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Abstract. We propose a method to approximate a polygonal object by a
deformable smooth surface, namely the t-skin defined by Edelsbrunner [5]
for all 0 < t < 1. We guarantee that they are homeomorphic and their
Hausdorff distance is at most ε > 0. This construction make it possible for
fully automatic, smooth and robust deformation between two polygonal
objects with different topologies. En route to our results, we also give
an approximation of a polygonal object with a union of balls, which is a
straightforward modification of our earlier work [4].

1 Introduction

Geometric deformation is a heavily studied topic in disciplines such as computer
animation and physical simulation. Its challenges mainly are deformation be-
tween objects with different topologies, and maintaining a good quality mesh
approximation of the deforming surface. Edelsbrunner defines a new paradigm
for the surface representation to solve these problems, namely the skin. It pro-
vides a robust way of deforming one shape to another without any constraints
on features such as topologies [2]. Moreover, the skin surfaces process nice prop-
erties such as curvature continuity which provide quality mesh approximation
of the surface with guarantees such as triangle qualities [3]. However, most of
the skin surface applications are still mainly on molecular modeling because of
the intuition of its constitution by balls. The surface is not widely used in other
fields because general geometric objects cannot be represented by the skin sur-
faces easily. This leaves a big gap between the nicely defined surfaces and its
potential applications. We are trying to fill this gap in this paper.

1.1 Motivation and Related Works

Our main motivation for converting a polygonal object to a skin surface for
deformation between objects. This is also a question asked by Amenta et. al in [1].
As noted earlier in some previous works [2, 5], deformation can be performed
robustly and efficiently with the skin surface.

Moreover, our work here can also be viewed as a step toward converting an
arbitrary smooth object into a provably accurate skin surface. In this regard,
previous work has been done by Kruithof and Vegter [7]. For input the method



requires a so-called r-admissible set of balls B which approximate the object well.
Then, it expands all the weights of the balls by a carefully computed constant
t, before taking the 1

t
-skin of the expanded balls to approximate the smooth

object. There are two difficulties in such approach. First, such an r-admissible
balls are not trivial to obtain. Furthermore, when the required factor t is closed
to 1, the skin surface is almost the same as the union of balls, thus, does not give
much improvement from the union of balls. On the other hand, our approach
allows the freedom to choose any constant 0 < t < 1 for defining the skin surface.

On top of the skin approximation, we also give an approximation of a polyg-
onal object with a union of balls which has potential applications in com-
puter graphics such as collision detection and deformation [6, 9, 10]. Ranjan and
Fournier [9] proposed using a union of balls for object interpolation. Sharf and
Shamir [10] also proposed using the same representation for shape matching.
Those algorithms require a union of balls which accurately approximate the ob-
ject as an input and to provide such a good set of balls at the beginning is still
not trivial.

A comparison with our previous work. In [4], we proposed a method to construct
of a set of weighted points whose alpha shape is the same as the input simplicial
complex in R

d, which we call the subdividing alpha complex, from which it is
quite straightforward to obtain a set of balls which can be used to approximate
the object. However, to construct the subdividing alpha complex, we need to
make the assumption that the constrained triangulation of the input is given
too.

In this paper the input is a piecewise linear complex which constitutes the
boundary of the object. To avoid the assumption of constrained triangulation, we
make use of the notion of local gap size(lgs) in the construction of the subdividing
alpha complex.

1.2 Approach and Outline

First, we construct a set of balls whose alpha shape is the same as the boundary
of the polygonal object, namely, the subdividing alpha complex. The radii of the
balls constructed are at most ε > 0.

Then, we fill the interior with balls according to the Voronoi complex. Specif-
ically, we consider all the Voronoi vertices which are inside the object. Each
Voronoi vertex determines an orthogonal ball. The set of all such orthogonal
balls can be used to approximate the object. We will show that the union of
such balls is homeomorphic to the object and furthermore, the Hausdorff dis-
tance between them is at most ε.

To obtain the skin approximation, we invert the weights of the balls that
make up the subdividing alpha complex of the boundary. Those inverted balls,
together with the balls in the interior of the object, generate a skin surface which
is homeomorphic to the object and with the Hausdorff distance between them
is at most ε.



Outline. This paper is organized as follow. In the next section we introduce some
basic terminologies on piecewise linear complex(PLC) and alpha complex. In
Section 3 we describe our method in constructing the subdividing alpha complex
of a given PLC and the approximation of a polygonal object with a union of balls.
Then we briefly review the definition of the skin surface in Section 4. The object
approximation by the skin surface is described in Section 5. Finally, we end with
some discussions in Section 6.

2 Notations and Basic Definitions

In this section we introduce a few basic definitions that we use throughout this
paper: polygonal objects, piecewise linear complexes and alpha complexes.

Polygonal objects. A polygonal object O ⊆ R
3 is a compact 3-manifold whose

boundary is a piecewise linear 2-manifold. Our algorithm takes as an input a
piecewise linear complex(PLC) which constitutes the boundary of O.

Piecewise linear complexes. In R
3, a piecewise linear complex is a set P of

vertices, line segments and polygons with the following conditions: i) all elements
on the boundary of an element in P also belong to P , and, ii) if any two elements
intersect, their intersection is a lower dimensional element in P . The underlying
space of P is denoted by |P| =

⋃
σ∈P σ.

The set of all vertices, edges and polygons are referred to as 0-, 1- and 2-
skeletons, respectively. The local gap size is a function lgs : |P| 7→ R where lgs(x)
is the radius of the smallest ball centered on x that intersects an element of P
that does not contain x.

Alpha complexes. We describe a weighted point b ∈ R
3×R by its location zb ∈ R

3

and its weight wb ∈ R, written also as (zb, wb). A weighted point b can also be
viewed a ball with center zb and radius

√
wb, that is, the set of points whose

distance to zb is less than or equal to
√

wb. If wb is negative then b is an imaginary
ball, which is, an empty set. In this paper, we will use the terms ball and weighted

point interchangeably.

The weighted distance of a point p ∈ R
3 to a ball b is defined as

πb(p) = ‖pzb‖2 − wb.

Two balls b1 and b2 are orthogonal to each other if ‖zb1zb2‖2 = wb1 + wb2 .

Given a finite set of balls B, each ball b ∈ B defines a Voronoi cell νb which
consists of the points in R

3 with weighted distance to b less than or equal to any
other ball in B. For X ⊆ B, the Voronoi cell of X is

νX =
⋂

b∈X

νb.



If νX consists of only one point then it is called a Voronoi vertex. The collection
of all Voronoi cells is called the Voronoi complex of B,

VB = {νX | X ⊆ B and νX 6= ∅}.

For a set of balls X, we abuse the notation zX to denote the set of the ballcenters
of X. The Delaunay complex of B is the collection of simplices,

DB = {conv(zX)) | νX ∈ VB}.

The alpha complex of B is a subset of the Delaunay complex DB which is defined
as follow,

KB = {conv(zX)) |
⋃

X ∩ νX 6= ∅}.

The alpha shape of B is the underlying space of KB , namely, |KB |. Note that if
conv(zX) ∈ KB then

⋂
X 6= ∅.

3 Subdividing Alpha Complex

Given a PLC P and a set of balls B, we say KB subdivides P if |KB| = |P|.
In this section, we show how to construct B such that KB subdivides P . For
this we need the following Lemma 1 which is a straightforward generalization of
Theorem 1 in [4]. The proof is quite tedious and can be found in the Appendix.

Lemma 1. Let P be a PLC. If B is a set of balls that satisfies the following two

conditions:

C1. For X ⊆ B, if
⋂

X 6= ∅ then conv(zX) ⊆ σ for some σ ∈ P, and,

C2. For each σ ∈ P, define B(σ) = {b ∈ B | b ∩ σ 6= ∅}.
Then we have: z

B(σ) ⊆ σ ⊆ ⋃
B(σ),

then KB subdivides P.

We call KB a subdividing alpha complex, or in short SAC, of P . Furthermore, if
all the weights in B are less than a real value ε, then KB is called an ε-SAC of
P .

To construct such a set of balls, we first construct the ε-SAC of the 0-skeleton
of P , followed by the 1-skeleton and then the 2-skeleton of P . The construction
of the ε-SAC of the 0-skeleton of P is trivial. For each vertex v in P , we add a
ball with center v and radius r = min(γ · lgs(v),

√
ε) where γ is a real number

between 0 and 0.5. As defined in Lemma 1, B(v) is the singleton set consists of
this ball.

To describe the construction of the ε-SAC of the 1- and 2-skeleton of P , we
need the notations of restricted Voronoi complex. The restricted Voronoi complex
of a set of balls X on σ ∈ P , denoted by VX(σ), is the complex which consists of
νX ∩ σ, for all νX ∈ VX . A Voronoi vertex u in VX(σ) is called a positive vertex
if πb(u) > 0, for all b ∈ X. Note that such a vertex is outside every ball in X.



To determine whether a vertex is positive, it suffices to compute πb′(u) where u
is the Voronoi vertex in the Voronoi cell of b′.

We construct the ε-SAC of the 1-skeleton of P according to Algorithm 1.
The basic idea is to add a ball to a positive vertex in an edge until the edge is
covered by the balls. In order to avoid unwanted elements other than the edge
itself, we set the radius of every ball to be less than both

√
ε and γ times the lgs

of the ballcenter, where γ is a real constant between 0 and 0.5.

Algorithm 1 Construction of the balls for the 1-skeleton

1: for all edge σ ∈ P do

2: Let v1, v2 be the two vertices of σ.
3: X := B(v1) ∪ B(v2)
4: while there exists a positive vertex u in VX(σ) do

5: r := min(γ · lgs(u),
√

ε)
6: X := X ∪ {(u, r2)}
7: end while

8: B(σ) := X

9: end for

The construction of the ε-SAC of the 2-skeleton of P is similar. For com-
pleteness, we present it as Algorithm 2.

Algorithm 2 Construction of the balls for the 2-skeleton

1: for all polygon σ ∈ P do

2: Let τ1, . . . , τm be the edges of σ.
3: X := B(τ1) ∪ · · · ∪ B(τm)
4: while there exists a positive vertex u in VX(σ) do

5: r := min(γ · lgs(u),
√

ε)
6: X := X ∪ {(u, r2)}
7: end while

8: B(σ) := X

9: end for

We claim that the alpha shape of the set
⋃

σ∈P B(σ) produced is the ε-SAC
of P . That is, both Conditions C1 and C2 are satisfied as well as our algorithm
terminates. Since every ball with center p has radius less than 0.5 × lgs(p), it
should be obvious that Condition C1 is satisfied. Condition C2 follows from
Proposition 1 below. Lemma 2 establishes the termination of our algorithm.

Proposition 1. Let X be a set of balls. Suppose zX ⊆ σ. Then σ ⊆ ⋃
X if and

only if there is no positive vertex in VX(σ).

Proof. The “only if” part is immediate. We will show the “if” part. Suppose
there is no positive Voronoi vertex in VX(σ). We claim that νb(σ) ⊆ b for all



b ∈ X. This claim follows from the fact that νb(σ) is the convex hull of its
Voronoi vertices and bounded. Thus, by our assumption that all the Voronoi
vertices are not positive, it is immediate that νb(σ) ⊆ b for any b ∈ X. Since σ
is partitioned into νb(σ) for all b ∈ X, it follows that σ ⊆ ⋃

X.

To establish the termination of the algorithm, we need the following fact.

Fact 1. Let σ ∈ P. Suppose Γ ⊂ σ is a closed region such that it does not

intersect the boundary of σ. Then there exists a constant c > 0 such that for

every point p ∈ Γ , lgs(p) > c.

Proof. We observe that lgs is a continuous function on σ. Thus, limpi→p lgs(pi) =
lgs(limpi→p) = 0 if and only if p is in the boundary of σ where {pi} is a convergent
sequence of points in σ. The fact follows immediately.

Lemma 2. Both algorithms 1 and 2 terminate.

Proof. We first prove that Algorithm 1 terminates. It suffices to show that the
while-loop does not iterate infinitely many times. The proof is by contradiction
and it follows from the fact that each element σ in P is compact.

Assume to the contrary that for some edge σ = (v1, v2) ∈ P the while-loop
iterates infinitely many times. That is, it inserts infinitely many balls to B(σ)
whose centers are in the region σ − (b1 ∪ b2) where bi ∈ B(vi) for i = 1, 2. By
Fact 1, there exists a constant c > 0 such that all the radii of the balls are
greater than c. By the compactness of σ, some centers of the balls converges.
It means that there are balls inserted with centers inside another ball. Thus,
it violates our construction that the balls are inserted with centers on positive
vertices. Therefore, the while-loop iterates only finitely many times. The proof
of the termination of Algorithm 2 is similar.

3.1 Approximating polygonal object with a union of balls

Let O be a polygonal object and P be its boundary. Let KB be an ε2-SAC of P .
Consider T , the set of all tetrahedra of DB which is inside O. Each tetrahedron
in T determines an orthogonal ball and we call the set of all these balls B⊥.

Note that every balls in B⊥ has positive weight. Moreover, we also have
O − ⋃

B ⊆ ⋃
B⊥ ⊆ O. We observe that

⋃
B⊥ approximates the object well as

stated below.

Theorem 1.
⋃

B⊥ is homeomorphic to O and the Hausdorff distance between

them is at most ε.

4 Skin Surface

The skin surface was first defined by Edelsbrunner [5] based on an algebraic
structure of balls. In this section we briefly review both the algebra of balls and
the definition of the skin surface. Readers interested in a detailed treatment of
the algebra of balls may find the text by Pedoe [8] useful.



Algebra of balls. The algebra of balls is based on a bijection φ : R
3 × R 7→ R

4

defined as
φ(b) = (zb, ‖zb‖2 − wb).

The space R
4 together with the usual componentwise addition and scalar multi-

plication forms a vector space. The addition and scalar multiplication operations
are defined on R

3 × R in such a way that φ is an isomorphism, that is,

φ(b1 + b2) = φ(b1) + φ(b2),

φ(γ · b) = γ · φ(b),

where b1, b2, b ∈ R
3 × R and γ ∈ R. One can easily verify that

b1 + b2 = (zb1 + zb2 , wb1 + wb2 + 2〈zb1 , zb2〉), (1)

γb = (γzb, γwb + (γ2 − γ)‖zb‖2). (2)

By the two operations above, the convex combination of a set of balls B =
{b1, . . . , bn} is the set of balls conv(B) = {∑i γibi | ∑

i γi = 1 and γi ≥
0 for all i = 1, . . . , n}. It is straightforward to verify that if a ball b is or-
thogonal to every ball bi ∈ {b1, . . . , bn}, then b is orthogonal to every ball
b′ ∈ conv(b1, . . . , bn).

Skin surfaces. Let b be a weighted point and t ∈ R, we define bt = (zb, twb). For
a set of balls B, Bt is defined as Bt = {bt | b ∈ B}.

For 0 ≤ t ≤ 1, the skin body of a set of balls B is defined as

bdyt(B) =
⋃

conv(B)t,

that is, the set of points obtained by shrinking all balls in the convex combination
of B. The skin surface is the boundary of the skin body of B, denoted by skint(B).
Note that

⋃
B = body1(B). We cite here an important relation between a union

of balls
⋃

B and the skin body that it generates.

Theorem 2. [5] The union of balls
⋃

B is homeomorphic to bdyt(B), for 0 <
t < 1.

5 Approximating a Polygonal Object with the Skin

Surface

So far, our method in approximating a polygonal object with a union of balls
can be summarized as follow.

1. Construct a set of balls B such that KB is an ε2-SAC of the boundary of the
object.

2. Compute the Voronoi complex of B and let B⊥ be the set of all orthogonal
balls with centers inside O.

3. Output B⊥ as the approximation of O.



In this section we will show that the set of balls B⊥ ∪ B−1 will generate a skin
body that approximates the object well too, as stated in Theorem 3 below.

Theorem 3. For all 0 ≤ t ≤ 1, the skin body bdyt(B⊥∪B−1) is contained inside

O and homeomorphic to it with Hausdorff distance between them is at most ε.

Proof. All balls in B−1 have negative weights, thus,
⋃

B⊥ ∪ B−1 =
⋃

B⊥. By
Theorem 1,

⋃
B⊥ ⊆ O, thus, it follows that skint(B⊥ ∪ B−1) ⊆ ⋃

B⊥ ∪ B−1 =⋃
B⊥ ⊆ O.
The homeomorphism follows from Theorem 2 that skint(B⊥∪B−1) is home-

omorphic to
⋃

B⊥ ∪ B−1 =
⋃

B⊥ which is homeomorphic to O(Theorem 1).
The Hausdorff nearness from O to skint(B⊥ ∪ B−1) is more tedious. We

present it in the next subsection.

5.1 Proof of the Hausdorff Nearness in Theorem 3

Note that for every point p in the object O, there is a weighted point b ∈
conv(B⊥ ∪ B−1) such that zb = p. In other words, O ⊆ Z where Z = {zb | b ∈
conv(B⊥ ∪ B−1). In view of this, it suffices to prove the following lemma.

Lemma 3. For every ball b ∈ conv(B⊥ ∪ B−1) where zb ∈ O, if wb < 0 then

there exists a ball b′ ∈ conv(B⊥ ∪ B−1) such that wb′ > 0 and ‖zbzb′‖ ≤ ε.

We note that the object O can be partitioned into tetrahedra of Delaunay
complex D

B
⊥∪B

?. We made a few simple observations concerning the tetrahedron
of DB⊥∪B which is contained inside O.

Fact 2. Let X = {b1, . . . , b4} such that conv(zX) is a tetrahedron in DB⊥∪B

and is contained inside O. Then,

1. At least one of the balls in X is a ball in B⊥.

2. If bi ∈ X ∩B⊥ and bj ∈ X ∩B then bi and bj are orthogonal to each other.

3. The simplex conv(zB∩X) is a simplex in KB, i.e. conv(zB∩X) ⊆ |P|.
Statements 1 and 2 are pretty straightforward. The intuition of Statement 3 is
as follow. Let X ′ = X ∩ B. It is clear when card(X ′) = 1. For card(X) = 2 or
3, assume to the contrary that conv(zX′) /∈ KB. Since |KB| = |P|, the simplex
conv(zX′) is in the interior of O. Then, there exist at least 5 − |X ′| balls of B⊥

which are orthogonal to every ball in X ′??. These balls of B⊥ make νX = ∅,
thus, yields a contradiction that conv(zX) is a Delaunay tetrahedron. Therefore,
conv(zX

′) ∈ KB, where X ′ = X ∩ B.
In view of Statement 3 in Fact 2, we categorize the tetrahedra of DB⊥∪B

within O into four types according to card(X ∩B). We illustrate it in Figure 1.

? Note that D
B⊥∪B

may not be the same as D
B⊥∪B−1 . The object O may not be

partitioned into tetrahedra of D
B⊥∪B−1 .

?? That is, if card(X ′) = 2, then dim(conv(zX′)) = 1. So, conv(zX′) is incident to at
least three tetrahedra in DB and each tetrahedron corresponds to one ball in B⊥.
Similarly, if card(X ′) = 3, then conv(zX′) is incident to two tetrahedra in DB and
each tetrahedron correspond to one ball in B⊥.



1. Tetrahedron type I is a tetrahedron where card(X ∩ B) = 1.
In Figure 1, b1 ∈ B and b2, b3, b4 ∈ B⊥.

2. Tetrahedron type II is a tetrahedron where card(X ∩ B) = 2.
In Figure 1, b1, b2 ∈ B and b3, b4 ∈ B⊥.

3. Tetrahedron type III is a tetrahedron where card(X ∩ B) = 3.
In Figure 1, b1, b2, b3 ∈ B and b4 ∈ B⊥.

4. Tetrahedron type IV is a tetrahedron where card(X ∩ B) = 0.
In Figure 1, all b1, b2, b3, b4 ∈ B⊥.
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Fig. 1. The bold point in type I, the bold edge in type II and the the shaded triangle
in the type III indicates that they are in KB, thus in the boundary of the object. None
of the vertices in the type IV tetrahedron belongs to B.

In view of this, to prove Lemma 3 it is sufficient to prove the following.

Claim. Let conv(zX) ∈ D
B

⊥∪B
and located inside O. For every ball b ∈ conv(X),

if wb < 0 then there exists a ball b′ ∈ conv(X) such that wb′ > 0 and ‖zbzb′‖ ≤ ε.

We divide the proof of the claim according to |X ∩ B|, that is, the type of the
tetrahedron that contains zb. If |X ∩ B| = 4 then all balls b ∈ conv(X) have
weights wb > 0.

The following Lemma 4 states that all points in conv(b−1
1 , b2, b3, b4) (i.e. in

tetrahedron type I) with negative weights are located within the ε-neighborhood
of zb

−1

1

. This immediately implies the validity of claim for tetrahedron type I.

Lemma 4. Let (p, w) ∈ conv(b−1
1 , b2, b3, b4). If w ≤ 0 then ‖pzb

−1

1

‖ ≤ ε.

Proof. Let

(p, w) = γ1b
−1
1 + γ2b2 + γ3b3 + γ4b4

= γ1b
−1
1 + (1 − γ1)b

′,



where b′ = 1
1−γ1

∑4
i=2 γibi and

∑
γi = 1 and γi ≥ 0, for i = 1, . . . , 4.

Since b2, b3, b4 are all orthogonal to b1, then b′ is also orthogonal to b1, i.e.
wb′ + wb1 = ‖zb1zb′‖2.

We apply the formula of combination of weighted points:

w = (1 − γ1)wb′ + γ1wb
−1

1

+ (γ2
1 − γ1)‖zb′zb

−1

1

‖2.

Since w ≤ 0, we arrange the terms into

γ2
1‖zb′zb

−1

1

‖2 − γ1‖zb′zb
−1

1

‖2 − γ1(wb′ + wb1) + wb′ ≤ 0 (3)

γ2
1‖zb′zb

−1

1

‖2 − 2γ1‖zb′zb
−1

1

‖2 ≤ −wb′ (4)

γ2
1‖zb′zb

−1

1

‖2 − 2γ1‖zb′zb
−1

1

‖2 + ‖zb′zb
−1

1

‖2 ≤ ‖zb′zb
−1

1

‖2 − wb′ (5)

(γ1 − 1)2‖zb′zb
−1

1

‖2 ≤ wb1 (6)

(1 − γ1)
2‖zb′zb

−1

1

‖2 ≤ ε2 (7)

‖pzb
−1

1

‖ ≤ ε (8)

From Inequality 3 to Inequality 4 and Inequality 5 to Inequality 6, we apply
wb′ + wb1 = ‖zb1zb′‖2. From Inequality 7 to Inequality 8, we apply ‖pzb

−1

1

‖ =

(1 − γ1)‖zb′zb
−1

1

‖.

The validity of the claim for tetrahedra type II and III is presented as
Lemma 5 and 6 below. Lemma 5 states that all points in conv(b−1

1 , b−1
2 , b3, b4)

(i.e. in tetrahedron type II) with negative weights are located within the ε-
neighborhood of conv(zb

−1

1
,b

−1

2

). Similarly, Lemma 6 states that all points in

conv(b−1
1 , b−1

2 , b−1
3 , b4) (i.e. in tetrahedron type III) with negative weights are

located within the ε-neighborhood of conv(zb
−1

1
,b

−1

2
,b

−1

3

). Both proofs are just a

slight twist of the proof of Lemma 4. For completeness, we present it below.

Lemma 5. Let (p, w) = conv(b−1
1 , b−1

2 , b3, b4). If w ≤ 0 then there exists b′ ∈
conv(b−1

1 , b−1
2 ) such that ‖pzb′‖ ≤ ε.

Proof. Let

(p, w) = γ1b
−1
1 + γ2b

−1
2 + γ3b3 + γ4b4

= γb′ + (1 − γ)b′′,

where γ = γ1 + γ2 and b′ = 1
γ1+γ2

∑2
i=1 γib

−1
i and b′′ = 1

γ3+γ4

∑4
i=3 γibi.

Since b1, b2 are orthogonal to each of b3, b4, then b′ is also orthogonal to
b′′, i.e. wb′ + wb′′ = ‖zb′zb′′‖2. Following the Inequalities 3 to 8 in the proof of
Lemma 4, we can obtain ‖pzb′‖ ≤ ε.

Lemma 6. Let (p, w) = conv(b−1
1 , b−1

2 , b−1
3 , b4). If w ≤ 0 then there exists b′ ∈

conv(b−1
1 , b−1

2 , b−1
3 ) such that ‖pzb′‖ ≤ ε.



Proof. Similar to the above, except that

(p, w) = γ1b
−1
1 + γ2b

−1
2 + γ3b

−1
3 + γ4b4

= (1 − γ4)b
′ + γ4b4,

where b′ = 1
γ1+γ2+γ3

∑3
i=1 γib

−1
i and b′ and b4 are orthogonal. Similarly, following

the Inequalities 3 to 8 in the proof of Lemma 4, we can obtain ‖pzb′‖ ≤ ε.

6 Discussion

One future direction is to implement the same idea in approximating smooth
objects with skin surfaces. Amenta et.al [1] showed that given a sufficiently
dense sample points on a smooth surface, the set of polar balls obtained can be
used to approximate the object well. There is analogy between such approach
with our method here. We can view the ε-SAC constructed as the sample points
and B⊥ as the polar balls.

By appropriately assigning certain weights to the sample points and taking
the polar balls, we hope to be able to approximate the smooth object by a skin
surface. At this point, the usefulness of this idea is still under investigation.
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Appendix. Proof of Theorem 1

It is obvious that the following two properties are sufficient conditions for sub-
dividing alpha complex:



P1. Every simplex in KB is contained in an element in P .
P2. Every element in P is a union of some simplices in KB .

We divide the theorem into two lemmas. Lemma 7 states that Condition C1
imply property P1, while Lemma 8 states that Condition C2 implies property
P2.

Lemma 7. If B satisfies Condition C1, then every simplex in KB is contained

in an element in P, that is, property P1.

Proof. It is immediate that every vertex in KB is inside an element in P . Let
conv(zX) be a simplex in KB . By the remark in the definition of alpha com-
plex,

⋂
X 6= ∅. Then, by Condition C1, there is an element σ ∈ P such that

conv(zX) ⊆ σ.

Lemma 8. If B satisfies Condition C2, then every element in P is a union of

some simplices in KB, that is, property P2.

Proof. We divide the proof into two stages:

Stage 1. We show that for every σ ∈ P , σ ⊆ |K
B(σ)|, where B(σ) is as defined

in Lemma 1.
Stage 2. We show that K

B(σ) ⊆ KB.

The first stage is further divided into three parts according to the dimension
of σ.

1. dim σ = 0.
Then B(σ) consists of a ball with center on σ. Thus, σ = K

B(σ).
2. dim σ = 1.

Since z
B(σ) ⊆ σ, σ is partitioned into the Delaunay edges of D

B(σ)
? ? ?.

Furthermore, because σ ⊆ ⋃
B(σ), every Delaunay edges conv(zb1,b2) ∈

D
B(σ), where b1, b2 ∈ B(σ), is covered by b1 ∪ b2.

The midpoint p ∈ conv(zb1,b2), where πb1(p) = πb2(p), is in the Voronoi cell
νb1,b2 with respect to the Voronoi complex V

B(σ). Thus, p ∈ (b1 ∪ b2)∩ νb1,b2

and it implies conv(zb1,b2) ∈ K
B(σ). Therefore, σ is partitioned into K

B(σ).
3. dim σ = 2.

The reasoning is similar to the above case. Since z
B(σ) ⊆ σ, σ is partitioned

into the Delaunay triangles of D
B(σ). Furthermore, because σ ⊆ ⋃

B(σ),
every Delaunay triangles conv(zb1,b2,b3) ∈ D

B(σ), where b1, b2, b3 ∈ B(σ), is
covered by b1 ∪ b2 ∪ b3.
The midpoint p ∈ conv(zb1,b2,b3), where πb1(p) = πb2(p) = πb3(p), is in the
Voronoi cell νb1,b2,b3 w.r.t. V

B(σ). Thus, p ∈ (b1 ∪ b2 ∪ b3) ∩ νb1,b2,b3 and it
implies conv(zb1,b2,b3) ∈ K

B(σ). Therefore, σ is partitioned into K
B(σ).

Now we show that K
B(σ) ⊆ KB for every σ ∈ P . Note that every ball b ∈

B−B(σ), b∩σ = ∅. Thus, for every midpoint p ∈ conv(zX), where X ⊆ B(σ) and
πb′(p) = πb′′(p) for all b′, b′′ ∈ X, p is in νX w.r.t. V

B(σ). Therefore, p ∈ ⋃
X ∩νX

and it implies conv(zX) ∈ KB.

? ? ? Recall that if v1, v2 are vertices of σ, then B(v1), B(v2) ⊆ B(σ). Similarly, if σ is a
polygon and e1, . . . , em are the edges then B(e1), . . . , B(em) ⊆ B(σ).


