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Figure 1: Molecular models of the molecule Helix. The leftmost shows the van der Waals surface model; the center shows the molecular skin
model and the rightmost shows the magnified mesh details in the box of the center figure.

ABSTRACT

Quality surface meshes for molecular models are desirable in the
studies of protein shapes and functionalities. However, there is still
no robust software that is capable to generate such meshes with
good quality. In this paper, we present a Delaunay-based surface
triangulation algorithm generating quality surface meshes for the
molecular skin model. We expand the restricted union of balls
along the surface and generate an ε-sampling of the skin surface in-
crementally. At the same time, a quality surface mesh is extracted
from the Delaunay triangulation of the sample points. The algo-
rithm supports robust and efficient implementation and guarantees
the mesh quality and topology as well. Our results facilitate molec-
ular visualization and have made a contribution towards generating
quality volumetric tetrahedral meshes for the macromolecules.
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1 INTRODUCTION

Molecular biology is receiving growing attention from computer
scientists. With the recent success of the Human Genome Project,
an important aspect of the biological study is the investigation of
the three dimensional structures of molecules and their functionali-
ties. A fundamental computational primitive supporting these stud-
ies is to construct digital representations of molecular surfaces. The
polygonal mesh is one of the most popular representations because
they facilitate not only visualizations but also numerical simulations
on macromolecules. Wherein the mesh quality is important for the
convergence and accuracy of the simulation. In addition, the home-
omorphism between the mesh and the surface is essential to provide
a correct boundary representation. In this study, we investigate effi-
cient algorithms to generate quality and homeomorphic meshes for
the molecular skin models.

1.1 Previous work

Molecular surface meshing has been much discussed in the recent
literature. Amitabh et. al [4] presented a parallel algorithm for
computing the triangulated molecular surface efficiently. The algo-
rithm assumed an upper bound on the number of neighboring atoms
to each atom and achieved linear computation over n processors.
However, the paper offered little in the way of handling molecular
surface self-intersections and guaranteeing the mesh quality. Akki-
raju and Edelsbrunner [3] described algorithms for triangulating the
surface of space filling (SF), solvent accessible (SA), and molecu-
lar surface (MS) models. The computation is based on the regular
triangulation of a set of balls representing the atoms of a molecule.
The implementation of the algorithm ran into robustness problem
because of the inconsistency between the regular triangulation and



the surface meshes [3]. In addition, the author did not address the
problem of molecular surface self-intersections nor offer any guar-
antees on the mesh quality. Laug and Borouchaki [14] applied sur-
face mesh generation techniques to construct quality meshes for
molecular surfaces. First, an analytical representation of the surface
was computed and parameterized. Then, triangular meshes were
constructed in the parametric space and mapped onto the molecu-
lar surface. The generated triangulation had good quality but was
limited to a few small molecules free of self-intersections. By far,
the molecular surface self-intersections have been the bottleneck in
developing robust surface mesh generation tools for molecules.

A number of other studies have proposed new surface models
for molecules. Zhang et.al [16] investigated the approximation of
implicit solvation surfaces of molecules using the electron density
maps. The author used the summation of Gaussian kernel functions
to construct the density map and sample volumetric data. Surface
meshes were extracted from the volumetric data as an isosurface
using the dual contouring methods. However, the isosurface gen-
erated by the Gaussian density function is not smooth because the
volume data could not be sufficiently fine. The error of the isosur-
face could be very large relative to the atom size and resulted in
inaccurate representations.

Edelsbrunner [10] introduced the molecular skin model based on
a framework of the Voronoi diagram and Delaunay triangulation of
a set of weighted points. We argue that the skin model outperforms
the existing surface models because the skin surface is smooth, free
of self-intersections and capable of being parameterized, triangu-
lated with good quality and deformed freely with smooth transi-
tions [10]. Cheng et.al [6] developed an algorithm that constructed
the skin triangulation by growing an initial Delaunay mesh dynam-
ically. However, the efficiency is not satisfactory because the algo-
rithm computes a large number of redundant intermediate meshes
between the initial mesh and the final surface mesh.

Recently, Cheng and Shi [7] presented an advancing front mesh-
ing algorithm to generate quality meshes for the skin surface effi-
ciently. In this algorithm, the critical points of a height function
on the surface were used to detect front collision and the Morse-
Smale complex was constructed to eliminate noisy critical points.
This method improved the efficiency dramatically but resulted in
robustness problem of the implementation. For example, this algo-
rithm failed to triangulate the molecular skin surface illustrated in
Figure 2 because the bumpy appearance on the surface resulted in
a large number of noisy critical points and a complicated Morse-
Smale complex. The accumulation of numerical errors in the ap-
proximation of Morse-Smale complex led to inconsistent critical
points after eliminating noisy critical points inaccurately. An an-
alytical representation of the Morse-Smale complex would avoid
such a problem. However, the current methods for solving partial
differential equations(PDEs) make it impossible for us to have an-
alytical representations because the arcs in the Morse-Smale com-
plex are solutions of partial differential equations with order 2 and
it is difficult to obtain the analytical solutions for such equations.

Boissonnate and Oudot [5] proposed a Delaunay based algorithm
for triangulating smooth surfaces with provable quality and topol-
ogy guarantees. However, since the algorithm requires the compu-
tation of the local feature size of surface points, it is not applicable
for the molecular skin surface because the media axis computation
of the surface is hard.

To sum up, it is still challenging to build robust software to
generate quality surface meshes for molecules. In this paper, we
present a robust Delaunay-based meshing algorithm to generate
quality meshes for the molecular skin models.

1.2 Our approach

We employed the Delaunay-based method to generate quality mesh
for the molecular skin surface incrementally. In particular, we add

Figure 2: The molecular skin model of HIV-2 protease.

one sample point each time and maintain the Delaunay triangula-
tion of the sample points with the incremental flipping algorithm.
Then, we extract a subset of the Delaunay triangulation as the can-
didate surface triangles. This extraction only requires a local update
because most of the candidate surface triangles remain the same.
These candidate surface triangles forms a partial mesh and guides
the future point sampling. We iteratively apply this procedure un-
til we get an ε-sampling of the whole surface. At the same time,
the surface mesh is extracted from the collection of all candidate
surface triangles. Our Delaunay-based meshing algorithm can offer
mathematical guarantees on the mesh quality as well as robustness
in practice.

In order to guarantee the mesh quality and topology, we employ
the restricted union of balls, which is introduced in Section 3.1.
The restricted union of balls ensures that our algorithm generates
an ε-sampling of the skin surface. Because the restricted Delaunay
triangulation of an ε-sampling is homeomorphic to the skin surface
if ε is sufficiently small, we can extract the restricted Delaunay tri-
angles from the Delaunay triangulation to construct homeomorphic
mesh [6]. At the same time, we can guarantee the length of the
edges in the surface mesh is not too short and the circumradius of
the triangle is small by utilizing the restricted union of balls. As a
result, we can guarantee the termination of algorithm and achieve a
lower bound on the minimum angle of each triangle in the surface
mesh.

One point worth noting here is the efficiency of the algorithm.
Since the incremental algorithm for Delaunay triangulation in three
dimensions has quadratic complexity in the worst case, our algo-
rithm may take quadratic time. Fortunately, we overcome this defi-
ciency by speeding up the point location procedure in the computa-
tion of Delaunay triangulation. Instead of using a directed acyclic
graph (DAG) to store the history of performed flips, we give a
straightforward yet fast way to locate the tetrahedron enclose the
newly inserted point by taking the advantage of our point sampling
strategy. The results of our implementation provide evidence of the
robustness, efficiency and quality guarantees of the algorithms.

Outline. Section 2 introduces some geometric fundamentals.
Section 3 describe our Delaunay skin meshing algorithm. Section 4
illustrates some experimental results of our meshing algorithm and
we conclude the paper in Section 5.

2 PRELIMINARIES

We first introduce some definitions, then describe a few previous
results from [6] for the understanding of our algorithm.



2.1 Definitions

Skin surfaces. A skin surface FB is defined by a set of
spheres B in R

3. It is the envelope of an infinite family of spheres
derived from B by convex combination and shrinking. Even though
the family of spheres is infinite, the skin surface can be decom-
posed to a collection of quadratic patches. Each patch is a portion
of sphere or hyperboloid clipped within a polyhedron obtained by
shrinking the Minkowski sum of the corresponding Voronoi and
Delaunay polyhedron. The molecular skin model of a molecule is
the skin surface specified by the set of spheres positioned at each

atom coordinate and equipped with a radius as
√

2 times the sum-
mation of the atom’s van der Waals radius and the radius of the
probe sphere, which is usually chosen as 1.4 Angstrom to represent
the water as solvent.

Curvature property. The skin surface is a C1 continuous
surface and its maximum curvature is continuous as well. We
denote the maximum principal curvature at x ∈ FB as κ(x). The
reciprocal 1/κ(x) is called the local length scale at x, denoted as
ρ(x). For two points x,y ∈ FB, the variation of the local length
scale can be expressed in the Lipschitz condition,

|ρ(x)−ρ(y)| ≤ ‖x− y‖.

We use the local length scale to control the sampling density
in the triangulation. In particular, we require the vertices of the
triangulation to be an ε-sampling.

ε-sampling of skin. A finite subset P ⊂ FB is an ε-sampling
of FB if every point x ∈ FB has a point p ∈ P such that their distance
is at least ερ(x). For an ε-sampling on the skin with a feasible ε

value, its restricted Delaunay triangulation is homeomorphic to the
skin surface.

Restricted Delaunay triangulation. The restricted
Voronoi polygon of a ∈ P is defined as νa

′ = νa
⋂

FB, in which
νa is the Voronoi cell of a with respect to P in R

3. The nerve of
the restricted Voronoi polygons is the set of these polygons with
non-empty common intersection. The collection of the convex
hull of the nerve element is the restricted Delaunay triangulation,
namely,

DP
′ =

{

conv (U)
∣

∣ U ⊆ P, FB ∩
⋂

a∈U

νa 6= /0
}

.

We aim to generate an ε-sampling of a skin surface and construct
its restricted Delaunay triangulation. Next, we introduce several
properties of the restricted Delaunay triangulation of an ε-sampling
of the skin surface.

2.2 Homeomorphic Conditions

The restricted Delaunay triangulation is homeomorphic to the sur-
face if it satisfies the closed ball property [11]. This implies that we
need a dense enough sample on the surface. We refer to the results
from Cheng et. al [6].

Thm. 2.1 Homeomorphism Theorem. If P is an ε-sampling of a
skin surface FB with 0 < ε < 0.279, the restricted Delaunay trian-
gulation D′

P is homeomorphic to FB.

For each triangle abc ∈ D′
P, its Voronoi edge passes through its

circumcenter o and intersects the skin surface at a point z. More-
over, the triangle abc have a small circumradius compared to local
length scale at its vertices and the distance between o and z have
an upper bound as well. These two properties are expressed in the
following two Lemmas from [6].

Lemma 2.1 The cricumradius Rabc have an upper bound, namely,

Rabc <
ε

1− ε
ρabc.

Lemma 2.2 The distance between o and z is

‖oz‖ ≤ ε2

2
ρabc,

in which the local length scale of the triangle abc is defined as
ρabc = min{ρ(a),ρ(b),ρ(c)}. We use these two bounds as the con-
ditions to select candidate surface triangles from the Delaunay tri-
angulation of a partial sampling.

3 DELAUNAY SKIN MESHING USING RESTRICTED UNION

OF BALLS

In this section, we first introduce the definition of the restricted
union of balls and the guarantees of mesh topology and quality.
Then, we give an overview of our meshing algorithm followed by
the detail description of the key operations in the algorithm.

3.1 Restricted Union of Balls

For each point p ∈ P, we define the γ-ball p̂ of p as the open ball
centered at p with a radius γρ(p), in which γ is a positive constant
less than 1 and the ρ(p) is the local length scale at p. A γ-ball
is empty if no other sample point in P is inside the γ-ball. Each
γ-ball intersects the skin surface with a topological disk and the
intersection of the skin and a union of a set of γ-balls is called the
restricted union of balls. The boundary of the restricted union of
balls is a set of closed curves consisting of a loop of arcs when
the union of balls does not cover the whole surface. A γ-ball that
contributes to the boundary of the restricted union of balls is called
a boundary ball.

We use the restricted union of balls to generate an ε-sampling of
the skin surface. We prove that the restricted union of balls without
boundaries determines an ε-sampling of the skin surface when the
value of γ is small. We have the following theorem.

Thm. 3.1 Sampling Density Theorem. For a sampling P ⊂ FB, if
its restricted union of balls with γ ≤ ε

1+ε
covers the skin surface, P

is an ε-sampling of the skin surface FB.

PROOF. Let x be any point on the skin surface. Since the re-
stricted union of balls covers the whole surface, we have at least
one γ-ball â enclose x. We have the upper bound for γ when x is on
the boundary of â. In this case, ‖xa‖ = γρ(a).

By definition of the ε-sampling, we require ‖xa‖ ≤ ερ(x). To-
gether with the curvature property, we have γρ(a) ≤ ε(ρ(a) −
γρ(a)). That is, γ ≤ ε

1+ε
.

Theorem 3.1 implies that we can construct a restricted union of
balls with 0 < γ < 0.218 to obtain an ε-sampling with 0 < ε <
0.279, which suggests that we can guarantee the surface mesh is
homeomorphic to the skin surface.

If we require each γ-ball is empty, we can guarantee the length
of an edge ab in the surface mesh have a lower bound, that is,

‖ab‖ ≤ γρab,

in which the local length scale of the edge ab is defined as ρab =
max{ρ(a),ρ(b)}. Together with the Lemma 2.1, we can guarantee
a lower bound on the minimal angle of the surface mesh, that is,
arcsin( γ

2ε
(1− ε)). This suggests that smaller γ and ε mean better



mesh quality if we ensure that they satisfy the upper bound. We can
choose the values of the γ and ε as small as possible. However, this
would result in more surface triangles. We should keep a balance
between the mesh quality and mesh size. For example, we chose
γ = 0.15 and ε = 0.18 and achieved a lower bound of 20◦ on the
minimum angle.

3.2 Overview of our algorithm

Our algorithm constructs the triangulation of a given skin surface
by meshing each connected component individually. We can dif-
ferentiate all the connected components with the alpha shape [12]
and its Betti numbers [9] because each connected component of the
skin surface FB corresponds to a connected component of the al-
pha complex KB specified by B. This corresponding relationship
is based on the homotopy equivalence between the spaces enclosed
by the skin surface FB, namely, the skin body, and the underlying
space of the alpha complex [10].

For each component, we start from a seed point and insert new
points along the boundary of the restricted union of balls incre-
mentally. Each newly inserted point is located outside the current
restricted union of balls. After a new point is inserted, we compute
the Delaunay triangulation and extract the small restricted Delau-
nay triangles as the candidates for the surface triangulation. At the
same time, the restricted union of balls expands along the skin sur-
face and the boundary is updated until the whole surface is covered.
The algorithm terminates when the restricted union of balls covers
the whole surface. Figure 3 illustrates a scenario of a vertex inser-
tion.

v

boundary of the restricted union of balls

boundary balls

the front

Figure 3: The vertex insertion in the algorithm.

Denote the current sampling point set as Pi and Delaunay tri-
angulation of Pi as Di. We choose all the small restricted Delau-
nay triangles in Di as the candidate surface triangles, denoted as
Si ⊂ Di. Ideally, Si could be a piecewise 2-manifold with bound-
ary that is an exact subset of the final surface mesh. However, we
cannot achieve this from a partial sampling and the candidate sur-
face triangles Si is a superset of the 2-manifold, which may include
some false surface triangles resulting in tetrahedra or non-manifold
elements. These false surface triangles can be cleaned up when we
obtain an ε-sampling.

With Pi, we insert a new point v to get Pi+1. Since the point v
must be outside of the current restricted union of balls, we iden-
tify the boundary balls to locate v. The boundary balls are found
by using a subset of the Delaunay edges in Si, namely, the f ront.
Each front edge is either a dangling edge in Si or an edge shared by
two candidate triangles whose normals form an angle larger than
90◦. The collection of all the γ-balls at the vertices of the front
edges includes all the boundary balls and a small number of inte-
rior γ-balls. We can differentiate these interior balls in our point
placement methods and locate the new point v on the restricted
Voronoi edge of a front edge whose vertices γ-balls are boundary

balls. Then, we maintain the Delaunay triangulation of Pi+1 and
extract new candidate surface triangles. As a result, the collection
of candidate surface triangles grows from Si to Si+1 and the front
advances to the unmeshed region. We store the f ront in a queue Q
and iteratively apply the above procedure until the front Q is empty,
that is, the restricted union of balls cover the whole surface. The
pseudo code of the algorithm is illustrated as following.

Algorithm 1 DeloneSkinMesh()

1: while The boundary of restricted union of balls is not empty
do

2: Find a front edge ab;
3: Locate a new point v according to ab;
4: Compute the Delaunay triangulation of Pi ∪{v};
5: Extract the candidate surface triangles;
6: Update the front;
7: end while
8: Clean up the non-restricted Delaunay triangles from S;

The algorithm consists of four main steps, namely, locating a
new vertex, updating the Delaunay triangulation, extracting candi-
date surface triangles and updating the front. When the restricted
union of balls covers the surface and no more points can be inserted,
we get an ε-sampling and the collection of candidate triangles in-
cludes the restricted Delaunay triangulation of the ε-sampling. We
clean up the non-restricted Delaunay triangles and get the final sur-
face mesh. Next, we discuss these steps in details.

3.3 Point Placement

Assume that we have a front edge ab whose γ-balls â and b̂ are
boundary balls. We aim to locate a new sample point v satisfying
the following requirements:

• the point v should be outside the restricted union of balls;

• the γ-ball v̂ should be free of any sample point in Pi;

• the γ-ball v̂ should intersect the boundary balls â and b̂ deeper
than tangentially;

• the point v will form at least one candidate surface triangles
with the points in Pi.

The first two requirements maintains the empty property of the
γ-balls, which avoids short edges in the mesh and implies that the
algorithm will terminate. The third requirement is to ensure the
restricted union of balls cover the whole surface once the algorithm
terminates. The last one aims to maintain a valid front to guide our
future vertex insertion. These requirements imply that the distance
from the point v to a and b should be larger than γρab but not too far
from a and b. This suggests that the points along the intersection

between the skin and the boundary balls â and b̂ would be a good
choice. We argue that there is always a space to find a point v
satisfying these requirements before the algorithm terminates. In
particular, we can locate the point v on the restricted Voronoi edge
of the front edge ab. See Figure 4 as an example.

In Figure 4, ab is a front edge and its restricted Voronoi edge is
the curve wy, which is the intersection of the skin and the Voronoi
polygon of ab with respect to the points in Pi. The solid line circles
represent the γ-balls and the point m is the intersection point of the

skin surface and the boundary of â and b̂ that is outside the restricted
union of balls. The point v is the point we intend to insert and edge
va and vb are the Delaunay edges of Di+1 after v is inserted. We
demonstrate that point v can be found on the curve wy around the
point m. Since ab is a front edge, the endpoint w is on the Voronoi



a
b
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‖wa‖ = ‖wb‖ >
ε

1−ε
̺ab γ̺(v)
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γ̺(b)
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Figure 4: Locate the new point v correspond to a front edge ab.

edge of a Delaunay triangle abx in Di and abx is not a candidate
surface triangle. Thus, the circumradius Rabx of the triangle abx
is greater than ε

1−ε
ρabx. It implies that ‖wa‖ = ‖wb‖ > ε

1−ε
ρabx,

which means the point w is outside â∪ b̂ and far from the corner
point m. As a result, we can find the point v starting from m toward
w along the curve wy.

The computation of the intersection curve wy between the skin
and the Voronoi polygon of edge ab is costly. Therefore, we use
the projection of wy on the tangent plane of the point a, namely,
w′y′, to locate the point v. We denote the projection of m on the line
w′y′ as m′ and w′y′ is a line segments passing through the middle
point t of a and b. We find a point v′ on w′y′ start from t with a

length slightly longer than tm′. For instance, ‖tv′‖ = 1+
√

3
2 ‖tm′‖ is

a feasible choice in practice. We get the point v by projecting v′ to
the skin surface.

In the case where the vertices γ-balls of front edge ab is not
boundary balls, the point v we compute using the previous proce-
dure must be inside the restricted union of balls. We simply discard
the point v and cancel the candidate surface triangles attached to
the edge ab. Next, we compute the Delaunay triangulation, Di+1,
of Pi ∪{v}.

3.4 Computation of Delaunay triangulation

We adapt the incremental flip algorithm to construct the Delaunay
triangulation Di+1 efficiently. The incremental flip algorithm was
initially proposed by Lawson [15]. The basic idea of the algorithm
is the following. Let P be a set of n points in R

3, 4 < i < n and
assume that the Delaunay triangulation of the first i points in P is
already constructed, called Di. Add the (i+1)-th point to triangula-
tion and restore the Delaunayhood by flipping, this results in Di+1.
Repeat this process until i = n. A crucial step in the algorithm is the
point location, which occurs when a new point is added in to the tri-
angulation. A directed acyclic graph (DAG) with the history of all
performed flips were used to speed up the point location. However,
the DAG structure results in large memory usage and complicated
implementation. In our algorithm, we employ a straightforward yet
fast way to locate point by taking the advantage of our point sam-
pling strategy.

Since the newly inserted point v corresponds to a front edge ab
and is not far from a and b, we simply search the tetrahedra in a
certain region around ab. Particularly, we choose a Delaunay trian-
gle abd in the star of edge ab whose normal has minimal difference
with the normal of point v at the skin surface as a starting point.

The point v only belongs to one of the half spaces divided by the
plane pass through triangle abd, denote as H. If the triangle abd is
a facet on the convex hull and there is no points in Pi belonging to
the half space H, the point v would be on the convex hull also and
we return the artificial tetrahedron connecting abd with the point at
infinite. Otherwise, there must be a tetrahedron enclosing v and we
can find it by walking through the triangles enclosed by a sphere
centered at a and with a radius of 1.5 times of the length of edge
va along the direction toward v. In general, the point v is either
a convex hull point or is enclosed by a tetrahedron attached to the
start point triangle. That is, we only need a constant time to locate
the tetrahedron enclosing v, which accelerate the construction of
the Delaunay triangulation very much. Then, we connect v to the
vertices of the tetrahedron and perform flips to restore the Delaunay
property of the triangulation. Our implementation is based on the
results of alpha shape software [1, 12].

After the Delaunay triangulation Di+1 is accomplished, we ex-
tract the candidate surface triangles. The Delaunay triangulation
Di+1 differs from Di with the star of v, which is a set of tetrahedra
that include v as one of their vertices. Therefore, we can only con-
sider the triangles in the star of v for labeling new candidate surface
triangles.

3.5 Extraction of Candidate Surface Triangles

We select candidate surface triangles according to two conditions,
namely, the small circumradius condition and restricted Delaunay
condition. By ”small” we mean the circumradius Rabc of a Delau-
nay triangle abc is smaller than ε

1−ε
ρabc. For the restricted Delau-

nay property, we not only require the Voronoi edge Vabc intersects
the skin surface but also need the distance between the intersection
point z and the circumcenter o is less than ε2

2 ρabc. The following
pseudo code shows the procedure ExtractCandidateTringles().

Algorithm 2 ExtractCandidateTriangles()

1: unmark all the triangles in Star(v)
2: while there is an unmarked triangle abc ∈ Star(v) do
3: if Rabc < ε

1−ε
ρabc then

4: if Vabc intersect the skin surface with a closest point z and

‖oz‖ < ε2

2 ρabc then
5: mark abc as a candidate surface triangle;
6: else
7: mark abc as a non candidate surface triangle;
8: end if
9: else

10: mark abc as a non candidate surface triangle;
11: for the edge xy ∈ {ab,bc,ac} do

12: if ‖xy‖ > 2ε

1−ε
ρabc then

13: mark all the triangles in Star(xy) as non candidate
surface triangles;

14: end if
15: end for
16: end if
17: end while

The small circumradius condition and restricted Delaunay con-
dition ensure that the candidate surface triangles include all the re-
stricted Delaunay triangles in the final restricted Delaunay triangu-
lation of the ε-sampling. This argument is based on the follow-
ing two observations. First, the small Delaunay triangles would
be always Delaunay if we did not insert any point into its small-
est circumsphere. It implies that the points sampled in the future
will not invalidate most existing candidate surface triangles. Sec-
ond, the restricted Voronoi edge of a Delaunay triangle can only
become shorter after more points are sampled, which means that a



restricted Delaunay triangle in a partial mesh could become a non-
restricted Delaunay triangle but a non-restricted Delaunay triangle
would never be a restricted Delaunay later.

We can accelerate the candidate surface extraction procedure by
checking the edge length of a large triangle. Since the longest edge
of a triangle is as long as 2 times of its circumradius, we can distin-
guish whether a Delaunay triangle is not a candidate surface trian-
gle if its edge is too long.

Finally, we update the front from the new candidate surface tri-
angles by checking each edge of a candidate triangle. If the edge is
a dangling edge or shared by two triangles with large normal angles,
then we put the edge to the queue Q.

If the restricted union of balls covers the whole surface and no
more points can be added, the sample points P is an ε-sampling
of the skin surface. We walk through all the candidate surface tri-
angles and clean up all the non-restricted Delaunay triangles. The
remaining triangles form the restricted Delaunay triangulation of
the ε-sampling P, which is a quality surface mesh approximating
the skin surface.

4 RESULTS

We implemented the algorithm on the PC platform with C++ us-
ing OpenGL as the graphics library. We partially reuse prior soft-
ware on alpha shapes [1] and Betti numbers [9]. We triangulate
a few large molecular skin models of proteins, especially several
molecules that our previous algorithm fails to generate the mesh
because of the noisy critical points in the Morse-Smale Complexes.

Figure 2 shows the molecular skin model of a protease molecule
of the Human Immunodeficiency Virus (HIV). Our algorithm tri-
angulates this surface and produce a mesh with a minimum angle
20.35◦. Since the surface of the molecule has a very bumpy appear-
ance, our previous algorithm failed to triangulate this surface [7]. In
contrast to this, our current algorithm can handle the bumpy surface
robustly. This can be explained by two factors: first, we did not use
the Morse-Smale complex in this algorithm so that there are no ac-
cumulation of numerical error involved in the computation; second,
the robust and stable implementation of the alpha shape software re-
lieve us from the robustness worries associated with the Delaunay
triangulation computation.

Figure 5 and 6 show the molecular skin model of two molecules
we randomly choose from the protein data bank [2]. These re-
sults demonstrate that our meshing algorithm generates a correct
and precise representation of the surfaces of molecules. We verify
this by comparing the Betti numbers of the alpha shape and that of
the surface. The topological features such as genus and tunnels are
preserved and detail geometric feature like depressions and protru-
sions are approximated accurately. For example, Figure 5(b) shows
the magnified view of a small genus and Figure 6(b) illustrates the
magnified view of a cavity on the surface. The homeomorphism
between the mesh and the original surface and the accurate approx-
imation are due to the ε-sampling generated by the restricted union
of balls. This also supports our arguments that the molecular skin
model is a better geometric model for the molecules such as pro-
teins and DNAs because it can enable us to achieve these two goals.

molecular no. triangles minimum angle computing
name in the mesh in the mesh time

200D(Figure5) 65,162 19.28◦ 00:01:35

1FG1(Figure6) 94,390 20.82◦ 00:02:41

Helix(Figure1) 98,017 21.20◦ 00:05:45

HIV 2(Figure2) 226,758 20.35◦ 00:15:43

Table 1: Performance of our meshing algorithm.

Table 1 lists the statistics of the running time and mesh quality of

the surface meshes illustrated in this paper. All these experiments
were run on a Pentium 4 PC. These results indicate that our imple-
mentation performs robustly and achievs good mesh quality with
reasonable speed.

5 DISCUSSION

This paper describes an incremental mesh generation algorithm us-
ing restricted union of balls for triangulating the molecular skin
surfaces. The restricted union of balls is the intersection of the
skin surface and the union of a set of empty open balls centered
at the surface sample points. By judiciously choosing the radius
of the balls to adapt to the surface curvature, we obtain an even
ε-sampling and the surface mesh is the restricted Delaunay triangu-
lation of the sampling, which is guaranteed to be homeomorphic to
the original surface. At the same time, we achieve guaranteed mesh
quality and reasonable efficiency.

Compared with the sweeping skin meshing algorithm, our cur-
rent meshing algorithm performed more robustly but had a lower
efficiency because it computes the Delaunay triangulation of all the
sample points on the surface. Although we improve the efficiency
of locating the tetrahedron in the incremental construction of the
Delaunay triangulation in a fast way, the edge flipping is still costly
since the complexity of the Delaunay triangulation of surface sam-
ple points can be O(n2), as shown by Jeff Erickson[13]. Actually,
any surface meshing algorithm using Delaunay triangulation of the
sample points would face this problem and perform even worse be-
cause they have to use the DAG structure to locate the new vertex.

The mesh quality we achieved is worse than the previous meth-
ods, namely, the sweeping skin meshing algorithm and dynamic
skin triangulation algorithm in a small scale. The main reason is
that we do not use the costly refinement operations to improve the
mesh quality. We can achieve a better quality by choosing smaller
γ values. However, it would result in a large number of triangles in
the mesh. Applying the refinement operations on our result would
be an option to achieve better qualities. Indeed, after some minor
refinement, our mesh will be as good as the results given by the pre-
vious method. However, we skip the refinement part in this paper
because we aim to focus on the new way of mesh generation.

Our algorithm generates surface meshes and outputs the Delau-
nay triangulation of these sample points at the same time. An im-
mediate future work would be the generation of quality volumet-
ric tetrahedral mesh for the molecules on the base of our results.
The Delaunay refinement algorithm in [8] would be a good choice.
With the quality volumetric tetrahedral mesh, we can approximate
the electrostatic potentials by solving the Poisson-Boltzmann equa-
tions using finite element methods. We believe the result would
be more accurate and close to the experimental results because the
mesh quality is an essential factor for the accuracy and convergence
of finite element methods.
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