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Figure 1: Molecular models of an A-DNA molecule. The leftmost shows the ball and stick model; the center left and right show the solvent
accessible model and molecular skin model respectively; the rightmost shows the zoomed mesh details in the box of the center right figure.

ABSTRACT

We present an efficient algorithm to mesh the macromolecules sur-
face model represented by the skin surface defined by Edelsbrunner.
Our algorithm overcomes several challenges residing in current sur-
face meshing methods. First, we guarantee the mesh quality with
a provable lower bound of 21◦ on its minimum angle. Second, we
ensure the triangulation is homeomorphic to the original surface.
Third, we improve the efficiency of constructing the Restricted De-
launay Triangulation(RDT) of smooth surfaces. We achieve this
by constructing the RDT using the advancing front method with-
out computing the Delaunay tetrahedrization of the sample points
on the surfaces. The difficulty of handling the front collision prob-
lem is tackled by employing the Morse theory. In particular, we
construct the Morse-Smale complex to simplify the topological
changes of the front. Our implementation results suggest that the
algorithm decrease the time of generating high quality homeomor-
phic skin mesh from hours to a few minutes.
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netics; I.3.8 [Computer Graphics]: Computational Geometry and
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tion
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1 INTRODUCTION

Surface models are essential in many fields of computational sci-
ence. For example, molecular surfaces are preferable in investigat-
ing the inter-molecular interactions such as the ligand docking. The
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reason is that the surface model can represent the geometry of the
molecules better than other models such as the ball and stick model.
See Figure 1 as an example.

There are three existing molecular surface models [5]. The van
der Waals surface (or VW) model is defined as the boundary of
union of the atoms by considering each atom as a ball with its van
der Waals radius. The other two surface models are defined through
tracing a probe sphere that rolls over the VW model. The solvent
accessible (or SA) model is the surface traced by the center of the
probe sphere. The molecular surface (or MS) model is the surface
traced by the inward-facing surface of the probe sphere. The MS
model has a major advantage over the other two for its smooth-
ness in most cases. Because smooth surfaces can be meshed with
good quality triangles, MS model may facilitate accurate numeri-
cal computations. However, sharp corners still exist since the MS
model can have self-intersections. These singularities result in un-
faithful representations of the molecules and unrobust visualization
software implementation [5].

Edelsbrunner [8] defines a paradigm of smooth surfaces for
molecular modeling, namely, the skin surface. The skin model of a
molecule is similar to its MS model. Moreover, it has a number of
distinct properties such as smoothness, decomposability and com-
plementarity and they are desirable in molecular modeling applica-
tions. In addition, the skin surface can deform freely with smooth
transitions, which may be used for molecular dynamics simulations.
Therefore, the skin surface model outruns the existing models for
macromolecules such as DNAs and proteins.

However, there is still no efficient algorithm to mesh the skin
surface for visualization and numerical computations. Although
Cheng et al. [14] presented and implemented two algorithms,
namely, a static and a dynamic skin triangulation algorithms, their
performance are unsatisfactory. It will take hours to generate a skin
surface of a protein molecule with about 1000 atoms. This paper
proposes an efficient algorithm to mesh the skin surfaces.



1.1 Challenges in Surface Meshing

Surface meshing has been studied widely in the computer graphics
and computational geometry literature [2, 4]. In order to support vi-
sualization and numerical simulation of surface models, the mesh-
ing algorithms are required to generate correct surface mesh with
high triangle quality efficiently. However, several challenges still
reside in existing methods. First, there should be provable bounds
on the triangulation quality. Second, the output triangulation should
be topological equivalent to the original surface. Both issues are
important for the applications such as the numerical computations
with finite element method (FEM). Finally, with the guarantees of
mesh quality and topological correctness, the algorithm should be
efficient and guaranteed to terminate.

Nevertheless, current works can not overcome all these chal-
lenges at the same time. The well-known marching cube algorithm
[13] can achieve topological consistent implicit surface polygoniza-
tion efficiently. However, it only ensure the triangulation is a man-
ifold, which may not be homeomorphic to the original surface. On
the other hand, Stander et al. [16] study the homeomorphic im-
plicit surface polygonization by tracking the critical points of the
implicit function using Morse theory. The surface reconstruction
algorithm proposed by Amenta et. al [1] generate a homeomorphic
mesh with sufficiently dense sample points. Nevertheless, the algo-
rithm computes the Delaunay tetrahedrization of the sample points,
which would be slow for large point set. Furthermore, the output
mesh of all these works always includes bad shape triangles, that
is, the triangles with extreme sharp or obtuse angles. Chew [4] pro-
poses an algorithm to achieve guaranteed quality mesh for curved
surfaces without addressing the topological equivalence problem.

1.2 Objective

Our goal is to design a skin triangulation algorithm to satisfy the
following requirements:

• High efficiency;

• Good quality mesh;

• Homeomorphic mesh;

• Correctness and termination.

First, we aim to mesh the skin model of proteins within a few
minutes on PC platforms. At the same time, the algorithm will
guarantee the mesh quality with a lower bound on the minimum
angle in the triangulation, that is, no angles in the mesh are less than
21◦. Moreover, we can construct a homeomorphism between the
triangulation and the skin surface. Finally, we require the algorithm
is provable correct and terminates.

1.3 Our Approach

We approximate the skin surface by constructing its restricted
Delaunay triangulation incrementally using the advancing front
method without computing the Delaunay tetrahedrization of sample
points. In particular, we use the Morse-Smale complex to handle the
front collision problem in the advancing front meshing.

The advancing front method constructs the surface mesh by iter-
atively attaching triangles to the front, which is the boundary of par-
tial triangulations. However, the newly added triangles may over-
lap existing ones as the front advancing and we call this the front
collision problem. Conventional methods to handle this problem
is time consuming because the potential collisions are detected by
frequently checking the distance of any two vertices on the front
[11]. Even though the collisions can be detected and the front stops

advancing at such regions, there will be cracks in the partial trian-
gulations when no more triangles can be added. Fixing these cracks
involves heuristics, which always lead to robustness problems of al-
gorithms. Inspired by the ideas from Morse theory, We advance the
front with the priority specified by a Morse function on skin sur-
faces. As a result, we can predict the potential front collisions and
connect different parts of the front correctly according to topologi-
cal changes of the front while it is advancing.

Nevertheless, difficulty arises for the topologically complex re-
gions, that is, the front may change its topology in a sophisticated
way corresponding to the small-scale details of the surface. With
the recent results on the topological simplification [7], we com-
pute the Morse-Smale complex to simplify the topological changes
of the front. Finally, we can detect the front collisions efficiently
and avoid cracks fixing. Our implementation suggests that our al-
gorithm achieves high efficiency. The computation time of a skin
surface decreases from hours to a few minutes.

Moreover, we achieve homeomorphic mesh with high quality by
adapting the triangle size to the surface curvature. Specifically, we
control the local size of the mesh to be proportional to the radius
of the maximum principle curvature of the surface. Two conditions
are maintained while attaching triangles and these conditions guar-
antee the mesh quality and homeomorphism to the surface. The op-
erations of maintaining the conditions are proved correct and avoid
infinite loops bouncing back and forth, which implies the correct-
ness and the termination of the algorithm.

It should be noted that our application of Morse theory on
skin triangulation differs from Stander et al. [16]. On one hand,
we use a height function on the surface, a smooth 2-manifold,
as the Morse function. Stander et al. use the function that
defines the implicit surface as the Morse function, which could
be considered as a height function on a 3-manifold. On the other
hand, Stander et al. guarantee the homeomorphism between the
mesh and the implicit surface by tracking the critical points of
the implicit function. However, our homeomorphic triangulation
is guaranteed by locally controlling the triangles size. Besides,
a related concept to the Morse-Smale complex in our paper is
the Reeb graph used in the surface reconstruction [10]. The
Reeb graph is a compressed representation of the components of
implicit surfaces. However, the Morse-Smale complex expresses
the gradient flow on surfaces. We use the Morse-Smale complex
of a height function to simplify the topological changes of the front.

Outline. Section 2 introduces the skin model of molecules and
some geometric conditions of the skin triangulation. In Section 3,
we handle the front collision problem by predicting the topological
changes of the front according to Morse theory. We describe our
algorithm in Section 4. Finally, we demonstrate some triangulation
results in section 5 and conclude the paper with suggestions for the
future works in Section 6.

2 BACKGROUND

In this section, we give a brief summary of the skin model of
molecules. Readers who wish the details can refer to the works
of Edelsbrunner [8]. Then, we present the conditions for construct-
ing the homeomorphic skin triangulation with guaranteed quality,
which are cited from Cheng et al. [3].

2.1 Molecular Skin

A skin surface is defined by a set of weighted points

B = {bi = (zi,wi) ∈ R
3 ×R | i = 1..n},

where bi is a weighted point with zi as its position and wi as its
weight. The skin surface FB defined by B is the boundary of an in-



finite family of spheres derived from B by convex combination and

shrinking operation. Considering the shrinking factor as 1
2 , the skin

surface is a closed C1 continuous surface with continuous maxi-
mum principle curvature. It can be decomposed by the mixed com-
plex MB into a finite collection of quadratic patches, namely, sphere
patches and hyperboloid patches. The mixed complex MB is a col-
lection of polyhedra that partition the R

3 space. The portion of the
skin surface in each polyhedron is a quadratic patch.

To model a molecule with the skin surface, we consider each
atom as a weighted point bi ∈ B. That is, the position zi is the

center of an atom, and its weight wi is
√

2 times the summation of
the atom’s van der Waals radius with the radius of the probe sphere,
which is usually chosen as 1.4 Angstrom to represent the water as
solvent. Then, the skin surface FB gives a model of the molecule.
Figure 1 shows the SA model and the molecular skin model of a
DNA molecule. The molecular skin uses hyperboloid to blend the
spheres and forms a smooth surface model.

2.2 Skin triangulation

The triangulation of a skin surface is to form a simplicial complex
whose underlying space is homeomorphic to the skin surface.
We use the restricted Delaunay triangulation of a set of points,
T ⊆ FB, to approximate the skin surface, FB.

Restricted Delaunay triangulation. Let T ⊆ FB be a finite subset
of points on the skin surface. The restricted Voronoi polygon of
a ∈ T is defined as νa

′ = νa
⋂

FB, in which νa is the Voronoi cell
of a with respect to T in R

3. The dual of the restricted Voronoi
polygons is the restricted Delaunay triangulation, namely,

DT
′ =

{

conv (U)
∣

∣ U ⊆ T, FB ∩
⋂

a∈U

νa 6= /0
}

.

Conditions. For a restricted Delaunay triangulation DT
′ to be

homeomorphic to the skin surface, FB, the point set T has to sat-
isfy the closed ball property, which requires the restricted Voronoi
polygon is a topologically closed ball of appropriate dimension.[9].
Cheng et al. [3] propose to generate such a point set by adapting the
sizes of the edges and triangles in DT

′ to the local surface curvature.
At any point x ∈ FB, let κ(x) be the maximum principle curvature
at x. Call ρ(x) = 1/κ(x) the local length scale at x. Then, the DT

′

needs to satisfy two conditions,

[L] Rab > C
Q ρab, for every edge ab,

[U] Rabc < CQρabc for every triangle abc.

In Condition [L], notation Rab is the size of an edge ab ∈
DT

′ which is equal to ‖ab‖/2. Similarly, the size of a triangle
abc ∈ DT

′ is defined as Rabc that is the circumradius of the tri-
angle abc. The local length scale of the edge ab is defined as
ρab = max{ρ(a),ρ(b)} and that of the triangle abc is defined as
ρabc = min{ρ(a),ρ(b),ρ(c)}. C and Q are judiciously chosen pos-
itive constants. C controls how closely the mesh approximates the
surface and Q controls the quality of the mesh.

Cheng et al. [3] proved that the restricted Delaunay triangulation
DT

′ has the closed ball property if these two Conditions are satisfied
with C = 0.08 and Q = 1.65. This implies DT

′ is homeomorphic to
the skin surface FB [9]. At the same time, the minimum angle in

DT
′ is larger than arcsin 1

Q2 , which is around 21◦ for Q = 1.65.

In our algorithm, we will control the triangle sizes to maintain
these two conditions while constructing the skin triangulation incre-
mentally. As a result, we achieve homeomorphic skin triangulation
with a lower bound on its minimum angle.

3 FRONT COLLISION HANDLING

We employ the advancing front method to construct the surface
mesh. However, the front collision problem still arises. In this situa-
tion, the newly added triangles may overlap other existing triangles.
We introduce Morse theory to handle this problem. Firstly, we in-
troduce the Morse function and its relationship with the topological
changes of the front. Then, we construct the Morse-Smale complex
and utilize it to simplify the topological changes of the front.

3.1 Topological Changes of the Front

Morse theory on surfaces describes the topological changes of
the partial surface boundary specified by a function, namely, the
Morse function [15]. Firstly, we introduce the Morse function and
its critical points on surfaces. Then, we describe their relationships
with the topological changes of the front.

Morse function. We denote M as a smooth, compact 2-manifold
without boundary in R

3 and a function f : M → R. We assume a
local coordinate system (x1,x2) in a neighborhood of a point p ∈
M. The point p is a critical point of function f if all its partial
derivatives vanish with respect to the local coordinate system, that

is,
∂ f
∂x1

∣

∣

p
= ∂ f

∂x2

∣

∣

p
= 0. Otherwise, it is a regular point. If p is

a critical point, f (p) is the critical value of f at p. The critical
point p is non-degenerate if the Hessian of f at p, H(p), which
is the matrix of the second derivatives, is non-singular, namely, det
H(p) 6= 0. The function f is called a Morse function if all its critical
points are non-degenerate.

For a critical point p ∈ M, we can choose an appropriate local
coordinate system (x1,x2) in the neighborhood of p such that the

Morse function f is expressed in the form f (x1,x2) = ±x2
1 ± x2

2 +
f (p). The number of minuses is called the index of f at p. Thus,
there are three types of critical points on a smooth 2-manifold in
R

3, namely, minima with index 0, saddle points with index 1 and
maxima with index 2.

In this paper, we employ the height function h(p) = yp on M as
the Morse function if p = (xp,yp,zp). The critical points of h are
the points with horizontal tangent planes.

Topological changes of the front. Let Ma = {x ∈M | h(x)≤ a} be
the partial surface for some a ∈ R. Denote La = {x ∈ M | h(x) = a}
as the level curve at a. The curve La is the boundary of Ma and it is
the intersection of M and the horizontal plane Ta : y = a.

u
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r

s

t

h

h(t)

h(u)

h(s)

h(r)

h(q)

h(p)

Figure 2: Critical points and level curves of height function h on a
smooth 2-manifold. The points p,q are minima, r,s are saddle points
and t,u are maxima of h. Solid curves are the level curves at different
height.

We illustrate the topological changes of the level curve La at the
three types of critical points of h with the example in Figure 2.
Let ε be a small positive number. While we sweep a horizontal
plane Ta upwards from a = −∞, the partial surface, Ma, is empty



when a < h(p). After Ta passes the minimum p and when a =
h(p)+ ε , the level curve La changes from Lh(p)−ε = /0 to Lh(p)+ε ,

which is a topological circle. When the horizontal plane rises to
Th(r), the two topological circles in Lh(r)−ε touch at r. At the level

h(r)+ ε , the curve Lh(r)+ε becomes one topological circle. As the

height increases to h(s), Lh(s) changes to two topological circles

with their contact point at s. When the horizontal plane Ta arrives
at the maximum u, one topological circle converges to the point u.
Finally, Lh(t)+ε becomes empty after the horizontal plane passes the

maximum t.

By this observation, we are inspired to sweep the partial trian-
gulation over the skin surface in a similar manner. The topological
changes of the level curve correspond to the topological changes
of the front. Therefore, the front will collide around the critical
points on the skin surfaces. We set a protecting sphere with the
center at each critical point to detect the potential collisions of the
front. Thus, we only manage the topological changes of the front
within each protecting sphere. There are three kinds of topological
changes corresponding to the three types of critical points, namely,
“creation” at the minima, “bridge” at the saddle points and “seal” at
the maxima. For the radii of the protecting spheres, we will discuss
them in Section 4.2.

However, two critical points may be close to each other and their
protecting spheres have non-empty intersection. More sophisti-
cated solutions are needed in this case. One possible solution is
to decrease the size of all the triangles in the triangulation. The
reason is that the radii of the protecting spheres decrease as the tri-
angle sizes decrease. We can reduce the triangle sizes until no two
protecting spheres intersect. However, it results in huge number of
triangles, which would decrease the efficiency of the algorithm and
increase the storage.

On the other hand, we can remove the critical points that are
close to each other without influencing the construction of home-
omorphic triangulation. We will use the Morse-Smale complex to
remove these critical points that are close to each other in the next
section.

3.2 Simplification

The critical points that are close to each other can be interpreted as
the noisy critical points, which can be eliminated if they are con-
nected by an arc in the Morse-Smale complex [7].

Firstly, we describe the structure of the Morse-Smale complex.
Then, we describe how to construct the Morse-Smale complex on
skin surfaces. Finally, we show how to simplify the topological
changes of the front by eliminating the noisy critical points.

Morse-Smale complex. The critical points of the height function
are connected in the Morse-Smale complex via the integral lines.
An integral line, γ , is a curve on M. For each point p∈ γ , its tangent
vector on γ agrees with the gradient of the height function h at p.
The gradient of the height function h at a point p can be defined

as ∇h = ( ∂ f
∂x1

(p), ∂ f
∂x2

(p)) in an orthogonal local coordinate system

(x1,x2). The gradient vanishes at the critical points. For a regular
point, the gradient is the tangent vector in the steepest ascending
direction.

The Morse-Smale complex is a collection of vertices, arcs and
regions. Each vertex is a critical point, and each arc is an integral
line connecting a saddle point to a minimum or a maximum critical
point. The arcs divide the manifold M into quadrangular regions.
Each region is surrounded by two saddle points, a minimum and a
maximum critical point [6]. See Figure 10(a) for an example.

Construction. The first step to construct the Morse-Smale complex
of h on the skin surface FB is to locate all the critical points. In

the skin decomposition, the critical points can be easily computed
analytically by exploring every single sphere or hyperboloid patch.

Next, we compute the arcs in the Morse-Smale complex, which
are the integral lines connected to the saddle points. At each saddle
point, there are two integral lines of the steepest ascent and another
two of the steepest descent. First, we compute the tangent vectors of
each saddle point that indicates the steepest ascending and descend-
ing directions. Because each saddle point lies on an one-sheeted
hyperboloid, we can get the vectors analytically by computing the
tangent vectors of a vertical cross section of the hyperboloid.

Then, we compute the gradient of the height function h at the
regular points. For each regular point p ∈ FB, we denote the gradi-
ent vector of the height function h at p as gp and the unit surface

normal vector of p as np. The gradient vector is gp = V
np·V −np, in

which the unit vector V = (0,1,0) represents the height direction.

Finally, we approximate the integral lines with piecewise linear
curves because the integral lines on the skin surface are difficult
to compute analytically. At each saddle point, starting from
the tangent vectors indicating the steepest directions, we trace
four integral lines by iteratively stepping forward following the
gradient until we meet a maximum or a minimum critical point.
The accuracy of the approximation is guaranteed by choosing
sufficiently small step sizes adaptive to the surface curvature. The
Figure 10(a) illustrates an example of the Morse-Smale complex.

Elimination of the noisy critical points. For the critical points
whose protecting spheres intersect each other, we remove them by
contracting the short arcs in the Morse-Smale complex. An arc is
contracted through deleting its two ending critical points and re-
connecting their neighbors. We describe the contraction of an arc
with the example illustrated in Figure 3.

c

d

e

minimum saddle maximum

a bc

d

e

Figure 3: The contraction of the ab in the Morse-Smale complex.

Let a be a saddle point and b be a minimum critical point. Sup-
pose that the arc ab is a short ascending integral line from b to a.
We can view the contraction of the arc ab as merging critical points
a,b into another minimum critical point c that connected to a. The
four integral lines connected to a are removed and all the integral
lines start from b are extended to c. After the contraction of ab,
each region is still a quadrangle with minimum, saddle, maximum
and saddle in order. The short arcs between the saddle points and
maxima can be contracted in a similar way.

Contraction of the short arcs between a saddle point and a mini-
mum or a maximum critical point is the only operation required in
eliminating the noisy critical points. With a sequence of contraction
operations, it is sufficient to get a simplified Morse-Smale complex
in which no two protecting spheres intersect each other [6] .

4 ADAPTIVE SWEEPING TRIANGULATION

When the front is advancing, the new triangles are always attached
to the lowest vertex on the front, which is called departure vertex.
Thus, the partial triangulation sweeps from the bottom to the top of
the skin surface until the whole surface is covered. In each step of



Figure 4: Six snap-shots of the growing mesh from the bottom to top of the skin surface defined by 8 weighted points at the corners of a cube.
The red points are the minima, the blue points are the saddle points and the green points are the maxima; The red portion of the partial mesh is
the front.

adding new triangles, their sizes are adaptive to the surface curva-
ture and the triangulation is guaranteed to be homeomorphic to the
surface.

We first give a top-down description of the algorithm. Then, we
discuss the curvature adaptation schema to control the sizes of trian-
gles. Refinement operations that maintain the closed ball property
are introduced at the end of the section.

4.1 Algorithm

The input of the algorithm is a set of weighted points, B, and the
output is a triangulation, K, which approximate the skin surface
FB. The algorithm is divided into two stages, namely, initialization
stage and sweeping triangulation.

Initialization. In this stage, we construct two combinatorial struc-
tures, namely, the mixed complex MB of the set of weighted point
B and the Morse-Smale complex of the height function h on the
skin surface FB. These two complexes guide the mesh generation
in the next stage. We first compute the mixed complex, MB, of
B by constructing the weighted Delaunay triangulation of B. For
each polyhedron µ in MB, it is the Minkowski sum of a simplex
in the weighted Delaunay triangulation of B and its dual Voronoi
cell, scaled by 1/2. Then, we locate all the critical points on each
quadratic patch within µ . Finally, we compute the Morse-Smale
complex.

We set a protecting sphere for each the critical point according
to their curvature, which will be described in Section 4.2. If two
protecting spheres intersect, we eliminate the critical points by
contracting the short arcs in the Morse-Smale complex.

Sweeping Triangulation. Next, we add triangles to the mesh in-
crementally. The partial triangulations sweep over the skin surface
along the height direction. Figure 4 demonstrates six snap-shots
of the growing mesh of a skin surface. The sweeping triangulation
stage is divided into three steps, namely, creating the initial front,
creeping triangles and sealing holes, and they are implemented ac-
cording to the topological changes of the front at the three types of
critical points, namely, minima, saddle point and maxima respec-
tively.

First, we create the initial front at the minima with the “creation”
operations. Then we advance the front along the height direction
by attaching triangles to the lowest vertex on the front iteratively.
During this process, the different portions of the front connect
around the saddle points within its protecting sphere, and we call
this the “bridge” operation. When the front is in the protecting
spheres of the maxima and no more triangles can be attached,
we close the holes with the ”seal” operation and the algorithm
terminates.

Initial front. We first construct the initial front by applying “cre-
ation” operation at each minimum critical point. The “creation”
operation creates a “bowl” of 6 neighboring triangles that share one
common vertex. See Figure 5.
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Figure 5: Create a bowl at the minimum point p0.

Let p0 be the minimum critical point. We first draw a tangent
disk with p0 as the center. Then we locate six points qi, i = 1..6 on
the boundary of the tangent disk. See the dashed circle in Figure 5.
These six points divide the tangent circle into six arcs uniformly,
that is, ∠qi p0qi+1 = 60◦. We add the new vertices pi by projecting
qi to the skin surface and form the six triangles. The boundary of
each bowl is a cycle of 6 edges, which is a front polygon. After
applying creation() operation to all minima, we get the initial front,
which consists of a set of front polygons. We push all the edges
in the front polygons to a priority queue, Q, which enables us
to get the departure vertex with the minimum height in the next step.

Creeping triangles. In this step, we add more triangles iteratively
from the initial front. There are two operations in this process: the
creep() operation to attach triangles to the front from a departure
vertex, and the bridge() operation to connect two portions of the
front around the saddle points. The step of creeping triangles is
implemented with CreepTriangles(), which is illustrated in the fol-
lowing pseudo code.

In each iteration, we get the departure vertex from Q to attach
new triangles. A fan of triangles around the departure vertex are
created by the creep() operation. See Figure 6 as an example. Let
pt be the departure vertex. We first draw the tangent disk with pt

as the center. The dashed circle in Figure 6 is the boundary of the
tangent disk. Let p0, pn be the neighbors of pt on the front and the
points q0, qn are the projections of p0, pn on the tangent plane of
pt . We add new vertices pi and form new triangles pi−1 pt pi from

i = 1 to i = n, in which n = ⌈∠q0 pt qn

60◦ ⌉. To get pi, we first locate qi

that satisfies ∠qi ptqi+1 ≃ 60◦. Then, we project each qi to a point
pi on the skin surface. After each creep() operation, we push the



Algorithm 1 CreepTriangles()

1: while Q 6= ∅ do
2: t = ExtractMin(Q);
3: if t falls in the protecting sphere of a saddle point c then
4: if c is ready to be bridged then
5: bridge();
6: else
7: Mark the triangle t with red;
8: end if
9: else if t falls in the protecting sphere of a maximum point c

then
10: Mark the triangle t with green;
11: else
12: creep();
13: end if
14: Refine the newly added triangles;
15: end while

new front edges to the priority queue Q. While the priority queue
Q is not empty, we repeat the creep() operation to advance the front
towards the untriangulated part of the surface.

pt

p0

pn

p1

p2

p3

q0

qn

q1

q2

q3

Figure 6: Creep triangles from a departure vertex pt .

During the front advancing by the creep() operation, the small
angle between two front edges may cause overlap between the
newly added triangles and the existing triangles. See the Figure
7 (a).
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Figure 7: Wing a small angle to avoid the overlapping triangles in
creep() operation. Figure (a) and (b) illustrate the result of creep()

operation before and after fixing the small angle ∠g f d.

In Figure 7, the angle ∠g f d is a small angle and the vertex d
is the departure vertex. The dashed circle is the boundary of the
tangent disk in the current creep() operation. In the Figure 7 (a),
two newly added mesh vertices are p0 and p1. Because ∠g f d is
small, the vertex p1 lies in the existing triangle e f g. As a result, the
new triangles f p1d and p1 p0d overlap the existing triangle e f g. We
can solve this problem by fixing the angle ∠g f d before we apply
creep() to vertex d. As illustrated in the Figure 7 (b), the newly
added triangles from d do not overlap the existing ones after adding
a triangle gd f .

We call fixing small angles the wing() operation and apply it at
the end of each creep() operation to fix all the small angles. It en-

sures that there are no angles smaller than 90◦ between any two
adjacent front edges during front advancing.

However, the newly added triangles in the creep() operation
may not maintain the closed ball property in Section 2.2. We need
refinement operations to maintain the Condition [L] and Condition
[U] for the closed ball property. We will introduce the refinement
operations in Section 4.3.

Bridging the front. As the partial mesh grows, the fronts will get
closer to each other around the saddle points or the maxima. The
protecting spheres for the critical points will detect such events.
Once the front falls into the protecting sphere of a saddle point, we
stop the front advancing at this portion because it would lead to
front collision. If the front reaches the protecting sphere of a saddle
point on two different sides, we use a bridge() operation to connect
the two sides of the front. Figure 8 illustrates the result a bridge
operation.

ps

pl

pr

pu

pv

p1

p2

p0

Figure 8: Bridge the front at a saddle point ps.

In Figure 8, the vertex ps is a saddle point and the thin dotted
line represents the protecting sphere of ps. The front edges pl pr

and pu pv fall in the protecting sphere on two different sides of ps.
We add new triangles to bridge the front together at the edges pl pr

and pu pv. Then, we update the priority queue Q after a bridge()
operation and resume the loop of creep() operation to advance
the front. See the snapshots number 2, 3 and 4 in Figure 4 for an
example.

Sealing holes. Once the front falls into the protecting sphere of a
maximum critical point, we simply stop the front advancing at that
portion. When the priority queue Q is empty, the surface, FB, is
covered by an almost finished partial triangulation with holes only
around maxima. The boundary of each hole is a topological circle
consisted of a cycle of edges in the protecting sphere of a maxi-
mum. We seal the hole by repeatedly adding triangles whose two
edges are neighbors in the circle. The snapshots number 5 in Fig-
ure 4 illustrates the holes around each maximum before the sealing
operation.

Finally, we get the triangulation K of the skin surface FB after
refining the newly added triangles in these seal() operations.

4.2 Curvature Adaptation

In the creation() and creep() operations, we obtain new mesh
vertices by projecting the points from a tangent circle to the
surface. In order to guarantee the closed ball property, we need to
adjust the radius of the tangent disk to ensure that the new triangles
satisfy the two Conditions in Section 2.2. Also, we use the same
radii for the protecting spheres at the critical points. The reason is
that each step of the front advancing must not cross to the other
side of the spheres.

Edge length constraints. Let the departure vertex be a and a new
mesh vertex be b. Denote the radius of the tangent disk as ra cen-
tered at a. Our consideration is to ensure the edge length of ab is
not too long nor too short for both vertices a and b according to the



two Conditions in Section 2.2. We first derive the lower bound and
upper bound of the size of edge ab, Rab, relative to the local length
scale ρ(a).

Cheng et al. [3] prove that the rate of changes of the local length
scale on the skin surface satisfy the following Lipschitz condition,

|ρ(x)−ρ(y)| ≤ ‖x− y‖,

in which x,y are two points on the skin surface FB. From this con-
dition, we can determine the bound of ρ(b) in terms of ρ(a). As a
result, we get the lower bound and upper bound of the size of edge
ab according to the two Conditions, that is,

C

Q−2C
ρ(a) ≤ Rab ≤

CQ

1+2CQ
ρ(a).

The inequality shows that we need a slightly longer edge than the
edge length in Condition [L] in order to make sure the edge is long
enough for both vertices a and b. With the edge length constraints,
we can determine the radius of the tangent disk.

Radius of the tangent disk. To ensure the edge is not too short,

we can use the bound of ra > 2C
Q−2C ρ(a) since Rab > ra/2. For

the upper bound of ra, we know that Rab increases when b gets
further from the tangent disk. However, there is a sandwiching ball
with radius ρ(a) for every vertex a [14]. The sandwiching ball is
tangent to the skin surface at the point a and the skin surface does
not penetrate into this ball. Figure 9 shows the cross section of the
skin surface and the sandwiching ball at a.

2θ

θ
a

b
2Rab

ra

̺(a)

Skin surface b′

Figure 9: Cross section of the scenario of projecting the point from
the tangent disk with radius ra.

Then, the longest edge will be created if b is on the surface of
the sandwiching ball of a. In Figure 9, we compute the angle θ =
arcsin(Rab/ρ(a)) and thus

ra = 2Rab cosθ

= 2Rab

√

1− (
Rab

ρ(a)
)2

Substituting the upper bound of Rab =
CQρ(a)
1+2CQ into the above

equation, the upper bound of the tangent disk radius is

ra =

(

CQ

(1+2CQ)2

√

(1+CQ)(1+3CQ)

)

·ρ(a).

For C = 0.08 and Q = 1.65, the numerical value of ra/ρ(a) is

around 0.208, which is better than the lower bound 2C
Q−2C = 0.107.

4.3 Local Refinement

The curvature dependent radius of the tangent disk ra ensures that
the edge length is not too long nor too short in most cases. However,

the partial triangulations may not maintain the closed ball property
during sweeping. It is mainly due to three reasons. Firstly, the lo-
cal region of newly added triangles in each step may not keep the
restricted Delaunay property, we use edge flipping to maintain the
restricted Delaunay triangulation. Secondly, the short edges added
in the wing() operation may violate the Condition [L], we use the
edge contraction to remove these short edges. Finally, edge con-
traction may lead to violation of the Condition [U]. Thus, we need
the vertex insertion operation to destroy the big triangles.

We refer to the implementation of the refinement operations in-
troduced in the dynamic skin triangulation algorithm [3]. After
each step of adding new triangles, these refinement operations are
applied. As a result, we maintain the closed ball property for the
sweeping mesh. Cheng et al. proved that these refinement oper-
ations terminate, which implies the termination of our algorithm.
Experiments with our implementation show that the refinement op-
erations only influence a very small number of triangles around the
new attached ones in each creep() operation. It means the refine-
ment operations are efficient. At the same time, these refinement
operations guarantee the minimal angle in the triangulation is larger
than 21◦, which implies a good quality mesh.

5 RESULTS

We demonstrate the skin meshes constructed by our algorithm in
this section. Figure 10(a) shows the surface of a simple molecule
named “pdb7tmn”, which is a binding inhibitor of protein molecule.
Figure 11(a) shows the molecular skin surface model of “Grami-
cidin A” molecule and Figure 11(b) illustrates its partial mesh de-
tails included in the box of Figure 11(a). Table 1 lists the statistical
results of the examples shown in this paper, along with a compari-
son of computation time with the dynamic skin triangulation algo-
rithm [3]. A Pentium 4 processor running at 2.54GHZ is used in the
test. It is easily noticed that our approach can greatly improve the
efficiency. Moreover, we achieve a better bound on the minimum
angle of the triangulation than the theoretical result on the bound of
the minimum angle, that is, 21◦.

molecular no. of minimum computing time
triangles in angle in our Dynamic

name the mesh the mesh approach skin

pdb7tmn 24,336 27.02◦ 00:00:05 00:10:00

A−DNA 114,316 24.12◦ 00:00:51 00:35:12

GramicidinA 305,186 24.37◦ 00:03:22 01:35:23

Table 1: Performance of our meshing algorithm.

The dramatic improvement of the performance over the dynamic
skin triangulation depends on the efficient solution of the front col-
lision handling and avoidance of computing 3D tetrahedrization of
the sample points. Moreover, the computation time is almost linear
to the number of the triangles in the triangulation since it takes con-
stant time in each iterative step of attaching triangles. The strategy
of the initial points placement and the refinement operations can
explain the achievement of high triangle quality.

6 DISCUSSION

This paper introduces a new method for visualizing the macro-
molecules such as proteins and DNAs. We construct high quality
mesh of the molecular skin models with guarantees on the topology
and a lower bound of the minimum angle. The surface triangulation
can support not only the protein visualization but also numerical
simulations of the protein interactions. We achieve high efficiency
by employing the Morse theory to handle the front collision prob-
lem in advancing front method.



The application of skin surfaces is not limited in modeling the
molecules. Theoretically, every orientable closed surface has a skin
representation [8]. The Figure 10(b) illustrates a human face mod-
eled by the skin surface. Kruithof et.al [12] had stepped toward
using the skin surface to approximate an arbitrary polygonal sur-
face.

The choice of the height function in our paper might be question-
able as the resulting critical points and Morse-Samle complex are
obviously dependent on the choice of the height direction. How-
ever, our algorithm can generate correct mesh with different direc-
tions of the height function. Another issue is the number of the crit-
ical points. Since a large number of critical points may affect the
efficiency of our algorithm, we tackle this by using an efficient point
location data structure, namely, the kd-tree. On the other hand, it is
possible to use other Morse functions instead of the height function
and we change the priority of the front advancing accordingly.

We also propose to extend our algorithm to triangulate other
smooth compact 2-manifolds, for example, implicit surfaces. A
main challenge for this extension lies in finding the homeomor-
phism conditions to determine the curvature adaption schema. We
are also interested in extending our algorithm for the triangula-
tion of parametric surfaces such as Nonuniform Rational B-Splines
(NURBS).

(a) (b)

Figure 10: Skin surface models. Figure (a) illustrates the molecular
skin model of “pdb7tmn” and its Morse-Smale complex before simpli-
fication. The red and green curves are the integral lines connecting
minimum-saddle pairs and maximum-saddle pairs respectively. Fig-
ure (b) shows a human face modeled by the skin surface.
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