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ABSTRACT
Edelsbrunner et al. defined a framework of shape deforma-
tions with shapes bounded by skin manifold. We prove that
the infinitely many synthesized shapes in the deformation
sequence share finitely many common Voronoi complexes.
Therefore, we propose a new algorithm to compute the com-
mon Voronoi complexes efficiently for the deformations, and
use these common complexes to compute the synthesized
shapes in real time. This makes generating, visualizing, and
customizing shape deformations feasible.

1. INTRODUCTION
Edelsbrunner et al. defined a framework of shape space
construction, in which new shapes are synthesized with a
set of reference shapes by mixing them. This allows the
deformation of one shape into another [2]. This is a robust
way of shape space construction for fields such as molecular
and geometric modeling.

The shapes employed by Edelsbrunner et al. are represented
as skin bodies, each of which is defined by a set of weighted
points [4]. Each new instance of the synthesized shape,
namely, the intermediate shape, is generated by firstly com-
puting its weighted point set. From its Voronoi and Delau-
nay complexes, the skin body can be constructed. The bot-
tleneck is that for each intermediate shape, its Voronoi com-
plex is computed individually, with time O(m lg m+mdd/2e),
in which m is the cardinality of the weighted point set.
Therefore, it is impractical to generate and visualize shape
deformation, which is approximated by a sequence of inter-
mediate shapes synthesized with the initial and final shapes.

In this paper, we improve the efficiency of computing the in-
termediate shapes and make shape deformation feasible. We
prove that in Rd space, all the infinite number of intermedi-
ate shapes share finitely many Voronoi complexes. Basing
on this finding, we design an algorithm to compute the com-
mon Voronoi complexes with those of the reference shapes.
Our algorithm is faster than computing the Voronoi com-

plex directly when the dimension d > 2. Beside the better
efficiency of computing the Voronoi complex, most interme-
diate shapes can be computed immediately by reusing the
generated common Voronoi complexes. This is especially
helpful in the generation and visualization of shape defor-
mations, which require a lot of intermediate shapes with
only a few common Voronoi complexes.

See Figure 1.1 for an example. To generate a deformation
of a shape of the letter ‘X’ into a shape of the letter ‘I’,
we require a lot of intermediate shapes, each of which is a
mixture of the reference shapes, ‘X’ and ‘I’. Without our al-
gorithm, we have to compute the Voronoi complex for each
instance of the intermediate shapes. However, with our algo-
rithm, we only generate one common Voronoi complex with
those of the reference shapes, ‘X’ and ‘I’. With this common
Voronoi complex, any intermediate shape in the deformation
is immediate.

Moreover, with our algorithm, we are able to customize
the shape deformations by introducing additional reference
shapes, which is impossible before because of the unavail-
ability of the visualization. See Figure 1.2. We influence
the deformation of the shape of letter ‘X’ into the shape of
letter ‘I’ with a shape of letter ‘O’. By applying a certain
positive influence of the shape ‘O’, we can make a hole in the
center of the deforming shape. On the contrary, if we apply
a negative influence of the shape ‘O’, we can make the de-
forming shape more compact. With our algorithm, all these
intermediate shapes share only two common Voronoi com-
plexes, which are computed with the Voronoi complexes of
the reference shapes, ‘X’, ‘I’, and ‘O’.

Outline.
In Section 2, we introduce the skin and its construction. In
Section 3, we define the the intermediate shape, and present
a theorem stating that there are only finitely many Voronoi
complexes for all the intermediate shapes. Finally, in Sec-
tion 4, we design a new algorithm to compute the Voronoi
complexes of the intermediate shapes.

2. BACKGROUNDS
This section serves for the purpose of stating the notations
for later sections. We introduce the geometric foundation
of the skin body. The skin body is bounded by the skin, a
compact manifold without boundary in any dimension. It
is defined on a weighted point set, and constructed on its
Voronoi and Delaunay complexes.



We will not go to the details of skin manifold. Interested
readers could refer other literatures.

2.1 Complexes
We first introduce the Delaunay and Voronoi complexes of
weighted points.

Weighted points.
A weighted point in Rd can be written as bi = (zi, wi), where
zi ∈ Rd is its position and wi ∈ R is its weight. We can also
view a weighted point, bi, as a ball in Rd with center zi and
radius

√
wi. For a set of balls, B0 ⊂ Rd × R, we define the

union of balls as
⋃

B0 =
⋃

bi∈B0

{x ∈ Rd | ‖xzi‖2 ≤ wi}.

Voronoi and Delaunay complexes.
The weighted distance of a point x ∈ Rd from a weighted
point, bi, is defined as

πbi(x) = ‖xzi‖2 − wi. (1)

Given a finite set B0, the Voronoi region for each weighted
point, bi ∈ B0, is

νi = {x ∈ Rd | πbi(x) ≤ πbj (x),∀bj ∈ B0}.
We define the non-empty intersection of m Voronoi regions
as the Voronoi cell of a set of weighted points X ⊆ B0,
namely,

νX =
⋂

bi∈X

νi.

The collection of all the non-empty Voronoi cells is called
the Voronoi complex of B0,

VB0 = {νX | X ⊆ B0, νX 6= ∅}.
For any B0 ⊆ Rd ×R, z(B0) is the set of centers of B0. For
each νX ∈ VB0 , we define its corresponding Delaunay cell,
δX , as the convex hull of the set of centers of X, conv(z(X)).
The collection of all the Delaunay cells is called the Delaunay
complex of B0, namely,

DB0 = {δX | νX ∈ VB0}.
Figure 1(a) shows an example of the Voronoi and Delaunay
complexes of a weighted point set. Generally, in R2. the
Delaunay cells are all simplices, namely, vertices, edges and
triangles.

Furthest-neighbor Voronoi complex.
Generally, the Voronoi complex can be defined on different
distance functions. If we use −πbi(x) as the distance func-
tion, the resulting Voronoi complex is the furthest-neighbor
Voronoi complex. Each of its elements, a furthest-neighbor
Voronoi cell, contains points with the longest weighted dis-
tances from the weighted points. Hence, we can define the
furthest-neighbor Delaunay complex and furthest-neighbor De-
launay cell.

The furthest-neighbor Voronoi complex will be used to de-
fine the Voronoi complex of the intermediate shape in the
next section.

2.2 Skin
In this subsection, we let B0 = {bi | i = 1..n0} ⊂ Rd ×
R, and give the definition of the skin of B0, as well as its
construction.

Before defining the skin, three operations on weighted points
(or balls) are given. The aim is to establish the operations
for linear combinations of weighted points [4]. For bi, bj ∈
B0 and γ ∈ R, the addition, scalar multiplication and square
root of weighted points are defined as

bi + bj = (zi + zj , wi + wj + 2〈zi, zj〉),
γbi = (γzi, γwi + (γ2 − γ)‖zi‖2), and√
bi = (zi, wi/2),

respectively, in which 〈zi, zj〉 is the scalar product of two
vectors zi and zj . For γi ∈ R, the linear combination of B0

is
∑n0

i=1 γibi. It is a convex combination if
∑n

i=1 γi = 1 and
γi ≥ 0. The convex hull of B0, conv(B0), is the set of all the
convex combinations of the elements of B0.

By extending the square root to a set of weighted points, we
define the skin in Rd as

skin(B0) = ∂(
⋃ √

conv(B0)).

The skin of B0 is homeomorphic to the boundary of
⋃

B0

[4]. We define the shape bounded by skin as the skin body,

namely, body(B0) =
⋃ √

conv(B0). Figure 1(c) shows an
example of the skin body in R3.

The skin manifold could be computed immediately if the
Voronoi complex is determined. See Figure 1(b) for a skin
computed on a given Voronoi complex.

3. INTERMEDIATE SHAPES AND THEIR
VORONOI COMPLEXES

In this section, we start with the definition of the interme-
diate shapes. After that, we present a theorem about the
Voronoi complexes of the intermediate shapes. This the-
orem states that all the intermediate shapes share finitely
many Voronoi complex.

3.1 Intermediate Shapes
Given a finite set of given shapes, namely, the reference
shapes, an infinite family of intermediate shapes can be con-
structed. Each intermediate shape is the mixture of the ref-
erence shapes, with a set of weights signaling the similarities
between the mixture and the reference shapes.

Let the number of reference shapes be n. Let B = {B1, . . . , Bn}
be the set of weighted point sets defining the set of reference
shapes, S = {body(Bi) | Bi ∈ B}. To define the intermedi-
ate shapes of S, we firstly define the affine combinations of
B, namely, B(c).

Given two weighted point sets, B0 and B1, we define the
addition, and scalar multiplication of them as

B0 + B1 = {bi + bj | bi ∈ B0, bj ∈ B1}, and

γB0 = {γbi | bi ∈ B0}, for γ ∈ R,

respectively. With these operations, we can define the linear
combination of B as B(c) =

∑n
i=1 γiBi with the coefficient



vector, c = (γ1, . . . , γn) ∈ Rn. If
∑n

i=1 γi = 1, B(c) is an
affine combination of B, namely, the intermediate weighted
point set. Note that the cardinality of B(c) is no more than
Πn

i=1card(Bi).

An intermediate shape is defined as the skin shape bounded
by the skin of B(c), namely, body(B(c)). Each intermediate
shape corresponds to a coefficient vector, c, which states
the weights of all these reference shapes in this mixture.
All the coefficient vectors of the intermediate shapes form
a hyperplane Γ ⊆ Rn. A deformation of one intermediate
shape into another is parameterized with a path connecting
the two corresponding coefficient vectors in Γ. Note that
each reference shape is also an intermediate shape, whose
corresponding coefficient vector is an unit basis vector in
Rn.

3.2 Intermediate Voronoi Complexes
We denote the Voronoi complex of B(c) as V (c), namely, the
intermediate Voronoi complex. To compute an intermediate
shape, body(B(c)), the corresponding intermediate Voronoi
complex, V (c), is required. However, it is computationally
expensive if we compute V (c) for each individual value of c,
especially in deformation of the intermediate shapes. On the
other hand, we will show that Γ can be divided into finite
number of partitions, and in each partition, the intermediate
Voronoi complexes are the same for all the possible values
of c.

For convenience, we assign signs to the Voronoi complex
and its elements. For a weighted point set, B0, its Voronoi
complex with ‘+’ sign, V +

B0
, is the nearest-neighbor Voronoi

complex of B0, and V −
B0

is the furthest-neighbor Voronoi
complex of B0. The same rule applies to the Voronoi cells
ν+

X and ν−X .

Each weighted point b(c) ∈ B(c) is an affine combination
of n weighted points from the n given Bi ∈ B, namely,
b(c) =

∑n
i=1 γibi, for some bi ∈ Bi. In order to define the

Voronoi region of b(c) with respect to B(c), we firstly derive
the weighted distance of any point x ∈ Rd from b(c).

L. e

t b(c) =
∑n

i=1 γibi, such that
∑n

i=1 γi = 1. The weighted

distance of any point x ∈ Rd from b(c) is the affine combina-
tion of the weighted distances of x from b1, . . . , bn, namely,

πb(c)(x) =

n∑
i=1

γiπbi(x).

Proof. We prove this lemma by induction on the number
n. For n = 1, it is true since γ1 = 1 and B(c) = B1. When
n = 2, b(c), its center and weight are

b(c) = γ1b1 + (1− γ1)b2,

zb(c) = γ1z1 + (1− γ1)z2, and

wb(c) = (γ1w1 + (γ2
1 − γ1)‖z1‖2) +

((1− γ1)w2 + ((1− γ1)
2 − (1− γ1))‖z2‖2) +

2〈γ1z1, (1− γ1)z2〉,

respectively. Substitute them into the weighted distance
function (1). For any x ∈ Rd, we have

πb(c)(x) = γ1πb1(x) + (1− γ1)πb2(x). (2)

The claim is true for n = 2.

Assume the claim is true for n = k. When n = k+1, without
loss of generality, we assume γk+1 6= 1. Let B′ = B−{Bk+1}
and

c′ = (
γ1

1− γk+1
,

γ2

1− γk+1
, ..,

γk

1− γk+1
).

Let B′(c′) be the affine combination of B′, and b′(c′) ∈
B′(c′). Then, b(c) can be expressed as the affine combination
of b′(c′) and bk+1, namely,

b(c) = (1− γk+1)b
′(c′) + γk+1bk+1.

From Equation (2), and n = k assumption, the weighted
distance of any point x ∈ Rd from b(c) is exactly

πb(c)(x) = (1− γk+1)πb′(c′)(x) + γk+1πbk+1(x)

=

k+1∑
i=1

γiπbi(x),

as required.

We are now ready to give a new method to determine the
Voronoi region of b(c) with respect to B(c). We start con-
structing V (c) from a simple situation, in which γi > 0 for
all i.

F. o

r any b(c) ∈ B(c) with all γi > 0, its Voronoi region with
respect to B(c) is the intersection of the Voronoi regions of
b1, . . . , bn with respect to B1, . . . , Bn, respectively, namely,

νb(c) =

n⋂
i=1

νbi . (3)

Proof. It is easy to see that
⋂n

i=1 νbi ⊆ νb(c), because
γiπbi(x) ≤ γiπb′i(x) for all b′i ∈ Bi.

Next we prove νb(c) ⊆
⋂n

i=1 νbi . We are going to prove that

for any k = 1..n, and any point x ∈ Rd, x ∈ νb(c) implies
that x ∈ νbk . For any b′k ∈ Bk, let

b′(c) =

i 6=k∑
i=1..n

γibi + γkb′k.

We have πb(c)(x) ≤ πb′(c)(x) if x ∈ νb(c), that is,

n∑
i=1

γiπbi(x) ≤
i 6=k∑

i=1..n

γiπbi(x) + γkπb′
k
(x).

Simplifying this inequality, we have γkπbk (x) ≤ γkπb′
k
(x),

which implies x ∈ νbk , as required.



Next, we generalize this lemma to any possible values of c
in Γ. We assume γi 6= 0 for any i, because for any γk = 0,

B(c) =

i6=k∑
i=1..n

Bi.

If γi < 0, the lemma is true if we substitute γk with −γk,
and πbk (x) with −πbk (x). That means, the lemma remains
true if we use −πbk (x) as the distance function, and the
furthest-neighbor Voronoi region as νbk .

Therefore, the Voronoi cell of b(c) with respect to B(c) is
the intersection of the signed Voronoi cells of bi with re-
spect to Bi, whose signs are determined by the signs of the
corresponding γi, namely,

νb(c) =

n⋂
i=1

ν
Sign(γi)
bi

.

This leads to the following Theorem about the intermediate
Voronoi complex.

Thm. 3.1 The intermediate Voronoi complex is the super-

imposition of all the signed Voronoi complexes, V
Sign(γi)

Bi
,

that is,

V (c) = {νX(c) =

n⋂
i=1

ν
Sign(γi)
Xi

| νX(c) 6= ∅, X(c) =

n∑
i=1

γiXi, Xi ⊆ Bi}.

Proof.

According to this theorem, an intermediate Voronoi cell is
the collection of the non-empty intersections of n signed
Voronoi cells, from the n signed Voronoi complexes of the
reference shapes, respectively. See Figure 3.1 for an exam-
ple of superimposing two signed Voronoi complexes when all
the coefficients are positive.

The intermediate Voronoi complexes, V (c0) and V (c1), are
the same if Sign(γ0,i) = Sign(γ1,i) for all i, in which γ0,i, γ1,i

are the i-th coordinates of c0 and c1 respectively. By this, we
can divide Γ into 2n−1 convex partitions with respect to the
signs of the coefficients. The number of partitions is 2n − 1
rather than 2n, because the coordinates of a coefficient vec-
tor c ∈ Γ can not be all negative. Each partition covers all
the values of coefficient vectors, c = (γ1, . . . , γn), with the
same (Sign(γ1), . . . , Sign(γn)). For any two coefficient vec-
tors in the same partition, their corresponding intermediate
Voronoi complexes are the same.

For a deformation of one intermediate shape into another,
its parameterizing path is also divided into finitely many
pieces. For all the coefficient vectors lie in a same piece,
their corresponding intermediate shapes share a same inter-
mediate Voronoi complex.

4. ALGORITHM FOR THE INTERMEDI-
ATE VORONOI COMPLEXES

An intermediate shape, body(B(c)), is immediate once the
intermediate Voronoi complex, V (c), is determined. In this
section, we introduce the algorithm to compute V (c).

An intuitive yet time consuming approach is to compute
the Voronoi complex of the intermediate weighted point
set, B(c). Assume that the cardinality of each weighted
point set of the reference shape is no more than m, namely,
card(Bi) ≤ m, i = 1..n. Then, the cardinality of B(c) is no
more than mn. Therefore, the running time of computing
the Voronoi complex of B(c) directly is

O(nmn log m + mn×dd/2e) (4)

[1, 3, 6].

On the other hand, according to Theorem 3.1, we can com-
pute V (c) by superimposing the signed Voronoi complexes
of the reference shapes. We design an algorithm to com-
pute the superimposition of a set of Voronoi complexes. We
prove that when d > 2, computing V (c) with our algorithm
is faster than computing it from B(c) directly.

Since we only care about a set of given Voronoi complexes,
in spite of their signs, in the rest of the paper, we simplify

V
Sign(γi)

Bi
to VBi , and ν

Sign(γi)
Xi

to νXi .

4.1 Superimposing Two Voronoi Complexes
Let V0 and V1 be two intermediate Voronoi complexes. In
order to generate their superimposition, V0,1, we compute all
the Voronoi regions in V0,1. Each Voronoi region, νi,j ∈ V0,1,
is the non-empty intersection of a pair of Voronoi regions,
νi ∩ νj , with νi ∈ V0 and νj ∈ V1.

We can compute V0,1 by a brute force method, namely, test-
ing all the possible pairs of νi and νj for intersection. Testing
whether two Voronoi regions have a non-empty intersection
is equivalent to testing whether a set of halfspaces have a
common non-empty intersection. We can solve this with
linear programming algorithms.

However, we can collect all the Voronoi regions of V0,1 with a
breadth-first search manner. We denote two Voronoi regions
as neighbors if they have a common (d−1)-dimensional facet.
We starts from a Voronoi region, νi′,j′ ∈ V (c), which can be
computed by locating νj′ ∈ V1 which contains a point p ∈
νi′ . We collect all the neighbors of νi′,j′ in V0,1 by collecting
all the non-empty intersections of νi and the neighbors of
νj in V1, and all the non-empty intersections of νj and the
neighbors of νi in V0. For each newly found Voronoi region
νi,j ∈ V0,1, we collect its neighbors. We repeat this collection
iteratively, until no new Voronoi regions are found.

We use an example to illustrate our algorithm. The Voronoi
complex V0,1 in Figure 1(b) is the superimposition of the
Voronoi complexes V0 in Figure 1(a) and V1 in 1(c). To
construct V0,1, we start from ν14 = ν1∩ν4. We test whether
ν1 intersects ν4’s neighbors, ν5, ν6 and ν7. Also, we test
whether ν4 intersects ν1’s neighbors, ν2 and ν3. Then, we
get all the four neighbors of ν14 in V0,1, ν17, ν34, ν24 and
ν15. Similarly, we can get these neighbors’ neighbors, ν37,
ν36, ν26 and ν25.

The breadth-first search algorithm is output sensitive, the
worst case is that we tested all the possible pairs. Since
there are at most m Voronoi regions in either V0 or V1, the
total number of tests of intersection is at most m2. Testing
whether two Voronoi regions have non-empty intersection



needs O(d!m) time by the linear programming method [5].
Consequently, the total time complexity of superimposing
V0 and V1 is O(d!m3).

4.2 Superimposingn Voronoi Complexes
Next we introduce the algorithm of computing V (c) by su-
perimposing n Voronoi complexes, which is based on the
algorithm of superimposing two Voronoi complexes.

For convenience, let k = dlog2(n)e and η = 2k−1. We have
η < n ≤ 2η. We divide the way of superimposing n Voronoi
complexes into three cases according to the relationship of
n and η. We prove that when d > 2, our algorithm can
achieve better efficiency than computing the Voronoi com-
plex of B(c) directly.

Case 1:
When 3η/2 < n ≤ 2η, we superimpose the n Voronoi com-
plexes according to a binary superimposing tree. See Figure
4.1. In the first round, we superimpose V2j−1 and V2j for j =
1..η. The time complexity for this round is O(d!2k−1m3). In
the second round, we superimpose V(4j−3)(4j−2) and V(4j−1)(4j)

for j = 1..η/2. In either V(4j−3)(4j−2) or V(4j−1)(4j), there

are no more than m2 Voronoi regions. Thus, the time com-
plexity for the second round is O(d!2k−2m3×2). Generally,

for the i-th round, the time complexity is O(d!2k−im3×2i−1
),

i = 1..k. After k rounds of such superimposition, we can get
V (c). Therefore, the total time complexity to superimpose
the n Voronoi complexes, V1, V2, ... and Vn, is

O(

k∑
i=1

(d!2k−im3×2i−1
)).

Since m is greater than 2 in practice, we have (d!2k−i1m3×2i1−1
) <

(d!2k−i2m3×2i2−1
) for any i1 < i2. Thus, the total time com-

plexity is equivalent to O(kd!m3×2k−1
). For a fixed d, we

can ignore the d! and only consider the time complexity as

O(km3×2k−1
). Adding in the time of computing V1, .., Vn,

the overall time complexity to compute V (c) is

O(km3×2k−1
+ nm log m + nmdd/2e). (5)

When d > 2 and n > 1, the time complexity of the in-
tuitive way in Equation 4 is dominated by O(mn×dd/2e),
and the time complexity of our algorithm in Equation 5, is

dominated by O(km3×2k−1
+ nmdd/2e). In practice, we can

assume that n, k, and d are smaller than m. Under such
assumption, our algorithm has better efficiency if we can

show that m3×2k−1
< mndd/2e. Since n > 3η/2 and d > 2,

we have

m3×2k−1
= m3×η < m2n ≤ mndd/2e,

as required.

Case 2:
When 9η/8 < n ≤ 3η/2, we make some adjustment on the
organization of the superimposing tree. The adjusted su-
perimposing tree is as Figure 4.2. In the first round, we
superimpose V2j−1 and V2j for j = 1..η/2. The time com-
plexity for this round is O(d!2k−2m3). In the second round,

we superimpose V(2j−1)(2j) and Vη+j for j = 1..η/2. The

time complexity for this round is O(d!2k−2m3×2). From the
third round to the k-th round, we superimpose the resulting
η/2 Voronoi complexes with the binary superimposing tree
introduced in the first case. Thus, the total time complexity
is

O(d!2k−2m3 + d!2k−2m3×2 +

k∑
i=3

(d!2k−im3×3×2i−3
)),

which is equivalent to O(kd!m3×3×2k−3
). Similarly to the

first case, our algorithm has better efficiency if we can show

that m3×3×2k−3
< mndd/2e. Since, n > 9η/8 and d > 2, we

have

m3×3×2k−3
= m9η/4 < m2n ≤ mndd/2e,

as required.

Case 3:
The final case is when η < n ≤ 9η/8. Since both n and
η are integers, we know that η ≥ 8. We adjust the su-
perimposing tree as in Figure 4.3. We first superimpose
V8j−7,V8j−6,...,V8j for j = 1..η/8 with the binary superim-

posing tree. The time complexity is O(
∑3

i=1(d!2k−i−1m3×2i−1
)).

Then, we get η/8 Voronoi complexes, V1..8,V9..16,...,V(η−7)..η.
In the next round, we superimpose V(8j−7)..(8j) and Vη+j for

j = 1..η/8. The time complexity is O(d!2k−4m3×8). At
last, we superimpose the resulting η/8 Voronoi complexes
with the binary superimposing tree. Consequently, the to-
tal time complexity is

O(

3∑
i=1

(d!2k−i−1m3×2i−1
) + d!2k−4m3×8 +

k∑
i=5

(d!2k−im3×9×2i−5
)),

which is equivalent to O(kd!m3×9×2k−5
). Similarly to the

former two cases, our algorithm has better efficiency if we

can show that m3×9×2k−5
< mndd/2e. Since, n > η and

d > 2, we have

m3×9×2k−5
= m27η/16 < m2η < m2n ≤ mndd/2e,

as required.

In this section, we introduced a breadth-first algorithm to
superimpose two Voronoi complexes. Then, for n Voronoi
complexes, we discussed three different cases according to
the value of n. For each individual case, we proposed the way
of superimposing n Voronoi complexes, and proved that our
algorithm has better efficiency than the intuitive way. Since
these three cases cover all the possibilities, our algorithm is
faster than the intuitive way in computing V (c) when d > 2.

5. CONCLUSION
In this paper, we designed a new algorithm to compute the
Voronoi complex of an intermediate shape basing on Theo-
rem 3.1. We prove that when d > 2, our algorithm is faster
than computing the Voronoi complex from B(c) directly.
Moreover, since all the intermediate shapes share finitely
many common Voronoi complexes, we are able to compute
intermediate shapes in real time, by reusing the generated
common Voronoi complexes. This makes it possible to gen-
erate, visualize, and customize shape deformations.



About the future direction, we want to save the time com-
plexity of superimposing n Voronoi complexes by rearrang-
ing the order of the pairwise superimpositions. We may
solve this problem with dynamic programming. The goal is
to change the superimposing order so that the cardinalities
of the intermediate superimposing results are as small as
possible.

6. REFERENCES
[1] Chazelle, B. An optimal convex hull algorithm in any

fixed dimension. In Discrete Comput. Geom. (1993),
pp. 10:377–409.

[2] Cheng, H., Edelsbrunner, H., and Fu, P. Shape
Space from Deformation. Proc. 6th Pacific Conf..
Comput. Graphics Appl. (1998), 104–113.

[3] Clarkson, K. L., and Shor, P. W. Applications of
random sampling in computational geometry, II.
Discrete and Computational Geometry 4, 1 (1989),
387–421.

[4] Edelsbrunner, H. Deformable Smooth Surface
Design. Discrete Comput. Geom 21 (1999), 87–115.

[5] Seidel, R. Linear programming and convex hulls made
easy. In Proc. 6th Annu ACM Sympos. Coput. Geom.
(1990), pp. 211–215.

[6] Seidel, R. Small-dimensional linear programming and
convex hulls made easy. In Discrete Comput. Geom.
(1991), pp. 6:423–434.



Complex

S1

Without our algorithm

With our algorithm

VoronoiVoronoi
Complex

Voronoi
Complex

Complex
Voronoi Voronoi

Complex

Complex
Voronoi
Common

Figure 1.1: A deformation of the shape S1 into the shape S2 in R3. In the intuitive way, we need to compute
the Voronoi complex for each intermediate shape individually. However, with our algorithm, we only need
to generate one common Voronoi complex and reuse it.
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Figure 1.2: Three deformations of ‘X’ into ‘I’. The middle path represents the direct deformation. The top
sequence is mixing ‘O’ into the deformation. The bottom sequence is avoiding ‘O’ in the deformation. The
concept is demonstrated in Figure (b). All these shapes are skin bodies in R3.
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(a) The Voronoi and Delaunay complexes of
B0.
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(b) The skin of B0. (c) A molecule represented by a skin body
in R3.

Figure 2.1: The left subfigure is the Voronoi and Delaunay complexes of a weighted point set in R2, B0 =
{b1, b2, b3, b4}. The center subfigure is the skin of B0, which is constructed on the complexes of B0. The right
subfigure is the skin body of a molecule in R3 space.
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(a) The complexes of B0 = {b1, b2, b3}.
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(b) The Voronoi complex of tB0 +(1− t)B1

for t ∈ (0, 1).
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(c) The complexes of B1 = {b4, b5, b6, b7}.

Figure 3.1: Superimposition of two signed Voronoi complexes.
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Figure 4.1: Superimposing n Voronoi complexes when 3η/2 < n ≤ 2η.
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Figure 4.2: Superimposing n Voronoi complexes when 9η/8 < n ≤ 3η/2.
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Figure 4.3: Superimposing n Voronoi complexes when η < n ≤ 9η/8.


