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Abstract. We propose a method to approximate a polygonal object by a
deformable smooth surface, namely the ¢-skin defined by Edelsbrunner [5]
for all 0 < t < 1. We guarantee that they are homeomorphic and their
Hausdorff distance is at most € > 0. This construction make it possible for
fully automatic, smooth and robust deformation between two polygonal
objects with different topologies. En route to our results, we also give
an approximation of a polygonal object with a union of balls, which is a
straightforward modification of our earlier work [4].

1 Introduction

Geometric deformation is a heavily studied topic in disciplines such as computer
animation and physical simulation. Its challenges mainly are deformation be-
tween objects with different topologies, and maintaining a good quality mesh
approximation of the deforming surface. Edelsbrunner defines a new paradigm
for the surface representation to solve these problems, namely the skin. It pro-
vides a robust way of deforming one shape to another without any constraints
on features such as topologies [2]. Moreover, the skin surfaces process nice prop-
erties such as curvature continuity which provide quality mesh approximation
of the surface with guarantees such as triangle qualities [3]. However, most of
the skin surface applications are still mainly on molecular modeling because of
the intuition of its constitution by balls. The surface is not widely used in other
fields because general geometric objects cannot be represented by the skin sur-
faces easily. This leaves a big gap between the nicely defined surfaces and its
potential applications. We are trying to fill this gap in this paper.

1.1 Motivation and Related Works

Our main motivation for converting a polygonal object to a skin surface for
deformation between objects. This is also a question asked by Amenta et. al in [1].
As noted earlier in some previous works [2,5], deformation can be performed
robustly and efficiently with the skin surface.

Moreover, our work here can also be viewed as a step toward converting an
arbitrary smooth object into a provably accurate skin surface. In this regard,
previous work has been done by Kruithof and Vegter [7]. For input the method



requires a so-called r-admissible set of balls B which approximate the object well.
Then, it expands all the weights of the balls by a carefully computed constant
t, before taking the %—skin of the expanded balls to approximate the smooth
object. There are two difficulties in such approach. First, such an r-admissible
balls are not trivial to obtain. Furthermore, when the required factor ¢ is closed
to 1, the skin surface is almost the same as the union of balls, thus, does not give
much improvement from the union of balls. On the other hand, our approach
allows the freedom to choose any constant 0 < ¢ < 1 for defining the skin surface.

On top of the skin approximation, we also give an approximation of a polyg-
onal object with a union of balls which has potential applications in com-
puter graphics such as collision detection and deformation [6,9, 10]. Ranjan and
Fournier [9] proposed using a union of balls for object interpolation. Sharf and
Shamir [10] also proposed using the same representation for shape matching.
Those algorithms require a union of balls which accurately approximate the ob-
ject as an input and to provide such a good set of balls at the beginning is still
not trivial.

A comparison with our previous work. In [4], we proposed a method to construct
of a set of weighted points whose alpha shape is the same as the input simplicial
complex in Rd, which we call the subdividing alpha complex, from which it is
quite straightforward to obtain a set of balls which can be used to approximate
the object. However, to construct the subdividing alpha complex, we need to
make the assumption that the constrained triangulation of the input is given
too.

In this paper the input is a piecewise linear complex which constitutes the
boundary of the object. To avoid the assumption of constrained triangulation, we
make use of the notion of local gap size(lgs) in the construction of the subdividing
alpha complex.

1.2 Approach and Outline

First, we construct a set of balls whose alpha shape is the same as the boundary
of the polygonal object, namely, the subdividing alpha complex. The radii of the
balls constructed are at most € > 0.

Then, we fill the interior with balls according to the Voronoi complex. Specif-
ically, we consider all the Voronoi vertices which are inside the object. Each
Voronoi vertex determines an orthogonal ball. The set of all such orthogonal
balls can be used to approximate the object. We will show that the union of
such balls is homeomorphic to the object and furthermore, the Hausdorff dis-
tance between them is at most e.

To obtain the skin approximation, we invert the weights of the balls that
make up the subdividing alpha complex of the boundary. Those inverted balls,
together with the balls in the interior of the object, generate a skin surface which
is homeomorphic to the object and with the Hausdorff distance between them
is at most e.



Outline. This paper is organized as follow. In the next section we introduce some
basic terminologies on piecewise linear complex(PLC) and alpha complex. In
Section 3 we describe our method in constructing the subdividing alpha complex
of a given PLC and the approximation of a polygonal object with a union of balls.
Then we briefly review the definition of the skin surface in Section 4. The object
approximation by the skin surface is described in Section 5. Finally, we end with
some discussions in Section 6.

2 Notations and Basic Definitions

In this section we introduce a few basic definitions that we use throughout this
paper: polygonal objects, piecewise linear complexes and alpha complexes.

Polygonal objects. A polygonal object @ C R? is a compact 3-manifold whose
boundary is a piecewise linear 2-manifold. Our algorithm takes as an input a
piecewise linear complex(PLC) which constitutes the boundary of O.

Piecewise linear complezes. In R>, a piecewise linear complex is a set P of
vertices, line segments and polygons with the following conditions: i) all elements
on the boundary of an element in P also belong to P, and, i) if any two elements
intersect, their intersection is a lower dimensional element in P. The underlying
space of P is denoted by [P| =, .p o

The set of all vertices, edges and polygons are referred to as 0-, 1- and 2-
skeletons, respectively. The local gap size is a function lgs : |P| — R where lgs(x)
is the radius of the smallest ball centered on x that intersects an element of P
that does not contain x.

Alpha complezes. We describe a weighted point b € R? xR by its location z, € R3
and its weight w, € R, written also as (zp,wp). A weighted point b can also be
viewed a ball with center 2z, and radius /ws, that is, the set of points whose
distance to zy is less than or equal to /wy. If wy, is negative then b is an imaginary
ball, which is, an empty set. In this paper, we will use the terms ball and weighted
point interchangeably.

The weighted distance of a point p € R? to a ball b is defined as

Wb(P) = ||PZbH2 — Wy

Two balls by and by are orthogonal to each other if |25, 25, [|% = wy, + wp, -

Given a finite set of balls B, each ball b € B defines a Voronoi cell v, which
consists of the points in R® with weighted distance to b less than or equal to any
other ball in B. For X C B, the Voronoi cell of X is

Vx = m Vp.

beX



If vy consists of only one point then it is called a Voronoi vertex. The collection
of all Voronoi cells is called the Voronoi complex of B,

Ve ={vx | X C B and vy # 0}.

For a set of balls X, we abuse the notation zy to denote the set of the ballcenters
of X. The Delaunay complex of B is the collection of simplices,

Dp = {conv(zx)) | vx € Vp}.

The alpha complex of B is a subset of the Delaunay complex Dy which is defined
as follow,

Kp = {conv(zyx)) | UX Nvy # 0}

The alpha shape of B is the underlying space of Kp, namely, | g|. Note that if
conv(zx) € Kp then X # 0.

3 Subdividing Alpha Complex

Given a PLC P and a set of balls B, we say Ky subdivides P if |Kz| = |P].
In this section, we show how to construct B such that X, subdivides P. For
this we need the following Lemma 1 which is a straightforward generalization of
Theorem 1 in [4]. The proof is quite tedious and can be found in the Appendix.

Lemma 1. Let P be a PLC. If B is a set of balls that satisfies the following two
conditions:

Cl. For X C B, if X # 0 then conv(zx) C o for some o € P, and,
C2. For each o € P, define B(o) ={b€ B|bNo # 0}.
Then we have: zz(,y € o C|JB(o),

then Ky subdivides P.

We call Kz a subdividing alpha complex, or in short SAC, of P. Furthermore, if
all the weights in B are less than a real value ¢, then Ky is called an e-SAC of
P.

To construct such a set of balls, we first construct the e-SAC of the 0-skeleton
of P, followed by the 1-skeleton and then the 2-skeleton of P. The construction
of the e-SAC of the 0-skeleton of P is trivial. For each vertex v in P, we add a
ball with center v and radius r = min(7y - lgs(v), v/€) where « is a real number
between 0 and 0.5. As defined in Lemma 1, B(v) is the singleton set consists of
this ball.

To describe the construction of the e-SAC of the 1- and 2-skeleton of P, we
need the notations of restricted Voronoi complex. The restricted Voronoi complex
of a set of balls X on ¢ € P, denoted by V(0), is the complex which consists of
vy Nao, for all vy € V. A Voronoi vertex u in Vi (o) is called a positive vertex
if mp(u) > 0, for all b € X. Note that such a vertex is outside every ball in X.



To determine whether a vertex is positive, it suffices to compute 7y (u) where u
is the Voronoi vertex in the Voronoi cell of b’.

We construct the e-SAC of the 1-skeleton of P according to Algorithm 1.
The basic idea is to add a ball to a positive vertex in an edge until the edge is
covered by the balls. In order to avoid unwanted elements other than the edge
itself, we set the radius of every ball to be less than both /¢ and v times the lgs
of the ballcenter, where 7 is a real constant between 0 and 0.5.

Algorithm 1 Construction of the balls for the 1-skeleton
1: for all edge o € P do
2: Let v1,v2 be the two vertices of o.
X := B(v1) U B(v2)
while there exists a positive vertex u in Vx (o) do
r:=min(y - lgs(u), Ve€)
X =X U{(u,r*)}
end while
B(o):=X
end for

The construction of the e-SAC of the 2-skeleton of P is similar. For com-
pleteness, we present it as Algorithm 2.

Algorithm 2 Construction of the balls for the 2-skeleton
1: for all polygon o € P do
2: Let 71,...,7m be the edges of o.
X :=B(r1)U---UB(Tm)
while there exists a positive vertex u in Vx (o) do
r:=min(y - lgs(u), ¢€)
X =X U{(u,m®)}
end while
B(o) =X
end for

We claim that the alpha shape of the set |J, .p B(c) produced is the e-SAC
of P. That is, both Conditions C1 and C2 are satisfied as well as our algorithm
terminates. Since every ball with center p has radius less than 0.5 x lgs(p), it
should be obvious that Condition C1 is satisfied. Condition C2 follows from
Proposition 1 below. Lemma 2 establishes the termination of our algorithm.

Proposition 1. Let X be a set of balls. Suppose zx C o. Then o C|JX if and
only if there is no positive vertex in V(o).

Proof. The “only if” part is immediate. We will show the “if” part. Suppose
there is no positive Voronoi vertex in Vi (o). We claim that v4(o) C b for all



b € X. This claim follows from the fact that v4(o) is the convex hull of its
Voronoi vertices and bounded. Thus, by our assumption that all the Voronoi
vertices are not positive, it is immediate that v(o) C b for any b € X. Since o
is partitioned into vy (o) for all b € X, it follows that o C |J X.

To establish the termination of the algorithm, we need the following fact.

Fact 1. Let 0 € P. Suppose I' C o is a closed region such that it does not
intersect the boundary of o. Then there exists a constant ¢ > 0 such that for
every point p € T, 1gs(p) > c.

Proof. We observe that lgs is a continuous function on o. Thus, limy, ., lgs(p;) =
lgs(lim,, ;) = 0 if and only if p is in the boundary of o where {p;} is a convergent
sequence of points in ¢. The fact follows immediately.

Lemma 2. Both algorithms 1 and 2 terminate.

Proof. We first prove that Algorithm 1 terminates. It suffices to show that the
while-loop does not iterate infinitely many times. The proof is by contradiction
and it follows from the fact that each element o in P is compact.

Assume to the contrary that for some edge 0 = (v1,v2) € P the while-loop
iterates infinitely many times. That is, it inserts infinitely many balls to B(o)
whose centers are in the region o — (by U be) where b; € B(v;) for i« = 1,2. By
Fact 1, there exists a constant ¢ > 0 such that all the radii of the balls are
greater than c. By the compactness of o, some centers of the balls converges.
It means that there are balls inserted with centers inside another ball. Thus,
it violates our construction that the balls are inserted with centers on positive
vertices. Therefore, the while-loop iterates only finitely many times. The proof
of the termination of Algorithm 2 is similar.

3.1 Approximating polygonal object with a union of balls

Let O be a polygonal object and P be its boundary. Let Xz be an €2-SAC of P.
Consider T, the set of all tetrahedra of Dz which is inside O. Each tetrahedron
in T determines an orthogonal ball and we call the set of all these balls BL.

Note that every balls in B+ has positive weight. Moreover, we also have
O —UB CUB* C O. We observe that | J B+ approximates the object well as
stated below.

Theorem 1. |J Bt is homeomorphic to O and the Hausdorff distance between
them is at most €.

4 Skin Surface

The skin surface was first defined by Edelsbrunner [5] based on an algebraic
structure of balls. In this section we briefly review both the algebra of balls and
the definition of the skin surface. Readers interested in a detailed treatment of
the algebra of balls may find the text by Pedoe [8] useful.



Algebra of balls. The algebra of balls is based on a bijection ¢ : R® x R — R*
defined as

$(b) = (2, [|2]I* — wy).

The space R* together with the usual componentwise addition and scalar multi-
plication forms a vector space. The addition and scalar multiplication operations
are defined on R® x R in such a way that ¢ is an isomorphism, that is,

P(b1 + b2) = ¢(b1) + ¢(b2),
P(v-b) = o(b),

where by, by, b € R® x R and 7 € R. One can easily verify that

—

b1 + by = (2, + 2by, Wh, + Woy + 2(2b,, 2b,)), (1)
Vb = (vzp, yws + (7 = V)l z1?). (

[\
~—

By the two operations above, the convex combination of a set of balls B =
{b1,...,b,} is the set of balls conv(B) = {>,vbi | >,7% = land~; >
Oforalli = 1,...,n}. It is straightforward to verify that if a ball b is or-
thogonal to every ball b; € {b1,...,b,}, then b is orthogonal to every ball
b € conv(by,...,by).

Skin surfaces. Let b be a weighted point and ¢ € R, we define b’ = (2, twy,). For
a set of balls B, B' is defined as B' = {b' | b € B}.
For 0 <t <1, the skin body of a set of balls B is defined as

bdy'(B) = | conv(B)",

that is, the set of points obtained by shrinking all balls in the convex combination
of B. The skin surface is the boundary of the skin body of B, denoted by skin®(B).
Note that | J B = body"(B). We cite here an important relation between a union
of balls | J B and the skin body that it generates.

Theorem 2. [5] The union of balls |J B is homeomorphic to bdy'(B), for 0 <
t<1.

5 Approximating a Polygonal Object with the Skin
Surface

So far, our method in approximating a polygonal object with a union of balls
can be summarized as follow.

1. Construct a set of balls B such that I, is an €2-SAC of the boundary of the
object.

2. Compute the Voronoi complex of B and let B+ be the set of all orthogonal
balls with centers inside O.

3. Output B as the approximation of O.



In this section we will show that the set of balls B+ U B! will generate a skin
body that approximates the object well too, as stated in Theorem 3 below.

Theorem 3. For all0 <t < 1, the skin body bdy'(B-UB™') is contained inside
O and homeomorphic to it with Hausdorff distance between them is at most €.

Proof. All balls in B~! have negative weights, thus, |JB+ U B~! = |JB*. By
Theorem 1, | J B+ C O, thus, it follows that skin(B*tUB~') CUBtUB™! =
UBt co.
The homeomorphism follows from Theorem 2 that skint(B LuB~!) is home-
omorphic to |J B+ U B~ = |J B+ which is homeomorphic to O(Theorem 1).
The Hausdorff nearness from O to skin’(B+ U B~') is more tedious. We
present it in the next subsection.

5.1 Proof of the Hausdorff Nearness in Theorem 3

Note that for every point p in the object O, there is a weighted point b €
conv(B+ U B7!) such that z, = p. In other words, O C Z where Z = {2, | b €
conv(B+ U B™1). In view of this, it suffices to prove the following lemma.

Lemma 3. For every ball b € conv(B* U B™1) where z, € O, if wy, < 0 then
there exists a ball b’ € conv(B+ U B™1Y) such that wy > 0 and ||zpzy || < €.

We note that the object O can be partitioned into tetrahedra of Delaunay
complex D1 ,5*. We made a few simple observations concerning the tetrahedron
of Dg.1p which is contained inside O.

Fact 2. Let X = {b1,...,bs} such that conv(zy) is a tetrahedron in Dp.i,p
and is contained inside O. Then,

1. At least one of the balls in X is a ball in B+.
2. Ifb; e XN Bt and b; € X N B then b; and b; are orthogonal to each other.
3. The simplex conv(zpnx) is a simplex in Kg, i.e. conv(zpnx) C |P).

Statements 1 and 2 are pretty straightforward. The intuition of Statement 3 is
as follow. Let X/ = X N B. It is clear when card(X’) = 1. For card(X) = 2 or
3, assume to the contrary that conv(zx/) ¢ K. Since |Kz| = |P|, the simplex
conv(zy) is in the interior of O. Then, there exist at least 5 — | X’| balls of B+
which are orthogonal to every ball in X’**. These balls of B+ make vy = (),
thus, yields a contradiction that conv(zy) is a Delaunay tetrahedron. Therefore,
conv(zys) € Kp, where X' = X N B.

In view of Statement 3 in Fact 2, we categorize the tetrahedra of Dg.ip
within O into four types according to card(X N B). We illustrate it in Figure 1.

* Note that D1z may not be the same as Dgi z-1. The object O may not be
partitioned into tetrahedra of D1 g-1.

** That is, if card(X’) = 2, then dim(conv(zx+)) = 1. So, conv(zx/) is incident to at
least three tetrahedra in Dg and each tetrahedron corresponds to one ball in B*t.
Similarly, if card(X’) = 3, then conv(zx-) is incident to two tetrahedra in Dy and
each tetrahedron correspond to one ball in B*.



1. Tetrahedron type I is a tetrahedron where card(X N B) = 1.
In Figure 1, by € B and by, b3, by € B*.

2. Tetrahedron type II is a tetrahedron where card(X N B) = 2.
In Figure 1, b1,b2 € B and b3, by € B*.

3. Tetrahedron type III is a tetrahedron where card(X N B) = 3.
In Figure 1, by, by, b3 € B and by € B*.

4. Tetrahedron type IV is a tetrahedron where card(X N B) = 0.
In Figure 1, all by, by, bs, by € B,

>
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&
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Fig. 1. The bold point in type I, the bold edge in type II and the the shaded triangle
in the type III indicates that they are in Kz, thus in the boundary of the object. None
of the vertices in the type IV tetrahedron belongs to B.

In view of this, to prove Lemma 3 it is sufficient to prove the following.

Claim. Let conv(zx) € D1, and located inside O. For every ball b € conv(X),
if wy, < 0 then there exists a ball b € conv(X) such that wy > 0 and ||zp2p || < €.

We divide the proof of the claim according to |X N B|, that is, the type of the
tetrahedron that contains z,. If |X N B| = 4 then all balls b € conv(X) have
weights wy > 0.

The following Lemma 4 states that all points in conv(b !, by, bs, bs) (i.e. in
tetrahedron type I) with negative weights are located within the e-neighborhood
of Zpt This immediately implies the validity of claim for tetrahedron type I.

Lemma 4. Let (p,w) € conv(b; ', by, b3, bs). If w <0 then ||pzb;1 | <e.
Proof. Let

(pa w) = 'Ylbl_l + v2b2 4 v3b3 + Y4b4
= b+ (1 =)V,



where bV = ﬁz;lﬂ%bi and Yy, =land; >0,fori=1,...,4.

Since by, b3, by are all orthogonal to by, then o’ is also orthogonal to by, i.e.
wy + wy, = ||26, 200 [|*-
We apply the formula of combination of weighted points:

w= (1= y)wy + 1w, + (0F = 71) 2021
Since w < 0, we arrange the terms into

3
4
5
6

7
8

i llzw 2 1P = yillze 2117 = 1wy +wp,) +wy <0

’Y%H,Zb/zbl—1||2 — 2’71||Zb12b1_1||2 S — Wy

A

Vw21 I = 23llz 2 2 + ezt 12 < 21 2 —

IN

(1 = 12 lew 22 |2

(1 =)z I < €

(3)
(4)
(5)
wy, (6)
(7)
(8)

Ipz,-1 ]l < e

From Inequality 3 to Inequality 4 and Inequality 5 to Inequality 6, we apply
wy + wy, = ||2p, 21 ||*. From Inequality 7 to Inequality 8, we apply ||pzb;1|| =

(1 =)l -

The validity of the claim for tetrahedra type II and III is presented as
Lemma 5 and 6 below. Lemma 5 states that all points in conv(b; !, by, bs, by)
(i.e. in tetrahedron type II) with negative weights are located within the e-
neighborhood of conv(zbflyb;). Similarly, Lemma 6 states that all points in
conv(bfl,bgl,bgl,b@ (i.e. in tetrahedron type III) with negative weights are
located within the e-neighborhood of COnV(Zbl—lybgl’bg—l). Both proofs are just a
slight twist of the proof of Lemma 4. For completeness, we present it below.

Lemma 5. Let (p,w) = conv(by*, by, b3,bs). If w < 0 then there exists V' €
conv(b; 1, by 1) such that ||pzy || < e.

Proof. Let

(pyw) = 'Ylbl_l + ’Y2b2_1 ~+ v3b3 + v4b4
= + (1 =),

where v =71 + 72 and b’ = —1 Zle byt and b = L 2?23 ~Yib;.

Y1+72 Y3+
Since by, by are orthogonal to each of b3, by, then ¥ is also orthogonal to
b, ie. wy + wyr = ||z 2 ||?. Following the Inequalities 3 to 8 in the proof of

Lemma 4, we can obtain ||pzy | < e.

Lemma 6. Let (p,w) = conv(b; ', by, b3t by). If w < 0 then there exists b’ €
conv(by t byt by ) such that ||pzy || < e.



Proof. Similar to the above, except that

(p,w) = y1by ' + y2by ' 4+ 3b3 ! + vaby
= (1 — y4)b' + Y4b4,

1
Y1+v2+73
the Inequalities 3 to 8 in the proof of Lemma 4, we can obtain [|pzy || < e.

where b = 2?21 ~ib; ! and b’ and by are orthogonal. Similarly, following

6 Discussion

One future direction is to implement the same idea in approximating smooth
objects with skin surfaces. Amenta et.al [1] showed that given a sufficiently
dense sample points on a smooth surface, the set of polar balls obtained can be
used to approximate the object well. There is analogy between such approach
with our method here. We can view the e-SAC constructed as the sample points
and BT as the polar balls.

By appropriately assigning certain weights to the sample points and taking
the polar balls, we hope to be able to approximate the smooth object by a skin
surface. At this point, the usefulness of this idea is still under investigation.
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Appendix. Proof of Theorem 1

It is obvious that the following two properties are sufficient conditions for sub-
dividing alpha complex:



P1. Every simplex in p is contained in an element in P.
P2. Every element in P is a union of some simplices in Kp.

We divide the theorem into two lemmas. Lemma 7 states that Condition C1
imply property P1, while Lemma 8 states that Condition C2 implies property
P2.

Lemma 7. If B satisfies Condition C'1, then every simplex in Kp is contained
in an element in P, that is, property P1.

Proof. 1t is immediate that every vertex in Kp is inside an element in P. Let
conv(zx) be a simplex in Kp. By the remark in the definition of alpha com-
plex, (1 X # (. Then, by Condition C1, there is an element ¢ € P such that
conv(zy) C o.

Lemma 8. If B satisfies Condition C2, then every element in P is a union of
some simplices in Kp, that is, property P2.

Proof. We divide the proof into two stages:

Stage 1. We show that for every o € P, 0 C |Ky(,)|, where B(0) is as defined
in Lemma 1.
Stage 2. We show that Ky, C K.

The first stage is further divided into three parts according to the dimension
of o.

1. dimo = 0.
Then B(c) consists of a ball with center on o. Thus, 0 = K (4.

2. dimo = 1.
Since zp(s) © o, o is partitioned into the Delaunay edges of Dy,
Furthermore, because ¢ C |JB(0), every Delaunay edges conv(zp, p,) €
Dy (s, where by, by € B(c), is covered by by U by.
The midpoint p € conv(zs, »,), where m,, (p) = T, (p), is in the Voronoi cell
Vb, b, With respect to the Voronoi complex V(o). Thus, p € (by Ubz) Nwyp, p,
and it implies conv(zs, b,) € Kpy(s). Therefore, o is partitioned into Iz (4.

3. dimo = 2.
The reasoning is similar to the above case. Since z(5) C 0, 0 is partitioned
into the Delaunay triangles of Dy(,). Furthermore, because o C |J B(0),
every Delaunay triangles conv(2y, p,.b,) € Dp(s), Where by, ba, b3 € B(0), is
covered by by U by U b3.
The midpoint p € conv(zp, p,.bs ), Where m, (p) = mp, (p) = T, (p), is in the
Voronoi cell vy, 3,5, W.r.t. Vg(s). Thus, p € (by Ubg Ubz) N vy, p,p, and it
implies conv(zp, b, ;) € Kp(s). Therefore, o is partitioned into ICp(s).

* x k

Now we show that Ky, € Ky for every o € P. Note that every ball b €
B—B(0), bNo = (. Thus, for every midpoint p € conv(zy ), where X C B(c) and
Ty (p) = myr (p) for all ', 0" € X, pisin vx w.r.t. Vi(,y. Therefore, p € [J X Ny
and it implies conv(zy) € K.

*** Recall that if v1,v2 are vertices of o, then B(v1), B(v2) C B(o). Similarly, if o is a
polygon and e1, ..., e, are the edges then B(ei),...,B(em) C B(o).



