
Approximating Polyhedral Objects with
Deformable Smooth Surfaces

Ho-lun Cheng∗ Tony Tan†

Abstract
We propose a method to approximate a polyhedral object with a

deformable smooth surface, namely the t-skin defined by Edelsbrunner
for all 0 < t < 1. We guarantee that they are homeomorphic and
their Hausdorff distance is at most ε > 0. This construction makes it
possible for fully automatic, smooth and robust deformation between
two polyhedral objects with different topologies. En route to our
results, we also give an approximation of a polyhedral object with a
union of balls.

1 Introduction

Geometric deformation is a heavily studied topic in disciplines such as com-
puter animation and physical simulation. One of the main challenges is to
perform deformation between objects with different topologies, while at the
same time maintaining a good quality mesh approximation of the deforming
surface.

Edelsbrunner defines a new paradigm for the surface representation to
solve these problems, namely the skin surface [12] which is a smooth surface
based on a finite set of balls. It provides a robust way of deforming one shape
to another without any constraints on features such as topologies [4]. More-
over, the skin surfaces possess nice properties such as curvature continuity
which provides quality mesh approximation of the surface [5, 6].
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However, most of the skin surface applications are still mainly on molec-
ular modelling. The surface is not widely used in other fields because general
geometric objects cannot be represented by the skin surfaces easily. This
leaves a big gap between this nicely defined surface and its potential appli-
cations. We aim to fill this gap in this paper.

1.1 Motivation and Related Works

One of the main goals of the work by Amenta et. al in [1] is to convert a
polyhedral object into a skin surface. We can view our work here as achiev-
ing this goal and the purpose of doing so is to perform deformation between
polyhedral objects. As noted earlier in some previous works [12, 4], defor-
mation can be performed robustly and efficiently if the object is represented
by the skin surface [2, 8].

Moreover, our work here can also be viewed as a step towards converting
an arbitrary smooth object into a provably accurate skin surface. In this
regard, previous work has been done by Kruithof and Vegter [15]. For the
input their method requires a set of r-admissible balls which approximate
the object well. Then, it expands all the weights of the balls by a care-
fully computed constant t, before taking the 1

t
-skin of the expanded balls to

approximate the smooth object.
However, we observe that there are at least two difficulties likely to occur

in such approach. First, such a set of r-admissible balls is not trivial to obtain.
Furthermore, when the computed factor t is closed to 1, the skin surface is
almost the same as the union of balls, thus, does not give much improvement
from the union of balls. On the other hand, our approach proposed here
allows the freedom to choose any constant 0 < t < 1 for defining the skin
surface.

On top of the skin approximation, we also give an approximation of a
polygonal object with a union of balls. Such approximation has potential
applications in computer graphics such as collision detection and deforma-
tion [14, 18, 17]. Ranjan and Fournier [17] proposed using a union of balls
for object interpolation. Sharf and Shamir [18] also proposed using the same
representation for shape matching. Those algorithms require a union of balls
which accurately approximate the object as an input and providing such a
good set of balls at the beginning is still not trivial.

At last, as a by-product, our algorithm also gives the constrained Delau-
nay triangulation of a polyhedral object.
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1.2 Approach

Given a polyhedral object, O ⊂ R3, the first step is to construct a set of balls
B whose alpha shape [11] is the same as the boundary of O, namely, the
subdividing alpha complex. All centers of the balls in B lie on the boundary
of O and their radii are at most ε which is a positive number specified by the
user. The set B covers the boundary and acts as a protecting layer similar to
some previous work in Delaunay mesh generation and conforming Delaunay
triangulation [9, 10].

In the second step, we fill the interior of O with another set of balls
B⊥. From the weighted Delaunay tetrahedralization of B, we extract all
the tetrahedra in the interior of O. Each ball in B⊥ is an orthogonal ball
of such tetrahedron. It is shown that the union of B⊥, namely, the space
that is occupied by balls in B⊥, is homeomorphic to O and furthermore, the
Hausdorff distance between them is at most ε.

To obtain the skin approximation, we construct a set of orthogonal balls
B∗ through some modifications of the balls B. The skin surface is proved to
be homeomorphic to ∂O and their Hausdorff distance is at most ε as well.

1.3 Outline

This paper is organized as follows. We start by reviewing some basic con-
cepts and results in Sections 2 and 3 that will be used throughout this paper,
namely, weighted points, Delaunay complexes and alpha complexes. In Sec-
tion 4 we introduce the concept of the subdividing alpha complex and propose
the algorithms to compute it. We describe our method of ball approximation
in Section 5 and the skin approximation in Section 6. Finally, we end with
some concluding remarks in Section 7.

2 The Voronoi Complex of Weighted Points

In this section we will briefly review the basic definitions and notations of
weighted points and their Voronoi complexes and Delaunay Complexes.

2.1 The Weighted Points

We describe a weighted point b ∈ Rd × R by its location zb ∈ Rd and its
weight wb ∈ R. The weighted point b can also be written as (zb, wb). We
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assume that a point p ∈ Rd is a point of zero weight when the weight is not
specified.

A weighted point b can be alternatively interpreted as an open ball with
center zb and radius

√
wb, which is the set of points {p ∈ Rd | ‖p−zb‖2 < wb}.

However, if wb is zero, we treat b as the set containing the point zb only. If
wb is negative then we treat b as an empty set.

For a set of weighted points X = {b1, . . . , bn}, we use the notation
⋃

X
to denote b1 ∪ · · · ∪ bn where each bi is viewed as a ball. Similarly, we write⋂

X to denote b1 ∩ · · · bn. In this paper the terms ball and weighted point
will be used interchangeably.

Affine Hulls of Balls. Given a set of balls B = {b1, b2, ..., bn}, we define
the affine hull ∗ of B as

aff(B) =
{ n∑

i=0

λibi |
n∑

i=0

λi = 1
}

. (1)

To complete the definition, we need the addition and scalar multiplication of
weighted points. Define a bijective lifting map φ : R3 × R 7→ R4 such that
for a ball b = (zb, wb), φ(b) has the first three coordinates same as zb and the
last coordinate of φ(b) is ‖zb‖2 − wb. The addition and scalar multiplication
operations are defined on R3 × R in such a way that φ is a vector space
isomorphism, that is,

b1 + b2 = φ−1(φ(b1) + φ(b2)),

γ · b1 = φ−1(γ · φ(b1)),

where b1, b2 ∈ R3 × R and γ ∈ R.

Orthogonal Balls. The weighted distance between two weighted points b1

and b2 is defined as follows:

πb1(b2) = πb2(b1) = ‖zb1 − zb2‖2 − wb1 − wb2 .

A point p ∈ Rd is inside the ball b if and only if πb(p) < 0. Two weighted
points, b1 and b2, are said to be orthogonal to each other if the weighted

∗This affine hull definition is only for a set of balls. For affine hull of an unweighted
point set, we still use the conventional definition.
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distance between them is zero, denoted as b1 ⊥ b2. Note that if b1 ⊥ b2 and
the weight of b1 is positive, z1 is out of b2.

We write B1 ⊥ B2 if b1 ⊥ b2 for all b1 ∈ B1 and b2 ∈ B2. From the thesis
of Cheng [3], it is proven that

B1 ⊥ B2 ⇒ aff(B1) ⊥ aff(B2). (2)

2.2 The Voronoi Complexes and Delaunay Complexes

A Voronoi complex is a partition of the space Rd according to a finite set of
balls. Let B = {b1, . . . , bn} be a set of n balls. The Voronoi cell of the ball
bi, with respect to B, is

νbi
= {p ∈ Rd | πbi

(p) ≤ πbj
(p) for all j = 1, . . . , n}.

For a set of balls X ⊆ B, the Voronoi cell of X with respect to B is

νX =
⋂

b∈X

νb.

For every point p ∈ νX, we have πbi
(p) = πbj

(p) for all bi, bj ∈ X. The set
νX is known to be convex. The dimension of νX is defined as the dimension
of the minimal affine space that contains νX. If the dimension of νX is zero,
then νX consists of only one point. We call this point a Voronoi vertex.

The Voronoi complex of B, VB, is the collection of all the non-empty
Voronoi cells:

VB = {νX | X ⊆ B and νX 6= ∅}.
Throughout this paper, we make an important but standard assumption

regarding VB:

General Position Assumption. Let B ⊆ Rd × R be a finite number of
set of balls and let X ⊆ B. Suppose νX 6= ∅. Then 1 ≤ card(X) ≤ d + 1 and
the dimension of νX is d + 1− card(X).

Such assumption can be achieved by small perturbation on either the
weights or the positions of the balls in X. (See, for example, [13])

Associated Orthogonal Balls. We can associate a Voronoi cell νbi
with

the set of balls

ν̂bi
= {(p, w) | p ∈ νbi

and w = πbi
(p)}.

5



This set of balls is called the associated orthogonal balls of νbi
. If b is an

associated orthogonal ball of νbi
then b is orthogonal to bi and for all bj 6= bi,

πbj
(b) ≥ 0†.
Similarly, the associated orthogonal balls of νX, where X ⊆ B, can be

defined as

ν̂X = {(p, w) | p ∈ νX and w = πbi
(p) for some bi ∈ X},

and if b is an associated orthogonal ball of νX then b is orthogonal to every
ball in X and for all bj /∈ X, πbj

(b) ≥ 0.

Proposition 1 Let X,Y ⊆ B such that νX, νY 6= ∅. Let bx ∈ ν̂X and by ∈ ν̂Y .
Then, for every ball b ∈ X, πby(b) ≥ πbx(b) = 0.

b1

b2

b3

b4

bx

by

Figure 1: An illustration of Proposition 1. Let X = {b1, b2} and Y =
{b2, b3, b4}. The ball bx ∈ ν̂X and by ∈ ν̂Y . We have πby(b1), πby(b2) ≥ 0 and
πbx(b1), πbx(b2) = 0. To be exact, πby(b2) is actually 0.

Proof. We illustrate this proof in Figure 1. Let b′ ∈ Y . By definition, by =
(zby , πb′(zby)). Since zby ∈ νb′ , πb(zby) ≥ πb′(zby). Thus, πb(by) ≥ πb′(by) = 0.

In addition, bx = (zbx , πb(bx)), thus, πb(bx) = 0. Therefore, πb(by) ≥
πb(bx), or, equivalently, πby(b) ≥ πbx(b). This proves our proposition. 2

For a set of balls X, we abuse the notation zX to denote the set of the
ball centers of X, that is, zX = {zb | b ∈ X}. The Delaunay complex of B is

†Let zb be the center of b, πbj (zb) ≥ πbi(zb) ⇒ πbj (b) ≥ πbi(b) ≥ 0.
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the collection of simplices,

DB = {conv(zX) | νX ∈ VB}.
We call a simplex in DB a Delaunay simplex.

Assuming the general position assumption, if νX 6= ∅ then the dimension
of conv(zX) is card(X)− 1. So, if card(X) = d + 1 and conv(zX) is Delaunay
then the associated orthogonal ball ν̂X consists of only one ball b, where b is
orthogonal to every ball in X. The center of b is on the Voronoi vertex νX.

3 The Alpha Complexes

Given a set of balls B, the alpha complex of B is

KB =
{

conv(zX) | (
⋃

X) ∩ νX 6= ∅, νX ∈ VB

}
.

Intuitively, a Delaunay simplex conv(zX) is in KB if its corresponding Voronoi
cell νX intersects with the union of balls

⋃
X.‡ A simplex in an alpha complex

is referred to as an alpha simplex. The alpha shape of B is the underlying
space of KB, which we denote by |KB|, namely, the union of all the simplices
in KB.

We give a proposition regarding alpha complexes that forms the ideas
behind almost every main result found in this paper, especially Theorem 5
in Section 4 and Section 5.

Proposition 2 A simplex conv(zX) ∈ KB if and only if there exists a ball
in ν̂X with a negative weight.

Proof. If conv(zX) ∈ KB, there exists a point p ∈ νX ∩ b for a ball b ∈ X.
Since πb(p) is negative and equal to πb′(p) for any b′ ∈ X, (p, πb(p)) ∈ ν̂X.
Conversely, if there is a ball b ∈ ν̂X with the weight wb is negative, then the
point zb ∈

⋃
X. Since zb is also in νX, the simplex conv(zX) ∈ KB. 2

With this proposition, we can prove the following lemma about the rela-
tionship between the associated orthogonal balls and the alpha simplex for
Theorem 4, then Theorem 5.

‡Recall that a ball b is viewed as a set of points {p | ‖p − zb‖2 < wb}, which excludes
the boundary of b. For a simplex conv(zX) to be an alpha simplex, the Voronoi region νX

needs to intersect the interior of some ball in X.

7



Lemma 3 Suppose conv(zX) ∈ KB. For every orthogonal ball b ∈ ν̂X, b ∩
conv(zX) = ∅.

Proof. From Proposition 2, there exists a point p ∈ νX ∩ (
⋃

X). The
ball b = (p, wp) ∈ ν̂X has a negative weight and is orthogonal to all balls
in aff(X). This implies that all balls in aff(X) have positive weights. Any
ball b′ in ν̂X is orthogonal to aff(X) and this implies that aff(zX)∩ b′ = ∅ for
b′ ∈ ν̂X. 2

Combining Proposition 1 with Lemma 3, we have the following theorem.

Theorem 4 Let b be an associated orthogonal ball of any νX ∈ VB. Then,
b ∩ |KB| = ∅.

Proof. Let b ∈ ν̂X. For another conv(zX′) ∈ KB, we prove that it does not
intersect with b. First, for any weighted points b′ ∈ X ′, and an associated
orthogonal ball b̂′ ∈ ν̂X′ , we have πb̂′(b

′) ≤ πb(b
′) from Proposition 1. This

implies πb̂′(zb′) ≤ πb(zb′). With Lemma 3, the vertex zb′ is also out of b
because πb(zb′) ≥ πb̂′(zb′) ≥ 0.

So we have zX′ ∩ b = ∅. To argue that conv(zX′) is also out of b, we
partition the space into

h = {p ∈ Rd | πb(p) ≤ πb̂′(p)}, and

h′ = {p ∈ Rd | πb(p) ≥ πb̂′(p)}.

Since zX′ ⊆ h′, conv(zX′) ⊆ h′. In another word, each p ∈ conv(zX′) has a
larger weighted distance to b than b̂′. Since πb̂′(p) ≥ 0 by Lemma 3, πb(p) ≥ 0.

2

4 Subdividing Alpha Complex

In this section we introduce the notion of subdividing alpha complexes. Given
a set of polygons in R3, our goal is to construct a set of weighted points whose
alpha shape is the same as the space occupied by the polygons. We assume
the input given is in the form of a piecewise linear complex (PLC) which is
a set P of vertices, line segments and polygons.
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Piecewise Linear Complex. For two elements σ1, σ2 ∈ P , we say σ1 is a
face of σ2 if σ1 ⊂ σ2. Denote ∂σ is the set of all the faces of σ. The interior
of σ is the space σ −⋃

∂σ. The elements of a PLC P is constrained by the
following two conditions:

1. all the faces of an element in P also belong to P , and,

2. for σ1, σ2 ∈ P , their intersection is a common face of both or empty

The underlying space of P , denoted by |P|, is the space occupied by P .
The k−skeleton of P is

P(k) = {σ ∈ P | dim(σ) ≤ k}.
The local gap size [9] is a function lgs : |P| 7→ R where lgs(x) is the radius

of the smallest ball centered on x that intersects an element of P that does
not contain x. See Figure 2 for some illustrations. It must be pointed out
that lgs is continuous on the interior of each element in P .

A

B

C

E

F

G

H

I

J

L

x

y

z

lgs(G)

lgs(H)

lgs(z)

lgs(x)

lgs(L)

D

K

lgs(y)

Figure 2: An illustration of the function lgs.

4.1 Conditions for Subdividing Alpha Complex

An alpha complex KB is said to subdivide a piecewise linear complex P if the
following two properties are satisfied.
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P1. Every simplex in KB is contained in an element in P .

P2. Every element in P is a union of some simplices in KB.

We also call KB a subdividing alpha complex, or in short, an SAC, of P .
Furthermore, if all the weights in B are less than a real value ε, then KB is
called an ε-SAC of P . Note that if KB is an SAC of P then |KB| = |P|.

Theorem 5 below will be used to construct the set of balls B that forms
the SAC of P .

Theorem 5 Let P be a PLC and B be a set of balls. Define B(σ) = {b ∈
B | b ∩ σ 6= ∅}. If B satisfies the following two conditions:

C1. For X ⊆ B, if
⋂

X 6= ∅ then conv(zX) ⊆ σ for some σ ∈ P, and,

C2. For each σ ∈ P, zB(σ) ⊆ σ ⊆ ⋃
B(σ),

then KB subdivides P.

A few notes concerning Condition C2: A ball b ∈ B(ρ) does not intersect
another element σ unless ρ is a face of σ. Condition C2 also demands that
B(ρ) ⊆ B(σ) whenever ρ is a face of σ. The two conditions proposed here are
very similar to the notion of protecting balls in computing the conforming
Delaunay triangulation [10].

Figure 3 illustrates how Theorem 5 can be used to obtain a set of weighted
points whose alpha complex subdivides a certain PLC. In the figure we focus
our attention on the segment HL which is covered by 11 “white” weighted
points. According to Condition C1, none of these white weighted points
intersect with weighted points located on the polygon ABCDEFG. Thus,
we avoid creating any extra alpha simplex between the segment HL and the
polygon ABCDEFG.

Furthermore, only the “white” weighted points intersect the segment HL
and their centers are all located along the segment HL(Condition C2). Since
they cover the whole segment, the white weighted points will form some alpha
simplices that partition the segment HL.

We divide the proof into two lemmas. Lemma 6 states that Condition
C1 implies property P1. Lemma 9 states that Conditions C1 and C2 imply
property P2.

Lemma 6 If B satisfies Condition C1, then every simplex in KB is con-
tained in an element in P, that is, property P1.
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J

I

Figure 3: An illustrated example of Theorem 5.

Proof. It is immediate that every vertex in KB is inside an element in P .
Let conv(zX) be a simplex in KB. By the remark in the definition of alpha
complex,

⋂
X 6= ∅. Then, by Condition C1, there is an element σ ∈ P such

that conv(zX) ⊆ σ. 2

Before we proceed to prove the second part of the theorem, we give a lemma
to assist the proof.

Lemma 7 If B satisfies Conditions C1 and C2, for b ∈ B and σ ∈ P, we
have

νb ∩ σ 6= ∅ ⇒ zb ∈ σ.

Proof. Given νb∩σ 6= ∅, assume that zb is not in σ. For a point p ∈ νb∩σ,
p is inside ∪B(σ) and there exists a ball b′ ∈ B(σ) such that π′b(p) < 0.
However, p ∈ νb implies πb(p) ≤ π′b(p) < 0. This contradicts the Condition
C2 because p is in both σ and b. 2
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In other words, this lemma states that the Voronoi region of b can intersect
with an element σ ∈ P only if the center of b is in σ. We claim that the
converse is true, which is part of the following claim.

Claim 8 If B satisfies Conditions C1 and C2, for b ∈ B and σ ∈ P(d), we
have

1. zb ∈ σ ⇒ νb ∩ σ 6= ∅,
2. |KB(σ)| = σ, and

3. For a simplex conv(zX) ∈ KB(σ), νX ∩ σ 6= ∅.

Proof. We will prove this claim by induction on d ≥ 0. Indeed, Claim 8 is
true for d = 0 because for each vertex σ ∈ P , B(σ) consists of only one ball
b with center on σ. The vertex σ is only contained in b and so σ ∈ νb

§. The
set of balls

⋃
dim(σ)=0 B(σ) forms the alpha complex that is the same as P(0).

To simplify the notation, we denote by Bi =
⋃

dim(σ)=i B(σ) and Ki, the
alpha complex of Bi. Assuming the claim is true for d = i − 1. By item 3
of our claim, if a simplex conv(zX) is an alpha simplex, the intersection
νX ∩ P (i−1) 6= ∅. Condition C2 implies every ball in Bi − Bi−1 does not
intersect P(i−1). Thus, Ki−1 ⊆ Ki.

We consider the set B(σ), where σ ∈ P (i) and dim(σ) = i. Since the balls
in B(σ) are all centered on σ, we focus only on the space aff(σ). That is,
when we say νb, we mean the Voronoi region of b restricted to aff(σ).

Notice that DB(σ) forms a constrained Delaunay triangulation of σ be-
cause each ρ ∈ ∂σ is partitioned by the Voronoi cells of B(ρ) and KB(ρ)

remains in Ki. Furthermore, for a ball b whose center is in the interior of
σ, its Voronoi cell does not touch any boundary element of σ because of
Lemma 7. However, the Voronoi cell of b is not outside σ, otherwise, we
can find an orthogonal ball b̂ that has its center out of σ but intersecting b.
This contradicts Theorem 4 because the orthogonal ball also intersects the
boundary of σ, which is partitioned into some alpha simplices of Ki−1. So,
we have νb ⊂ σ, in particular, νb ∩ σ 6= ∅.

For the second item of the claim, it is equivalent to say that every element
in DB(σ) with dimension i and within σ, remains in KB(σ). For any ball b
whose center is in the interior of σ, it is connected locally as a topological

§Here we abuse the notation. To be more precise, we should write that σ = {p} and p
is contained only in b. So, p ∈ νb.

12



disk because νb ⊂ σ. It means any such interior ball does not contribute to
the boundary of KB(σ). If there exist a boundary element in KB(σ) within σ,
it has an (i− 1)-dimensional element that connects two balls from two faces
of σ, which contradicts Conditions C1 and C2. Therefore, it is either that
KB(σ) covers σ, or it is only the boundary of σ. Together with the interior
vertices of σ, the second case is false. Therefore |KB(σ)| = σ.

For the simplices in KB(σ) that are on the boundary of σ, the item 3 of
this claim remains true. Otherwise, a simplex conv(zX) has a vertex zb that
is not on the boundary of σ. The Voronoi region νb is inside σ, thus, νX ⊂ σ.

2

Statement 3 of the claim above immediately implies that if conv(zX) ∈
KB(σ) then νX ∩ σ ⊆ ⋃

X, thus, νX ∩ σ ∩ (
⋃

X) 6= ∅. This is because
Condition C2 demands that σ is covered by

⋃
B(σ), thus, the points in

νX ∩ σ must be covered by balls in X.
Moreover, all the balls B − B(σ) do not intersect with σ. Thus, adding

them will not effect the alpha simplices in KB(σ). Therefore, KB(σ) ⊆ KB.
Combining this with statement 2 of the Claim above, we have:

Lemma 9 |P| ⊆ |KB|.

4.2 The Algorithm

In this subsection we describe our algorithm to construct the ε-SAC of a
given piecewise linear complex P . The aim is to construct a set of balls B
that satisfies Conditions C1 and C2 in Theorem 5 and at the same time all
the weights of the balls are bounded above by an input real number ε > 0.

First, we fix a constant real number 0 < γ < 0.5. Then we construct the
set of balls B(σ) for each σ ∈ P , starting with those of dimension 0, then
dimension 1 and ending with those of dimension 2.

The construction of B(σ) where dim(σ) = 0 is trivial. For each vertex
v in P , we add a ball with center v and radius r = min(γ · lgs(v),

√
ε). So,

B(v) = {(v, r2)}.
To describe the construction of B(σ) when σ is of dimension 1 or 2,

we need the notation of restricted Voronoi complex. The restricted Voronoi
complex of a set of balls X on σ ∈ P , denoted by VX(σ), is the complex
which consists of νX ∩ σ, for all νX ∈ VX. A restricted Voronoi vertex u in
VX(σ) is called positive if πb(u) > 0, for all b ∈ X. Note that such a restricted
vertex is outside every ball in X. To determine whether a restricted vertex is
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positive, it suffices to compute πb′(u) where u is the restricted Voronoi vertex
in the restricted Voronoi cell νb′(σ).

Algorithm 1 describes the construction of B(σ) where dim(σ) = 1, 2 The
basic idea is to add a ball centered on a positive restricted Voronoi vertex in
an edge (or, a polygon) until it is covered by the balls. To avoid unwanted
elements, we set the radius of every ball to be less than both

√
ε and γ times

the lgs of the ball center.
Figure 4 illustrates some steps of Algorithm 1 when dim(σ) = 1. In the

beginning we have the set X = B(H) ∪ B(L) = {b1, b2}, since B(H) = {b1}
and B(L) = {b2} . The algorithm computes the restricted Voronoi complex
VX(HL). The restricted Voronoi vertex νb1,b2(HL) is positive, so we add the
ball b3, centered on νb1,b2(HL), to X. Then we recompute VX(HL). The
restricted Voronoi vertex νX(HL) is positive. So we add the ball b4, centered
on νb1,b3(HL), to X. We repeat the whole process until there is no more
positive restricted Voronoi vertex in VX(HL).

Algorithm 1 To construct B(σ) for all σ ∈ P
1: for i = 1, 2 do
2: for all σ ∈ P and dim(σ) = i do
3: X :=

⋃
B(∂σ)

4: while there exists a positive restricted Voronoi vertex u in VX and
u ∈ σ do

5: r := min(γ · lgs(u),
√

ε)
6: X := X ∪ {(u, r2)}
7: end while
8: B(σ) := X
9: end for

10: end for

We claim that our algorithms terminate and the output B =
⋃

σ∈P B(σ)
satisfies both Conditions C1 and C2. It should be clear that all weights
in B are at most ε. Since every ball with center p has radius less than
0.5× lgs(p), it is obvious that Condition C1 is satisfied. Condition C2 follows
from Proposition 10 below. Lemma 12 establishes the termination of our
algorithm.

Proposition 10 Let X be a set of balls. Suppose zX ⊆ σ. Then σ ⊆ ⋃
X if

and only if there is no positive restricted Voronoi vertex in VX(σ).
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Figure 4: An illustrated example of Algorithm 1 on the segment HL.

Proof. The “only if” part is immediate. We will show the “if” part.
Suppose there is no positive restricted Voronoi vertex in VX(σ). We claim
that νb(σ) ⊆ b for all b ∈ X. This claim follows from the fact that νb(σ) is the
convex hull of its Voronoi vertices and bounded. Thus, by our assumption
that all the restricted Voronoi vertices are not positive, it is immediate that
νb(σ) ⊆ b for any b ∈ X. Since σ is partitioned into νb(σ) for all b ∈ X, it
follows that σ ⊆ ⋃

X. 2

To establish the termination of the algorithm, we observe the following
remark.

Remark 11 Let σ ∈ P and let Γ ⊂ σ be a closed region such that it does
not intersect the boundary of σ. Then there exists a constant c > 0 such
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that for every point p ∈ Γ, lgs(p) > c.

The reasoning is as follows. We observe that lgs is a continuous function
on Γ. Moreover, Γ is compact. Thus, there exists p0 ∈ Γ such that lgs(p0) =
minp∈Γ lgs(p). The value lgs(p0) 6= 0 since p0 is in the interior of σ. Thus, we
can choose 1

2
lgs(p0) as the value for c.

Lemma 12 Algorithm 1 terminates.

Proof. It suffices to show that for each σ the while-loop does not iterate
infinitely many times. We concern ourselves only with dim(σ) = 1. The case
for dim(σ) = 2 is similar, thus, omitted. The proof is by contradiction and
it follows from the fact that each element ρ in P is compact.

Assume to the contrary that for some edge σ = (v1, v2) ∈ P the while-
loop iterates infinitely many times. That is, it inserts infinitely many balls
to B(σ) whose centers are in the region σ − (b1 ∪ b2) where bi ∈ B(vi) for
i = 1, 2. The region σ − (b1 ∪ b2) is a closed region which does not intersect
with the boundary of σ. By Remark 11, there exists a constant c > 0 such
that all the radii of the balls are greater than c.

Moreover, σ − (b1 ∪ b2) is compact, so if B(σ) contains infinitely many
balls, then there are two balls b and b′ whose centers are at the distance less
than c. Without loss of generality, we assume that b was inserted before b′.
This is impossible, because at the time b′ was inserted, its center would be a
negative restricted Voronoi vertex. Therefore, the while-loop iterates only
finitely many times. 2

Readers may concern about the number of balls used in creating the
ε-SAC, which depends on the function lgs and input ε. For a good approxi-
mation of the object, we assume the user may set a value for ε that is smaller
than the local gap size in general. If we assume the local gap size dominates,
each polygon with area a is covered by approximately O( a

ε2 ) balls. If the
totally surface area of O is A, the number of balls is O( A

ε2 ).

5 Approximating Polyhedral Object

with a Union of Balls

We define a polyhedral object to be O ⊆ R3 such that: O is a 3-dimensional
compact manifold and its boundary, denoted by ∂O, is decomposable into a
PLC, namely P . We assume that |P| is a 2-manifold without boundary.
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Our method in approximating O with a union of balls can be summarized
as follows.

1. Construct a set of balls B such that KB is an ε2-SAC of P .

2. Compute the Voronoi complex of B.

3. Let T be the set of Voronoi vertices in VB which are located inside the
object O.

4. Let B⊥ be the set of all associated orthogonal balls of νX ∈ T .

5. Output B⊥.

We will show that
⋃

B⊥ approximates the object O well, in the sense, that
the Hausdorff distance between ∂

⋃
B⊥ and ∂O is less than ε and they are

homeomorphic. The approach suggested here is very similar to the power
crust method proposed by Amenta. et. al. [1]. As analogy, we can view the
ε-SAC as the sample points of the object O and B⊥ as the “polar” balls,
defined in [1]

We give here the definition of Hausdorff distance. The Hausdorff distance
from a set A to a set B is d(A,B) = supa∈A infb∈B ‖a − b‖. The Hausdorff
distance between two sets A and B is the larger value between d(A,B) and
d(B,A).

First, we prove that the Hausdorff distance between ∂
⋃

B⊥ and ∂O is
less than ε. By Theorem 4,

⋃
B⊥∩∂O is empty, and by Claim 8, every center

of B⊥ lies within O. Therefore,
⋃

B⊥ is contained in O and so is ∂
⋃

B⊥.
With the following lemma, we can prove that ∂

⋃
B⊥ ⊂ ⋃

B. In this lemma,
the convex hull of a set of balls is similar to the definition of the affine hull
of a set of balls in Equation (1) except that all the coefficients λi ≥ 1.

Lemma 13 Let X = {b1, b2, b3, b4} and b a ball such that {b} ⊥ X. Then,

conv(zX)−
⋃

X ⊆ b.

Proof. Let p ∈ conv(zX) − ⋃
X and w ∈ R such that (p, w) ∈ conv(X).

Since
⋃

X =
⋃

conv(X), the weight w < 0. Furthermore, (p, w) is orthogonal
to b. Thus, ‖zb − p‖2 − wb = w < 0. Therefore, p ∈ b. 2

This lemma implies that no point in ∂
⋃

B⊥ lies in O − ⋃
B. Thus,

∂
⋃

B⊥ ⊂ ⋃
B and we have the following Theorem.
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Theorem 14 The Hausdorff distance between ∂
⋃

B⊥ and ∂O ≤ ε.

For the homeomorphism proof, we leave it together with the skin approx-
imation in the end of next section, namely, Theorem 19.

6 Approximating Polyhedral Object with the

Skin Surface

In this section we discuss our method in obtaining a skin surface which
approximates a given polyhedral object. We start by reviewing the basic
definition of skin surface in Subsection 6.1, to be followed by the construc-
tion of the approximation and the proofs of homeomorphism and Hausdorff
distance guarantee.

6.1 The Skin Surface

The skin surface was first defined by Edelsbrunner [12] based on an algebraic
structure of balls. Readers interested in a detailed treatment of the algebra
of balls may find the text by Pedoe [16] useful.

With the additions and scalar multiplication of balls in Section 2.1, we
can define the convex hull of a set of balls B = {b1, . . . , bn} as

conv(B) =
{ n∑

i=1

γibi |
n∑

i=1

γi = 1 and γi ≥ 0 for all i = 1, . . . , n
}

.

It must also be noted that
⋃

B =
⋃

conv(B)[12]. For a ball b and t ∈ R,we
define bt = (zb, twb). For a set of balls B, Bt is defined as Bt = {bt | b ∈ B}.

For 0 ≤ t ≤ 1, the skin body of a set of balls B is defined as

bodyt(B) =
⋃

conv(B)t,

that is, the set of points obtained by shrinking all balls in the convex combi-
nation of B. The skin surface is the boundary of the skin body of B, denoted
by

skint(B) = ∂bodyt(B).

It is known that skint(B) is a smooth surface for 0 < t < 1.
Note that

⋃
B = body1(B) and bodys(B) ⊆ bodyt(B) for 0 ≤ s < t ≤ 1.

We cite here an important relation between a union of balls
⋃

B and the
skin body that it generates.
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Theorem 15 The union of balls
⋃

B is homeomorphic to bodyt(B), for
0 < t ≤ 1[12].

At this point, we highlight a rather obvious, but important, fact concern-
ing the skin body and surface. Though very trivial in nature, this is the main
idea of the proof in the next section.

Remark 16 Let B be a set of balls and b ∈ conv(B). If wb > 0 then the
point zb is in the interior of the bodyt(B), for all 0 < t ≤ 1.

6.2 Approximation by the Skin Surface

For each simplex conv(zX) ∈ DB, we define the orthogonal ball of conv(zX)
as b⊥X = (z⊥X , w⊥

X ) such that

z⊥X = aff(zX) ∩ νX,

w⊥
X = ‖z⊥X zi‖2 − wi,

for all bi ∈ X such that b⊥X ⊥ bi. We pick all the simplices inside O and
define the orthogonal balls of these simplices as

B∗ = {b⊥X | conv(zX) ⊆ O, conv(zX) ∈ KB, z⊥X 6= ∅} ∪B⊥.

We claim that:

Lemma 17 O −⋃
B = body0(B∗).

Proof. First, we show that O −⋃
B ⊆ body0(B∗). Let p ∈ O −⋃

B and
it is in a Voronoi cell νb1 in the Voronoi complex of B for some b1 ∈ B. The
goal of this proof is to show that there exists a ball bp = (p, wp) in conv(B∗)
such that wp ≥ 0, and it implies p ∈ body0(B∗).

Consider the set of tetrahedra

Φ1 = {conv({z⊥{b1}, z⊥X1
, z⊥X2

, z⊥X3
}) | z⊥Xi

∈ B∗ and b1 ∈ Xi}.

Note that the union of all tetrahedra in Φ1 contains O ∩ νb1 because the
tetrahedra in Φ1 contain all the intersection of Voronoi edges of νb1 with
∂O and Voronoi vertices of νb1 inside O. This implies the existence of a
tetrahedron conv({z⊥b1 , z⊥X1

, z⊥X2
, z⊥X3

} ∈ Φ such that it contains p.

19



Let bp = (p, wp) ∈ conv({b⊥{b1}, b⊥X1
, b⊥X2

, b⊥X3
}). Because b1 ⊥ b⊥{b1} and

b1 ⊥ b⊥Xi
for i = 1 to 3, we have b1 ⊥ bp. Thus, wp ≥ 0 if p is not in b1. Since

bp is also in conv(B∗) and it implies p ∈ body0(B∗).
For O − ⋃

B ⊇ body0(B∗), first we cite the result in Cheng’s thesis [3]
that if b∗ is in the convex hull of B∗ such that b∗ =

∑
i λibi for bi ∈ B∗, the

weighted distance between b∗ and another ball b is

πb(b
∗) =

∑
λiπb(bi).

For every b ∈ B and bi ∈ B∗, πb(bi) ≥ 0 because B∗ is a subset of all
the associated orthogonal balls. Thus, πb(b

∗) = ‖zbzb∗‖2 − wb − wb∗ ≥ 0 if
b ∈ conv(B∗). If the center of b∗ is inside

⋃
B, ‖zbzb∗‖2 < wb and wb∗ < 0.

Therefore, the interior of
⋃

B does not touch body0(B∗) because it is the
union of all centers of the balls in B∗ which have non-negative weights. 2

This lemma immediately implies the Hausdorff distance between skint(B∗)
and ∂O is less than ε because the surface skint(B∗), for 0 < t < 1, is located
in between the surface ∂

⋃
B within O and the surface ∂O.

The homeomorphism between skint(B∗) and ∂O can be established via
the smooth deformation contraction from the boundary of

⋃
B within O, i.e.

skin0(B∗) to |P|[11]¶. Therefore, we have the following theorem.

Theorem 18 skint(B∗) is homeomorphic to ∂O and the Hausdorff distance
between bodyt(B∗) and ∂O is less than ε.

All the balls in B∗ − B⊥ have negative weights. Thus,
⋃

B⊥ =
⋃

B∗ =
skin1(B∗), and the above theorem, we also have:

Theorem 19
⋃

B⊥ is homeomorphic to O.

7 Conclusion

In this paper we propose a method to approximate a given polyhedral object
with a union of balls (Theorems 14 and 19), as well as, with the skin surface
(Theorem 18). By representing polyhedral objects with a union of balls
and the skin surface, we hope to be able to perform deformations between
objects. Moreover, we would also like to apply the same idea to obtain an

¶Recall that P is the decomposition of ∂O into a PLC.
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approximation of smooth object with the skin surface. Such representation
will enable a deformation to be performed between smooth objects. The
other main result is Theorem 5, together with the algorithm to compute the
subdividing alpha complex. Although these are all in R3, the proof is able to
extend for objects in arbitrary dimensions. Also, other than using the local
gap size for Condition C1, we may also use the protecting cells in the earlier
work of the authors [7].

One possible future direction is to implement the same idea in approx-
imating smooth objects with skin surfaces. Amenta et.al [1] showed that
given a sufficiently dense sample points on a smooth surface, the set of polar
balls obtained can be used to approximate the object well. There is an anal-
ogy between such approach with our method here. We can view the ε-SAC
constructed as the sample points and B⊥ as the polar balls.

By appropriately assigning certain weights to the sample points and tak-
ing the polar balls, we hope to be able to approximate the smooth object
by a skin surface. At this point, the usefulness of this idea is still under
investigation.
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