence of
min is checked. This time the rule fires, the CHR constraint is deleted and the
constraint Z = Y added to the store. This version makes a total of 7 occurrence
checks: 5 for when the min/3 constraint was first active, and then the second
occurrence was checked twice during wakeup. Under the basic compilation, there
would have been a total of 17 checks: 5 for the min/3 constraint was first active,
then 10 for when Z and Y change, and 2 for when X changes. ⊓⊔

Unfortunately, specialising the delayed goals is unsafe with respect to the
refined operational semantics. This is because we can no longer guarantee that
occurrences will be checked in order after constraints are reactivated. This is best
illustrated by a simple example.

Example 84 Consider the min program from Example 83. If the upper bound of
X changes, i.e. an ubc(X) event occurs, then the corresponding delayed goal only
checks the first occurrence. Likewise, if the upper bound of Y changes (ubc(Y)),
then the corresponding delayed goal only checks the second occurrence. Consider
the constraint min(X,Y ,Z) where the initial domains of each variable is 0..9,
and suppose we introduce the constraint X + Y = 0 into the built-in store. The
domains of X and Y reduce to the value 0. Hence, both the both the ubc(X) and
ubc(Y) solver events occur.

In HAL there is no way to control the order in which delayed goals are exe-

196 CHAPTER 8. EXTENDING SOLVERS

cuted. Therefore it is possible that min wakeup 2(X,Y ,Z,Id) (associated with
ubc(Y)) is called before min wakeup 1(X,Y ,Z,Id) (associated with ubc(X)).
This means the second occurrence is checked before the first, which violates the
refined semantics requirement that occurrences are checked in order. ⊓⊔

It is important to note that the min program is confluent under the theoreti-
cal semantics, and therefore we always arrive at the same final state regardless
of whether the refined semantics is adhered to. In practice it is very common
that CHR programs that extend solvers rely on confluence under the theoretical
semantics, as was discussed in Chapter 6. This makes this optimisation useful.

By default, the HAL CHR compiler assumes all programs are to be compiled
with respect to the refined semantics. However, the user can enable the more
specialised compilation by supplying an appropriate compiler flag.

8.3.3 Existential Variables

So far we have only dealt with solver events on variables that appear in the rule
head, i.e. the non-existential variables. However, solver events associated to
existential variables may also be required.

Example 85 Consider the following rule from Example 40 where the guard con-
tains an existential variable N introduced by guard normalisation.

before after(T1,D1,T2,D2) <=> exists [N] N = T1 + D1, N > T2 |

T1 >= T2 + D2.

The first part of the guard is a tell constraint N = T1 + D1, which binds N to be
sum of T1 and D1. Since the tell is deterministic (as function + is total), there
are no associated solver events with this part of the guard. The second part of the
guard N > T2 is an ask constraint that needs to be rechecked on either lbc(N) or
ubc(T2) solver events. The problem is that N is an existential variable, yet we
need to recheck this rule on the lbc(N) solver event. ⊓⊔

Ideally, we would want to map solver events on existential variables to solver
events on non-existential variables. In Example 85 this is possible, since the only
built-in constraint in the guard containing N is N = T1 + D1. Using knowledge
about domain propagation, we know that an lbc(N) event must have been caused
by either a lbc(T1) or lbc(D1) event. Thus, the complete minimal set of mapping
solver events for the guard in this rule is lbc(T1), lbc(D1) and ubc(T2).

Unfortunately, mapping solver events on temporary variables to solver events
on head variables requires intimate knowledge of the inner workings of the con-
straint solver in question. The current HAL CHR compiler uses a simpler ap-
proach: any solver event event(N) on temporary variable N may be caused by
changed(X) for all non-existential variables X ∈ vars(c), where c is a tell con-
straint containing N . Obviously, this solution is not as efficient, since we delay
on changed solver events rather than more specialised ones. The result is a set
of solver events that are not minimal.

8.4. BUILDING INDEXES ON SOLVER VARIABLES 197

Example 86 Consider the rule in Example 85 with temporary variable N. We
map the solver event lbc(N) to changed(T1), changed(D1) based on the tell
constraint N = T1+D1. The final set of solver events is therefore changed(T1),
changed(D1) and ubc(T2). Unlike before, the resulting solver events are not
minimal. ⊓⊔

8.4 Building Indexes on Solver Variables

In Chapter 7 we looked at efficient index structures for lookups, and showed
that this dramatically improves the time performance of CHR programs. This is
not surprising, since we can find matching constraints for rule heads much more
efficiently. Up until now we have only considered indexes for ground constraints
only. In this section we examine how to build efficient index structures on data
involving solver variables, a task complicated by the need to take the solver state
into consideration.

An index maintains a mapping from some key K (a tuple of solver terms) to
some iterator of numbered CHR constraints matching that key, i.e., constraints
containing the solver terms in K in the appropriate argument positions. A key
point is that indexes implicitly ask equality constraints, therefore equating two
solver terms may require an index to be updated. The following example makes
this clearer.

Example 87 Consider the indexes required for the following occurrences in the
(normalised) leq program in Example 1.

leq(X,Y)4, leq(Y1,X1)5 <=> X = X1, Y = Y1 | X = Y.

leq(X,Y)6, leq(Y1,Z)7 ==> Y = Y1 | leq(X,Z).

For the fourth occurrence, with active constraint leq(A,B) we are looking for a
CHR constraint of the form leq(B1,A1) to ensure the guard constraints A =
A1, B = B1 hold. Hence, we need an index on both arguments of leq/2. Sim-
ilarly, for the third occurrence. For the sixth occurrence, we need to find CHR
constraints of the form leq(B1,) to ensure that B = B1 holds. Thus, we need
an index on the first argument. Similarly, for the seventh occurrence we need an
index on the second argument. ⊓⊔

The HAL CHR compiler supports several index structures: lists, trees and
hash tables (see Section 7.2.3). We will concentrate here on trees where the most
complex problems arise.

The core of the tree index code is an ordering�B over solver terms according to
the current state B of the built-in solver(s). This order is used to traverse the tree.
We write x ≡B y when x �B y ∧ y �B x and x ≺B y when x �B y ∧ ¬(y �B x).
The ordering must be total and is assumed to satisfy the following soundness
property: if x �B y ∧ y �B x then D |=S B → x = y. Thus, the ordering
answers whether equality constraints are entailed by the current store B. Note

198 CHAPTER 8. EXTENDING SOLVERS

M leq(U,M)

leq(A,F), leq(X,F)F

C leq(F,C)

A leq(B,A),leq(M,A) E leq(B,E) K leq(M.K) X leq(A,X),leq(B,X)

Figure 8.3: A tree of lists of CHR constraints indexed on the second argument

that it is not necessarily true that if x �B y then D |=S B → x ≤ y (assuming
the solver provides a (≤)/2 constraint). In fact, it is preferable that the ordering
only depends on the equality constraint, and this will become clear later.

For data that does not contain solver variables, the precedence relation �B

does not depend on the solver state B. As a result the relationship between two
such terms in the ordering cannot change. However, when the value of the data
does contain variables, the ordering relationship between two terms can change
as the solver state evolves.

Example 88 The usual ordering �B of two Herbrand terms (Prolog’s @=<) is
defined as the lexicographic ordering (with variables before functors) of the solved
form of the terms involved. In the empty solver state B0 = true we have X ≺B0

Y ,
but when B1 ≡ (X = f(A)) we have Y ≺B1

X, but then adding another equation
B2 ≡ (X = f(A) ∧ Y = f(B)) we have X ≺B2

Y , and finally adding A = B,
B3 ≡ (X = f(A) ∧ Y = f(B) ∧A = B) we have that X ≡B3

Y . ⊓⊔

As illustrated above, during forward computation as the state B0 changes to
B3 by adding new constraints to B0, the order between solver terms can change
in arbitrary ways. Therefore, a tree index based on comparison results which is
correct at Bi, may become corrupted at Bi+1.

Example 89 Figure 8.3 shows a binary search tree for leq/2 constraints indexed
on the second argument based on the ordering �true of an empty store. When we
add the constraint C = M the ordering �(C=M) uses the solved form of the terms.
Assuming M is replaced by C, then searching in the tree for entry with key K
will not succeed. If C is replaced by M then the same applies to E. ⊓⊔

Our solution is to repair tree indexes while they change, and this can be
done as follows. Assume we have a tree index which is correct for state Bi and is
corrupted for Bi+1. We delete all entries where �Bi

and �Bi+1
are not guaranteed

to be the same, thus obtaining a correct tree. Then, the re-insertion can be made
using the new ordering �Bi+1

. There is however a slight problem: the deletion of
the corrupted entries has to be performed before Bi actually changes into Bi+1,
so that these entries can be correctly located.

Example 90 Consider the tree in Figure 8.3 (which used order �true). Consider
adding the constraint C = M which replaces M by C. If when trying to locate the

8.4. BUILDING INDEXES ON SOLVER VARIABLES 199

corrupted entry M we use the current ordering �(C=M), then at the root we will
find M ≺(C=M) F , go left and find M ≡(C=M) C. Unfortunately, we will have not
discovered the M node, but the C node. In order to correctly locate the M node
we need to use the previous ordering �true. ⊓⊔

This problem is solved in HAL by requiring the solver to support two things.
The first is a comparison predicate compare(Result,X,Y)4 where Result is
bound to either (=), (<) or (>) when X ≡B Y , X ≺B Y or Y ≺B X holds
respectively, where B is the current solver state. The second, is a new special
solver event cc(X) (compare change) which holds whenever a change in the solver
state might cause the result of a comparison involving X to change. Importantly,
unlike ordinary solver events, the cc(X) event fires and executes delayed goals
“just before” the change in the solver state actually occurs.5

Another difference is that the cc(X) condition expects two goals instead of
one: the first is executed just before the unification, and the other is executed
immediately after it. To accommodate the need for two delayed goals, a special
predicate delay update(Event,Id,Goal1,Goal2) is used, where Goal1 is the
before goal, and Goal2 is the after goal. Predicate delay update/4 is otherwise
exactly the same as delay/3.

We can use the cc(X) event and delay update to implement safe tree indexing
over solver terms.

Example 91 The HAL Herbrand solver supports the cc(X) event. Thus, when
using CHRs that extend the Herbrand solver we can setup delayed goals on this
event to delete the modified constraints. The pseudo code shown in Figure 8.4
inserts a leq/2 constraint into the appropriate indexes, and sets up the nec-
essary delayed goals for safe indexing. The predicates leq temp delete and
leq temp insert respectively delete and insert the constraint from the tree in-
dexes (for leq/2), and are woken up just before and just after unification.

Returning to the problem of Example 90, when C = M is added, just before the
solver state (in this case the heap) is changed, the goal leq temp delete(U,M,Id)

is executed deleting the node with key M . Immediately after the unification,
the goal leq temp insert(U,M,Id) is executed, which (re)inserts the constraint
leq(U,M) into the correct position in the tree indexes. ⊓⊔

Note that the issues we have discussed here are also similarly applicable to
hash-based indexes over solver variables. The difference is that a special hc(X)
(hash change) solver event is used instead of cc(X).

If the built-in solver supports neither cc(X) nor hc(X) solver events then the
current HAL compiler uses list indexes by default. The advantage of lists are
that they do not depend on the solver state B. Unfortunately, as was shown in
Section 7.4, list indexes are significantly slower than specialised index structures.

4The predicate compare/3 is analogous to the standard compare/3 predicate in Prolog.
5Attributed variables in most Prologs similarly must interrupt unification in order to perform

computation just before the heap changes.

200 CHAPTER 8. EXTENDING SOLVERS

leq insert(X,Y,Id) :-

(stored(Id) ->

true

; store(Id),

Delete = leq temp delete(X,Y,Id),

Insert = leq temp insert(X,Y,Id),

delay update(X,Id,Delete,Insert),

delay update(Y,Id,Delete,Insert),

<insert-into-indexes>
).

leq temp delete(X,Y,Id) :-

<delete-from-tree-indexes>.
leq temp insert(X,Y,Id) :-

<insert-into-tree-indexes>.

Figure 8.4: Pseudo code for safe indexing over solver terms

8.5 Implementing Delay in HAL

Throughout this thesis we have taken the existence of dynamic scheduling for
granted. The purpose of this section is to show how dynamic scheduling is actually
implemented in HAL.

8.5.1 Fundamentals

It is the responsibility of each individual solver to implement their own version of
the delay/3 predicate. This is achieved by providing an instance to the following
typeclass.

:- class delay(Event) where [

pred delay(Event,delay id,pred),

mode delay(oo,in,pred is semidet) is det

].

This defines a typeclass called delay(Event) where Event is the type of a set
of solver events provided by the solver. Note that the mode of the solver event
is oo, since solver events usually contain solver variables. The mode (pred is

semidet) indicates that the third argument for delay/3 expects a semidet goal
(i.e. the delayed goal is allowed to fail). The solver writer must ensure that calls
to delay/3 never fail (hence delay/3 has det determinism). A call to delay/3
must never immediately call the goal, even if the solver event appears to be
satisfied, e.g. delaying a goal on fixed(3).6

6Older versions of delay/3, e.g. the version in [17], will immediately call the goal if the
solver event is “satisfied”. It was changed to give delay/3 a more consistent semantics, since

8.5. IMPLEMENTING DELAY IN HAL 201

The first thing a solver writer must consider when implementing delay is what
solver events need to be supported. Many factors must be taken into considera-
tion, e.g. which solver events are easy to implement and which ask constraints
are to be supported. Once this is decided, the solver writer defines the set of sup-
ported solver events by a solver event type, which is usually a discriminated union
of each solver event.7 For example, a finite domain solver defines the following
solver event type.

:- typedef fd event -> (fixed(fdint) ; lbc(fdint) ;

ubc(fdint) ; dc(fdint)).

To assist the solver writer with implementing dynamic scheduling, there is
a HAL library module that implements most of the essential functionality. The
main feature the library provides is a delayed goals collection abstract data type,
named delayed goals, together with the following operations:

• delayed goals init(Goals) – binds Goals to a new empty delayed goals;

• add delay(Goals,Id,Goal) – adds a new delayed Goal and associated
delay id Id to delayed goals Goals;

• wake up(Goals) – Calls all goals in delayed goals Goals whose associated
Id has not been killed.

Notice that the interface to add delay/3 is almost exactly the same as the inter-
face to delay/3. The difference is that add delay/3 is not overloaded, as it only
operates on one type, namely delayed goals, rather than solver events. Also,
the Goal is only called during an explicit call to wake up(Goals), which we will
discuss later.

Incidentally, the HAL library also provides the constraint identifier operations,
i.e. new(Id), kill(Id), etc., defined in Section 4.3.2.

The solver writer implements delay/3 as follows. The delay(Event,Id,Goal)
predicate maps Event to an associated delayed goals for that event, then calls
add delay/3 with the same Id and Goal.

Example 92 For example, the finite domain solver defines the delay/3 predi-
cate for the fd event solver event, as shown in Figure 8.5. Here, each function
get delayed goals event maps a fdint variable to a delayed goals collection
associated with that event. How this mapping is implemented is highly solver de-
pendent, but usually the delayed goals are stored somewhere in the internal data
structure for solver variables. The code in Figure 8.5 has been slightly simplified
since add delay is typically not called when V is is an integer. ⊓⊔

some solver events, e.g. touched(X), have no sensible notion of “being satisfied”.
7Nothing prevents solver events being any type, although the current CHR compiler only

handles discriminated union types.

202 CHAPTER 8. EXTENDING SOLVERS

fd delay(FDEvent,Id,Goal) :-

(FDEvent = fixed(V),

FixedGoals = get delayed goals fixed(V),

add delay(FixedGoals,Id,Goal)

; FDEvent = lbc(V),

LBCGoals = get delayed goals lbc(V),

add delay(LBCGoals,Id,Goal)

; FDEvent = ubc(V),

UBCGoals = get delayed goals ubc(V),

add delay(UBCGoals,Id,Goal)

; FDEvent = dc(V),

DCGoals = get delayed goals dc(V),

add delay(DCGoals,Id,Goal)

).

Figure 8.5: Example implementation of fd delay for a finite domain solver

Next, the solver writer declares an appropriate instance of the delay typeclass.
The instance declaration for fd delay in Example 92 is the following.

:- instance delay(fd event) where [

pred(delay/3) is fd delay

].

HAL will automatically replace (overloaded) calls to delay/3 to fd delay/3 if
the solver event type is fd event.

The solver also must wakeup the appropriate delayed goals whenever a solver
event actually occurs during a derivation. This is where the library predicate
wake up(Goals) is useful.

Example 93 Figure 8.6 is an example of how the wake up/1 predicate can be
used to implement dynamic scheduling in a finite domain solver. Consider the
constraint ’=< constant’ which is similar to the standard =< constraint except
the second argument is always a constant (i.e. an ordinary integer).

The constraint works as follows: If the constant C is smaller than the current
upper bound for X (the return value of fd max(X)), then we set the new upper
bound for X to C. This is the purpose of the call to set max(X,C). We assume
that set max/2 also handles any additional bounds propagation resulting from
changing the upper bound of X. After X has been assigned a new upper bound,
we need to wake up delayed goals for the solver events fixed(X), ubc(X) and
dc(X). First, we check if X has become fixed, i.e., fd min(X) = fd max(X), and
if so we call wake up/1 on the fixed goals of X. Like before, we use the special
function get delayed goals fixed(X) to retrieve these goals. Similarly, we call
wake up/1 on the delayed goals for ubc(X) and dc(X). ⊓⊔

8.5. IMPLEMENTING DELAY IN HAL 203

’=< constant’(X,C) :-

UB = fd max(X), %% get current X upper bound

(C < UB -> %% change upper bound?

set max(X,C), %% record new upper bound for X

(fd min(X) = fd max(X) ->

wake up(get delayed goals fixed(X))

; true)

wake up(get delayed goals ubc(X)),

wake up(get delayed goals dc(X))

; true).

Figure 8.6: Example usage of wake up/1 to implement delay

Note that this implementation is rather naive since wake up/1 may be called
several times on the same event if further propagation results from set max/2, e.g.
if the upper bound of X changes twice. A more sophisticated solution accumulates
a list of all solver events that have occurred, removes duplicates, then wakes up
the delayed goals for each remaining event after bounds propagation has finished.
This is the technique that the current version of the HAL bounds propagation
solver uses.

Other standard operations on delayed goals include

• delayed goals reset(Goals): Destructively removes all delayed goals from
Goals (thus effectively making Goals empty).

• delayed goals merge(Goals1,Goals2,Goals3): Destructively merges col-
lections Goals1 and Goals2 into Goals3. This is useful when combining the
delayed goals of two variables after unification.

Note these operations are destructive (i.e. the old values of the inputs of these
routines will be clobbered). This avoids the need to reinsert a new value back
into the solvers internal data structures, however it does make the code impure.8

8.5.2 Polymorphic Solver Events

For CHR compilation, we require some solver events to be defined over multiple
solvers with different solver types. One such solver event is changed(X), which
every solver in HAL supporting dynamic scheduling is encouraged to provide.
The problem is that solver event changed(X) should work for any X of any solver
type. This is in contrast with solver specific events, such as lbc(X), etc., where
X can only ever have one type, e.g. the type fdint. Our aim is to overload the
constructor changed/1 so that it becomes a polymorphic solver event.

8Impure code is non-logical. See [40] for a description about impurity in Mercury, which is
the same as in HAL.

204 CHAPTER 8. EXTENDING SOLVERS

In HAL, it is not possible to overload constructors directly.9 Instead we over-
load a more specialised version of the delay/3 predicate, which is defined by the
following typeclass.

:- class delay changed(T) where [

pred delay changed(T,delay id,pred).

mode delay changed(oo,in,pred is semidet) is det.

].

Notice the similarity between the delay changed/1 and delay/1 typeclasses.
Solvers provide instances to delay changed/1 in much the same way as they pro-
vide instances to delay/1. The main difference is that the method
delay changed/3 expects a term of type T (i.e. the solver type), rather than
a solver event type. In all of our examples up until this point, we should treat
calls of the form delay(changed(X),Id,Goal) as delay changed(X,Id,Goal).

For many solvers, the solver event changed(X) is equivalent to an existing
solver specific event. This makes implementing an instance for delay changed

trivial.

Example 94 For example, the finite domain solver condition changed(X) is
equivalent to the existing condition dc(X) (domain changed). We can therefore
implement delay changed as follows.

fd delay changed(X,Id,Goal) :-

delay(dc(X),Id,Goal).

⊓⊔

8.5.3 Complex Solver Terms

Defining solver events is more difficult for solvers with complex solver terms.
We define simple solver terms as variables, for fully ground data. For example,
a solver term for the finite domain solver is always simple, since it is either a
variable, or grounded to an integer. We define complex solver terms as a solver
term that is not simple, i.e., has more elaborate instantiations. For example,
consider a Herbrand solver over a list of finite domain variables, then [1, X|Y] is
a complex solver term, since it is neither a variable nor fully grounded. So far we
have only considered solver events over simple solver terms, and in this section
we show how to implement delay changed over complex terms.

Usually, a solver event over a complex term can be rewritten into solver events
over simple terms, by recursively descending through the term. This is the case
with the changed(X) polymorphic solver event. We can express this as a simple
term rewriting system consisting of the following rules

changed(f(X1, ..., Xn))→ changed(X1) ∨ ... ∨ changed(Xn)

9It is possible to overload a function with the same name and arity as the constructor.

8.5. IMPLEMENTING DELAY IN HAL 205

where f/n is a Herbrand constructor. Any of changed(X1), ..., changed(Xn) may
be reduced further, until the only solver events remaining are on variables.

Example 95 For example, we an rewrite the solver event changed(Ls), where
Ls is some list, using the rewrite rules

changed([]) → ǫ
changed([X|Y]) → changed(X) ∨ changed(Y)

The solver event changed([1, X|Y]) is rewritten to changed(X)∨changed(Y). ⊓⊔

Suppose the programmer declares the following Herbrand type, and wants to
implement delay changed over it.

:- typedef type(...) -> f1(type1,1,...,type1,n) ;
...

fa(typea,1,...,typea,m) deriving delay.

We assume that all types typei,j also support delay changed, or are not solver
types. The pseudo code of delay changed for this type is given in Figure 8.7.
Lines (1)-(9) implement the instance method for delay changed. Line (2) tests
if X is bound (i.e. not a variable). If so, then in lines (3)-(8) we delay the Goal on
any variables in any subterm of X. This involves deconstructing X, which we know
is not a variable, then calling the overloaded delay changed for each argument
of X.

The other case is when X is an unbound Herbrand variable, which is han-
dled by line (9). For Herbrand variables, changed(X) and (the non-overloaded)
touched(X) solver events are very similar: both will wakeup the goal on any
change to X, e.g. X unified with another variable, but after X has been bound
to a non-variable, touched(X) will never again wakeup the goal. To overcome
this difference, we delay a special wrapper goal named type changed around the
original Goal and then delay it on the touched(X) solver event. The wrapper
goal, defined on lines (10)-(14), calls Goal on line (11) (since if the wrapper goal
is called, then X must have changed), then checks if X has been bound on line
(12). If X has been bound, it means that the wrapper goal (which was delayed
on the touched(X) event) will no longer be called. To correctly implement the
behaviour of changed(X), we (recursively) call type delay changed again with
the same arguments. This recursive call will do the necessary deconstruction, and
set up delayed goals on any subterms of X.

Example 96 Consider a Herbrand solver over lists of finite domain integers, and
consider that we need to implement the changed(Ls) polymorphic solver event.
This is implemented in Figure 8.8. ⊓⊔

We can immediately see from the pseudo code and examples that the number
of actual delayed goals (i.e. calls to delay/3) is equal to the number of variables
in solver term X. Each call to delay/3 consumes memory, since the goal and the

206 CHAPTER 8. EXTENDING SOLVERS

type delay changed(X,Id,Goal) :- (1)
(nonvar(X) -> (2)

(X = f1(Y1,...,Yn), (3)
delay changed(Y1,Id,Goal), (4)
...

delay changed(Yn,Id,Goal) (5)
;

...

; X = fa(Z1,...,Zm), (6)
delay changed(Z1,Id,Goal), (7)
...

delay changed(Zm,Id,Goal) (8)
)

; delay(touched(X),Id,type changed(X,Id,Goal)) (9)
).

type changed(X,Id,Goal) :- (10)
call(Goal), (11)
(nonvar(X) -> (12)

type delay changed(X,Id,Goal) (13)
; true (14)
).

Figure 8.7: Pseudo code for delay changed over a complex type

identifier must be stored into a delayed goals data structure. If X contains a
large number of variables, then this may be inefficient. Also, if X contains repeats
of the same variable Y, then current implementation will set up a delayed goal
for every instance of Y in X. Again, this may be inefficient, since the Goal may
be called more times than is necessary.

8.5.4 Index Related Dynamic Scheduling

The implementation of delay update/4 is very similar to the other types of dy-
namic scheduling. The main differences are that delay update/4 expects two
goals: one executed immediately before the solver event, and one executed im-
mediately after it. Two polymorphic solver events are supported, namely cc(X)

and hc(X) (see Section 8.4), and their corresponding typeclass definitions are
shown in Figure 8.9. Notice that the interfaces for the overloaded predicates
delay update cc/4 and delay update hc/4 are exactly the same.

The implementation of delay update is very similar to the other forms of
dynamic scheduling in HAL.

8.5. IMPLEMENTING DELAY IN HAL 207

list delay changed(Ls,Id,Goal) :-

(nonvar(Ls) ->

(Ls = [],

true

; Ls = [X|Ls1],

delay changed(X,Id,Goal),

delay changed(Ls1,Id,Goal)

)

; delay(touched(Ls),Id,list changed(Ls,Id,Goal))

).

list changed(Ls,Id,Goal) :-

call(Goal),

(nonvar(Ls) ->

delay changed(Ls,Id,Goal)

; true

).

Figure 8.8: Implementation of delay changed over a list solver

:- class delay update cc(T) where [

pred delay update cc(T,delay id,pred,pred),

mode delay update cc(oo,in,pred is semidet,pred is semidet)

].

:- class delay update hc(T) where [

pred delay update hc(T,delay id,pred,pred),

mode delay update hc(oo,in,pred is semidet,pred is semidet)

].

Figure 8.9: The delay update typeclasses for indexing

Example 97 Consider the implementation of delay update for a Boolean solver.
The instance declaration and matching predicate is shown in Figure 8.10. We
assume that the type of a Boolean variable is bool. Notice that two delayed goals

collections are required (one for the before and after goals).

Consider a simple Boolean constraint true(X) which holds if variable X is
true. The code for true(X) is shown in Figure 8.11. Predicate set to true(X)

does the actual binding of variable X to the value true. Immediately before the
binding takes place, the before goals for condition cc(X) are called. After the
binding, the corresponding after goals are called. The call propagate(X) propa-
gates the new value for X. Note that this propagation happens after the goals have

208 CHAPTER 8. EXTENDING SOLVERS

:- instance delay update cc(bool) where [

pred(delay update cc/4) is bool delay update cc

].

bool delay update cc(X,Id,Before,After) :-

BeforeGoals = get delayed goals before cc(X),

add delay(BeforeGoals,Id,Before),

AfterGoals = get delayed goals after cc(X),

add delay(AfterGoals,Id,After).

Figure 8.10: Implementation of delay update cc for a Boolean solver

true(X) :-

(nonvar(X) ->

test is true(X)

; BeforeGoals = get delayed goals before cc(X),

wake up(BeforeGoals),

set to true(X),

AfterGoals = get delayed goals after cc(X),

wake up(AfterGoals),

propagate(X)

).

Figure 8.11: Implementation of the true(X) constraint supporting delay update

been called, otherwise we may wakeup goals from delay/3, and hence call CHR
constraints before they are added back into the store. ⊓⊔

For many solvers, the hc(X) solver event is equivalent to cc(X). This means
that if cc(X) is already implemented, then to implement hc(X) we just need to
provide an appropriate instance declaration. For example, assuming that cc(X)
and hc(X) are equivalent for the Boolean solver in Example 97, we just need to
provide the following instance declaration to support hc(X).

:- instance delay update hc(bool) where [

pred(delay update hc/4) is bool delay update cc

].

For solvers with complex types, the implementation of the delay update pred-
icates is very similar to delay changed in Section 8.5.2. For Herbrand solver
types, we recursively descend through the term using the following rule.

cc(f(X1, ..., Xn))→ cc(X1) ∨ ... ∨ cc(Xn)

8.6. EXPERIMENTAL RESULTS 209

The only slight complication is that only the after goal needs to be wrapped (as
in lines (10)-(14) in Figure 8.7).

8.6 Experimental Results

In this section we show the benefit of CHR optimisation on several example pro-
grams and benchmarks. The HAL CHR compiler has been extended to support
asks declarations, to translate guard constraints to ask constraints, and to use
solver events to set up minimal re-execution when a solver changes. It also au-
tomatically builds appropriate index structures over solver variables for the joins
required by CHR rules. Both balanced trees and hash table index structures are
supported.

For the experiments, we will use the following test suite:

• fib – The inefficient version of Fibonacci program from Example 16 (where
rules f2 and f3 are swapped). Benchmark fib(n) calculates the nth Fi-
bonacci number.

• min – The min program from Example 37. Benchmark path(n,m) attempts
to assign weights to a directed graph of m nodes such that there exists a
shortest path equal to n. Note that path(5,1000) has one solution.

• leq – The classic less-than-or-equal-to program from Example 1. Bench-
mark leq(n) computes

X0 ≤ X1 ≤ ... ≤ Xn−1 ≤ Xn ≤ X0

which results in the unification of all Xi.

• leq bounds – same as leq but extends a bounds propagation solver.

• boolean – A Boolean solver with rules similar to that as shown in Ex-
ample 81. Benchmark queens(n) finds a solution for the classic n-queens
problem using Boolean constraints.

• queue – Same as the queue benchmark in Section 7.4, except this version
extends a Herbrand solver. Benchmark queue(n) adds n elements, then
retrieves the same n elements.

• bounds – Similar to the bounds program in Appendix A.1, except bounds
variables are Herbrand variables, and equality is implicitly handled by the
Herbrand solver (rather than by a eq/2 CHR constraint and an explicit
rule).

• chameleon – Rules generated by the Chameleon programming language [81]
for resolving typeclass functional dependencies [25]. Benchmark fd(n) re-
solves n class constraints with functional dependencies.

210 CHAPTER 8. EXTENDING SOLVERS

Table 8.1: Statistics from each of the example programs extending solvers

Prog. Extends |c| <=> \ ==> |r|

fib bounds 1 1 1 1 3
min bounds 4 4 2 1 7
leq herbrand 1 2 1 1 4
leq bounds bounds 1 2 1 1 4
boolean herbrand 11 3 24 0 27
queue herbrand 5 5 2 0 7
bounds herbrand 12 8 5 5 18
chameleon herbrand 1 9 0 1 10
list both 3 7 0 1 8

• list – Defines list constraints, namely length/2 (as shown in Exam-
ple 32), append/3 and neq/2 (list disequality). Benchmark triples(n,m)

tries to find n triples of sequences (lists) of positive integers ≤ m such that
(1) the length of each sequence is ≤ n (2) each sequence is not equal to any
other sequence (from any triple); and (3) the concatenation of elements for
all triples must be equal.

Table 8.1 summaries relevant information about each program. The Extends
column identifies which solver(s) the program extends. Here ‘both’ means the
program extends both the Herbrand and finite domain solvers. The |c| column is
the number of CHR constraints defined by each program. Next the <=> column is
the number of simplification rules, \ is the number of simpagation rules, and ==>

is the number of propagation rules. Finally, the |r| column is the total number
of rules.

The results are shown in Table 8.2 and Table 8.3 respectively. All timings
are the average over 10 runs on a 1.2GHz AMD Athlon Processor with 1.5Gb of
RAM running under Linux (Debian) with kernel version 2.4.22 and are given in
milliseconds. SICStus Prolog 3.8.6 is run under compact code (no fastcode for
Linux). We compare to SICStus CHRs where possible just to illustrate that the
HAL CHR implementation is mature and competitive.

Table 8.2 shows the benefit of using index structures over solver variables.
We test all programs except list, which does not require indexing since all rules
are single-headed. Here, all other optimisations are enabled, including accurate
specialisation under the assumption of ωt confluence. The list, +tree and +hash
versions use a list, tree and hash indexes respectively. As was the case in
Section 7.4, both tree and hash indexes are superior over a list index overall,
with a 80% improvement for lists, and an 88% improvement for hash tables. The
exception is the boolean program, which showed that a list index is faster in
some cases. This occurs when the additional overhead of creating and maintaining
more complicated indexes (e.g. setting up delayed goals on the cc(X) and hc(X)

8.6. EXPERIMENTAL RESULTS 211

Table 8.2: Execution times (ms) for various benchmarks testing indexing over
solver variables

Prog. Benchmark list +tree +hash SICS

fib fib(25) 2239 2072 1811 n/a
min path(5,1000) 4127 3156 3455 n/a
leq leq(80) 8162 1831 1064 4064
leq bounds leq(80) 5339 636 600 n/a
boolean queens(12) 141 236 165 3176
boolean queens(21) 19123 21628 16116 235661
queue queue(5000) 4997 43 41 6612
bounds queens(8) 3706 425 142 –
bounds queens(15) 417123 5189 1606 –
chameleon fd(2000,10) 583 47 16 4277
chameleon fd(2000,2000) 4244 2306 979 –

geom. mean 4626 20% 12% 422%∗

conditions) outweighs the benefit of faster lookups. This is especially true if the
CHR store is relatively small, as is the case with the boolean program and these
benchmarks.

Finally, SICS is provided to show how our CHR compiler compares with
other existing implementations. Note that the fib, min and leq bounds cannot
be compiled to SICStus CHR, since only a Herbrand solver can be extended. The
bounds program takes too long to complete the benchmarks, since the SICStus
CHR compiler lacks join ordering, hence resulting in a very inefficient executable.
Interestingly, the chameleon program with the fd(2000,2000) benchmark also
takes too long to terminate. This is because of the order rules are rechecked when
the constraints wakeup. This is discussed further below.

Table 8.3 shows the benefit of using specialisation on various benchmarks.
Here, all other optimisations are enabled, and each program uses hash indexes.
The −spec version uses no specialisation, and all occurrences are rechecked on
the changed(X) event for any variable X in the CHR constraint. The +1/2spec
version enables the specialisation described in Section 8.3.1, where changed events
are either removed or replaced with a more specific event based on the analysis
of the guards if possible. Finally, the +spec version enables full specialisation as
described in Section 8.3.2 under the assumption that each program is ωt confluent.
Note that the +spec version is equivalent to the hash version in Table 8.2.

Overall we see that both kinds of specialisation are superior, with a 12%
improvement for +1/2spec, and a 51% improvement for +spec. Most notably, the
+spec version of chameleon is significantly faster than the +1/2spec version. The
reason is because of the following two rules.

fd(A,B), fd(A,C) ==> B=C.

212 CHAPTER 8. EXTENDING SOLVERS

Table 8.3: Execution times (ms) for various benchmarks testing specialisation

Prog. Benchmark −spec +1/2spec +spec

fib fib(25) 1929 1679 1811
min path(5,1000) 5683 4736 3458
leq leq(80) 1064 1064 1064
leq bounds leq(80) 611 611 600
boolean queens(12) 218 161 165
boolean queens(21) 19322 15404 16116
bounds queens(15) 1632 1606 =
chameleon fd(2000,10) 4492 4198 16
list triples(5,2) 5622 4847 4663
list triples(5,3) 23729 20330 19594

geom. mean 2798 88% 49%

fd([A],B) <=> B = [C], fd(A,C).

With the +1/2spec, the propagation rule is always checked first when a fd/2
constraint wakes up, whereas the only the simplification rule is checked in the
+spec version. It is significantly faster to check the simplification rule compared
to the propagation rule, hence the big difference in the performance between the
+1/2spec and +spec versions. This also explains why the SICS version performs
poorly in Table 8.2.

On the other hand, the +spec version is sometimes worse than the +1/2spec
version. This can occur is woken up constraints are deleted by the first few rules
that are checked, thus the benefit of more accurate specialisation is lost. Since
accurate specialisation usually requires more delayed goals to be created, the
overhead costs are greater, and hence the slowdown. This is the case with the
boolean program, where Boolean constraints are often quickly simplified once an
argument becomes more bound. Another potential problem with accurate spe-
cialisation is that a computationally expensive occurrence may be visited before
a cheaper one (this is the opposite to the what is happening with the chameleon

example). We did not observe this in any of the benchmarks, however it is a
possibility the programmer should be aware of.

8.7 Summary

In this chapter we have shown how we can extend arbitrary solvers supporting
dynamic scheduling using CHRs rules, from both a theoretical and practical point
of view.

We presented a formalisation of the implicit wakeup policy used by the ba-
sic compilation. This involved formalising exactly what (the naive version of)

8.7. SUMMARY 213

delay/3 means, and then showing it satisfies the conditions in Definition 10.
We investigated how to compile the execution of CHR rules so that we re-

execute the minimum number of rules on a change of solver state. Experiments
show that specialising the re-execution is beneficial, and that the more expensive
the joins in the CHR rules the more beneficial it is. To fully specialise the
wakeup code the program needs to be confluent under the theoretical operational
semantics, which is the case with all the examples in this chapter.

The use of efficient indexes is vital to support efficient execution of CHRs, and
hence we need to support such indexes over changing solver data. We presented
a solution to this problem by using a special variant of dynamic scheduling: one
where delayed goals are executed immediately before, and immediately after a
change in some solver data occurs. We show that despite this additional overhead,
using indexes is still significantly faster than the safe alternative, which is to use
list indexes.

We explained in detail how dynamic scheduling is implemented in HAL, and
how solver writers can implement the dynamic scheduling interface, so solvers
can become extensible. We showed that much of the functionality of dynamic
scheduling is implemented in a special library module, which the solver writer
can take advantage of. Several other topics were taken into consideration, such
as implementing solver events over complex terms, and implementing the special
form of dynamic scheduling for indexing.

214 CHAPTER 8. EXTENDING SOLVERS

Chapter 9

Conclusion

9.1 Summary and Conclusions

In this thesis we presented the theory and practice of CHR compilation.

Chapter 3 presented the first formalisation of the refined operational semantics
for CHRs, which is the operational semantics used by most current CHR imple-
mentations. This work therefore lays the theoretical foundation of modern CHR
compilers and interpreters. The formal definition is used to prove correctness of
the refined semantics with respect to the theoretical semantics. Results linking
termination and confluence in the theoretical semantics to the refined semantics
was also shown.

The practical aspects of basic CHR compilation were introduced in Chapter 4.
It presented a minimal compiler and runtime environment which implement the
refined operational semantics. The target is a CLP language such as Prolog or
HAL. The compilation of a restricted form of guards with existential variables
was also covered, however this assumes additional information provided by the
solver in the form of asks declarations.

Chapter 5 presented a program analysis framework for CHRs based on ab-
stract interpretation, and provided two important instances of the framework:
late storage analysis and functional dependency analysis. The analysis frame-
work relies on the call-based operational semantics for CHRs, which is a different
formulation of the refined semantics designed to make analysis easier. The very
fact that program analysis is even possible strengthens the case for the refined
semantics. For example, if functional dependency analysis were to be adapted to
the theoretical semantics, the resulting analysis will be too far weak to be useful.

One application of functional dependency analysis was a confluence test under
the refined semantics, which was covered in Chapter 6. Functional dependency in-
formation is used to decide if a given rule is matching complete, i.e., will try all of
its potential matches at runtime. Matching completeness or independence guar-
antees confluence under some other assumptions, such as termination, groundness
and order independence. The usefulness of the confluence was shown by the fact
that it detected a bug in an early version of the bounds program. Currently, the

215

216 CHAPTER 9. CONCLUSION

confluence test is fairly weak, but could potentially be strengthened by taking
into account standard CHR idioms.

Chapter 7 discussed several CHR optimisations. These ranged from simple
peephole optimisations, such as removal of propagation histories, delay avoidance,
etc., to more high-level optimisations based on the program analysis, such as
functional dependencies used for join ordering and index selection. Optimisation
is critical for reasonable performance for CHR programs, as was demonstrated
by the experimental results.

Finally, Chapter 8 examined the issues that emerge from CHR programs ex-
tending underlying solver(s). This includes some theoretical results, which showed
that the set of CHR constraints woken up by delaying on changed/1 satisfies the
definition of a wakeup policy. We also covered some additional optimisations,
which were wakeup specialisation and indexes over solver terms. Both of these
rely on the dynamic scheduling interface to the underlying solver, including asks

declarations and ask constraints. We also presented a guide to implementing this
interface. Most of the time, the interface can be implemented by adapting the
pseudo code presented in this chapter.

9.2 Contributions

Here we list the benefits of this thesis for CHR programmers, CHR compiler
writers and CHR theoreticians.

Benefits for CHR programmers

The main benefit of this work is the considerable improvement and modernisation
of the compilation of CHRs over earlier versions.

Most of this benefit is a direct result from the formalisation of the refined
semantics, since this leads to a better understand of how CHR programs actually
behave. A programmer can take advantage of this, and write CHR programs
that rely on the refined semantics. In fact, most of the CHR programs in this
thesis rely on the refined semantics. This represents a reinvention of CHRs into
a more generic (yet powerful) rule based language that still retains some of the
declarative aspects of the theoretical semantics. For example, the bounds pro-
gram from Example 69 relies on the refined semantics, yet the programmer could
add “declarative” rules (based on the mathematical properties of the constraints),
e.g. the transitivity rule.

leq(X,Y), leq(Y,Z) ==> leq(X,Z).

The formalisation of the refined semantics led to an abstract interpretation
framework for CHRs, which has been used for discovering information about late
storage and functional dependencies. The results of the analysis can be used
to help detect non-confluence, and to optimise CHR programs. Detecting non-
confluence is clearly beneficial, since non-confluence usually indicates a bug in

9.3. FUTURE WORK 217

the program. The confluence test has successfully detected a bug in the bounds

program.
Optimising CHRs is also clearly beneficial. The global optimisations of join

ordering and early guard scheduling are essential for programs with large rule
heads, and using efficient index structures is also of significant benefit. Local
optimisations, i.e. continuation, lateness and never-stored optimisation, provide
additional improvement. If the program extends a built-in solver, then specialisa-
tion and indexing over solver variables is also useful. For some simple programs,
e.g. the gcd program, the resulting optimised executable is very competitive
compared with a hand implemented version.

Benefits to CHR compiler writers

Chapters 4, 7 and 8 can be thought of as a guide to building an advanced CHR
compiler in a programming language such as HAL. A majority of the ideas pre-
sented in these chapters could easily be extended to other programming languages
as well. The obvious benefit is that CHR compilation has now been extensively
documented.

One benefit is that the programmer can decide how advanced to make the
CHR compiler. For a minimal, yet fully functional, CHR compiler, Chapter 4
describes a basic compiler and runtime environment that implements the refined
operational semantics. For a more advanced compiler, Chapter 7 for how to
optimise CHRs. Chapter 8 describes some additional optimisations for CHRs
that extend another solver.

Another benefit is that the refined semantics is a de facto standard for CHR
compilation. A CHR compiler writer may wish to try different approaches to
compiling CHRs, yet still be based on the refined semantics.

Benefits to CHR theoreticians

The refined semantics is a new formalisation of CHRs, which therefore opens up
more opportunities for CHR theoreticians. The confluence and termination of
CHRs under the refined semantics is an interesting (and relatively unexplored)
area of potential research.

9.3 Future Work

We briefly discuss some ideas for future work directly related to this thesis.

Analysis and optimisation

There is considerable scope for more research into the analysis and optimisation
of CHRs. For example, if consecutive rules share similar heads, then perhaps the
matching algorithms can be combined, hence avoiding redundant work.

218 CHAPTER 9. CONCLUSION

We also intend to further refine and formalise the CHR analysis framework
and instances of the framework.

Language issues

The refined semantics is still nondeterministic, and it might be worthwhile further
“refining” the semantics until it is deterministic. This may lead to more accurate
analysis and more optimisations. It would also make all CHR programs trivially
confluent, although this does nothing to solve matching completeness related
bugs.

Also, alternatives to the refined semantics itself have not been fully explored.
Perhaps there are modifications to the semantics which can lead to better opti-
misation. For example, removing the woken up constraints from the store during
a Solve transition both simplifies the implementation (in HAL) and means that
late storage is applicable to the (reactivated) constraints. We intend to explore
these possibilities in the future.

How to program

If the refined semantics stands the test of time, then the issue of how to program
in CHRs needs to be throughly explored. This thesis already provides some
hints. For example, the confluence test and some optimisations rely on functional
dependency information, and the analysis can only detect this from rules of a
particular form, e.g.

p(X,Y) \ p(X,Z) <=> true.

Therefore, if any CHR constraint has an inherent functional dependency, it is
good practise for the programmer to write down such a rule explicitly.

Bibliography

[1] S. Abdennadher. Operational semantics and confluence of constraint propa-
gation rules. In Gert Smolka, editor, Proceedings of the Third International
Conference on Principles and Practice of Constraint Programming, LNCS
1330, pages 252–266. Springer-Verlag, 1997.

[2] S. Abdennadher. Constraint Handling Rules: Applications and Exten-
sions. In Proceedings of 2nd International Workshop on Optimization and
Simulation of Complex Industrial Systems. Extensions and Applications of
Constraint-Logic Programming and 7th International Workshop on Deduc-
tive Databases and Logic Programming in conjunction with the 12th Inter-
national Conference on Applications of Prolog, Tokyo, 1999. Invited Talk.

[3] S. Abdennadher and T. Frühwirth. On Completion of Constraint Handling
Rules. In 4th International Conference on Principles and Practice of Con-
straint Programming, LNCS 1520, pages 25–39. Springer-Verlag, 1998.

[4] S. Abdennadher, T. Frühwirth, and H. Muess. Confluence and Semantics of
Constraint Simplification Rules. Constraints, 4(2):133–166, 1999.

[5] S. Abdennadher, E. Krämer, M. Saft, and M. Schmauss. JACK: A java con-
straint kit. In Electronic Notes in Theoretical Computer Science, volume 64,
2002.

[6] H. Äıt-Kaci. Warren’s Abstract Machine. MIT Press, 1991.

[7] K. Apt. Principles of Constraint Programming. Cambridge University Press,
2003.

[8] K. Apt and E. Monfroy. Automatic generation of constraint propagation
algorithms for small finite domains. In J. Jaffar, editor, Proceedings of the
Fifth International Conference on Principles and Practice of Constraint Pro-
gramming, LNCS 1713, pages 58–72. Springer Verlag, 1999.

[9] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge Univ.
Press, 1998.

[10] I. Bratko. Prolog Programming for Artificial Intelligence. Addison-Wesley,
third edition, 2000.

219

220 BIBLIOGRAPHY

[11] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and
G. Puebla. The ciao prolog system. reference manual. Technical Report
CLIP3/97.1, School of Computer Science, Technical University of Madrid
(UPM), August 1997. Available from http://www.clip.dia.fi.upm.es/.

[12] A. Cheadle, W. Harvey, A. Sadler, J. Schimpf, K. Shen, and M. Wallace.
ECLiPSe: An Introduction. Technical Report IC-Parc-03-1, IC-Parc, Impe-
rial College London, 2003.

[13] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. The maude 2.0 system. In R. Nieuwenhuis, editor, Proceedings of
the 14th International Conference on Rewriting Techniques and Applications
(RTA 2003), volume 2706 of Lecture Notes in Computer Science, pages 76–
87, Berlin, June 2003. Springer.

[14] W. Clocksin and C. Mellish. Programming in Prolog. Springer, fourth edition,
1994.

[15] V. Santos Costa, L. Damas, R. Reis, and R. Azevedo. YAP User’s Manual.
http://www.ncc.up.pt/∼vsc/Yap/, 2005.

[16] P. Cousot and R. Cousot. Abstract interpretation: a unifed lattice model for
static analysis of programs by construction or approximation of fixpoints.
In Proc. of the 4th Symp. on Principles of Programming Languages, pages
238–252. ACM Press, 1977.

[17] M. Garćıa de la Banda, B. Demoen, K. Marriott, and P. Stuckey. To the
gates of HAL: a HAL tutorial. In Proceedings of the Sixth International
Symposium on Functional and Logic Programming, LNCS 2441, pages 47–
66. Springer-Verlag, 2002.

[18] M. Garcia de la Banda, D. Jeffery, K. Marriott, P. Stuckey, N. Nethercote,
and C. Holzbaur. Building constraint solvers with HAL. In P. Codognet, ed-
itor, Logic Programming: Proceedings of the 17th International Conference,
LNCS 2237, pages 90–104. Springer-Verlag, 2001.

[19] B. Demoen. http://www.cs.kuleuven.ac.be/∼bmd/hProlog/, 2005.

[20] B. Demoen, M. Garcia de la Banda, W. Harvey, K. Marriott, and P. Stuckey.
An overview of HAL. In J. Jaffar, editor, Proceedings of the Fifth Interna-
tional Conference on Principles and Practices of Constraint Programming,
LNCS 1713, pages 174–188. Springer-Verlag, 1999.

[21] B. Demoen, M. Gracia de la Banda, W. Harvey, K. Marriot, P. Schachte,
and P. Stuckey. Compiling the HAL variable to Mercury. Technical Report
CW273, Department of Computer Science, K.U.Leuven, 1998.

BIBLIOGRAPHY 221

[22] D. Diaz and P. Codognet. A minimal extension of the WAM for clp(FD). In
International Conference on Logic Programming, pages 774–790. MIT Press,
1993.

[23] M. Dincbas, P. Van Hentenryck, H. Simonis, and A. Aggoun. The Constraint
Logic Programming Language CHIP. In Proceedings of the Second Interna-
tional Conference on Fifth Generation Computer Systems, pages 693–702.
Ohmsha Publishers, 1988.

[24] G. Duck, M. Garcia de la Banda, and P. Stuckey. Compiling ask constraints.
In B. Demoen and V. Lifschitz, editors, Proceedings of the 20th International
Conference on Logic Programming, LNCS 3132, pages 105–119. Springer-
Verlag, September 2004.

[25] G. Duck, S. Peyton-Jones, P. Stuckey, and M. Sulzmann. Sound and de-
cidable type inference for functional dependencies. In Proceedings of Eu-
ropean Symposium on Programming, LNCS 2986, pages 49–63. Springer-
Verlag, 2004.

[26] G. Duck, P. Stuckey, M. Garcia de la Banda, and C. Holzbaur. Extending
arbitrary solvers with constraint handling rules. In D. Miller, editor, Pro-
ceedings of the Fifth ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, pages 79–90. ACM Press, 2003.

[27] G. Duck, P. Stuckey, M. Garcia de la Banda, and C. Holzbaur. The re-
fined operational semantics of constraint handling rules. In B. Demoen and
V. Lifschitz, editors, Proceedings of the 20th International Conference on
Logic Programming, LNCS 3132, pages 90–104. Springer-Verlag, September
2004.

[28] C. Forgy. OPS5 User’s Manual. Technical Report CMU-CS-81-135, Com-
puter Science Department, Carnegie Mellon University, July 1981.

[29] C. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem. Artificial Intelligence, 19:17–37, 1982.

[30] T. Frühwirth. Constraint simplification rules. Technical Report LP-63,
ECRC Munich, Germany, October 1991.

[31] T. Frühwirth. Constraint simplification rules. Technical Report ECRC-92-
18, ECRC Munich, Germany, July 1992.

[32] T. Frühwirth. Theory and practice of constraint handling rules. Journal of
Logic Programming, 37:95–138, 1998.

[33] T. Frühwirth. Proving termination of constraint solver programs. In New
Trends in Contraints, Joint ERCIM/Compulog Net Workshop, LNCS 1865,
pages 298–317. Springer-Verlag, 1999.

222 BIBLIOGRAPHY

[34] T. Frühwirth and S. Abdennadher. The Munich Rent Advisor: A Success
for Logic Programming on the Internet. Theory and Practice of Logic Pro-
gramming, 1(3):303–319, 2001.

[35] T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming.
Springer-Verlag, Berlin, 2003.

[36] T. Frühwirth and P. Brisset. High-level implementations of constraint han-
dling rules. Technical Report ECRC-95-20, ECRC Munich, Germany, 1995.

[37] M. Garćıa de la Banda, P. Stuckey, W. Harvey, and K. Marriott. Mode
checking in HAL. In J. LLoyd et al., editor, Proceedings of the First Inter-
national Conference on Computational Logic, LNCS 1861, pages 1270–1284.
Springer-Verlag, July 2000.

[38] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J. Jouannaud. In-
troducing OBJ. In J. Goguen, editor, Applications of Algebraic Specification
using OBJ. Cambridge, 1993.

[39] Programming Systems Group. SICStus Prolog User’s Manual, release 3#0
edition, 1995.

[40] F. Henderson, T. Conway, Z. Somogyi, and D. Jeffery. The Mer-
cury language reference manual. Technical Report 96/10, Department of
Computer Science, the University of Melbourne, 1996. Available from
http://www.cs.mu.oz.au/mercury.

[41] F. Henderson, Z. Somogyi, and T. Conway. Determinism analysis in the
Mercury compiler. In Proceedings of the Australian Computer Science Con-
ference, pages 337–346, Melbourne, Australia, 1996.

[42] P. Van Hentenryck. The OPL Optimization Programming Language. The
MIT Press, San Francisco, CA, 1999.

[43] B. Herbig. Eine homogene Implementierungsebene für einen hybriden Wis-
sensrepräsentationsformalismum (in German). Master’s thesis, University of
Kaiserslautern, Germany, April 1993.

[44] C. Holzbaur. Metastructures vs. attributed variables in the context of exten-
sible unification. In Proceedings of the International Symposium on Program-
ming Language Implementation and Logic Programming, LNCS 631, pages
260–268. Springer-Verlag, 1992.

[45] C. Holzbaur, M. Garcia de la Banda, P. Stuckey, and G. Duck. Optimizing
Compilation of Constraint Handling Rules in HAL. Special Issue of Theory
and Practice of Logic Programming on Constraint Handling Rules, 2005. To
appear.

BIBLIOGRAPHY 223

[46] C. Holzbaur and T. Frühwirth. Compiling constraint handling rules into
Prolog with attributed variables. In Gopalan Nadathur, editor, Proceedings
of the International Conference on Principles and Practice of Declarative
Programming, LNCS 1702, pages 117–133. Springer-Verlag, 1999.

[47] C. Holzbaur and T. Frühwirth. A Prolog constraint handling rules compiler
and runtime system. Journal of Applied Artificial Intelligence, 14(4), 2000.

[48] C. Holzbaur, P. Stuckey, M. Garcia de la Banda, and D. Jeffery. Optimizing
compilation of constraint handling rules. In P. Codognet, editor, Logic Pro-
gramming: Proceedings of the 17th International Conference, LNCS 2237,
pages 74–89. Springer-Verlag, 2001.

[49] A. Horn. On sentences which are true of direct unions of algebras. Journal
of Symbolic Logic, 16(1):14–21, 1951.

[50] ISO. Standard for the programming language Prolog. Standard Number
ISO/IEC 12311-1:1995, 1995.

[51] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proc. Fourteenth
ACM Symp. Principles of Programming Languages, pages 111–119. ACM
Press, 1987.

[52] J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal
of Logic Programming, 19–20, 1994.

[53] J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) language
and system. ACM Transactions on Programming Languages and Systems,
4(3):339–395, 1992.

[54] Java programming language. http://java.sun.com, 2005.

[55] JACK: Java constraint kit. http://www.pms.informatik.uni-
muenchen.de/software/jack/index.html, 2002.

[56] S. Jones, J. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Burton,
J. Fasel, K. Hammond, R. Hinze, P. Hudak, T. Johnsson, M. Jones,
J. Launchbury, E. Meijer, J. Peterson, A. Reid, C. Runciman, and P. Wadler.
Haskell 98: A Non-strict, Purely Functional Language. Technical report,
February 1999. Available at http://www.haskell.org.

[57] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[58] A. Macdonald, P. Stuckey, and R.Yap. Redundancy of variables in CLP(R).
In Logic Programming: Proceedings of the 1993 International Symposium,
pages 75–93, Vancouver, Canada, October 1993. MIT Press.

224 BIBLIOGRAPHY

[59] M. Maher. Logic Semantics for a Class of Committed-Choice Programs. In
International Conference on Logic Programming, pages 858–876. MIT Press,
1987.

[60] K. Marriott, H. Søndergaard, and N. Jones. Denotational abstract inter-
pretation of logic programs. ACM Transactions on Programming Languages
and Systems, 16(3):607–648, 1994.

[61] K. Marriott and P. Stuckey. Programming with Constraints: an Introduction.
MIT Press, 1998.

[62] E. Mendelson. Introduction to Mathematical Logic. Chapman & Hall, Lon-
don, fourth edition, 1997.

[63] D. Miranker. TREAT:A Better Match Algorithm for AI Production Systems.
In National Conference on Artificial Intelligence, pages 42–47. Morgan Kauf-
mann, August 1987.

[64] M. Newman. On theories with a combinatorial definition of “equivalence”.
Annals of Mathematics, 43(2):223–243, 1942.

[65] R. O’Keefe. The Craft of Prolog. MIT Press, Cambridge, MA, USA, 1990.

[66] D. Overton. Precise and Expressive Mode Systems for Typed Logic Program-
ming Languages. PhD thesis, The University of Melbourne, 2003.

[67] Quintus Prolog Manual. http://www.sics.se/isl/quintus/html/quintus, 2003.

[68] K. Sagonas, T. Swift, D. Warren, J. Freire, and P. Rao. The XSB System Ver-
sion 2.2 Programmer’s Manual. http://www.cs.sunysb.edu/∼sbprolog/xsb-
page.html, 2005.

[69] V. Saraswat. Concurrent Constraint Programming Languages. MIT Press,
1993.

[70] T. Schrijvers. http://www.cs.kuleuven.ac.be/∼dtai/projects/CHR/, 2005.

[71] T. Schrijvers and B. Demoen. The K.U.Leuven CHR system: Im-
plementation and application. In First workshop on constraint han-
dling rules: selected contributions, 2004. Published as techni-
cal report: Ulmer Informatik-Berichte Nr. 2004-01, ISSN 0939-5091,
http://www/informatik.uni-ulm.de/epin/pw/10481.

[72] T. Schrijvers and T. Frühwirth. Implementing and Analysing Union-Find
in CHR. Technical Report CW 389, K.U.Leuven, Department of Computer
Science, July 2004.

BIBLIOGRAPHY 225

[73] T. Schrijvers, P. Stuckey, and G. Duck. Abstract Interpretation for Con-
straint Handling Rules. In Proceedings of the Seventh ACM SIGPLAN Inter-
national Conference on Principles and Practice of Declarative Programming.
ACM Press, 2005. (to appear).

[74] T. Schrijvers and D. Warren. Constraint handling rules and tabled execution.
In B. Demoen and V. Lifschitz, editors, Proceedings of the 20th International
Conference on Logic Programming, LNCS 3132, pages 120–136. Springer-
Verlag, September 2004.

[75] T. Schrijvers, J. Wielemaker, and B. Demoen. Constraint Handling Rules for
SWI-Prolog. In Workshop on (Constraint) Logic Programming, Ulm, 2005.

[76] G. Smolka. Residuation and Guarded Rules for Constraint Logic Program-
ming. In F. Benhamou and A. Colmerauer, editors, Constraint Logic Pro-
gramming: Selected Research, pages 405–420. MIT Press, London, 1993.

[77] Z. Somogyi, F. Henderson, and T. Conway. Mercury: an efficient purely
declarative logic programming language. In Proceedings of the Australian
Computer Science Conference, pages 499–512, Glenelg, Australia, February
1995.

[78] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mer-
cury: an efficient purely declarative logic programming language. Journal of
Logic Programming, 29:17–64, 1996.

[79] L. Sterling and E. Shapiro. The art of Prolog: advanced programming tech-
niques. MIT Press, Cambridge, MA, USA, 1986.

[80] P. Stuckey and M. Sulzmann. A Theory of Overloading. In Proceedings
of the seventh ACM SIGPLAN international conference on Functional pro-
gramming, pages 167–178. ACM Press, 2002.

[81] P. Stuckey, M. Sulzmann, and J. Wazny. The Chameleon System. In First
workshop on constraint handling rules: selected contributions, 2004. Pub-
lished as technical report: Ulmer Informatik-Berichte Nr. 2004-01, ISSN
0939-5091, http://www/informatik.uni-ulm.de/epin/pw/10481.

[82] A. Taylor. PARMA–bridging the performance gap between imperative and
logic programming. Journal of Logic Programming, 29(1–3), 1996.

[83] The GHC Team. The Glorious Glasgow Haskell Compilation System User’s
Guide. http://www.haskell.org/ghc/, 2005.

[84] M. Thielscher. FLUX: A Logic Programming Method for Reasoning Agents.
Theory and Practice of Logic Programming, 2004.

[85] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, 1989.

226 BIBLIOGRAPHY

[86] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In
Proceedings of the Fourteenth ACM Symposium Principles of Programming
Languages, pages 60–76. ACM Press, 1989.

[87] D. Warren. An abstract Prolog instruction set. Technical Report 309, SRI
International, Menlo Park, U.S.A., Oct. 1983.

[88] J. Wielemaker. SWI-Prolog Home Page. http://www.swi-prolog.org/, 2005.

[89] R. Yap. The Design, Programming Methodology, and Implementation of
CLP(R). PhD thesis, Dept. of Computer Science, Monash University, Aus-
tralia, April 1995.

Appendix A

Example Programs

A.1 Bounds Propagation Solver in HAL CHR

The following is the full source code for a bounds propagation solver implemented
in HAL CHR. It provides an internal representation of solver variables (type
fdint and constraint bounds/3), and finite domain constraints eq (=), geq (≥),
neq (6=) and plus (+).

:- module bounds.

:- import int.

:- import chr.

:- typedef fdint -> fdint(int).

%%% Auxiliary constraint for the next free variable identifier.

%%% This is an example of using CHR constraints as global variables.

:- chrc next_id(int).

:- mode next_id(in) is det.

next_id(_) \ next_id(_) <=> true.

%%% Creates a fresh fdint variable with initial bounds -1000..1000.

%%% Also initialises next_id/1 when first called.

:- export chrc init(fdint).

:- mode init(out) is det.

init(X), next_id(I) <=>

X = fdint(I), next_id(I+1), bounds(X,-1000,1000).

init(X) <=> next_id(0), init(X).

%%% Stores the lower (L) and upper (U) bounds for a variable X.

%%% Two bounds/3 constraints are merged into a single constraint

%%% with the tightest bounds.

:- export chrc bounds(fdint,int,int).

:- mode bounds(in,in,in) is semidet.

227

228 APPENDIX A. EXAMPLE PROGRAMS

bounds(X,L,U) ==> U >= L.

bounds(X,L1,U1) \ bounds(X,L2,U2) <=>

L1 >= L2, U2 >= U1 | true.

bounds(X,L1,U1), bounds(X,L2,U2) <=>

bounds(X,max(L1,L2),min(U1,U2)).

%%% X = Y constraint.

:- chrc eq(fdint,fdint).

:- mode eq(in,in) is semidet.

eq(X,Y), bounds(X,LX,UX), bounds(Y,LY,UY) ==>

bounds(Y,LX,UX),bounds(X,LY,UY).

%%% X >= Y constraint.

:- export chrc geq(fdint,fdint).

:- mode geq(in,in) is semidet.

geq(X,Y), bounds(X,LX,UX), bounds(Y,LY,UY) ==>

bounds(Y,LX,UY), bounds(X,LX,UY).

%%% X \= Y constraint. Note that a symmetric copy of the neq

%%% constraint is added by the propagation rule, and the first

%%% rule ensures termination.

:- export chrc neq(fdint,fd_cint).

:- mode neq(in,in) is semidet.

neq(X,Y) \ neq(X,Y) <=> true.

neq(X,Y) ==> neq(Y,X).

neq(X,Y),bounds(X,VX,VX),bounds(Y,VX,UY) ==> bounds(Y,VX+1,UY).

neq(X,Y),bounds(X,VX,VX),bounds(Y,LY,VX) ==> bounds(Y,LY,VX-1).

%%% X + Y = Z constraint.

:- chrc plus(fdint,fdint,fdint).

:- mode plus(in,in,in) is semidet.

plus(X,Y,Z),bounds(X,LX,UX),bounds(Y,LY,UY),bounds(Z,LZ,UZ) ==>

bounds(X,LZ-UY,UZ-LY),bounds(Y,LZ-UX,UZ-LX),

bounds(Z,LX+LY,UX+UY).

A.2 Ray Tracer in HAL CHR

The following is the full source code for a simple ray tracer implemented in HAL
CHR. It supports spheres, planes and lightsources which can be placed anywhere
in 3D space. It also supports shadows formed by objects blocking lightsources.
The scene is read from standard input, for example the input

input sphere(0.0,0.0,0.0,1.0,color(1.0,0.0,0.0)).

input plane(0.0,0.0,1.0,0.0,color(0.0,0.0,1.0)).

input light(0.0,0.0,5.0,color(1.0,1.0,1.0)).

input eye(5.0).

A.2. RAY TRACER IN HAL CHR 229

creates a scene with one red sphere centered at (0, 0, 0) with radius 1, a blue
plane given by (z = 0), and a white light source centered at (0, 0, 5). The
input eye(5.0) sets the eye point (which is always on the z-axis) to (0, 0, 5).
The output is a 512×512 PPM image of the scene rendered from the eyepoint
towards (0, 0, 0). Note that PPM, or “Portable PixMap”, is a very simple image
file format.

:- module ray.

:- import int.

:- import float.

:- import math.

:- import chr.

:- import (io).

:- import term.

:- import term_io.

:- import delay.

:- export typedef color -> color(float,float,float).

:- typedef object ->

(input_eye(float) ;

input_sphere(float,float,float,float,color) ;

input_plane(float,float,float,float,color) ;

input_light(float,float,float,color)).

:- typedef object_id = int.

%%% The main predicate of the program. Reads the scene from stdin,

%%% then outputs the image to stdout.

:- export io pred main.

:- mode main is det.

main :-

io read_scene,

io ppm_header,

io render_pixels(0,0).

%%% Parses the input using the term and term_io standard libraries.

%%% Calls the appropriate CHR constraints based on the input.

:- io pred read_scene.

:- mode read_scene is det.

read_scene :-

io read_term(ReadTerm),

(ReadTerm = eof,

true

; ReadTerm = error(_,_),

io parse_error

; ReadTerm = term(_,Term),

try_term_to_type(Term,Result),

230 APPENDIX A. EXAMPLE PROGRAMS

(Result = ok(Object),

(Object = input_eye(Z),

eye(Z)

; Object = input_sphere(X,Y,Z,R,C),

sphere(X,Y,Z,R,C)

; Object = input_plane(A,B,C,D,Cl),

plane(A,B,C,D,Cl)

; Object = input_light(X,Y,Z,C),

light(X,Y,Z,C)

),

io read_scene

; Result = error(Error),

io parse_error(Error)

)

).

:- io pred parse_error.

:- mode parse_error is det.

parse_error :-

io write_string("error while reading input!\n").

:- io pred parse_error(term_to_type_error(object)).

:- mode parse_error(in) is det.

parse_error(mode_error(_,_)) :-

io write_string("error while reading input! (mode error)\n").

parse_error(type_error(_,_,_,_)) :-

io write_string("error while reading input! (type error)\n").

%%% Prints the standard PPM header (ascii-mode 512x512 255).

:- io pred ppm_header.

:- mode ppm_header is det.

ppm_header :-

io write_string("P3\n"),

io write_string("512 512\n"),

io write_string("255\n").

%%% Iterates through all the pixels of the image and renders them

%%% (by firing a ray for that pixel). Outputs the resulting

%%% color to stdout (as part of the PPM image).

:- io pred render_pixels(int,int).

:- mode render_pixels(in,in) is det.

render_pixels(X,Y) :-

(Y = 512 ->

true

; pixel(X,Y,C),

C = color(R,G,B),

floor_to_int(255.0*R,Ri),

A.2. RAY TRACER IN HAL CHR 231

floor_to_int(255.0*G,Gi),

floor_to_int(255.0*B,Bi),

io write_int(Ri),

io write_string(" "),

io write_int(Gi),

io write_string(" "),

io write_int(Bi),

io write_string(" "),

NX = X + 1,

(NX = 512 ->

io write_string("\n"),

io render_pixels(0,Y+1)

;io render_pixels(NX,Y)

)

).

%%% Auxiliary predicate calculates the intersection points between a

%%% ray and a sphere (if they exist).

:- pred sphere_intersection_calculation(float,float,float,float,float,

float,float,float,float,float,float,float).

:- mode sphere_intersection_calculation(in,in,in,in,in,in,in,in,in,in,

out,out) is semidet.

sphere_intersection_calculation(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,R,U1,U2) :-

A = (X2-X1)*(X2-X1) + (Y2-Y1)*(Y2-Y1) + (Z2-Z1)*(Z2-Z1),

B = 2.0*((X2-X1)*(X1-X3) + (Y2-Y1)*(Y1-Y3) + (Z2-Z1)*(Z1-Z3)),

C = X3*X3 + Y3*Y3 + Z3*Z3 + X1*X1 + Y1*Y1 + Z1*Z1 -

2.0*(X3*X1 + Y3*Y1 + Z3*Z1) - R*R,

D = B*B - 4.0*A*C,

D >= 0.0,

U1 = (-B + sqrt(D))/(2.0*A),

U2 = (-B - sqrt(D))/(2.0*A).

%%% Auxiliary predicate calculates the intersection point between a

%%% ray and a plane (if a single point exists).

:- pred plane_intersection_calculation(float,float,float,float,float,

float,float,float,float,float,float).

:- mode plane_intersection_calculation(in,in,in,in,in,in,in,in,in,in,

out) is semidet.

plane_intersection_calculation(X1,Y1,Z1,X2,Y2,Z2,A,B,C,D,U) :-

UD = A*(X1-X2) + B*(Y1-Y2) + C*(Z1-Z2),

UD \= 0.0,

UN = A*X1 + B*Y1 + C*Z1 + D,

U = UN/UD.

%%% Auxiliary predicate calculates the actual intersection point from

%%% the output (i.e. U) of the previous two predicates.

:- pred intersection_point(float,float,float,float,float,float,float,

232 APPENDIX A. EXAMPLE PROGRAMS

float,float,float).

:- mode intersection_point(in,in,in,in,in,in,in,out,out,out) is det.

intersection_point(X1,Y1,Z1,X2,Y2,Z2,U,PX,PY,PZ) :-

PX = X1 + U*(X2-X1),

PY = Y1 + U*(Y2-Y1),

PZ = Z1 + U*(Z2-Z1).

%%% Auxiliary predicate calculates the distance between two points.

:- pred distance(float,float,float,float,float,float,float).

:- mode distance(in,in,in,in,in,in,out) is det.

distance(X1,Y1,Z1,X2,Y2,Z2,D) :-

DX = X1-X2,

DY = Y1-Y2,

DZ = Z1-Z2,

D = sqrt(DX*DX + DY*DY + DZ*DZ).

%%% Auxiliary predicate converts a ray into a normalised vector.

:- pred normalized_vector(float,float,float,float,float,float,float,

float,float).

:- mode normalized_vector(in,in,in,in,in,in,out,out,out) is det.

normalized_vector(X1,Y1,Z1,X2,Y2,Z2,VX,VY,VZ) :-

distance(X1,Y1,Z1,X2,Y2,Z2,L),

IL = 1.0/L,

VX = IL*(X2-X1),

VY = IL*(Y2-Y1),

VZ = IL*(Z2-Z1).

%%% Auxiliary predicate calculates a plane’s normal.

:- pred normalized_plane_vector(float,float,float,float,float,float,

float).

:- mode normalized_plane_vector(in,in,in,in,out,out,out) is det.

normalized_plane_vector(A,B,C,D,VX,VY,VZ) :-

VX0 = A+D,

VY0 = B+D,

VZ0 = C+D,

L = sqrt(VX0*VX0 + VY0*VY0 + VZ0*VZ0),

IL = 1.0/L,

VX = IL*VX0,

VY = IL*VY0,

VZ = IL*VZ0.

%%% Auxiliary predicate calculates the dot product of two vectors.

:- pred dot_product(float,float,float,float,float,float,float).

:- mode dot_product(in,in,in,in,in,in,out) is det.

dot_product(X1,Y1,Z1,X2,Y2,Z2,D) :-

D = X1*X2 + Y1*Y2 + Z1*Z2.

A.2. RAY TRACER IN HAL CHR 233

%%% Auxiliary predicate tests if a sphere blocks a ray.

:- pred sphere_blocks(float,float).

:- mode sphere_blocks(in,in) is semidet.

sphere_blocks(U1,U2) :-

(U1 > 0.0, U1 < 1.0 ->

true

; U2 > 0.0, U2 < 1.0 ->

true

; fail).

%%% Auxiliary predicate tests if a plane blocks a ray.

:- pred plane_blocks(float).

:- mode plane_blocks(in) is semidet.

plane_blocks(U) :-

U > 0.0,

U < 1.0.

%%% Auxiliary predicate blends two colors.

:- pred blend_colors(float,color,color,color).

:- mode blend_colors(in,in,in,out) is det.

blend_colors(D,C1,C2,C3) :-

C1 = color(R1,G1,B1),

C2 = color(R2,G2,B2),

R3 = D*R1*R2,

G3 = D*G1*G2,

B3 = D*B1*B2,

C3 = color(R3,G3,B3).

%%% Constraint representing a sphere.

:- chrc sphere(float,float,float,float,color).

:- mode sphere(in,in,in,in,in) is det.

%%% Constraint representing a sphere & allocated an object_id.

:- chrc sphere(object_id,float,float,float,float,color).

:- mode sphere(in,in,in,in,in,in) is det.

%%% Constraint representing a plane.

:- chrc plane(float,float,float,float,color).

:- mode plane(in,in,in,in,in) is det.

%%% Constraint representing a sphere & allocated an object_id.

:- chrc plane(object_id,float,float,float,float,color).

:- mode plane(in,in,in,in,in,in) is det.

%%% Auxiliary constraint to store the next free object_id.

:- chrc object_id(object_id).

:- mode object_id(in) is det.

234 APPENDIX A. EXAMPLE PROGRAMS

%%% The following rules allocate object_id for spheres and planes.

object_id(_) \ object_id(_) <=>

true.

object_id(I), sphere(X,Y,Z,R,C) <=>

sphere(I,X,Y,Z,R,C),

object_id(I+1).

sphere(X,Y,Z,R,C) <=>

sphere(0,X,Y,Z,R,C),

object_id(1).

object_id(I), plane(A,B,C,D,Cl) <=>

plane(I,A,B,C,D,Cl),

object_id(I+1).

plane(A,B,C,D,Cl) <=>

plane(0,A,B,C,D,Cl),

object_id(1).

%%% Enforce functional dependencies, i.e. the object_id is

%%% unique to each constraint. These rules are mainly for the

%%% compiler’s benefit.

sphere(I,_,_,_,_,_) \ sphere(I,_,_,_,_,_) <=>

true.

plane(I,_,_,_,_,_) \ plane(I,_,_,_,_,_) <=>

true.

%%% Constraint to store the eyepoint.

:- chrc eye(float).

:- mode eye(in) is det.

%%% There is only one eyepoint.

eye(_) \ eye(_) <=>

true.

%%% A call to pixel(X,Y,C) calculates the color C for pixel

%%% (X,Y).

:- chrc pixel(int,int,color).

:- mode pixel(in,in,out) is det.

%%% Constraint representing a lightsource.

:- chrc light(float,float,float,color).

:- mode light(in,in,in,in) is det.

%%% Constraint representing the ray fired from the eyepoint

%%% to some point in space.

:- chrc ray(float,float,float,float,float,float).

:- mode ray(in,in,in,in,in,in) is det.

A.2. RAY TRACER IN HAL CHR 235

%%% Constraint representinf a ray fired from a lightsource

%%% to an intersection point. This is used to calculate

%%% shdows.

:- chrc light_ray(float,float,float,color).

:- mode light_ray(in,in,in,in) is det.

%%% Create the ray.

pixel(X,Y,_), eye(Z) ==>

to_float(X,Xf),

to_float(Y,Yf),

ray(0.0,0.0,Z,0.5 - Xf/512.0,0.5 - Yf/512.0,Z - 1.0).

%%% Create the light rays.

pixel(X,Y,_), light(LX,LY,LZ,C) ==>

light_ray(LX,LY,LZ,C).

%%% Get the color and clean up.

pixel(_,_,C) <=>

clean_up,

get_color(C).

%%% Represents an intersection from the eye ray and an object.

%%% Note that we are only interested in the "closest"

%%% intersection.

:- chrc intersection(float,float,float,float,object_id,color).

:- mode intersection(in,in,in,in,in,in) is det.

intersection(_,_,_,_,_,_) \ intersection(_,_,_,_,_,_) <=>

true.

intersection(_,_,_,L1,_,_) \ intersection(_,_,_,L2,_,_) <=>

L1 =< L2 |

true.

%%% The following rules calculate what the eye ray intersects.

ray(X1,Y1,Z1,X2,Y2,Z2), sphere(I,X3,Y3,Z3,R,C) ==>

(sphere_intersection_calculation(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,

R,U1,U2) ->

(U1 > 0.0 ->

intersection_point(X1,Y1,Z1,X2,Y2,Z2,U1,PX1,PY1,PZ1),

distance(X1,Y1,Z1,PX1,PY1,PZ1,L1),

intersection(PX1,PY1,PZ1,L1,I,C)

; true),

(U2 > 0.0 ->

intersection_point(X1,Y1,Z1,X2,Y2,Z2,U2,PX2,PY2,PZ2),

distance(X1,Y1,Z1,PX2,PY2,PZ2,L2),

intersection(PX2,PY2,PZ2,L2,I,C)

; true

)

236 APPENDIX A. EXAMPLE PROGRAMS

; true

).

ray(X1,Y1,Z1,X2,Y2,Z2), plane(I,A,B,C,D,Cl) ==>

(plane_intersection_calculation(X1,Y1,Z1,X2,Y2,Z2,A,B,C,D,U),

U > 0.0 ->

intersection_point(X1,Y1,Z1,X2,Y2,Z2,U,PX,PY,PZ),

distance(X1,Y1,Z1,PX,PY,PZ,L),

intersection(PX,PY,PZ,L,I,Cl)

; true

).

ray(_,_,_,_,_,_) <=>

true.

%%% The current color being accumulated for the current pixel.

:- chrc color(color).

:- mode color(in) is det.

%%% Adds a color to the current pixel.

:- chrc add_color(color).

:- mode add_color(in) is det.

%%% Gets the value of the color for the current pixel.

:- chrc get_color(color).

:- mode get_color(out) is det.

%%% Only one current color.

color(_) \ color(_) <=>

true.

add_color(C1), color(C2) <=>

C1 = color(R1,G1,B1),

C2 = color(R2,G2,B2),

R3 = R2 + R1,

G3 = G2 + G1,

B3 = B2 + B1,

C3 = color(R3,G3,B3),

color(C3).

add_color(C) <=>

color(C).

color(C1), get_color(C2) <=>

C1 = color(R1,G1,B1),

(R1 > 1.0 ->

R2 = 1.0

; R2 = R1),

(G1 > 1.0 ->

G2 = 1.0

A.2. RAY TRACER IN HAL CHR 237

; G2 = G1),

(B1 > 1.0 ->

B2 = 1.0

; B2 = B1),

C2 = color(R2,G2,B2).

get_color(C) <=>

C = color(0.0,0.0,0.0).

%%% Constraint representing a light ray between two points in space.

:- chrc light_ray(float,float,float,float,float,float,color,object_id).

:- mode light_ray(in,in,in,in,in,in,in,in) is det.

%%% Create light rays from light sources and intersection points.

intersection(X,Y,Z,_,I,_) \ light_ray(LX,LY,LZ,C) <=>

light_ray(LX,LY,LZ,X,Y,Z,C,I).

light_ray(_,_,_,_) <=>

true.

%%% Calculate shadows, i.e. remove light rays that are blocked by

%%% an object.

sphere(I,X3,Y3,Z3,R,_) \ light_ray(X1,Y1,Z1,X2,Y2,Z2,_,J) <=>

I \= J,

sphere_intersection_calculation(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,

Z3,R,U1,U2),

sphere_blocks(U1,U2) |

true.

plane(I,A,B,C,D,_) \ light_ray(X1,Y1,Z1,X2,Y2,Z2,_,J) <=>

I \= J,

plane_intersection_calculation(X1,Y1,Z1,X2,Y2,Z2,A,B,C,D,U),

plane_blocks(U) |

true.

%%% Calculate the effect of the surviving light rays.

sphere(I,X3,Y3,Z3,_,C1) \ light_ray(X1,Y1,Z1,X2,Y2,Z2,C2,I) <=>

normalized_vector(X3,Y3,Z3,X2,Y2,Z2,VX1,VY1,VZ1),

normalized_vector(X2,Y2,Z2,X1,Y1,Z1,VX2,VY2,VZ2),

dot_product(VX1,VY1,VZ1,VX2,VY2,VZ2,D),

(D =< 0.0 ->

true

; blend_colors(D,C1,C2,C3),

add_color(C3)

).

plane(I,A,B,C,D,C1) \ light_ray(X1,Y1,Z1,X2,Y2,Z2,C2,I) <=>

normalized_plane_vector(A,B,C,D,VX1,VY1,VZ1),

normalized_vector(X2,Y2,Z2,X1,Y1,Z1,VX2,VY2,VZ2),

dot_product(VX1,VY1,VZ1,VX2,VY2,VZ2,D0),

abs(D0,D1),

238 APPENDIX A. EXAMPLE PROGRAMS

blend_colors(D1,C1,C2,C3),

add_color(C3).

light_ray(_,_,_,_,_,_,_,_) <=>

true.

%%% Auxiliary constraint that resets the store for the next pixel.

:- chrc clean_up.

:- mode clean_up is det.

clean_up \ intersection(_,_,_,_,_,_) <=>

true.

clean_up <=>

true.

