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8.1 Introduction

Registration is the determination of a geometrical transformation that aligns
points in one view of an object with corresponding points in another view of that
object or another object. We use the term “view” generically to include a three-
dimensional image, a two-dimensional image, or the physical arrangement of an
object in space. Three-dimensional images are acquired by tomographic modali-
ties, such as CT, MR, SPECT, and PET, in which a contiguous set of two-dimensional
slices provides a three-dimensional array of image intensity values. Typical two-
dimensional images may be X-ray projections captured on film or as a digital ra-
diograph or projections of visible light captured as a photograph or a video frame.
In all cases we are concerned primarily with digital images stored as discrete ar-
rays of intensity values. In medical applications, which are our focus, the object in
each view will be some anatomical region of the body. (See Volume I of this hand-
book for a discussion of medical imaging modalities.) The two views are typically
acquired from the same patient, in which case the problem is that of intrapatient
registration, but interpatient registration has application as well.

8.1.1 Operational goal of registration

From an operational view the inputs of registration are the two views to be
registered; the output is a geometrical transformation, which is merely a mathe-
matical mapping from points in one view to points in the second. To the extent
that corresponding points are mapped together, the registration is successful. The
determination of the correspondence is a problem specific to the domain of objects
being imaged, which is in our case the human anatomy. To make the registration
beneficial in medical diagnosis or treatment the mapping that it produces must be
applied in some clinically meaningful way by a system which will typically include
registration as a subsystem. The larger system may combine the two registered im-
ages by producing a reoriented version of one view that can be “fused” with the
other. This fusing of two views into one may be accomplished by simply summing
intensity values in two images, by imposing outlines from one view over the gray
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levels of the other, or by encoding one image in hue and the other in brightness in
a color image. Regardless of the method employed, image fusion should be distin-
guished from image registration, which is a necessary first step before fusion can
be successful.

The larger system may alternatively use the registration simply to provide a
pair of movable cursors on two electronically displayed views linked via the reg-
istering transformation so that the cursors are constrained to visit corresponding
points. This latter method generalizes easily to the case in which one view is the
physical patient and one of the movable “cursors” is a physical pointer held by the
surgeon. The registration system may be part of a robotically controlled treatment
system whose guidance is based on registration between an image and the physical
anatomy. Drills, for example, may be driven robotically through bone by follow-
ing a path determined in CT and registered to the physical bone. Gamma rays
produced by a linear accelerator or by radioactive isotopes may be aimed at tissue
that is visible in MR but hidden from view during treatment with the aiming be-
ing accomplished via automatic calculations based on a registering transformation.
Registration also serves as a first step in multimodal segmentation algorithms that
incorporate information from two or more images in determining tissue types (See
Chapter 2). Fusion, linked cursors, robotic controls, and multimodal segmentation
algorithms exploit knowledge of a geometrical relationship between two registered
views in order to assist in diagnosis or treatment. Registration is merely the deter-
mination of that relationship. The goal of registration is thus simply to produce as
output a geometrical transformation that aligns corresponding points and can serve
as input to a system further along in the chain from image acquisition to patient
benefit.

8.1.2 Classification of registration methods

There are many image registration methods and they may be classified in many
ways [1–3]. We use here the eight-dimensional classification scheme proposed by
Maintz: image dimensionality, registration basis, nature of transformation, domain
of transformation, degree of interaction, optimization procedure employed, modal-
ities involved, subject, and object [1]. The registration “basis” is the aspect of the
two views used to effect the registration. For example, the registration might be
based on a given set of point pairs known or the basis might be a set of corre-
sponding surface pairs. Other loci might be used as well, including lines or planes
(a special case of surfaces). In some cases these correspondences are derived from
features of objects that have been attached to the anatomy expressly to facilitate reg-
istration. Such objects include, for example, the stereotactic frame and point-like
markers, each of which have components designed to be clearly visible in specific
imaging modalities. Registration methods that are based on such attachments are
termed “prospective”, or “extrinsic”, methods and are in contrast with the so-called
“retrospective”, or “intrinsic”, methods, which rely on anatomic features only.
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Alternatively, there may be no known correspondences as input. In that case in-
tensity patterns in the two views will be matched, a basis that we call “Intensities”.
The “nature” and “domain” of transformation refer to the mathematical form of
the geometrical mapping involved. We take up these concepts in the next section.
“Subject” refers to patient involvement and comprises three subcategories: intrap-
atient, interpatient, and atlas, the latter category comprising registrations between
patients and atlases, which are themselves typically derived from patient images
(e.g., [4]). “Object” refers to the particular region of anatomy to be registered (e.g.,
head, liver, vertebra). To build a registration hierarchy based on these these eight
categorizations, one categorization must be placed at the top level, which in the
organization of this chapter is the registration basis. Thus, the three categories of
registration basis mentioned above are examined in three major sections below:
Section 8.3, Point-based methods, Section 8.4, Surface-based methods, and Sec-
tion 8.5, Intensity-based methods.

In the next section we examine some of the forms of geometrical mapping that
are used in registration. We examine in detail the rigid transformations and other
transformations that preserve the straightness of lines. The remaining transforma-
tions, the “curved” transformations are used for interpatient registration, for the
registration of anatomy to an atlas, and for intrapatient registration of tissue has
been deformed between the acquisition of the two views. These situations are ex-
amined in Chapters 3 and 17 are taken up in Chapter 3.

8.2 Geometrical transformations

Each view that is involved in a registration will be referred to a coordinate
system, which defines a space for that view. Our definition of registration is based
on geometrical transformations, which are mappings of points from the space X of
one view to a space Y of a second view. The transformation, T , applied to a point
in X represented by the column vector x produces a transformed point x0,

x0 = T (x): (8.1)

If the point y corresponds to x, then a successful registration will make x0 equal,
or approximately equal, to y. Any nonzero displacement T (x) � y is a registra-
tion error. The set of all possible T may be partitioned into rigid and nonrigid
transformations with the latter transformations further divided into many subsets.
This top-level division makes sense in general because of the ubiquity of rigid, or
approximately rigid, objects in the world. It makes sense for medical applications
in particular because of the rigid behavior of many parts of the body, notably the
bones and the contents of the head (not during surgery). It is also a simple class
with only a six parameters completely specifying a rigid transformation in three-
dimensions. (We note here that, while one and two-dimensional motion is possible,
such limited motion is sufficiently rare that we will ignore it in this chapter.)
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8.2.1 Rigid transformations

Rigid transformations, or rigid mappings, are defined as geometrical trans-
formations that preserve all distances. These transformations also preserve the
straightness of lines (and the planarity of surfaces) and all angles between straight
lines. Registration problems that are limited to rigid transformations are called rigid
registration problems. While rigid transformations are simple to specify, there are
several methods of doing so. In each method there are two components to the spec-
ification, a translation and a rotation. The translation is a three-dimensional vector
t that may be specified by giving its three coordinates tx; ty; tz relative to a set of
x; y; z Cartesian axes or by giving its length and two angles to specify its direction
in polar spherical coordinates. There are many ways of specifying the rotational
component, among them Euler angles, Cayley-Klein parameters, quaternions, axis
and angle, and orthogonal matrices. [5–9] In our discussions we will utilize orthog-
onal matrices. With this approach, if T is rigid, then

x0 = Rx+ t; (8.2)

where R is a three-by-three orthogonal matrix, meaning that RtR = RRt = I

(the identity). Thus R�1 = Rt. This class of matrices includes both the proper
rotations, which describe physical transformations of rigid objects, and improper
rotations, which do not. These latter transformations both rotate and reflect rigid
objects, so that, for example, a right-handed glove becomes a left-handed one. Im-
proper rotations can be eliminated by requiring det(R) = +1.

Proper rotations can be parameterized in terms of three angles of rotation,
�x; �y; �z , about the respective Cartesian axes, the so-called “Euler angles”. The
rotation angle about a given axis is with rare exception considered positive if the
rotation about the axis appears clockwise as viewed from the origin while looking
in the positive direction along the axis. The rotation of an object (as opposed to the
coordinate system to which it is referred) about the x, y, and z axes, in that order
leads to

R =

2
4 cos �z sin �z 0

� sin �z cos �z 0

0 0 1

3
5
2
4 cos �y 0 � sin �y

0 1 0

sin �y 0 cos �y

3
5
2
4 1 0 0

0 cos �x sin �x

0 � sin �x cos �x

3
5

=

2
4 cos �y cos �z cos �x sin �z+sin �x sin �y cos �z sin �x sin �z�cos �x sin �y cos �z

� cos �y sin �z cos �x cos �z�sin �x sin �y sin �z sin �x cos �z+cos �x sin �y sin �z

sin �y � sin �x cos �y cos �x cos �y

3
5

where the three matrices in the first line are the rotations Rz(�z), Ry(�y), and
Rx(�x) about z, y, and x, respectively (in reverse order because they are applied
from right to left). Other angular parameterizations are sometimes used, including
all permutations of the order of Rx, Ry , and Rz . General rotations can also be
produced by three rotations about only two of the Cartesian axes provided that
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successive rotations are about distinct axes. The most common of these is R =

Rz(�z2)Rx(�x)Rz(�z1).
The axis-and-angle specification provides a parameterization of R comprising

a unit vector representing an axis of rotation !̂ and a single angle of rotation �

about that axis. The rotational axis !̂ is the (lone) real eigenvector of R. The
rotational angle can be calculated from the relation cos � = (trace R� 1)=2. With
this parameterization,

R =

2
4 !x

2V + C !x!yV � !zS !x!zV + !yS

!x!yV + !zS !y
2V + C !y!zV � !xS

!x!zV � !yS !y!zV + !xS !z
2V + C

3
5 ; (8.3)

where the !x; !y; !z are the components of !̂, V = 1 � cos �; C = cos �; and
S = sin � [9].

The quaternion specification provides a parameterization that is closely related
to the axis and angle. The quaternion is a vector q consisting of four elements,
q0; qx; qy; qz , and obeying special rules for multiplication [7, 8]. A quaternion of
unit length can be used to represent a rotation, where the elements are equal re-
spectively to cos(�=2), !x sin(�=2), !y sin(�=2), and !z sin(�=2) [7, 8]. The pa-
rameterization in Eq. 8.3 can be converted to a quaternion parameterization with
the identities, 2 sin(�=2) cos(�=2) = sin � and 2 sin2(�=2) = 1� cos �,

R =

2
4 q20 + q2x � q2y � q2z 2qxqy � 2q0qz 2qxqz + 2q0qy

2qxqy + 2q0qz q20 � q2x + q2y � q2z 2qyqz � 2q0qx
2qxqz � 2q0qy 2qyqz + 2q0qx q20 � q2x � q2y + q2z

3
5 : (8.4)

8.2.2 Nonrigid transformations

Nonrigid transformations are important not only for applications to nonrigid
anatomy, but also for interpatient registration of rigid anatomy and intrapatient reg-
istration of rigid anatomy when there are nonrigid distortions in the image acqui-
sition procedure. In all cases it is preferable to choose transformations that have
physical meaning, but in some cases the choice is made on the basis of convenient
mathematical properties.

8.2.2.1 Scaling transformations

The simplest nonrigid transformations are rigid with scaling,

x0 = RSx+ t; (8.5)

and

x0 = SRx+ t (8.6)
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where S = diag(sx; sy; sz) is a diagonal matrix whose elements represent scale
factors along the three coordinate axes. Because RS is not in general equal to SR,
these equations represent two different classes of transformations. Such transfor-
mations may be needed to compensate for calibration errors in image acquisition
systems. They are appropriate, for example, when gradient strengths are in error in
MR. The diagonal elements of S then become the respective correction factors for
the x, y, and z gradients (see Section 8.2.3 below). Isotropic scaling,

x0 = sRx+ t; (8.7)

where s is a scalar, preserves the straightness of lines and the angles between them.
Both Eq. 8.5 and Eq. 8.6 reduce to Eq. 8.7 when sx = sy = sz = s. The coupling
of scaling with the rigid transformation is effective when registrations must account
for erroneous or unknown scales in the image acquisition process.

8.2.2.2 Affine transformations

Nonisotropic scaling is a special case of the more general affine transformation,

x0 = Ax+ t; (8.8)

in which there is no restriction on the elements aij of the matrix A. The affine
transformation preserves the straightness of lines, and hence the planarity of sur-
faces, and it preserves parallelism, but it allows nonzero angles between lines to
change. It is an appropriate transformation class when the image may have been
skewed during acquisition, as for example, when the CT gantry angle is incorrectly
recorded.

The affine transformations and their associated special cases are sometimes
represented by means of homogeneous coordinates. In this representation both A

and t are folded into one 4-by-4-matrix M whose elements are defined as follows:
mij = aij; i = 1; 2; 3; j = 1; 2; 3, mi4 = ti; i = 1; 2; 3, m4j = 0; j = 1; 2; 3,
and m44 = 1. To effect the transformation augmented vectors u and u are used for
which ui = xi and x0

i
= u0

i
for i = 1; 2; 3 and u4 = u04 = 1.

u =

0
BB@

u01
u02
u03
1

1
CCA = Mu =

0
BB@

a11 a12 a13 t1
a21 a22 a23 t2
a31 a32 a33 t3
0 0 0 1

1
CCA
0
BB@

u1
u2
u3
1

1
CCA : (8.9)

While the use of homogeneous coordinates does not produce any extra power or
generality for rigid transformations, it does simplify notation, especially when rigid
transformations must be combined with projective transformations.

8.2.2.3 Projective transformations

So far the nonrigid transformations that we have considered, all of which are
affine transformations, preserve parallelism. The more general nonrigid transfor-
mations include the projective transformations, which preserve the straightness of
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lines and planarity of surfaces, and curved transformations, which do not. The
projective transformations, which have the form,

x0 = (Ax+ t)=(p � x+ �); (8.10)

can be written simply in homogeneous coordinates,

u =

0
BB@

u01
u02
u03
u04

1
CCA = Mu =

0
BB@

a11 a12 a13 t1
a21 a22 a23 t2
a31 a32 a33 t3
a41 a42 a43 �

1
CCA
0
BB@

u1
u2
u3
1

1
CCA : (8.11)

where, as before, ui = xi for i = 1; 2; 3 (and u4 = 1), but u04 is not necessarily
equal to 1, and x0

i
= u0

i
=u04 for i = 1; 2; 3. The linear form of Eq. 8.11 can provide

considerable simplification for the projective transformations and the perspective
projections. This latter class of transformations relate three-dimensional anatomy
to two-dimensional planar images acquired by means of a camera and are taken up
in the next section.

8.2.2.4 Perspective transformations

Images obtained by X-ray projection, endoscopy, laparoscopy, microscopy, and
direct video acquisition are all two-dimensional views of three-dimensional objects
rendered by means of projecting light rays or X-rays from a three-dimensional
scene onto a two-dimensional plane. The geometrical transformations, which we
call perspective projections, produced by each of these modalities is equivalent, to
that of photography.

These perspective projections are a subset of the projective transformations of
Eq. 8.10 and 8.11. The projective transformations, unlike the perspective projec-
tions, do not in general transform x to a plane. Furthermore, the affine portion of the
transformation is typically assumed to be the identity for perspective projections.
Specializing now to perspective projections, we let f = 1=jpj in Eq. 8.10, and let
p̂ be a unit vector in the direction of the projection axis, p. These substitutions lead
to

x0 = fx=(x � p̂+ �f); (8.12)

If � is nonzero, then Eq. 8.12 does not in fact transform x to a plane and hence
is not a perspective projection. Perspective projection is assured by zeroing the
component of x0 in the direction of p:

x0 �! (x0 � p̂)p̂: (8.13)

Eq. 8.12 and substitution 8.13 give the general form of the transformation pro-
duced when a photograph of a three-dimensional scene is acquired with a “pinhole
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image
inverted

plane
image

equivalent

pinholescreen

p

"image"
equivalent

x’

x

camera

film

f f

Figure 8.1: A schematic of a pinhole camera. A single point x in the scene is shown
being imaged. The projection axis p points to the right. The image is produced
within the camera on a film screen that is perpendicular to p and located a distance
f from the pinhole. Analysis is simplified by treating the transformation as if an
equivalent, but upright, image were produced instead on a plane placed outside the
camera at the same orientation and same distance from the pinhole. The point x is
transformed to x0 on this plane.

camera”, which is a camera in which a small hole substitutes for the lens system.
Fig. 8.1 shows a schematic camera. A ray from a point x in the scene is projected
through the pinhole onto a film screen, which is perpendicular to the axis of pro-
jection pand located at a distance f from the pinhole. Fortunately, all the systems
mentioned above can be approximated by the pinhole camera system by identifying
the unique point relative to the lens system through which light rays travel unde-
flected, or the point from which the X-rays emanate. That point, also known as
the “center of perspectivity” [10] plays the role of the pinhole. Because the film
image is inverted, it is convenient to treat instead an equivalent upright “image” lo-
cated in front of the camera, which is also perpendicular to p and located the same
distance f from the pinhole, as shown in the figure. The transformed point, x0, of
Eq. 8.12 lies in that plane. Fig. 8.2 shows the relationship between the parameters
in Eq. 8.12 and the imaging system for lens systems (a) and for X-ray systems (b).
The geometric difference is that x � p̂+ �f < f for X-ray systems. The parameter
f is called the focal length, or, alternatively, the “camera constant” or “principal
distance”. The name “focal length” is meant to imply that the camera’s lens system
is adjusted so that light emanating from any point on the anatomy will be focused
to a single point on a screen located at that distance from the effective pinhole. The
focusing is only approximate and varies in quality with the distance of the anatomy
from the lens. The value of � in Eq. 8.12 is determined by the placement of the
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x . p̂

fα
p

x

pinhole

image plane

x’

O

f

(a) Pinhole Camera System. x � p̂+ �f > f .

x . p̂

fα
p

pinhole

image plane

x’

O

f

x

(b) X-ray Projection. x � p̂+ �f < f .

Figure 8.2: Perspective projection for the pinhole camera system and for X-ray
projection. The point x is projected to x0. The origin of the coordinate system is
located at O. The projection axis p points to the right. Typical values for � are 0,
or 1.
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origin. Typically the origin is placed at the pinhole, for which � = 0, or at the
intersection of p and the image plane, for which � = 1.

8.2.2.5 Curved transformations

Curved transformations are those that do not preserve the straightness of lines.
In curved transformations the simplest functional form for T is polynomial in the
components of x [11, 12],

x0 =

IJKX
ijk

cijkx
iyjzk; (8.14)

where c is the three-element vector of coefficients for the i; j; k term in the polyno-
mial expression for the three components x; y; z of x. These transformations are
rarely used with values of I ,J , and K greater than 2 because of spurious oscilla-
tions associated with high-order polynomials and because of unwanted long-range
global influence of local displacements.

These two problems are reduced by employing piecewise polynomials. These
transformations are defined by first partitioning the space into a set of three-dimensional
rectangles by means of three sets of cut planes, each perpendicular to one of the
Cartesian axes. Then within each rectangle i; j; k of dimensions, ui; vj ; wk, T =

P
(x)

ijk
(x)P

(y)

ijk
(y)P

(z)

ijk
(z), where each P () is a univariate polynomial of degree m

defined only over that rectangle. (Polynomial forms more complex than products
of univariate polynomials are available as well [13].) By judicious choice of the
polynomial coefficients, it is possible to insure that the polynomials join smoothly
across the rectangle interfaces in the sense that T is m � 1 times continuously
differentiable. Such transformations are called splines, and the corners xijk of the
rectangles are called “knots”. Their properties have been carefully studied in ap-
proximation theory [14]. The most common choice for m is 3, for which T and
its first and second derivatives are continuous. Splines of degree m are often ex-
pressed in terms of a convenient basis set of polynomials of the same degree, called
B-splines (See Chapter 6 for their definition). Noting that the coordinates of every
x must be equal to ui � (l + �); vj � (m + �); wk � (n + 
), for some unique
set l;m; n; �; �; 
 where l;m; n are integers and 0 � �; �; 
 � 1, the B-spline
expansion can be expressed as follows:

x0(l;m; n; �; �; 
) =
X
ijk

Bi�l(�)Bj�m(�)Bk�n(
)cijk; (8.15)

where each Bq(t) is a segment of the cubic B-spline with Bq(t) = 0 unless �1 �

q � 2. Simple algorithms are available for determining the form of the Bq(t) (see
for example [13]), but for the special case in which the knot spacing along a given
direction is uniform, ui = u; vj = v; wk = w, they have an especially simple
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form [13, 15, 16],

B�1(t) = ( �t3 + 3t2 � 3t+ 1)=6; B0(t) = (3t3 � 6t2 + 4)=6;

B1(t) = (�3t3 + 3t2 + 3t+ 1)=6; B2(t) = t3=6:
(8.16)

A popular transformation for two-dimensional problems is the thin-plate spline,
which was originally called the “surface spline”. This form was first proposed
by Harder in 1972 [17] for designing aircraft wings. (Their mathematical prop-
erties are explored by Duchon [18], who coined the term “thin-plate spline”, and
Meinguet [19].) The thin-plate splines were first employed to describe deforma-
tions within the two-dimensional plane by Goshtasby in 1988 [20].1 Goshtasby’s
formulation, which is common in the image processing processing literature, is as
follows:

x0 = Ax+

NX
i

cir
2
i ln r

2
i ; (8.17)

where ri = jx � xij and xi is a control point. Unlike the rectangular grid of
knots required for the cubic-splines, the N vectors xi can be located anywhere.
The freedom to place control points arbitrarily is of considerable advantage in the
registration of medical images.

Other curved transformations have been employed including solutions to elab-
orate partial differential equations describing the elastic and fluid properties at-
tributed to the anatomy being registered [22–24]. General nonrigid transformations
are necessary for interpatient registration and for the closely related problem of
mapping an atlas to a patient. Such transformations are taken up in Chapter 17.
They are also necessary for intrapatient registration when the anatomy is nonrigid,
and especially when surgical resection has changed its shape. In these cases the ma-
jor problem in registration is the determination of a deformable model that reflects
the physical properties of the anatomy. These models are examined in Chapter 3.

8.2.3 Rectification

Nonrigid transformations may be necessary in order to rectify images that are
distorted in the acquisition process. Images are distorted when the transformation
from physical object to image fails to have the ideal form assumed for the acqui-
sition process. We define rectification as the process of transforming an acquired
image into a “rectified” image, for which the resulting overall transformation from
physical object to rectified image has the ideal form. It is possible to perform regis-
tration in the face of such distortions, but if the distortion can be determined, a more
efficient approach is to perform rectification to remove the distortion as a separate
preprocessing step before registration. Efficiency is achieved by this division of the

1For suggestions as to their use in comparing two-dimensional shapes see [21].
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problem into two steps because additional information from scanner calibrations,
phantom images, or other corrective measures can be used to reduce the size of
the space of transformations to be searched during registration. While for three-
dimensional images the ideal transformation is normally rigid as given by Eq. 8.2,
in some cases, as for example when registration is to be effected between serial im-
ages acquired on the same system within a short time, Eq. 8.7 may be acceptable.
In such cases the scale s can be expected to remain constant between acquisitions
and can thus be set equal to one for the purposes of registration. The simplest
three-dimensional rectification problem is the correction of an isotropic scaling. In
this case rectification can be effected by the transformation x0 = sx, which is a
special case of Eq.8.7. A slightly more complex example is provided by gantry tilt
in CT imaging (See Chapter on volume tomographic imaging in Volume I of this
handbook). The resultant skew produced in a volume CT image can be removed by
transformations of the form x0 = Ax, which is a special case of Eq. 8.8.

For projection by a camera system the ideal transformation is Eq. 8.30, but in
many cases the projection image captured by a camera system is distorted in the
imaging plane. Such distortions occur not only for light focussed by lens systems
but for X-ray images produced in conjunction with image intensifiers (See Chapter
on X-ray imaging in Volume I of this handbook). That distortion may be rectified
by means of a two-dimensional transformation within the image plane before regis-
tration is attempted. The required transformation is typically a member of the class
of curved transformations. The rectification step in that case may employ any of the
curved transformations given by Eqs. 8.14, 8.15, or 8.17. The transformation may
be determined by acquiring an image of a phantom consisting of a regularly spaced
grid of fiducial points arranged in a plane perpendicular to the projection axis. That
image is then compared with expected image based on a model of the phantom
and the ideal transformation for the camera. The difference between the pattern of
imaged points and the pattern of model points is used in a point-based registration
to determine the transformation that will restore the regular pattern to the image
(See Section 8.3.4). An important special case is the rotationally symmetric “pin
cushion” distortion exhibited near the image periphery by wide-angle lenses, such
as those employed for endoscopy. In this case the two-dimensional transformation
reduces to a one-dimensional transformation in the radial distance from a central
point, and the distortion correction reduces to a simple univariate interpolation [25].
Once the transformation is determined it can be employed to rectify any subsequent
anatomical image acquired with the same camera setup. Thus, by means of the sep-
arate rectification step, the task of distortion correction is separated from the task
of registering specific anatomical image pairs.

MR imaging is subject to geometric distortions whose rectification require
curved transformations. These distortions arise from nonuniform gradient fields
due to imperfections in the scanner and spatial variation in the static magnetic field
that may be due either to imperfections in the scanner or to induced magnetiza-
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tion of the anatomy (see Chapter on MR in Volume I of this handbook). Rectify-
ing transformations can be developed for scanner imperfections by imaging phan-
toms with regularly spaced, three-dimensional point grids in analogy to the two-
dimensional rectification of camera images in projection imaging. For distortions
arising from the susceptibility of the anatomy to magnetization, special protocols
must be employed involving MR pulse sequences specifically designed for recti-
fication [26, 27]. In either case the transformations have a special form, in which
that all displacements are parallel to the so-called “readout” gradient. Because the
magnitude of the displacements and their sense (forward or backward) varies from
point to point, the resultant transformation is in general curved. Removal of these
distortions by a rectification step can replace a complicated nonrigid registration
problem by a rigid one.

For three-dimensional images, rectification may appear to be equivalent to reg-
istration between the image view and the physical view. In fact the rectification
problem is considerably simpler. The goal of registration is to map points in the
image view to the corresponding points in the physical view, while the goal of
rectification is merely to bring all points in an image to within an ideal transfor-
mation of their corresponding physical points. The simplification is that the latter
transformation may remain unknown. Thus the goal of rectification is to find a
transformation, which when composed with some ideal transformation, will map
corresponding points together. The determination of the unknown transformation
is necessary to complete the registration process. A simple example is provided by
errors in the magnitude of MR gradients. With such errors the imaging process
transforms physical points according to Eq. 8.6. The appropriate class of transfor-
mations for registering such distorted images to undistorted images is then Eq. 8.5
(see page 398). If, however, the correcting scale factors, sx; sy; sz , can be deter-
mined by means of calibration, then a rectification can be effected by applying
Eq. 8.5 with S = diag(sx; sy; sz) and with any arbitrary rotation R and transla-
tion t. Typically R = I and t = 0 are chosen for simplicity, in which case the
rectifying transformation is x0 = Sx. The transformation between the resultant
rectified image and the physical object now has the ideal form for the acquisition
process, namely Eq. 8.2, as does the registering transformation between any two
such rectified images.

8.3 Point-based methods

If some set of corresponding point pairs can be identified a priori for a given
pair of views, then registration can be effected by selecting a transformation that
aligns the points. Because such points are taken as being reliable for the purposes
of registration, they are called fiducial points, or fiducials. To be reliable they
must lie in clearly discernible features, which we will call “fiducial features”. The
determination of a precise point within a feature is called fiducial localization. The
transformation that aligns the corresponding fiducial points will then interpolate the
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mapping from these points to other points in the views.

The fiducial localization process may be based on interactive visual identifica-
tion of anatomical landmarks, such as the junction of two linear structures, e.g. the
central sulcus with the midline of the brain or the intersection of a linear structure
with a surface, e.g. the junction of septa in an air sinus, etc. [28]. Alternatively,
the feature may be a marker attached to the anatomy and designed to be accurately
localizable by means of automatic algorithms.

In either case the chosen point will be inevitably displaced somewhat from its
correct location. This displacement in the determination of the fiducial point, which
cannot ordinarily be observed directly, is commonly called the fiducial localization
error (FLE). Such errors will occur in both image spaces. The error in the Y space
is illustrated in Fig. 8.5(a).

Marker-based registration has the considerable advantage over landmark-based
registration that the fiducial feature is independent of anatomy. Automatic algo-
rithms for locating fiducial markers can take thus advantage of knowledge of the
marker’s size and shape in order to produce a consistent localization point within
it [29]. Random errors in the localized position will be caused by noise in the image
and by the random location of the marker relative to the voxel grid, but the mean of
the positions chosen by any reasonable algorithm should be the same relative to a
coordinate system fixed in the marker in the two views. Typically the fiducial point
chosen by a localization algorithm will lie near its center. Hence the point is typ-
ically referred to as the fiducial centroid. However, registration accuracy depends
only on degree to which the chosen points correspond in the two views. Because
it is not affected by the particular point chosen, and because the mean position rel-
ative to the marker can be expected to be the same in the two views, the effective
mean displacement, hFLEi, in a given view is zero. (We use hxi to indicate the
expected value of x.) The variance hFLE2i may be appreciable, however.

The goal of fiducial design and of the design of the accompanying fiducial
localization algorithm is to produce a small variance. In general, as the marker
volume becomes larger and as the signal per volume produced in the scanner by its
contents becomes larger FLE will become smaller. Fig. 8.3 shows sample images of
fiducial markers. Because of the discrete nature of the digital images, it is important
to use a marker that is larger than an image voxel. Fig. 8.3 shows a hollow marker
which is of cylindrical shape. Its inside dimensions are height, 5 mm and diameter,
7 mm. The marker is filled with a liquid that is imageable in CT and MR [30]. Both
CT and an MR (Spin-Echo, T1-weighted) transaxial images are shown in Fig. 8.3.
The CT voxel dimensions are 0.65 by 0.65 by 3.0 mm; the MR voxel dimensions
are 1.1 by 1.1 by 4.0 mm. The marker is larger than a CT voxel, but only slightly
so in the slice direction. Thus the rendition is good within a CT slice, as seen in (c),
but poor in the slice direction, as seen in (e). The MR voxels are larger than the CT
voxels. Thus the renditions are relatively poorer both within an MR slice, as seen
in (d) and in the slice direction, as seen in (f).
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(a) Transaxial CT

            

(b) Transaxial MR

            

(c) Magnification of (a)

            

(d) Magnification of (b)

            

(e) Magnified CT, coro-
nal view

            

(f) Magnified MR, coro-
nal view

Figure 8.3: Sample CT and MR images of a fiducial marker. The marker is a cylin-
der of height 5 mm and diameter 7 mm. (a) Transverse CT of head with attached
marker at lower left. Voxel dimensions, 0.65 by 0.65 by 3.0 mm. (b) Transverse
MR of head with markers at upper and lower left. Voxel dimensions, 1.1 by 1.1 by
4.0 mm. (c) and (d) are magnifications of the marker in (a) and the upper marker
in (b), respectively. (e) and (f) are, respectively, CT and MR magnifications refor-
matted in the coronal orientation.
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b a

Figure 8.4: An illustration in two-dimensions of intensity-weighted localization ap-
plied to a circular fiducial marker. The white, gray, and black squares represent
voxels. The shadings of the voxels indicate their intensities, lighter shading indi-
cating higher intensity. The marker is isolated from the anatomy such that none of
the voxels contains both marker and anatomical structure. The black voxels around
the periphery are empty and thus have the background intensity I0 The dotted white
outline is the edge of the marker. The small “plus” sign is the physical centroid of
the marker. The small circle is the estimate of the centroid chosen by intensity-
weighted localization algorithm. The small arrow is the fiducial localization error
FLE. Standard intensity-weighted localization implicitly assumes that the centroid
of the marker-filled portion of each voxel is coincident with the centroid of the voxel
itself. This assumption is reasonable for voxel a but not for b.

The rendition of the marker in an image is related to the potential accuracy
with which it can be localized. Smaller markers, as measured in voxels, will be
more poorly localized than larger ones. The shape of a marker that is smaller than a
voxel cannot be represented at all, i.e., only one marker is bright. More importantly,
with regard to registration accuracy, such a marker can be situated entirely within
a voxel with the result that the brightness “pattern” is independent of the marker’s
position within the voxel. Markers that span two or more voxels will ordinarily
(absent reconstruction artifacts) produce a signal for each occupied voxel that is a
monotonically increasing function of the volume of intersection of the voxel and
the signal-producing contents of the marker. This effect is illustrated in Fig. 8.4. To
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first order, ignoring noise and reconstruction artifacts, the function will be linear,

I = aV + I0; (8.18)

where I is the voxel intensity and V is the volume of intersection. I0 is the intensity
for an empty voxel, sometimes called a “background” voxel. While I0 = 0 for most
modalities, it is sometimes nonzero (CT, for example) and must be accounted for.
If Ii is measured for one voxel i of a set of voxels that includes all those occupied
by a given marker, an approximate centroid can be calculated by a weighted sum,

x =

nX
i

(Ii � I0)xi=

nX
i

(Ii � I0): (8.19)

(The value of a is not needed for this calculation.) As indicated in Fig. 8.4 the error
can be expected to be considerably smaller than the dimension of a voxel if the
visible portion of the marker occupies many voxels. The advantage of large size
derives from the fact that there are more voxels on the boundary between visible
marker and background. A larger number of partially filled voxels results in an
averaging of spurious shifts in the centroid caused by finite voxel size and by noise.
Thus, larger markers tend to exhibit smaller FLEs. Brighter markers also have
smaller FLEs because of the smaller contribution of image noise relative to marker
intensity in Eq. 8.18.

Eq. 8.19 provides a good approximation, but it is flawed by the implicit as-
sumption that the centroid of the marker-filled portion of each voxel is coincident
with the centroid xi of the voxel itself. The error can be appreciated in Fig. 8.4 by
comparing the marker-filled portions of voxels a and b at the right and left respec-
tively. Voxel a is almost completely filled, while only the right third of voxel b is
filled. The centroid of the marker-filled portion of a lies approximately at the voxel
centroid, xa, while the centroid of the marker-filled portion of b lies somewhere
between the white dotted border of the marker and the right edge of the voxel,
which is considerably to the right of centroid xb. Thus, in Eq. 8.19, the contribu-
tion of voxel b contributes an erroneous left shift to the marker centroid. This error
is appreciable and can be corrected for one-dimensional images, but only heuristic
algorithms are available for two and three dimensions [31].

As mentioned at the beginning of Section 8.2, any nonzero displacement T (x)�

y between a transformed point T (x) and its corresponding point y is a registration
error. To the extent that FLE is small and that the form the transformation correctly
describes the motion of the object, the alignment of the fiducial points in the two
views will lead to small registration errors for all points. If the transformation is
selected from some constrained set (as for example the rigid transformations), then
it will ordinarily not be possible to achieve a perfect alignment of fiducials. The
resultant misalignment may in some cases be used as feedback to assess whether
or not the registration is successful. A common measure of overall fiducial mis-
alignment, is the root-mean-square (RMS) error. This error, which we will call
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(a) Schematic of point-based registra-
tion illustrating Fiducial Localization Error
(FLE). Black circles represent positions y at
which points are determined by the localiza-
tion process in one of two spaces involved
in the registration process. The light circles
represent the actual positions.

y2

y1

y4
y3

1T(x  )

2T(x  )
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FRE 1

TRE 

R(x)
y

(b) Schematic of point-based registration
illustrating two measures of registration er-
ror. Black circles represent positions y in
one space. The unfilled circles represent
positions x in the other space after they
have been mapped by the registering trans-
formation T . The larger, numbered circles
are the points used to effect the registra-
tion. Fiducial Registration Error (FRE) is
the alignment error between these. Target
Registration Error (TRE) is the registration
error at a point (smaller circles) not used to
effect the registration.

Figure 8.5: Errors in Point-Based Rigid Registration
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the fiducial registration error, or FRE, is defined as follows. First we define an
individual fiducial registration error,

FREi = T (xi)� yi; (8.20)

where xi and yi are the corresponding fiducial points in views X and Y , respec-
tively, belonging to feature i, as depicted in Fig. 8.5. Then we define FRE in terms
of the magnitudes of the FREi.

FRE2 = (1=N)

NX
i

w2
i FRE2

i ; (8.21)

where N is the number of fiducial features used in the registration and w2
i

is a
non-negative weighting factor, which may be used to decrease the influence of
less reliable fiducials. For example, if hFLE2

i
i is the expected squared fiducial

localization error for fiducial i, then we may choose to set w2
i
= 1=hFLE2

i
i, where

FLEi is the fiducial localization error for fiducial i.
Fig. 8.5 also depicts target registration error, or TRE, which is, simply, regis-

tration error calculated at some point of interest,

TRE(x) = T (x)� y: (8.22)

The term “target” is meant to suggest that the point is the subject of some diagnosis
or treatment.

8.3.1 Points in rigid transformations

If the transformation to be determined is constrained to be rigid, then, Eq. 8.21
can be written as

FRE2 = (1=N)

NX
i

w2
i jRxi + t� yij

2: (8.23)

If the FLEi are random errors with zero means and isotropic distributions for all
fiducials, then an optimum registration can be achieved by minimizing FRE2 with
wi = 1=hFLE2

i
i. The minimization of Eq. 8.23 is known as the “Orthogonal Pro-

crustes” problem in the statistics literature.2 Closed-form solutions for this problem
have been available from that discipline since the first one was published by Green
in 1952 [33]. The problem is also important in the theory of shape [34–36]. Algo-
rithm 8.1 provides a simple, reliable method of solution.

2The term “Procrustes” was originally pejorative. It was first used by Hurley and Cattell [32]
in 1962 to express disapproval of a perceived tendency of some to distort one set of observations to
support the claim that they fit another set. Hurley and Cattell were drawing an analogy to the habits of
the character of the same name from Greek mythology, who stretched, squeezed, or otherwise altered
visitors to fit his guest bed. The term is now used in the statistical theory of shape with no negative
connotation attached.
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Algorithm 8.1: Point-based, rigid registration

Find R and t to minimize
P

N

i
w2
i
jRxi + t� yij

2:

1. Compute the weighted centroid of the fiducial configuration in each space:

�x =

NX
i

w2
i xi=

NX
i

w2
i

�y =

NX
i

w2
i yi=

NX
i

w2
i :

2. Compute the displacement from the centroid to each fiducial point in each
space:

~xi = xi � �x

~yi = yi � �y:

3. Compute the weighted fiducial covariance matrix:

H =

NX
i

w2
i ~xi~y

t

i ;

where the superscript t indicates transposition.

4. Perform singular value decomposition of H:

H = U�V t;

where U tU = V tV = I , � = diag(�1; �2; �3), and �1 � �2 � �3 � 0.

5. R = V diag(1; 1;det(V U))U t.

6. t = �y �R�x.

The diagonal matrix interposed between V and Ut in step 5 is there to insure that
R is a proper rotation. It is necessary only when the fiducial points lie in a plane or
when FLE is extremely large.

(Historical Note: The use of singular value decomposition for this problem
was introduced in 1966 by Schönemann along with the first proof of solution for
general fiducial configurations [37]. That method was later rediscovered indepen-
dently by others [38–40]. These methods all permitted improper rotations. The



D
R

A
FT

V
 0

.1

396 CHAPTER 8 Image Registration

use of det(V U) to restrict the solution to proper rotations was presented with-
out proof later in 1966 by Farrell [38]. It was rediscovered and proved in 1991
by Umeyama [41]. The original method by Green, which is based on the ma-
trix square root, was later independently derived as well [42, 43]. Green’s method
was first proved to be a general solution in 1978 by Sibson [44]. A third solution
method based on the unit quaternion was discovered in 1986 simultaneously by
Faugeras [45] and Froimowitz [46] and then independently by Horn [8]. A recent
comparison of these methods plus a method using quaternions whose elements are
dual numbers [47] shows no substantial differences among them [48].)

The application of Algorithm 8.1 minimizes FRE2, but, as indicated in Fig. 8.5,
finite fiducial localization error, FLE can be expected to make both FRE and TRE nonzero.
The relationships among the expected values of FLE2, FRE2, and TRE2 are known
to an excellent approximation for the case of equal FLEi and uniform weighting
(w2

i
= 1). The simplest relationship is that between the expected values of FLE and

FRE,

hFRE2i � (1� 2=N)hFLE2i; (8.24)

where the approximation ignores terms involving FLE4 and higher [49]. This equa-
tion and Eqs. 8.25 through 8.29, which follow below, apply to the situation in which
hFLE2i is the error in one space, with the error in the other space being zero, and
to the situation in which there is error in both spaces, in which case hFLE2i equals
hFLE2

ai + hFLE2
b
i, where the subscripts a and b refer to the two spaces. It should

be noted that the relationship given by Eq. 8.24 is surprisingly independent of the
fiducials’ configuration. An estimate of hFLE2i can be obtained for a given fiducial
design and image acquisition protocol by performing a set of registrations involv-
ing pairs of images of possibly differing configurations and numbers of fiducials
and forming the weighted average,

hFLE2i � (1=M)

MX
i

Ni=(Ni � 2)� FRE2
i ; (8.25)

where M is the number of registrations performed and Ni is the number of fiducials
involved in registration i.

The relationship between hTRE2i and hFLE2i depends on both the configura-
tion of markers and the target position. It is most easily stated in terms of quantities
measured relative to the principal axes of the fiducial configuration:

hTRE2i �
1

N

 
1 +

1

3

3X
k=1

d2
k

f2
k

!
hFLE2i; (8.26)

where dk is the distance of the target from principal axis k, and fk is the RMS
distance of the fiducials from the same axis [50]. This approximation, like that of
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Eq. 8.24, ignores terms involving FLE4 and higher. An equivalent approximation
was first suggested by Hawkes [51, 52].

FRE is sometimes used as an indication of accuracy in a point-based registra-
tion system. Unfortunately it may in fact be a very poor indicator of accuracy. It
can be seen from Eqs. 8.24 and 8.26 that systems with a smaller hFRE2i will have
a smaller hTRE2i. These expected values are in fact proportional and do show that
a system that tends to exhibit a lower FRE will also tend to produce a lower TRE.
However, for a given registration system FRE is a poor predictor of TRE. No corre-
lation between these two quantities for a given system has been reported. Thus for
a properly working point-based registration system, a lower or higher than average
value of FRE for a given registration is not indicative of lower or higher than aver-
age values of TRE for that registration. Furthermore, the registration error FREi for
a specific marker i is a nonintuitive indicator of TRE in the vicinity of that marker.
The problem can be seen from the following relationship, which is accurate to third
order in FLE:

hFLE2
i i � hFLE2i � hTRE2(xi)i: (8.27)

The meaning of this equation is that for a given fiducial configuration TRE is worse
in the vicinity of fiducials whose alignment is better [50]!

If interpreted correctly FRE can provide useful information. A very large
FRE may indicate that at least one part of the registration system, which includes
image acquisition, fiducial localization, and fiducial registration, may not be work-
ing properly. A formal statistical decision about the likelihood that a given system
with a known hFRE2i is performing correctly can be based on the probability that
the observed value of FRE will occur at random. For that calculation it is necessary
to use the probability distribution of FRE, which is chi-square with 3N-6 degrees
of freedom [49, 53].

8.3.2 Points in scaling transformations

If the transformation to be determined includes isotropic scaling, i.e., is of the
form of Eq. 8.7, then Eq. 8.21 becomes

FRE2 = (1=N)

NX
i

w2
i jsRxi + t� yij

2: (8.28)

A simple extension of Algorithm 8.1 determines the scaling s, rotation R, and
translation t that minimize FRE2. The extension is given in Algorithm 8.2 [54].

Algorithm 8.2: Point-based registration: Isotropic scaling
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P

N

i
w2
i
jsRxi + t� yij

2:

1. Set s = 1 and determine R using steps 1 through 5 of Algorithm 8.1.

2. Calculate s:

s =

P
N

i
w2
i
R~xi � ~yiP

N

i
w2
i
~xi � ~xi

3. t = �y � sR�x.

A weakness of this solution is that the scaling factor s does not have a reciprocal
relationship with the factor in the reverse problem. Thus, if the point sets, fxig and
fyig are exchanged, the new scale factor will not necessarily equal 1=s. The analog
to Eq. 8.24 for rigid registration with isotropic scaling given by Algorithm 8.1 is

hFRE2i � (1� 7=(3N))hFLE2i; (8.29)

and the probability distribution of FRE is chi-square with 3N � 7 degrees of free-
dom [55]. The analog to Eq. 8.26 is not yet known.

There are no known closed-form solutions for the anisotropic scaling problems,
in which the scaling matrix S, the rotation matrix R, and the translation vector t are
to be determined for transformations of the form of Eqs. 8.5 or 8.6. An iterative
search is required. For scaling of the form of Eq. 8.5 the problem is especially sim-
ple. This problem, which is encountered when the x, y, and z scales of an imaging
device are incorrect to differing degrees, as for example with inaccurate MR gradi-
ents (see page 388 in Section 8.2.3), reduces to a search of the three-dimensional
space of diagonal elements of S, as described by Algorithm 8.3.

Algorithm 8.3: Point-based registration: Nonisotropic scaling

Find R , t, and S to minimize
P

N

i
w2
i
jRSxi + t� yij

2:

1. Perform steps 1 and 2 of Algorithm 8.1 to determine the centroids, �x and �y,
in each space and the displacement of each fiducial point ~xi and ~yi from the
centroid in its respective space.

2. Set iterative count n = 0.

3. Choose an initial scaling matrix S(0).

4. Repeat the following steps:

(a) Set ~x(n)
i

= S(n)~xi.

(b) Perform steps 3 through 5 of Algorithm 8.1 to find R.

(c) Add one to n.
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(d) Determine new value of S(n).

5. Stop when FRE < threshold or n > maximum iteration count.

6. t = �y �RS�x.

While the problem is reduced to a three-dimensional search for the optimal S, no
method is specified for effecting that search. In particular, no methods are given
for steps 3 or 4d of Algorithm 8.3. A review of methods for multidimensional
optimization can be found in [56].

For scaling of the form of Eq. 8.6, the problem is complicated by the fact that S
is applied to the rotated ~xi. As a result, the substitution in ~x(n)

i
= S(n)~xi in step 4a

is no longer correct. Instead, a six-dimensional parameter space must be searched.
The space consists of the diagonal elements of S and three independent parameters
to specify R, e.g. three Euler angles (see Section 8.2.1). Once these parameters are
determined, the translation is t = �y � SR�x.

8.3.3 Points in perspective projections

When tomographic images are used in conjunction images acquired by means
of X-ray projection, endoscopy, laparoscopy, microscopy, direct video, or photog-
raphy, or when any of these latter modalities are used to guide surgery or other ther-
apy to a target location, a two-dimensions-to-three-dimensions registration problem
must be solved. When several corresponding point pairs can be identified in two-
dimensional and three-dimensional views of a single rigid object, the problem can
be solved by means of point-based, rigid registration. This problem is common
in robot and computer vision applications and has been thoroughly studied in that
domain, where it is known as the “object-pose estimation problem” [6, 10, 57, 58].

The form of the transformation associated with these projections from three di-
mensions to two is the perspective transformation. That transformation is described
in Section 8.2.2.4 in terms of the pinhole camera and is given by Eq. 8.12. Without
loss of generality the problem can be treated by orienting the coordinate system so
that p̂ is aligned with the z axis and by placing the origin at the pinhole. With these
choices, we have x � p̂ = z and � = 0. Eq. 8.12 then simplifies to0

@ x0

y0

z0

1
A =

f

z

0
@ x

y

z

1
A ; (8.30)

which transforms all points to the z0 = f plane. Solving Eq. 8.30 for x, y, and z

leads to x = �x0, where � is an arbitrary scalar. Thus, a given two-dimensional
image point, x0; y0 lying in the z0 = f image plane is projected to a line in three-
dimensional space that passes through the three-dimensional origin (the pinhole)
and through the three-dimensional image point, x0; y0; f .
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It is clear from the form of Eq. 8.30 that a unique three-dimensional position
of a single point cannot be determined from its perspective projection alone. Some
additional information is required to determine where on the projected line the
point lies. At least one other constraint is required to resolve the ambiguity. A
common constraint in computer vision that is uncommon in medical applications is
ax+ by+ cz+ d = 0, which means that the point is known to lie on a given plane.
Another constraint restricts the line to intersect a “silhouette curve”, which is the
apparent outline of a three-dimensional surface when viewed in perspective from a
given point. The use of this latter constraint for registration of tomographic images
of the anatomy to radiographic images is described in Chapter 6. In the most com-
mon point-based object-pose estimation problem a set of perspective projections,
(x0

i
; y0

i
; f); i = 1; : : : ; N , each from from one corresponding three-dimensional

point, xi, are used together to determine N three-dimensional positions simulta-
neously. The additional information needed to solve the problem is provided by
(a) stipulating that the N points all lie on the same rigid object and (b) giving
their three-dimensional positions for some orientation of that object. Thus, (a)
Rxi + t = yi, and (b) the points yi; i = 1; : : : ; N are given. In medical applica-
tions these points are typically localized from a tomogram of rigid anatomy. The
pose estimation is accomplished by searching for the R and t that solve the 2N

equations represented by the x and y components of Eq. 8.30 for the N points. The
equations are typically solved in the least-square sense, and because of the non-
linear constraints on the form of R, they must be solved iteratively. A common
approach is carried out in terms of a R that is parameterized in terms of rotation an-
gles: Start with an approximate solution xi; i = 1; : : : ; N ; calculate the perspective
projections of the xi, determine the sum of squared errors between the calculated
projections and the actual projections, linearize the resulting expression (assumes
small error), solve, and iterate [10]. If the camera constant f is unknown, then a
similar approach is required in which with f included as an additional unknown.
This latter problem is known as the “interior orientation” problem in photogram-
metry [10].

8.3.4 Points in curved transformations

When points are used for registration with curved transformations, it is usu-
ally possible to align all fiducial points exactly, but the mapping of the non-fiducial
points can vary strongly with the form of transformation used. Knowledge of the
genesis of the morphological changes from one view to the other should be used
to determine the class of curved transformations to be employed whenever pos-
sible, as, for example, with rectification (see Section 8.2.3) or with interpatient
registration (see Chapters 3 and 17). Otherwise, T is typically chosen from some
set of continuous, differentiable functions, such as the polynomials, the polyno-
mial splines, or the thin-plate splines. For example, an interpolating polynomial
(see Section 8.2.2) of the form of Eq. 8.14 can reduce FRE to zero at (I + 1)(J +
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1)(K+1) points. The thin-plate spline of Eq. 8.17 reduces FRE to zero at N points.
The cubic spline of Eq. 8.15, which is typically implemented in terms of B-splines,
can reduce FRE to zero at a given set of points, but only for very uniform point
distributions or for very closely spaced knots. These restrictions have limited the
use of B-splines as interpolants in medical applications primarily to rectification
problems based on phantoms with uniformly spaced fiducials. In these situations
the knot spacing is typically forced to be uniform by the machining of the phan-
tom. For this case the cubic B-spline expansion can be given in terms of the simple
segments of splines given by Eqs. 8.16.

With the polynomial, cubic-spline, and thin-plate spline transformations (and
with the affine transformation of Eq. 8.8), the point-based registration problem re-
duces to the determination of a set of coefficients. There is in fact a separate prob-
lem for each of the three components of x0. For each class of transformation the
problem can be solved individually for each component by finding the solution to
a set of simultaneous linear algebraic equations for coefficients that can in each
case be organized into a one-dimensional vector a. The meaning of the elements
of a varies with each class of transformation. The vector for the x coordinates, for
example, is uniquely determined by using the x; y; z coordinates of the N fiducial
localizations xi on the right side of Eqs. 8.14, 8.15, or 8.17 and substituting the
corresponding x coordinates of the N fiducial localizations x0i into the left side.
The form of the resultant equation is in every case

Ma = b: (8.31)

Thus, the point-based registration problem with any of these transformations is
reduced to the solution of three sets of linear algebraic equations—one set each for
x, y, and z. While there are more coefficients involved, this situation is simpler than
that of the rigid-body transformation problem (See Algorithm 8.1) because it lacks
the nonlinear side-conditions that insure that R is orthogonal. For the polynomial
transformation, M is N by N . Its elements are the polynomials xiyjzk. M is non-
singular but tends to be ill conditioned [59]. (Techniques for increasing numerical
accuracy with polynomial interpolation can be found in [56]). For the cubic-spline
it is necessary to impose some additional conditions along with Eq. 8.15 in order to
produce as many equations as unknowns. A common condition is to restrict the sec-
ond derivatives to be zero at the borders, producing the so-called “natural splines”.
M is again nonsingular. For the thin-plate splines, three side conditions are neces-
sary for each component in order to bound the solution. With the x component of
x0 again serving as the example, the conditions are [17]

NX
i

ci =

NX
i

xici =

NX
i

yici = 0; (8.32)

When these conditions are incorporated into Eq. 8.31 along with Eq. 8.17, M is
(N + 3) by (N + 3) and nonsingular.
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It should be pointed out that the use of curved transformations to align all fidu-
cial points exactly, i.e., to interpolate them, is often not a sensible approach. The
problem is that the localization of the points will inevitably include some localiza-
tion error. Aligning these erroneous points exactly will result in the propagation of
the error throughout the space. To accommodate localization error, the polynomial
and cubic-spline interpolants should be employed with more fiducial points than
coefficients to allow for a least-squares fit in analogy with the rigid-body case. In
that case Eq. 8.31 has more unknowns than equations. The least-squares approxi-
mation may be found with standard techniques [56, 59].

8.4 Surface-based methods

The 3D boundary surface of an anatomic object or structure is an intuitive
and easily characterized geometrical feature that can be used for medical image
registration. Surface-based image registration methods involve determining corre-
sponding surfaces in different images (and/or physical space) and computing the
transformation that best aligns these surfaces.

The skin boundary surface (air-skin interface) and the outer cranial surface are
obvious choices that have frequently been used for both image-to-image (e.g., CT-
MR, serial MR) and image-to-physical registration of head images (see Fig. 8.6).
The surface representation can be simply a point set (i.e., a collection of points on
the surface), a faceted surface (e.g., triangle set), an implicit surface, or a para-
metric surface (e.g., B-spline surface). Extraction of a surface such as the skin
or bone is relatively easy and fairly automatic for head CT and MR images. Ex-
traction of many soft tissue boundary surfaces is generally more difficult and less
automatic. Image segmentation algorithms can generate 2D contours in contiguous
image slices that are linked together to form a 3D surface, or they can generate
3D surfaces directly from the image volume. Surface extraction from images is
covered in detail in Chapter 6. The related problem of two-dimensional contour
extraction is treated in Chapter 3. In physical space, skin surface points can be eas-
ily determined using laser range finders; stereo video systems; and articulated me-
chanical, magnetic, active and passive optical, and ultrasonic 3D localizers. Bone
surface points can be found using tracked A-mode [60] and B-mode [61] ultra-
sound probes. The computer vision sensors, 3D localizers, and tracked A-mode
ultrasound probes produce surface point sets. Tracked B-mode probes produce a
set of 2D images (or a single compounded 3D image) from which bone surface
points need to be segmented.

Surfaces can provide basic features for both rigid-body and nonrigid regis-
tration. A central and difficult question that must be addressed by any nonrigid
surface-based registration algorithm is how deformation of the contents of an ob-
ject is related to deformation of the surface of the object. Most of the surface-based
registration algorithms that have been reported are concerned with rigid-body trans-
formation, occasionally with isotropic or nonisotropic scaling. Thus, in this section,
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we are concerned primarily with rigid-body registration.

8.4.1 Disparity functions

There is a large body of literature in computer vision concerned with the surface-
based registration problem. Some of this work has addressed limited classes of
shapes, e.g., polyhedral models [64] and piecewise-superquadric models [65, 66].
Other authors rely on the existence of specific simple features or make assumptions
about the global shape (see [67] for an extensive review). For example, the work
in [45] assumes the existence of reasonably large planar regions within a free-form
shape. Some approaches represent the surface with generalized cylinders [68] or
extended Gaussian images [69]. The latter method allows matching of convex and
restricted sets of nonconvex shapes based on surface normal histograms.

The approach for solving the surface-based registration problem that is fre-
quently used in more recent computer vision literature (where it often called the
free-form surface matching problem), and that is normally used in the medical im-
age processing community, is to search for the transformation that minimizes some
disparity function or metric between the two surfaces X and Y . The disparity func-
tion is generally a distance. In mathematics, the distance between two feature sets
A and B is normally defined as the minimum distance between a point in A and
a point in B, namely, d(A;B) = minaminb d(a;b), where a 2 A, b 2 B, and
d(a;b) is the Euclidean distance between a and b. Thus d(A;B) is small if one
pair of points in these two sets are close. Another common measure is the Hausdorff
distance. The Hausdorff distance from A to B is d(A;B) = maxaminb d(a;b),
and the Hausdorff distance between two setsA andB is dH(A;B) = max(d(A;B); d(B;A)).
Thus dH(A;B) is small iff every point of A is close to a point in B and vice versa.
Neither of these distance measures is very useful as a disparity function. The Haus-
dorff distance is not meaningful in practice because the corresponding surfaces
generally overlap only partially, and because it is sensitive to statistical outliers.
The disparity function normally used for surface-based image registration is an
average, and optionally weighted, distance between points on one surface and cor-
responding points on the other surface. Let fxjg for j = 1; : : : ; Nx be a set of Nx

points on the surface X . The general approach is to search for the transformation
that minimizes the disparity function

d(T (X); Y ) =

vuut NxX
j=1

w2
j
d2(T (xj); Y ) =

vuut NxX
j=1

w2
j
jjT (xj)� yjjj2; (8.33)

where

yj = C(T (xj); Y ) (8.34)

is a point on the surface Y “corresponding” to the point xj , C is a “correspondence”
function (e.g., closest point operator), and fwjg is a set of weights associated with
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(a)

(b)

Figure 8.6: Illustration of surface-based registration of the head using the facial
skin surface. The dots represent skin surface points acquired with a four-camera
photogrammetry system. The surface rendering represents a triangle set model of
the skin surface extracted from an MR image volume. The left panel (a) shows the
initial position of the data sets. The right panel (b) shows the data sets after regis-
tration. The registration was performed using an independent implementation [62]
of the iterative closest point algorithm [63]. The surfaces overlap only partially,
which is a common situation in surface-based registration. This problem was dealt
with by setting the weights of outliers to zero after the first search converged before
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fxjg. We note that Eq. 8.33 is similar to Eq. 8.21 of point-based registration. The
principal difference between point-based registration and surface-based registra-
tion is in the availability of point correspondence information. It is the lack of
exact point correspondence information that causes surface-based registration al-
gorithms to be based on iterative search. Eq. 8.34 merely provides approximate
point correspondence information for a particular T during an iterative search.

The point set fxjg and the surface Y have been called, respectively, the “hat”
and “head” [70], the “dynamic” and “static” feature sets [71], and the “data” point
set and “model” surface shape [63]. Typically one surface contains more informa-
tion than the other. The surface from the image that covers the larger volume of the
patient and/or has the highest resolution is generally picked as the model shape.3

For example, when using the skin surface to perform CT-to-physical space regis-
tration, the triangle set representation of the CT skin surface contains � 104–105

vertices, whereas the number of physical space skin surface points is � 102–103. In
this case, the CT triangle set is chosen as the model surface shape and the physical
space point set is chosen as the data point set. We note that Eq. 8.33 is generally
not symmetric in X and Y .

In point-based registration (Eq. 8.21), if the fiducial localization error FLEi for
each point is independently random and normally distributed around the true po-
sition, then the maximum likelihood estimate of the transformation parameters is
obtained by weighting the ith point by 1=hFLE2

i
i in Eq. 8.21. In surface-based reg-

istration (Eq. 8.33), statistical independence of errors is unlikely. For example, if
an isointensity surface is extracted from an image, and the isointensity value used is
too high or too low, the extracted surface relative to the actual surface will be either
slightly dilated or slightly eroded. The skin is a movable and deformable structure,
and local deformations tend to be highly correlated. Physical space surface points
acquired with a sensor can have biased error due to miscalibration. Nonetheless,
weights can be useful to reduce the influence of less reliable surface points. For
example, the gradient magnitude of an edge in an image can provide information
about surface segmentation error at that point. Often a triangle set representation of
a surface is extracted and simplified to reduce storage requirements and execution
time. Some surface simplification algorithms provide an estimate of error arising
from the simplification process. Many sensors and tracking devices have less ac-
curacy at the edges of the working volume. Weights could potentially be used to
account for the sensitivity of the registration to the perturbation of individual sur-
face points (e.g., see the geometrical constraint analysis in [72]). For example, a
few points in areas of high curvature might be more important to the registration
than many points in relatively planar regions. Weights can be used to account for

3The terms “data” and “model” arise from an industrial application: registration of digitized data
from unfixtured rigid objects obtained using high-accuracy noncontact devices with an idealized ge-
ometrical (e.g., computer-aided design) model prior to shape inspection (Besl & McKay wrote [63]
while working at General Motors Research Laboratories).
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nonuniform sampling density [62]. Finally, weights can also be used to deal with
outliers that can arise from nonoverlapping sections of surfaces, as seen at the top
of Fig. 8.6(b), poor segmentation, and erroneous sensor data [62,73]. For example,
outliers can be defined as points whose distance from the closest corresponding sur-
face point is more than two or three standard deviations above the mean distance.
The weights of outliers can be reduced or set to zero, either after each iteration, or
after one search converges before running another search.

Many variations of Eq. 8.33 are possible. For example, mean distance can be
used rather than root-mean-square distance (i.e., L1 norm versus L2 norm) [74].
Outliers can be handled using a thresholded distance, or by using a sigmoidal dis-
tance function (which is essentially a gradually tapered thresholded distance). If
surface points are collected in physical space using a probe with a spherical ball at
the tip, the recorded surface points xj are displaced from the actual surface Y by
the radius r of the ball-point tip. This is true for any orientation of the localization
probe relative to the surface normal at the point of contact.4 In this case, a more
appropriate disparity function is [73]

d(T (X); Y ) =

vuut NxX
j=1

w2
j
(jjT (xj)� yj jj � r)2: (8.35)

8.4.2 Head and hat algorithm

The first investigators to apply surface-based registration to a medical problem
were Pelizzari, Chen, and colleagues [70]. They used their “head and hat” algo-
rithm to register CT, MR, and PET images of the head. The “hat” is a skin surface
point set fxjg. The “head” is a polygon set model of the skin surface Y created by
segmenting contours in contiguous transverse image slices. They define yj as the
intersection with the “head” Y of a line joining the transformed “hat” point T (xj)

and the centroid of the “head” Y . The intersection is efficiently calculated by reduc-
ing the 3D line-polyhedron intersection problem to a 2D line-polygon intersection
problem. The transformation T that minimizes Eq. 8.33 is found using a stan-
dard gradient descent technique. The major limitations of this technique are due to
the particular distance used, i.e., the distance from the surface point to the surface
intersection along a line passing through the surface centroid. This definition of
distance requires that the surface be approximately spherical. It also requires that
a good initial transformation be supplied as input to the transformation parameter
search. Finally, it is probably related to the observation by the authors and others

4A localization probe is often calibrated by placing the ball-point tip in a hemispherical divot
and pivoting the probe about the center of the divot. The position of the probe tip relative to the
coordinate system of the probe is determined by finding the most invariant point (in a least squares
sense) in these pivot motions. This invariant point is the center of the ball-point tip. That is, the
ball-point tip pivots about the center of the ball rather than a point on the surface of the ball.
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that the search frequently terminates in local minima and thus requires substantial
user interaction.

8.4.3 Distance definitions

A more general definition of distance between a point and a surface is the dis-
tance between the point and the closest point on the surface. That is, the correspon-
dence function C in Eq. 8.34 is the closest point operator, and yj is the point on the
surface Y closest to the transformed point T (xj). The closest point and distance
calculation depends on the surface representation. For example, a common repre-
sentation is a triangle set. Let t be the triangle defined by the three vertices r1, r2,
and r3. The distance between the point xj and the triangle t is

d(xj ; t) = min
u+v+w=1

jjur1 + vr2 + wr3 � xj jj; (8.36)

where u 2 [0; 1], v 2 [0; 1], and w 2 [0; 1]. The required closed-form computations
are straightforward. Let T = ftig for i = 1; : : : ; Nt be a set of Nt triangles. The
distance between the point xj and the triangle set T is given by

d(xj ; T ) = min
i2f1;::: ;Ntg

d(xj ; ti): (8.37)

The closest point yj on the the triangle set T satisfies the equality d(xj ;yj) =

d(xj ; T ). Another relatively common representation is a parametric surface S =

fr(u; v)g, where, for example, the components of r are spline functions. The point-
to-parametric-entity distance d(xj ; S) is easily computed with a 2D minimization
in u and v using derivatives of r (e.g., Newton’s method). A good initial value
(u0; v0) is necessary. Initial values can be obtained by approximating the paramet-
ric surface with a triangle set, tagging each triangle vertex with the corresponding
(u; v) value of the parametric surface, and then, for each xj , finding the closest
triangle vertex and using as the initial value the value stored with that vertex.

The most computationally expensive step in the registration process is find-
ing the closest points. Given a data shape point set with Nx points and a model
shape with Ny geometrical primitives (point, line segments, and triangles), the
computational complexity of finding the closest points using an exhaustive search
is O(NxNy). One way to speed up the search process is to use a special data struc-
ture. One such data structure is a multidimensional binary search tree (k-d tree,
where k is the dimensionality of the search space) [75, 76]. For 3D image registra-
tion, k = 3. The k-d tree is a binary tree in which each node represents a subset
of data records (encoding in our case, geometrical primitives) and a partitioning of
that subset. Each nonterminal node has two children that represent the two subsets
defined by the partitioning. The terminal nodes represent mutually exclusive small
subsets of the records called buckets. A 3-d tree divides space into a collection of
rectangular parallelepipeds that correspond to the terminal nodes. This data struc-
ture provides an efficient method for examining only those points closest to a given
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point. A k-d tree can be constructed in O(Ny logNy) time. Each closest point
search can be performed in O(logNy) time. Thus the computational complexity
of finding Nx closest points at each step of an iterative transformation parameter
search using a k-d tree is O(Nx logNy).

8.4.4 Distance transform approach

The calculation of point-to-surface distance is computationally intensive, even
when using special data structures and other optimizations. A computationally ef-
ficient alternative is to use a distance transform (DT). A DT of a binary image I
is an assignment to each voxel v of the distance between v and the closest feature
voxel in I . A DT of a binary image where the feature voxels are surface voxels is
a gray-level image in which each voxel v has a value that is the distance from the
center of v to the center of the nearest surface voxel. Thus a DT provides a method
for precomputing and storing point-to-surface distance. Normally squared distance
is stored. Then, at each step of an iterative transformation parameter search, the
value of the disparity function in Eq. 8.33 is computed simply by summing the val-
ues of the voxels in the squared distance image that contain the transformed points
fT (xj)g. One limitation of this approach is that a DT is spatially quantized, i.e., a
DT image contains exact point-to-surface distance only at regularly spaced lattice
points (centers of voxels). A slight improvement over using the distance at the near-
est lattice point can be achieved by using a trilinear interpolation of the distances
at the nearest eight lattice points. Nonetheless, the surface is fundamentally repre-
sented by the point set consisting of the centers of all feature (surface) voxels, and
thus subvoxel surface position information is lost. Spatial quantization might be the
reason that registrations produced by surface-based methods using DTs have been
reported to be considerably less accurate than registrations produced by surface-
based methods not using DTs (e.g., see [77]). Integer approximations of Euclidean
distance (e.g., the chamfer 3-4-5 algorithm [78]) are frequently used to reduce the
DT computation time, but several reasonably efficient algorithms for computing an
exact Euclidean DT now exist (e.g., [79]). Surface-based registration using a DT
was first applied to medical images by [80].

8.4.5 Iterative closest point algorithm

All surface-based registration algorithms must search for the transformation T
that minimizes the disparity function in Eq. 8.33 or a variation thereof. This is
a general nonlinear minimization problem that is typically solved using one of the
common gradient descent techniques (e.g., see [56]). The search will typically con-
verge to, or very close to, the correct minimum of the disparity function minimum
if the initial transformation is within about 20–30 degrees and 20–30 mm of the cor-
rect solution. To help minimize the possibility of the search getting stuck in a local
minimum, many investigators perform the search in a hierarchical coarse-to-fine
manner.
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Besl & McKay [63] presented an algorithm which reduces the general nonlinear
minimization problem to an iterative point-based registration problem. Their itera-
tive closest point (ICP) algorithm is a general-purpose, representation-independent,
shape-based registration algorithm that can be used with a variety of geometrical
primitives including point sets, line segment sets, triangle sets (faceted surfaces),
and implicit and parametric curves and surfaces. One shape is assigned to be the
“data” shape and the other shape to be the “model” shape. For surface-based reg-
istration, the shapes are surfaces. The data shape is decomposed into a point set (if
it is not already in point set form). Then the data shape is registered to the model
shape by iteratively finding model points closest to the data points, registering the
two point sets (e.g., using Algorithm 8.1), and applying the resulting transformation
to the data points. Details of this approach are provided in Algorithm 8.4.5 This
algorithm converges to a local minimum of the disparity function in Eq. 8.33. The
proof of convergence depends on the correspondence function C being the closest
point operator.

8.4.6 Weighted geometrical feature algorithm

Most registration methods that align 3D image volumes by matching geometri-
cal features such as points or surfaces use a single type of feature. It is possible and
potentially advantageous to perform registration using multiple geometrical fea-
tures simultaneously. One approach that was suggested by Collignon et al. [81] is to
define a new disparity function that is a weighted sum of the point-based (Eq. 8.21)
and surface-based (Eq. 8.33) disparity functions. Let fXig for i = 1; : : : ; Ns be a
set of Ns data shapes to be registered with another set of model shapes fYig. For
example, i = 1 might be a point set and i = 2 a surface. Then we can define a new
disparity function

d(T ) =

NsX
i=1

vuuutNXiX
j=1

w2
ij
jjT (xij)� yij jj2; (8.38)

where

yij = Ci(T (xij); Yi): (8.39)

The term under the square root symbol is analogous to Eqs. 8.21 and 8.33. The
weights fwijg can incorporate both intra-shape weighting and inter-shape weight-
ing. A similar approach was suggested by Maurer et al. [62], but with the outer

5Algorithm 8.4 details the more general weighted geometrical feature (WGF) algorithm. The ICP
algorithm is a special case of the WGF algorithm where the number of shapes Ns = 1.
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summation inside the square root symbol, that is,

d(T ) =

vuuut NsX
i=1

NXiX
j=1

w2
ij
jjT (xij)� yijjj2: (8.40)

The transformation T that minimizes either of these hybrid disparity functions can
be found using any of the common gradient descent techniques. A consequence of
putting the outer summation inside the square root symbol is that Eq. 8.40 can be
minimized using an extension of the ICP algorithm called the weighted geometrical
feature (WGF) algorithm. Details of this approach are provided in Algorithm 8.4.

The WGF algorithm is potentially useful for image-to-physical registration. For
example, the position of a bone-implanted marker can be determined much more
accurately than that of a skin-affixed marker or an anatomic landmark. A disadvan-
tage of using bone-implanted markers is that an invasive pre-operative procedure
is required to implant each marker. By combining surface information, the WGF
algorithm allows registration to be performed using only one or two such markers
(point-based registration requires a minimum of three noncolinear points). Mau-
rer et al. [73] obtained very accurate (TRE � 1–2 mm) point-and-surface-based
CT-to-physical registration with one bone-implanted marker and 25 surface points.

Algorithm 8.4: Weighted geometrical feature (WGF) rigid-body registration

Find the rigid-body transformation T that minimizes the disparity function
in Eq. 8.40:

1. Initialization: k = 1;x
(0)
ij

= xij ;x
(1)
ij

= T (0)(x
(0)
ij

),

where T (0) is some initial transformation. The variable k and the superscript
on x are iteration indices. The algorithm can be repeated using multiple
initial transformations to solve the local minimum problem.

2. Iteratively apply the following steps, incrementing k after each loop, until
convergence within a tolerance � is achieved:

(a) For each shape Xi, compute the closest points y(k)
ij

= Ci(x
(k)
ij
; Yi) for

j = 1; : : : ; NXi
.

(b) Compute the transformation T (k) between the initial point set, fx(0)
ij
g,

and the current set, fy(k)
ij
g, using the weights fwijg. This step is ef-

fected by means of Algorithm 8.1 with the points for all shapes col-
lected in each of the two point sets to produce two corresponding point
sets.
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(c) Apply the transformation to produce registered points x(k+1)
ij

= T (k)(x
(0)
ij

).

(d) Terminate the iterative loop when d(T (k)) � d(T (k+1)) < �, where
d(T ) is given by Eq. 8.40.

8.5 Intensity-based methods

According to the classifications introduced earlier in this chapter, image inten-
sity is an alternative “registration basis” to points or surface features. It has recently
become the most widely used registration basis for several important applications.
In this context, the term intensity is invariably used to refer to the scalar values in
image pixels or voxels. The physical meaning of the pixel or voxel value depends
on the modalities being registered and is very often not a direct measure of optical
power (the strict definition of intensity).

Intensity-based registration involves calculating a transformation between two
images using the pixel or voxel values alone. In its purest form, the registration
transformation is determined by iteratively optimizing some “similarity measure”
calculated from all pixel or voxel values. Because of the predominance of three-
dimensional images in medical imaging, we refer to these measures as voxel simi-
larity measures. In practice, many intensity-based registration algorithms use only
a subset of voxels and require some sort of pre-processing. For example, the algo-
rithm may run faster if only a sub-set of voxels are used. This subset can be chosen
on a regular grid, or be randomly chosen. It is normal in these circumstances to blur
the images before sampling to avoid aliasing in the sub-sampled images, and the
amount of blurring used may be application dependent. Alternatively, an algorithm
may work reliably only if the similarity measure is calculated from the voxels in
a defined region of interest in the image, rather than all voxels. In this case, some
sort of pre-segmentation of the images is required, and this is likely to depend both
on the modalities being registered and the part of the body being studied. In some
other intensity-based algorithms, the similarity measures work on derived image
parameters such as image gradients, rather than the original voxel values.

For retrospective registration, a major attraction of intensity-based algorithms
is that the amount of pre-processing or user-interaction required is much less than
for point-based or surface-based methods. As a consequence, these methods are
relatively easy to automate. The need for pre-processing does, however, mean that
many intensity-based algorithms are restricted to a quite limited range of images.
One of the aims of recent research in this area has been to devise general algorithms
that will work on a wide variety of image types, without application-specific pre-
processing.

Intensity-based registration algorithms can be used for a wide variety of appli-
cations: registering images with the same dimensionality, or different dimensional-
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ity; both rigid transformations and registration incorporating deformation; and both
inter-modality and intramodality images. Most algorithms are applicable to only a
sub-set of these applications, but some are quite generally applicable.

In this section, we review the main similarity measures used for intensity-based
image registration and describe the applications in which they are used. All these
algorithms are iterative, so each similarity measure needs to be optimized. Issues
specifically related to optimization are discussed in section 8.5.2.

In this section we introduce some new notation. The images to be registered are
A and B. The sets of voxels in these images are fA(i)g and fB(i)g respectively.
We will treat image A as a reference image, and B as an image that is iteratively
transformed to B0 = T (B) by successive estimates of the registration transforma-
tion T . The transformation estimates will change the overlap between the images
being registered. Voxel-similarity measures are invariably calculated for the set
of voxels in the overlapping region of A and B0, i.e., within A \ B0, which is a
function of T and so changes as the algorithm iterates. For some voxel-similarity
measures, information from the intensity histogram is used, so we need to refer
directly to intensity values in the image, rather than index voxels. Medical images
may have 10 bits (1024 values), 12 bits (4096 values) or even 16 bits (65536 val-
ues) worth of intensity information per voxel. Many algorithms that use intensity
information group voxel values into a smaller number of partitions, for example 64,
128 or 256 partitions. We refer to the sets of intensity partitions in images A and
B0 as fag and fbg, respectively, and the number of intensity partitions used as Na
and Nb. Because the range of voxel intensities in an image is dependent on T , fbg
may also be a function of T .

8.5.1 Similarity Measures

8.5.1.1 Image subtraction

If the assumption is made that the images A and B being registered are identi-
cal, except for the misalignment, then an intuitively obvious similarity measure to
use is the sum of squares of intensity differences (SSD). In this case, SSD will be
zero when the images are correctly aligned and will increase with misregistration-
registration error. In the slightly more realistic scenario in which the A and B

differ only by Gaussian noise, then it can be shown that SSD is the optimum mea-
sure [82].

Certain image registration problems are reasonably close to this ideal case. For
example, in serial registration of MR images, it is expected that the images being
aligned will be identical except for small changes, which might result from disease
progression or response to treatment. Similarly, in functional MR experiments,
only a small number of the voxels are expected to change during the study, so all
the images that need to be registered to correct for patient motion during the study
are very similar to each other. If only a small fraction of the voxels being aligned
are likely to have changed between image acquisitions, SSD is likely to work well.
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This approach has been used by Hajnal et al [83] and is used in the SPM software
by Friston et al [84]. This approach can fail if the data diverges too much from the
ideal case. For example, if a small number of voxels change intensity by a large
amount, they can have a large effect on the change in squared intensity difference.
For this reason, it is sometimes desirable to pre-segment parts of the image prior to
registration. This preprocessing is commonly done for the scalp when carrying out
serial MR brain registration, where the scalp can deform.

It is worth remembering that the assumption of Gaussian noise is frequently
broken in medical images. In MR magnitude images, the noise is Rician [85],
which is approximately Gaussian for high intensity parts of the image but is a long
way from Gaussian in low intensity regions. Also, artifacts caused by reconstruc-
tion or subject motion introduce noise that is non-Gaussian.

Algorithm 8.5: Sum of Squares of Differences

For images A and B with voxels i, find the transformation T to minimize:

SSD =
X
i

jA(i) �B0(i)j2 8i 2 A \B0

8.5.1.2 Correlation Coefficient

If the intensities in images A and B are linearly related, then the correlation
coefficient CC can be shown to be the ideal similarity measure [82]. Once again,
few registration applications will precisely conform to this requirement, but many
intramodality applications come sufficiently close for this to be a useful measure.

Algorithm 8.6: Correlation Coefficient

For images A and B with voxels i, find the transformation T to maximize:

CC =

P
i
(A(i) � �A):(B0(i) � �B0)

f
P

i
(A(i) � �A)2:

P
i
(B0(i)� �B0)2g1=2

8i 2 A \B0

where �A and �B0 are the mean values of voxels in image A and the trans-
formed image B respectively.
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8.5.1.3 Variance of intensity Ratios

Both SSD and CC are suitable only for intramodality registration. Woods in-
troduced the variance of intensity ratio measure (VIR) [86, 87] in two variants, the
first for registration of different PET brain images and the second for registration
of MR and PET brain images. The measure has subsequently become widely used
also for serial MR registration of the brain [88]. The multimodality registration al-
gorithm makes an idealized assumption that “all pixels with a particular MR pixel
value represent the same tissue type so that values of corresponding PET pixels
should also be similar to each other”. The algorithm therefore minimizes the nor-
malized standard deviation of PET voxel values for each MR intensity value (or
partitioned intensity value). The VIR algorithm can usefully be thought of in terms
of intensity histograms. For each intensity partition a in the MR image, there will
be nA(a) voxels distributed throughout the MR image volume that have an inten-
sity within this partition. For a given estimate T of the registration transformation,
there will be nA(a) PET voxels that are co-located with these MR voxels. The
intensities of these PET voxels could be plotted as a histogram. The VIR algorithm
aims to find the transformation T that minimizes the spread of that histogram for
all partitions. The algorithm can fail unless the histogram for each partition is uni-
modal. For both MR-PET registration and serial MR registration of the head, it
is normal to remove extra-dural tissue before running the algorithm. This prepro-
cessing step helps to avoid bi-modal or tri-modal histograms, and the segmentation
process can be relatively crude [77].

Algorithm 8.7: Variance of Intensity Ratios

Find T to minimize V IR, where

V IR =
X
a2fag

nA(a)

N

�
B

0(a)

�
B

0(a)

where nA(a) is the number of voxels in image A with intensity a, �B0(a)

and �
B

0(a) are the mean and standard deviation of the voxels in image B0

that co-occur with voxels whose intensities lie in partition a in image A, and
N is the number of voxels in A \B0.

We can calculate an alternative value of V IR by replacing A with B and a
with b throughout, and vice versa. These values of V IR will be different,
and the choice of V IR measure will depend on the application.

For intramodality registration, each partition consists of one intensity value.
For MR-PET registration, 256 intensity partitions are typical.
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8.5.1.4 Joint histograms and joint probability distributions

Statistical classifiers have been widely used in MR image analysis for segmen-
tation of multi-spectral data for many years. In these approaches, a joint histogram
is constructed from two images that are correctly aligned (e.g.: the first and sec-
ond echo images from a spin-echo acquisition). A joint histogram is n-dimensional
where n is the number of images used to generate it. The axes of the histogram are
the intensities (or intensity partitions) in each image, and the value at each point in
the histogram is the number of voxels with a particular combination of intensities
in the different spectral components.

If the joint histogram is normalized, it becomes an estimate of the joint proba-
bility distribution function (PDF) of intensities in the n images.

Algorithm 8.8: Calculating a joint PDF

For two images A and B0 related by a transformation T , calculate the two-
dimensional PDF can be calculated for intensity partitions fag and fbg:

1. Allocate an Na by Nb array HIST [j; k].

2. Initialize the histogram: HIST [j; k] = 0 for all j; k

3. For each voxel i 2 A\B0, calculate intensity values A(i) and B0(i), calcu-
late the intensity partition numbers a and b corresponding to A(i) and B0(i),
and increment HIST [a;b]

4. Calculate
P

j;k
HIST [j; k]

5. Normalize the histogram to calculate the PDF:

PDF [j; k] =
HIST [j; k]P
j;k
HIST [j; k]

Note that elements in the array PDF are floating point, not integer.

For many image modality combinations, the PDF changes with T . Example
histograms as a function of T are shown in Figure 8.7. This observation lead sev-
eral research groups to investigate similarity measures calculated from the PDF,
which could be optimized to register the images. The attraction of this approach is
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that the observed change in PDF with T is qualitatively similar for many modality
combinations: the signal in the PDF is “clustered” at registration but diffuses with
misregistration.

The most successful similarity measures calculated from the PDF are based on
information theory.

8.5.1.5 Joint entropy

The Shannon entropy H is widely used as a measure of information in many
branches of engineering. It was originally developed as part of information theory
in the 1940s and describes the average information supplied by a set of symbols
fsg whose probabilities are given by fp(s)g.

H = �
X
s

p(s) log p(s)

If all symbols s have equal probability, then entropy will be at maximum. If
one symbol has a probability of 1 and all others have a probability of zero, then
entropy will have a minimum values.

At first sight, image registration has little to do with measuring the amount of
information being transmitted down a communication channel. The use of entropy
and other information-theoretic measures for image registration came about, how-
ever, after inspection of joint histograms and PDFs. When the images are correctly
aligned, the joint histograms have tight clusters, surrounded by large dark regions.
These clusters disperse as the images become less well registered. The tight clus-
ters in the histograms at registration represent a small number of symbols s having
high probabilities p(s). Surrounding dark regions in the joint histogram represent
large numbers of symbols with probability zero. As the clusters disperse, the high
intensity regions of the joint histogram become less intense (their probabilities de-
crease), and previously dark regions in the histograms become brighter (there are
fewer histogram entries with zero or very low probabilities). Misregistration, there-
fore, results in an increase in histogram entropy.

As a consequence of this observation, it was proposed that the entropy of the
PDF calculated from images A and B0 should be iteratively minimized to register
these images.

Minimizing joint histogram entropy to register images can be thought of as an
extension of V IR minimization, Algorithm 8.7. V IR minimization tends to mini-
mize the spread of the histogram of voxels in image B0 for each intensity partition
in image A. Provided this histogram is unimodal, then minimizing the spread will
also minimize the entropy. The joint entropy measure has two advantages over
V IR. Firstly, it minimizes the spread of clusters in two dimensions rather than
just one. Secondly, minimizing entropy does not require that the histograms are
unimodal in the way that minimizing variance does. For this reason, joint entropy
would seem more generally applicable to multimodality registration than V IR,
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(a)

(b)

(c)

Figure 8.7: Example joint histograms, or joint probability distribution functions,
from Hill et al [89]. These are produced from images A and B0 using algorithm
8.8. Intensities from image A are plotted along the horizontal axis, and those from
image B0 on the vertical axis. In row (a), A and B are identical MR images of
the head. In row (b), A is a CT image of the head and B an MR scan of the head,
and in row (c), A is an MR image of the head, and B a PET image of the head.
For all modality combinations, the histograms are calculated for three different
transformations T : the identity (left), a lateral translation of 2mm (centre) and a
lateral translation of 5mm (right).
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and also obviates the need to segment some parts of the image in order to avoid
bi-modal histograms.

Algorithm 8.9: Minimization of Joint Entropy

For a PDF PDF [j; k] calculated from images A and B using algorithm 8.8,
find the transformation T to minimize:

H = �
X
j;k

PDF [j; k] log PDF [j; k]

Note: For most registration applications, a slight modification to this measure
is needed, as described in sections 8.5.1.6 and 8.5.1.7.

8.5.1.6 Mutual information

Entropy minimization as described in section 8.5.1.5 is not a robust voxel-
similarity measure for all types of image registration. The problem is that the PDF
from which the joint entropy is calculated is defined only for the region of overlap
between the two images, i.e., within A \B0. The range and distribution of inten-
sity values in the portion of either image that overlaps with the other is a function
of T . The change in overlap with T can lead to histogram changes that mask the
clustering effects described above.

The solution to this difficulty, proposed independently by researchers at Leu-
ven, Belgium [90] and MIT in the US [91], is to use the information-theoretic
measure Mutual Information (MI) instead of entropy H . MI normalizes the joint
entropy with respect to the partial entropies of the contributing signals. In terms
of image registration, this measure takes account of the change in the intensity
histogram of images A and B0 with T .

Algorithm 8.10: Maximizing Mutual Information

Find the transformation T to maximize MI(A;B0) as follows:

1. Calculate a PDF PDF [j; k] from images A and B0 using Algorithm 8.8

2. Calculate the joint entropy H(A;B0) using the formula in Algorithm 8.9.

3. Calculate the marginal entropies H(A) and H(B0):
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H(A) =
X
j

 X
k

PDF [j; k] log
X
l

PDF [j; l]

!

H(B0) =
X
k

0
@X

i

PDF [i; k] log
X
j

PDF [j; k]

1
A

4. Calculate the mutual information MI(A;B0):

MI(A;B0) = H(A) +H(B0)�H(A;B0)

8.5.1.7 Normalization of mutual information

Mutual information overcomes many of the shortcomings of joint entropy but
can still fail for some types of clinical image, particularly those which contain large
amounts of air (noise) around the outside of the subject. Improved performance of
mutual information can be obtained by various normalization schemes. These al-
gorithms are not taken from the information theory literature but have been arrived
at through experiments on medical images. Despite its heuristic origins, the vari-
ant given below (from [92]) works extremely well in practice. Current validation
studies have shown that it works at least as well as mutual information and in some
cases performs better.

Algorithm 8.11: Maximizing Normalized Mutual Information

Perform Algorithm 8.10 but replace MI(A;B0) with:

NMI(A;B0) =
H(A) +H(B0)

H(A;B0)

8.5.2 Capture ranges and optimization

8.5.2.1 Optimization

In order to register two images using Algorithms 8.5 to 8.11, it is necessary to
find the optimal value of the similarity measure over a parameter space with di-
mensionality defined by the number of degrees of freedom of T . Each registration
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algorithm that makes use of a voxel-similarity measure tends to use a different op-
timization algorithm. There are two classes of optimization algorithm that can be
used: those that use of derivative information and those that do not. Where deriva-
tives can be calculated efficiently, they should be use to speed up optimization. A
detailed discussion of optimization techniques is outside the scope of this chapter.
A review of optimization techniques is given in Numerical Recipes in C [56]. Some
techniques are also discussed in Chapter 1.

8.5.2.2 Capture Ranges

In many optimization problems it is desirable to determine the globally optimal
solution. For image registration, however, the desired optimum is frequently a lo-
cal rather than global extremum of the voxel-similarity measure. This has several
important consequences for medical image registration. The reason that the global
optimum is not desirable can be understood by careful consideration of the behav-
ior of the similarity measures for large transformations. For the sum of squares of
difference (SSD) measure, we have previously assumed that for two images that
are very similar the smallest value of SSD will arise when the images are cor-
rectly aligned and that SSD will increase with mis-registration. However, if we
consider two head images surrounded by low intensity noise, then we may be able
to obtain a lower value of SSD if we mis-align the images so completely that only
the noise in the two images overlaps. This transformation produces a registration
that is clearly incorrect, since no features of interest in the images overlap, but it
is nevertheless a more nearly optimal registration according to the similarity mea-
sure. Similarly, with regard to the information-theoretic measures, we have been
assuming that the clustering of features in the joint histogram decreases with in-
creasing mis-registration. Once again, if we transform the images sufficiently so
that only background noise overlaps, we observe a very tight cluster in that area of
the histogram corresponding to background intensities in both images. This trans-
formation will produce a lower joint entropy, and a higher mutual information, than
the correct alignment.

The fact that the desired optimum is local rather than global does not invalidate
the use of voxel-similarity measures for medical image registration. It does, though,
have implications for robust implementations.

The correct local optimum value of the similarity measure will be the optimum
value within a portion of parameter space termed the capture range. Provided the
starting estimate of T is within the capture range, the registration algorithm can be
expected to converge to the correct solution. The capture range will depend on the
field of view and intensity information in the images, so cannot be known a priori.
Intuitively, it might seem that the starting estimate should be closer to the correct
solution, than to the solution in which only background voxels overlap, and it has
been shown that the for MR-CT and MR-PET registration, similarity measures will
converge to the correct solution within about 20-30mm and 20-30 degrees of this
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solution [93,94]. These ranges should be treated as a ‘rule of thumb’. It is essential
when registering images using these algorithms to inspect the solution visually. A
solution that lies outside the capture range is immediately recognizable as incorrect,
and a better solution can be found by re-starting the algorithm with a user-provided
starting estimate that is nearer to the correct solution.

A further implication of the existence of a capture range is that the direct ap-
plication of stochastic optimization algorithms such as simulated annealing and
genetic algorithms are inappropriate for medical image registration using voxel-
similarity measures.

8.5.2.3 Optimizing similarity measures for sub-voxel registration

The calculation of similarity measures for a given value of T in general, re-
quires interpolation of the images. For an iterative registration algorithm, fast in-
terpolation (most commonly linear) is required. Because the interpolation is not
perfect, it alters the intensity histogram. Linear interpolation, for example, causes
a spatially varying, low-pass filtering of the images [95], whose interaction with
edges will tend to smooth the histogram, and in spatially smooth areas will con-
tribute to a sharpening of the histogram. The consequence of this effect can be an
interpolation-dependent change in the value of the similarity measure, which can
cause fluctuations of the similarity measure, with the period of the voxel separation.
When using an entropy-based measure, blurring of the image results in increased
entropy. The blurring is zero at positions coinciding with voxel locations and is
maximum at displacements of half a voxel from these positions. In multimodality
registration, the required registration accuracy is often no better than the dimen-
sions of a single voxel, so these interpolation errors are unimportant. In some
multimodality applications, however, and also in intramodality applications such
as serial MR registration, an accuracy considerably better than the dimension of a
voxel is required. In these cases, the artifacts caused by interpolation can introduce
local extrema in parameter space, leading to reduced registration accuracy. The
interpolation artifacts are greatest for high spatial frequency features in the images.
One solution to the problem is, therefore, to blur the images prior to carrying our
registration, thereby reducing the artifacts [96]. The effect is also reduced if the
starting estimate of T includes a rotational component, or if the voxel dimensions
in the images being registered are different.

8.5.3 Applications of Intensity-based methods

8.5.3.1 Types of transformation

In the discussion of Algorithms 8.5 to 8.11, we have not stated the form of
geometrical transformation T that we wish to find. Many of these measures have
been applied to a wide variety of registration problem, including:

� rigid registration of 3D images of the same subject taken at different times
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using the same modality

� rigid registration of 3D images of the same subject taken at different times
using different modalities

� rigid registration of 2D projection images and 3D images of the same subject
taken at different times.

� nonrigid registration of images of the same subject taken at different times

� nonrigid inter-subject registration of the 3D images of the head.

Mutual information and normalized mutual information have been demonstrated
to provide good quality image registration for all these types of application. The
validation of the registration quality is a particularly difficult problem when calcu-
lating nonrigid transformations and is a rather poorly defined problem when align-
ing images from different subjects. See Chapter 10 for a discussion of validation
methods. In the sections below, we describe the application of voxel-similarity
measures to a selection of medical image registration tasks.

8.5.3.2 Serial MR

It is increasingly common for a patient to have multiple magnetic resonance im-
ages acquired at different times, in order to monitor disease progression or response
to treatment. Traditional radiological viewing of these images involves printing the
images onto film and viewing them side-by-side on light boxes. This approach can
make it difficult to identify small changes in the images between scans. A more
sensitive technique is to subtract the images, generating difference images, and to
view the difference images to identify regions of the images that have changed.
The generation of difference images requires that the images acquired at the dif-
ferent times have identical contrast characteristics and that any drift in the scanner
scaling parameters is corrected using suitable QA procedures, such as phantom
scanning [97,98]. Serial MR registration also requires accurate alignment, because
registration errors of less than a voxel can lead to artifacts that can mask the changes
of interest in the patient. The required registration accuracy will be a function of
the spatial frequency content of the images and of the contrast-to-noise ratio. The
required accuracy is often stated as of the order of 10s or 100s of microns.

Serial MR registration is almost invariably applied to the brain and makes use
of a rigid transformation. Indeed, for visual inspection of difference images, it is
undesirable to use nonrigid registration transformations because they may produce
a transformation that removes the changes of interest.

With serial MR registration the images are likely to be very similar, and so the
measures SSD and CC are widely used. V IR, MI and NMI are also frequently
used. The advantage of the information-theoretic measures in this case is that they
are less sensitive to small numbers of voxels that change by large amounts, than
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are the SSD and CC measures. When using SSD or CC , data preparation by
segmentation of extra-dural tissue, or small lesions that have changed substantially
in intensity is often essential. The information-theoretic approaches should be less
sensitive to these small numbers of outlying voxels, but where the changes are
large, data pre-processing may still be required.

For many applications, the choice of an optimization algorithm that will itera-
tively find the optimum transformation to sub-voxel accuracy is as important as the
choice of similarity measure.

In serial MR registration, the choice of interpolation algorithm is also impor-
tant. The use of tri-linear interpolation is equivalent to convolving the data with
a triangular kernel of variable width, resulting in a spatially varying blurring of
the data. When subtracting image A from the blurred image B0, edge artifacts re-
sult. Higher order interpolation, such as is produced with the use of truncated sinc
kernels [83] or skew transformations [99] is more effective.

8.5.3.3 MR and CT

Registration of MR and CT images is most often applied to images of the head,
and is used for surgery and radiotherapy planning. The registration transformation
determined is usually a rigid one. On some occasions, however, it may be bene-
ficial to search for an affine transformation because it can generate more accurate
registration in cases when there are scaling or skew errors in the data. When the
images being registered are subsequently going to be used for guiding treatment
(image-guided surgery or radiation therapy), then it is not advisable to use an affine
transformation unless one modality is known to have satisfactory geometrical prop-
erties and is treated as the reference image A. Otherwise, the images may be well
registered but measurements made in the registered images may be inaccurate. It
is preferable in these cases to calibrate the imaging devices as part of a routine
QA procedure and to rectify the images prior to registration to remove any residual
geometric distortion (see Section 8.2.3 above). The most problematic aspects of
imaging geometry are geometric distortion in MR and errors in CT bed speed and
gantry tilt angle. For 3D gradient echo MR images, object dependent distortion is
predominantly in the read-out direction and can be minimized by selecting a high
bandwidth-per-pixel (readout-gradient strength) in that direction (at a slight cost in
signal to noise ratio). The residual scaling errors in MR due to gradient strength
errors, and the CT errors, can be corrected using phantom experiments. For some
CT systems, it is advisable to carry out phantom measurements with the CT couch
loaded with weighted similar to that of a patient.

Since MR and CT images have very different intensity distributions, image
subtraction is never used for viewing the aligned images. As a result, the very high
accuracy requirements of serial MR registration do not apply here. The accuracy
requirement for MR-CT registration is usually governed by the accuracy of the
treatment system that will subsequently be used. Since neurosurgery and radio-
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surgery systems are accurate to a small number of millimeters, registration accuracy
of about 1mm is normally sufficient.

A study by West et al. established that, if the images are free from motion
artifacts and have been rectified to remove scaling errors and distortion, registration
accuracy of better than 1mm is possible when information-theoretic measures are
used [77]. It is important to note that the images used in that validation study had
similar fields of view in both modalities, covering most of the head, and had very
similar slice orientations. It is possible to register MR and CT images that have
very different slice orientations and fields of views. For example, it is possible to
register coronal CT images with axial MR images or to register CT images with a
field of view of about 20mm around the temporal bone to MR images of the entire
head. In both these cases the rigid transformation solution may include translations
of several 10s of millimeters and rotations of many 10s of degrees. In such cases
it is advisable to provide the algorithm with a initial estimate of T to increase the
likelihood that it is starting within its capture range (see Section 8.5.2 above). Also,
since the overlap between images at the correct registration transformation include
only a small portion of one or both modalities, the registration accuracy in these
cases may be lower than in the validation study by West et al..

8.5.3.4 MR or CT and PET

Registration of MR or CT images with PET images of the head was one of the
first applications of medical image registration [100]. Because of the relatively low
resolution of PET images, it is frequently desirable to make use of anatomical de-
tail from MR or CT images to assist in their interpretation. The resolution of PET
images is of the order of 6mm - 10mm, and a registration accuracy of 2-4mm is con-
sidered desirable. Although the low resolution of PET images reduces the required
registration accuracy compared to MR-CT registration, there are several difficulties
in this registration application. Firstly, some PET tracers are very specific to certain
parts of the brain. Although several algorithms, including variance of intensity ra-
tios (Algorithm 8.7) and mutual information (Algorithm 8.10) have been shown to
work well when registering MR images to PET fluoro-deoxyglucose images [77],
the accuracy of registration of the more specific tracers will be tracer-dependent
and may be much lower. Secondly, for patients with large lesions, the PET images
can have very large intensity abnormalities. A lesion that makes a small difference
to image intensities in an MR scan may make a very large difference to intensities
in the PET image. Many of the images used in the validation study by West et
al [77] had large lesions of this sort, and the median registration accuracy of both
V IR and MI was better than 4mm, suggesting that these measures are reasonably
robust to these intensity abnormalities.
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8.5.3.5 Nonrigid 3D registration

This chapter focuses on rigid registration algorithms because these are the most
mature image registration methodologies. There is, however, considerable research
going on in extending the use of intensity-based registration algorithms to nonrigid
transformations. While we do not attempt in this section to a give a comprehensive
review of this field, we do explain how voxel-similarity measures can be extended
beyond rigid or affine transformations.

It is possible to apply voxel-similarity measures to nonrigid registration by plac-
ing a regular grid of N nodes across images A andB being registered. The position
of these nodes in B is then iteratively altered while optimizing a voxel-similarity
measure. One approach is to calculate a rigid or affine transformation for a sub-
image around each node, and then to smooth the resulting set of discrete transfor-
mations [101]. Alternatively, each node can be treated as a spline knot, and the
nodes iteratively adjusted, with the the entire image being transformed using the
spline transformation at each iteration. The approximating B-spline, which is de-
scribed by Eqs. 8.15 and 8.16, has the advantage that change in position at a node
has only a local effect on the deformation (extending about two node separations),
and this approach is used in an implementation by Rueckert et al [102].

The first approach involves multiple registrations of sub-images. The accuracy
of registration at each sub-image will be dependent on the number of voxels in the
sub-images and the intensity information contained. Each sub-image registration
involves 6 or 12 degrees of freedom (for rigid and affine transformations respec-
tively), and this is carried out N times. Because each sub-image contains only
a small number of voxels, the information-theoretic approaches may suffer from
a poor estimate of the PDF, and hence noisy values of the voxel-similarity mea-
sures. The SSD and CC measures will be less sensitive to this problem. The
second approach involves 3 translational degrees of freedom per node, producing
3N degrees of freedom in total, with the similarity measure being calculated for
the entire images, rather than just for sub-images. This approach has the advantage
that large numbers of voxels are used in each iteration, making the information-
theoretic measures practicable.

These algorithms have been applied to both intrapatient registration in which
there is tissue deformation and to interpatient registration. Example mean and vari-
ance images from a cohort of PET FDG patients are shown in Figure 8.8. In this
figure an affine transformation and a spline interpolation are compared for use in-
terpatient registration. The similarity measure is in both cases normalized mutual
information. The mean image is sharper, and the variance image has lower values
when the transformation with larger numbers of degrees of freedom is used. Ap-
propriate techniques for validation of these algorithms remains a matter of debate.
By changing the spacing of the nodes, the algorithms are able to find a transfor-
mation with more degrees of freedom. If the number of nodes is too low, then the
transformation may be too smooth to align the images. If the number of nodes
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(a)

(b)

Figure 8.8: Mean and variance images generated from a cohort of 5 PET images
of different subjects. Row (a) shows an example axial slice from the mean (left)
and variance (right) images after registration using an affine transformation with
12 degrees of freedom. Row (b) shows the corresponding slices after registration
using a transformation with 2160 degree of freedom. The transformation in (b)
is determined by iteratively adjusting the positions of B-spline control points on a
20mm grid. Normalized mutual information was the voxel similarity measure used
by both algorithms. The variance images are displayed with the same intensity
scale in both cases.
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is too high, then the transformations may inappropriately “correct” for features of
interest, such as lesions.

8.5.3.6 2D-3D registration

Many medical imaging modalities generate images by perspective projection
(see Section 8.2.2.4 above). The most common of these is conventional radiog-
raphy or fluoroscopy. However, with video endoscopy and microscopy becoming
more widely used, video images are increasingly common. Aligning projection
images with 3D tomographic modalities is a type of 2D-3D registration and re-
quires an estimate of both the 3D orientation of the objects being registered and
the projection transformation. For rigid structures, the 3D orientation information
is a rigid transformation, so T is the composition of a rigid transformation and the
projection transformation.

In many medical imaging applications, the projection transformation can be
measured as part of a calibration procedure, so the registration problem has just six
degrees of freedom.

The approach used for registration of either video images or radiographs to to-
mographic images is to optimize a similarity measure while iteratively transforming
the tomographic image. For each iteration, a simulated projection image is gener-
ated from the tomographic image, and the similarity measure is calculated from
these. In this case, image A is the projection image, and B the tomographic image.
For each estimation of the transformation T , image B0 is a simulated projection
generated from the tomographic image B. For example, when registering a radio-
graph A to a CT scan B, a digitally reconstructed radiograph B0 is produced using
T and a model of the x-ray image formation process to simulate an x-ray projection
by integrating the CT voxel intensities. This approach has been used by several au-
thors [103,104]. When registering a video image A to a tomographic image B, B0

can be a perspective surface rendering of the image structures in B that are visible
in A [105, 106].

8.6 Conclusion

This chapter represents the current state of the field of medical image registra-
tion. Registration is defined as the determination of a geometrical transformation
that aligns points in one view of an object with corresponding points in another
view of that object or another object. Using this definition the chapter treats reg-
istration as it is applied to images of anatomy that have been acquired by medi-
cal imaging modalities, especially the tomographic modalities, such as CT, MR,
and PET. Because the body moves in three dimensions, the emphasis is on three-
dimensional registration problems. Commonly used classes of geometrical trans-
formations are presented with an emphasis on rigid and scaled transformations.
Methods of registration are divided into point-based, surface-based, and intensity-
based; well-established algorithms are described for all three categories, and both
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theoretical and practical discussions of their applications are provided.
The emphasis in this chapter is on rigid registration because, as of this writ-

ing, most of the work and most of the progress in registration has been made in
this area. Rigid registration is important because of its simplicity and because of
its many applications to the relatively rigid head and to orthopedics, especially in
image-guided surgery. Thanks to the researchers listed in the bibliography of this
chapter, much is now known about this area, and many effective algorithms have
been developed, some of the best of which are described above. These rigid reg-
istration problems include both prospective registration, in which fiducial markers
are employed, and retrospective registration, in which they are not. Recent re-
search has demonstrated that the most effective registration algorithms for many
types of retrospective application are those based on intensities. Point-based and
surface-based methods can also be used for these applications, but they require a
greater degree of user interaction and have typically exhibited lower accuracy than
the intensity-based methods. Techniques based on points and surfaces do, however,
play an important role to in the registration of images to physical space, because
the internal information necessary for intensity-based registration is typically un-
available in physical space. Research in point-based and surface-based approaches
to this latter problem are central to the advancement of image-guided surgery and
radiosurgery.

While the head and bones are rigid, most of the rest of the body is nonrigid,
and, therefore, nonrigid transformations must be employed to register images of
most of the anatomy. Furthermore, interpatient registration requires nonrigid trans-
formation for all parts of the anatomy. These transformations are far more complex
and varied than rigid ones. The appropriate form of nonrigid transformation is for
intrapatient registration strongly affected by the mechanics of the tissue involved
and for interpatient registration is determined by the natural variation in anatomic
development. While there are still many important problems to be solved in the
area of rigid registration, it seems likely that much of the future work in the field of
medical image registration will focus on nonrigid registration.
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