
Cavities on the Surfaces of Macromolecules

Ho-Lun Cheng and Xinwei Shi

School of Computing
National University of Singapore

{hcheng, shixinwe}@comp.nus.edu.sg

Abstract. We present an approach to define and extract the cavities
on the surfaces of macromolecules. Each cavity is represented by a trian-
gular mesh enclosing a depression on a molecule such as a protein and a
DNA. These surface patches would facilitate the study of ligand docking
problem and similarity matching of proteins.
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Fig. 1. Two cavities on the surface of a Thrombin protein molecule. Figure (a) illus-
trates the cavities on the surface with different colors. The red curves are the boundaries
of the cavities. Figure (b) and (c) illustrate the zoomed views of the two cavities.

1 Introduction

The geometric shapes of proteins play a deterministic role for their functions.
Identification and extraction of shape features such as convexity and concav-
ity on protein surfaces are important for computer aided drug design and pro-
tein recognition [1, 9]. In this paper, we define and construct the cavities on
macromolecular surfaces as surface patches that enclose some depressions on the
molecules.



The approach to define and extract protein surface cavities in this paper is
based on the technical notion of the skin surface and alpha shape[5, 7]. The skin
surface, defined by Edelsbrunner, works as a surface model for molecules with
a number of distinct properties such as smoothness, decomposability and com-
plementarity. These properties are desirable in molecular modeling applications
and suggest the molecular skin model outruns the existing molecular models, for
example, the molecular surface model [5]. A skin surface is a smooth 2-manifold
specified by a set of spheres and has intrinsic relationships with the alpha shape
defined by the same set of spheres. The alpha shape, proposed by Edelsbrunner
as well, is a powerful geometric tool in biological applications. The pockets in
the alpha shape is used to search active sites in proteins [7]. Each pocket char-
acterizes the atoms that may implicate an active site. The cavities in this paper
extend the definition of the pocket. Each cavity specifies a region on a molecular
surface that would be the interface of protein-protein interactions.

Outline. Section 2 contains the necessary geometric background of the skin
surface and alpha shape. In Section 3, we define the cavity and extract the surface
patch of each cavity from a molecular surface mesh. Finally, some experimental
results and future works are presented in Section 4.

2 Background

This section introduces the skin model and the alpha shape of molecules, with
the aim to develop the definition of the cavity on the molecular surfaces in the
next section.

2.1 Molecular Skin

A skin surface is defined by a set of weighted points

B = {bi = (zi, wi) ∈ R3 × R | i = 1..n},

where bi is a weighted point with zi as its position and wi as its weight. The skin
surface FB defined by B is the boundary of an infinite family of spheres derived
from B by convex combination and shrinking operation. We omit the details of
the skin definition. Readers can refer to Edelsbrunner for the details [4, 5].

The skin surface is a closed C1 continuous surface with continuous maximum
principle curvature. It can be decomposed by the mixed complex, MB, into a
finite collection of quadratic patches, namely, sphere patches and hyperboloid
patches. The mixed complex is a collection of polyhedra that partitions the R3

space. The portion of the skin surface in each polyhedron is a quadratic patch.
To model a molecule with the skin surface, we consider each atom as a

weighted point bi ∈ B. That is, the position zi is the center of an atom, and
its weight wi is

√
2 times the summation of the atom’s van der Waals radius

with the radius of the probe sphere, which is usually chosen as 1.4 Angstrom



to represent the water as the solvent. Then, the skin surface, FB , represents a
surface model of the molecule. The Figure 1 (a) shows the molecular skin model
of a protein molecule.

2.2 Alpha Shapes

The space filling model of molecules are commonly used in computational biology
literature also [8]. In this model, an atom is represented by a spherical ball and
a molecule is the union of balls. The space filling model are always studied on
the base of its dual shape, namely, alpha shape.

An alpha shape specified by a set of weighted points is the underlying space
of a subcomplex of the Delaunay triangulation parameterized by a real value
α. Recall that B is a set of weighted points. We denote B(α) as the set of the
points with the weights grown by α, that is, the weight wi for each bi increases
with α. The alpha complex specified by B and α, KB(α), is a subcomplex of its
Delaunay triangulation DB , namely,

KB(α) = {δX ∈ DB |
⋃

B(α) ∩ νX 6= ∅},

in which
⋃

B(α) is the union of the balls in B(α) and νX is the Voronoi cell of
the Delaunay simplex δX ∈ DB . We denote the alpha shape as |KB(α)|. Each
simplex in DB enters the alpha complex as the value of α increases from −∞
to ∞. At the same time, the alpha shape |KB(α)| changes from an empty set to
the convex hull of the centers of weighted points in B. The dark triangle and
the line segment in Figure 2 illustrate an example of the alpha shape specified
by a set of disks in R2.

Union of balls

Skin

Alpha shape

Fig. 2. The relationship among the union of ball, the skin and the alpha shape. The
light region in the figure is the union of four disks, the dark curve are the corresponding
skin and the dark triangle and the line segment are the alpha shape.

We denote KB as the alpha complex of B when the value of α is zero.
It is obvious that the alpha shape |KB | is contained in the union balls in



B. Moreover, the alpha shape |KB | is enclosed by the skin surface FB also
and the skin surface is enclosed in the union of balls in B as well. Formally,
|KB | ⊂ Bdy(FB) ⊂ ⋃

B, in which Bdy(FB) is called the skin body, which
is the space enclosed by the skin surface FB . In particular, these three spaces
have same topological properties: |KB | ≃ Bdy(FB) ≃ ⋃

B, in which we denote
X ≃ Y if two topological space X and Y are homotopy equivalent [3, 5]. The
topological space X is homotopy equivalent to Y means X and Y are connected
in the same way and we can construct a map that deforms X to Y . This rela-
tionship is illustrated in the Figure 2. Based on this relationship, we define the
cavities on the skin surface by investigating the pockets in its alpha shape.

3 Cavities on the Molecular Surfaces

The cavities on a molecular surface are defined on the base of the pockets in
space filling model. We first introduce the concept of the pockets. Then, we
define the cavities on the skin surface.

3.1 Pockets

A pocket in a union of balls is a portion of the complementary space of
⋃

B that
have some narrow entrances from the outside [6]. Figure 3 illustrates an example
of the pocket of an alpha shape in R2.

Fig. 3. A pocket in an alpha shape specified by 6 disks. The dark region is the pocket
of the union of disks, three triangles are the pockets in the alpha shape and the bold
edge is its mouth.

A pocket, Pi, can be represented by a collection of tetrahedra in the Delaunay
triangulation DB that is not a simplex in KB , that is, Pi ⊂ DB − KB . In this
paper, we use Pi to refer to a pocket in the alpha shape |KB |. In Figure 3, the
three triangles with solid edges forms the pocket of the alpha shape specified by



the 6 disks. The pockets are constructed efficiently by investigating the entering
order of the tetrahedra in DB into the alpha complex KB(α) as α increases [6].

We consider the boundary of a pocket Pi. It is a collection of triangles and is
denoted as ∂Pi. The triangles in ∂Pi−KB are the interfaces between the pockets
and space outside the union of balls. Each connected component in ∂Pi −KB is
called a mouth of the pocket Pi and is denoted as Mij , in which j = 1 . . . t and
t is the number of the mouths of Pi. In R2, each mouth is a chain of Delaunay
edges. See Figure 3 for an example. The thick edge is the mouth of the pockets
in the alpha shape.

3.2 Cavities

With the pocket definition, we define the cavities on the skin surface FB and
specify its representation in this section.

Since the skin surface FB is homotopy equivalent to the union of balls
⋃

B,
a depression on the surface FB would correspond to a concave feature on the
boundary of the union of balls. A pocket Pi in the alpha shape |KB | always
encloses such a depression. In particular, these depressions open up to the outside
with narrow mouths. We define the cavities on the skin surface as the portion
enclosing such depressions, that is, FB ∩ ⋃

Pi.
As a result, a cavity is a surface patch on FB clipped by the pocket Pi.

It is interesting that only the boundary of Pi may intersect the skin surface
FB . Specifically, only the mouths of Pi intersect the skin surface. The reason is
that the skin surface is a subset of the complementary space of the alpha shape
because of |KB | ⊂ Bdy(FB). For the cavity specified by Pi, it is enclosed by⋃

Pi and opens up to the outside at the mouths of Pi as well. Thus, a cavity
is a connected surface patch. Its boundaries are the intersection of FB and the
mouths of Pi, that is,

⋃
j=1...t FB ∩ Mij . We propose the following lemma to

specify the boundaries of a cavity.

Lemma 1 The mouths of a pocket Pi intersect the skin surface FB with topo-

logical circles.

Proof. We consider the intersection of a mouth Mij with the skin surface
FB . According to the mouth definition, Mij is a topological disk consisted of a
triangle or a chain of triangle connected by shared edges.

We firstly prove that the mouth Mij is not enclosed by the skin surface FB .
Since the mouths are the entrance from the outside to the inner part of the
pockets, we have Mij ∩ {R3 − ⋃

B} 6= ∅. Moreover, because the skin body is
a subset of the union of balls in B, that is, Bdy(FB) ⊂ ⋃

B, then, we have
{R3 − ⋃

B} ⊂ {R3 − Bdy(FB)}. Thus, we have Mij * Bdy(FB).
Then, we show the boundaries of the mouth Mij is enclosed by the skin

surface FB . The boundary of Mij , denoted as ∂Mij , consists of a loop of edges
in KB because each edge is a face a triangle in KB . Thus, ∂Mij ⊂ |KB |. Since
|KB | ⊂ Bdy(FB), then we have ∂Mj ⊆ Bdy(FB).

As a result, Mij ∩ FB is a set of topological circles.



3.3 Extraction of the Cavities

Based on the skin decomposition, the intersection of each mouth Mij with the
skin surface FB are loops of arcs intersecting triangles with a quadratic patch.
The cavity on FB specified by the pocket Pi, FB ∩⋃

Pi, is a surface patch with
the boundaries {FB ∩Mij |j = 1, 2, . . . , t}. We can extract the cavities on a skin
surface by computing the intersection of mouths and the skin surface.

Instead of computing the intersection curve γ = FB ∩ ∂Pi analytically, we
compute an approximation of the curve γ using the skin mesh. The reason is
the cavities extracted from a skin mesh are represented by a triangular mesh,
which can facilitate fast combinatorial algorithm for applications such as locating
active sites on protein surface in similarity matching.

The skin mesh is generated efficiently by the algorithm proposed in [2]. We
implement the computation of the pockets using the algorithm proposed in [6].
The boundaries of each cavity are computed by intersecting the skin mesh with
the mouths of the pockets. We obtain a chain of triangles in the skin mesh
representing the boundaries of the cavity. Then, we explore the triangles along
this boundary toward the direction to the inner part of the pocket to extract the
triangular mesh of the cavities.

4 Results and Discussion

In this paper, we define the cavities on the surface of macromolecules and rep-
resent them as a triangular mesh. Figure 1 illustrates an example of the cavities
on a protein surface.

The cavities can be taken as an extension of the pockets in alpha shapes.
We consider the applications from two aspects. Firstly, we are aiming at a new
method for the ligand docking problem [10]. The complementarity property of
the skin surface tells us we could find a set of weighted points in the complemen-
tary space of the union of B to specify FB. Thus, we may define the protrusions
on the molecular skin surface as well. With the notions cavities and protru-
sion, we can predict the conformation of docked proteins by matching the cavity
surface patches and protrusion patches. Secondly, we may use the cavities to
compare the similarity of two different proteins[9]. Since similar shape of the
active sites on two different proteins’ surfaces may suggest similarities of protein
functions, we can compare two proteins by computing the geometric similarity
of the cavity patches on the surface of proteins.
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