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ABSTRACT
In this paper, we study real-time in-memory checkpointing
as an effective means to improve the reliability of future
large-scale parallel processing systems. Under this context,
the checkpoint overhead can become a significant perfor-
mance bottleneck. Novel memory system designs with
upcoming non-volatile random access memory (NVRAM)
technologies are emerging to address this performance is-
sue. However, we find that those designs can still have
prohibitively high checkpoint overhead and system down-
time, especially when checkpoints are taken frequently to
implement a reliable system. In this paper, we propose
a novel in-memory checkpointing system, named Mona,
for reducing the checkpoint overhead of hybrid memory
systems with NVRAM and DRAM. To minimize the in-
memory checkpoint overhead, Mona dynamically writes par-
tial checkpoints from DRAM to NVRAM during application
execution. To reduce the interference of partial check-
pointing, Mona utilizes runtime idle periods and leverages
a cost model to guide partial checkpointing decisions for
individual DRAM ranks. We further develop load-balancing
mechanisms to balance checkpoint overheads across different
DRAM ranks. Simulation results demonstrate the efficiency
and effectiveness of Mona in reducing the checkpoint over-
head, downtime and restarting time.

Categories and Subject Descriptors
D.4.5 [Reliability]: Checkpoint/restart; C.4.1 [Computer
Systems Organization]: Performance of Systems–design
studies

General Terms
Design, Performance

Keywords
NVRAM, Phase Change Memory, Checkpointing, Parallel
Computing
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The increasing scale of parallel processing systems is being
severely challenged by high failure rates. It is predicted that
transient errors in CPUs and memories will increase by 32
times in the next decade [3]. On the other hand, increasingly
large memory capacities cause a higher chance of memory
failures [28]. As a result, the upcoming large-scale system
will have the severe problem of frequent crashes, which can
degrade the system performance dramatically. Real-time in-
memory checkpointing offers a fine-grained checkpointing,
which can be an effective means to improve the reliability of
future large-scale parallel processing systems. In the event
a failure occurs, the application is restarted from the latest
checkpoint, thus minimizing repeated computation. But,
due to potential high failure rates in large-scale parallel pro-
cessing systems, checkpoints should be taken in a real-time
and fine-grained manner. Obviously, high checkpointing
frequency poses significant challenges on novel checkpoint
mechanism designs. Thus, this paper investigates whether
and how we can reduce the overhead of checkpointing-restart
mechanisms to enable real-time in-memory checkpointing in
large-scale systems.

Traditionally, hard disk-based checkpoint systems have
been adopted. Since hard disks are over two orders (even
three orders) of magnitude slower than main memory, check-
point/restart mechanisms can cause significant overhead
to the overall system performance. A large-scale system
may suffer more than 50% performance degradation and
spend up to 80% of extra I/O traffic, because of frequent
checkpointing operations [22, 11, 10]. Even worse, during
checkpointing, the application execution may suffer from a
period of downtime for writing checkpoints. This downtime
is exaggerated for applications with large memory footprint.

More recently, emerging NVRAM technologies such as
phase-change memory (PCM) have been exploited to re-
duce the checkpoint overhead (i.e., NVRAM-assisted check-
point) [6, 7, 33]. Those studies have demonstrated promising
results in reducing the checkpoint overhead of large-scale
systems. However, existing NVRAM-assisted checkpoint
techniques [6, 7, 33] have the following three limitations
towards real-time in-memory checkpointing. First, even
with NVRAM, they still cause a long downtime. This
is partly because the low latency feature of PCM is not
exploited to reduce the total checkpoint overhead (details
are presented in Section 3.1). Second, while asynchronous
or non-blocking checkpointing can reduce the downtime to
a certain degree, the mechanism is complicated and the
runtime overhead can be high in practice [27]. Third,
most previous studies (such as [6, 7, 33, 14, 16]) target at



a sole optimization goal. Some applications may simply
require minimizing the checkpoint overhead so that the
total expected execution time is minimized. Other critical
applications might have rigid requirements on the restarting
time or downtime. System re-design/re-implementation is
required for a different optimization goal.

In this paper, we propose a novel hybrid memory de-
sign, named Mona, towards enabling real-time in-memory
checkpointing. Particularly, Mona uses PCM, one of the
promising NVRAM technologies, to store checkpointing
files. Mona has the following novel designs to address the
aforesaid limitations of the existing techniques:

• To support efficient checkpointing-restart mechanisms,
we develop a PCM-assisted dynamic checkpointing ap-
proach to perform partial checkpointing from DRAM
to PCM. Additionally, our design takes advantage
of memory rank parallelism. Inspired by speculative
checkpointing [18], partial checkpointing is performed
at application runtime.

• To minimize the interference, we write dirty pages
from DRAM to PCM only when there are sufficiently
lengthy idle periods in a DRAM rank. Instead of
determining the length of each idle period, we estimate
the idle period distributions and determine a write
threshold on the idle period length: only when the
current idle period exceeds the write threshold, we
trigger the dirty-page writing from DRAM to PCM.
That can avoid the penalty caused by checkpointing
in very short idle periods. Also, we carefully select the
dirty pages to be written to PCM.

• Balancing the checkpoint overhead across different
memory ranks is another important performance issue
for Mona, since writes to PCM are often a perfor-
mance bottleneck in hybrid memory systems [25].
We propose load-balancing strategies to minimize the
worst checkpoint overhead among all DRAM ranks.
Both PCM-assisted dynamic checkpointing and load-
balancing strategies are guided by our cost model
for adapting idle period distributions and page access
patterns. With the cost model, Mona can optimize the
system for different goals such as the total checkpoint
overhead or the restarting time.

We implement our design into a cycle-accurate simula-
tor and evaluate the efficiency and effectiveness of Mona
with both micro and macro benchmarks. Overall, Mona
significantly reduces the checkpoint overhead, downtime and
restarting time. Particularly, compared with the state-of-
the-art PCM-based checkpointing method [6], Mona reduces
the total checkpointing cost by 65%, and the restarting time
by 80%. We extend Mona to support multi-level checkpoint-
ing and demonstrate the effectiveness of our approach in
multi-level checkpointing for larger-scale applications.

Organization. The rest of the paper is organized as fol-
lows. We briefly introduce the background on NVRAM and
checkpointing in Section 2. Section 3 describes an overview
of Mona, followed by detailed design and implementations
in Section 4. The experimental results are presented in
Section 5. We review the related work in Section 6 and
conclude this paper in Section 7.

2. PRELIMINARY AND BACKGROUND ON
NVRAM

Figure 1: DRAM/PCM hybrid system.

Since conventional DRAM technologies encounter scaling
difficulties and power issues, NVRAM technologies such as
PCM and memristors have been developed. This paper
focuses on PCM, which has gained much attention in the
research community [6, 34, 15, 12]. The read latency of
PCM is close to that of DRAM and two orders of magnitude
shorter than that of flash memory. The write latency of
PCM is in between those of DRAM and flash memory.
Without erase-before-write constraints, its random-write
performance is much better than that of flash memory.
Moreover, PCM is likely to be cheaper than DRAM when
produced in mass market quantities. It is feasible that PCM
will be integrated into future computer systems.

Recent studies have proposed three major methods of
integrating PCM into the memory hierarchy. The first
approach is to use PCM as a replacement of DRAM [15, 2].
The second approach is to use PCM as an external storage
like a hard disk [5]. The third approach is to integrate PCM
into DIMMs and the main memory system becomes a hybrid
system [25, 6, 8]. This paper adopts the third approach.
PCM is allocated on separate DIMMs for a better bandwidth
and ease-of-integration, as illustrated in Figure 1. In this
study, we assume a DDR3 memory system, where PCM
and DRAM are allocated on DDR3 DIMMs. Each DIMM
contains multiple ranks to transmit data independently.

Our design is inspired by NVDIMM [20], which is commer-
cially available and is a combination of DRAM and NAND
flash. During normal operations, NVDIMM is working as
DRAM while flash is invisible to the host. However, upon
power failure, NVDIMM saves all the data from DRAM to
flash by using supercapacitor to make the data persistent. In
contrast, our design leverages PCM to replace NAND flash
in NVIDIMM, eliminating supercapacitors. Moreover, since
PCM is much faster than NAND flash, our design enables
real-time in-memory checkpointing.

3. SYSTEM DESIGN
In this section, we discuss design motivations and give a

design overview of Mona.

3.1 Design Motivations
Existing NVRAM-assisted checkpoint techniques [6, 7,

33] all use synchronous and incremental checkpointing.
At each checkpointing stage, the application execution is
temporarily suspended, and all the dirty pages in DRAM are
written to PCM. The role of PCM is similar to that of hard
disks in the sense that both of them are used as persistent
storage for storing checkpointing files, and little modifica-
tions are required for the conventional checkpointing-restart
algorithm. However, such a simple approach has several
obstacles/deficiencies:

• First, during the checkpointing process, it has to write
many dirty pages from DRAM to PCM, still causing a
significant overhead and downtime especially on large-
memory machines. Another issue is on memory ranks.



To fully utilize the memory bandwidth, all memory
ranks should perform checkpointing in parallel. The
checkpoint overhead is thus bounded by the longest
writing latency of all the ranks. Uneven loads among
the ranks would magnify the checkpointing cost.
• Second, it may underutilize the PCM bandwidth. On

one hand, PCM is only used in checkpointing, and
is idle during application execution. On the other
hand, memory-intensive workloads still have many
idle periods with reasonable lengths (e.g., hundreds of
cycles) [13, 31, 17]. It is desirable to take advantage of
those idle periods.
• Finally, as architectures and applications vary, we

should provide the flexibility to achieve different op-
timization goals, such as minimizing either the total
checkpointing cost or the restarting time.

3.2 Overview of Mona
To address the aforementioned obstacles, we propose a

novel in-memory checkpointing design Mona with dynamic
partial checkpointing and cost models. Using incremental
checkpointing, Mona divides the application execution into a
series of checkpointing intervals. Each checkpointing interval
is further divided into two phases: partial checkpointing
(during application execution) and final checkpointing. In
partial checkpointing, we dynamically select the cold dirty
pages that are less likely to be written by the application in
the future and write them to PCM. In final checkpointing,
we use a synchronous scheme and the application execution
is temporarily suspended until the next checkpointing inter-
val. With the dynamic partial checkpointing, Mona is able
to reduce the downtime in the final checkpointing. Based on
the access pattern of each dirty page, we develop a coldness
threshold to identify the pages for partial checkpointing.
When the elapsed time of a page since its last write access
in DRAM is longer than the coldness threshold, the page
becomes a candidate cold page.

To fully utilize the memory bandwidth, we propose to
leverage the idle period during application execution to
perform the partial checkpointing writes to PCM. However,
those writes may pose interference to the application execu-
tion. Ideally, we should identify the lengthy idle periods
that can accommodate the PCM writes. However, it is
impossible or impractical to predict the length of the next
idle period without a prior knowledge. Inspired by the
previous study [31], we periodically estimate the idle period
distribution and determine a write threshold for individual
DRAM ranks according to the distribution. During the non-
checkpointing period, only if the current idle period exceeds
the write threshold, Mona performs a PCM write.

We further develop mechanisms of load balancing across
DRAM ranks for both partial checkpointing and final check-
pointing. In partial checkpointing, we consider the number
of pages to write and the idle periods of all ranks, and
periodically migrate the pages among them or tune the
parameters (write threshold and coldness threshold) for
each rank so that the partial checkpointing cost is balanced
among DRAM ranks. In final checkpointing, we even up the
number of dirty pages in each DRAM rank prior to perform
PCM writes. Specifically, we perform page migration among
DRAM ranks, because the cost of a page migration in
DRAM is much lower than that of a PCM write.

To support the flexibility of different optimization goals,
Mona develops a cost model to guide its decision, by estimat-

Figure 2: Overview of Mona.

ing the checkpoint overhead or checkpointing interval. In
this paper, we use two common scenarios as examples: first,
minimize the checkpointing overhead given a checkpointing
interval; second, minimize the checkpointing interval given
a penalty budget on the application execution. Since these
two scenarios are dual problems, this paper mainly focuses
on the first scenario, and evaluates the second scenario in
the experiment.

Algorithm 1 The workflow of Mona for a checkpoint
interval

1: /*Partial checkpointing*/
2: for each idle period e do
3: Update histogram information;
4: According to the write threshold configuration, Mona performs

PCM writes with the dirty pages satisfying coldness thresh-
old;/*Section 4.1.1*/

5: for each memory access r do
6: if r is a write then
7: Update page access pattern information;
8: for the beginning of a new slot do
9: Perform model prediction and load balancing among DRAM

ranks; /*Sections 4.1.2*/
10: /*Final checkpointing*/
11: Balance the dirty pages among DRAM ranks; /*Section 4.2*/
12: Write all the dirty pages to PCM;

The overall workflow of Mona on a checkpointing interval
is given in Algorithm 1. In partial checkpointing, we use
a histogram to represent the idle period distribution. For
each idle period, we update the histogram. For each write
request, we need to update access pattern information.
The details of the update procedures will be presented in
Sections 4.1.1 and 4.1.2. In final checkpointing, we first
perform load balancing among DRAM ranks, and then write
all the dirty pages to PCM. Note that our load balancing is
guided by the cost model and, hence, it adapts to memory
architectures and configurations. Afterwards, an incremen-
tal checkpoint is created and the next checkpointing interval
starts. Figure 2 illustrates a checkpointing interval. We
further divide a partial checkpointing period into multiple
equal-sized slots. At the beginning of each slot, we perform
the cost estimation and load balancing across DRAM ranks.
The cost estimation is performed with a sliding history
window, and the window length is equal to the checkpointing
interval.

Finally, upon a system failure, Mona constructs the latest
checkpoint and restarts the execution. In the event of
failures during transferring a partial checkpoint from DRAM
to PCM, we can choose to retry the checkpointing writes
or adopt other existing failure recovery methods. Since
the restarting process is not the main focus of this paper,
Mona uses the classic recovery algorithm [23] for incremental
checkpointing.

4. DESIGN AND IMPLEMENTATIONS
We describe the implementation details for key compo-

nents in Mona, including the cost model and the load
balancing module. The cost model guides the optimization
for individual DRAM ranks, and load balancing aims at
evening up the checkpointing cost of all DRAM ranks.



4.1 Cost Model
The cost model guides Mona to determine the threshold

values of individual ranks including coldness threshold and
write threshold under different optimization goals. As a case
study, we mainly focus on the goal of minimizing the total
checkpoint overhead given the checkpointing interval. Thus,
in this section, we present the cost model of determining the
threshold values under this optimization goal.

In a checkpointing interval, the total checkpoint overhead
is the sum of the performance penalty caused by PCM writes
in partial checkpointing and the cost of PCM writes in final
checkpointing, denoted as Cpartial and Cfinal , respectively.
The notations for the cost model are summarized in Table 1.
Thus, the total checkpoint overhead is given by:

Ctotal = Cpartial + Cfinal . (1)

We further derive each cost component with the unit cost
multiplying the number of PCM writes:

Ctotal = Npartial ×Wpartial +Nfinal ×WPCM . (2)

In final checkpointing, the unit cost is simply the cost
of a normal PCM write (WPCM ), which can be a con-
stant obtained from specification or calibration. In partial
checkpointing, Mona leverages the idle period to perform
the PCM write. We present the detailed algorithm of
determining the optimal Wpartial given the number of partial
writes (Npartial) in Section 4.1.2.

Table 1: Notations in this paper

Notations Description
Rdram Number of DRAM ranks in Mona
Rpcm Number of PCM ranks in Mona
Ctotal Total checkpointing cost of a checkpointing inter-

val
Cpartial /Cfinal Total cost of partial/final checkpointing

Npartial Number of PCM writes in partial checkpointing
Wpartial Average cost of a PCM write in partial check-

pointing
Nfinal Number of PCM writes in final checkpointing
WPCM Average cost of a PCM write in final checkpoint-

ing
TC Coldness threshold
~t Write threshold vector

Since we can determine the optimal Wpartial given Npartial ,
our task is to find Npartial and Nfinal so that Ctotal is
minimized. There is a tradeoff between Npartial and Nfinal . If
more pages are written to PCM during partial checkpointing
(Npartial is larger), Nfinal tends to be smaller. On the other
hand, some pages may be written to PCM for multiple times
in one checkpointing interval. Thus, we should determine
a suitable coldness threshold to ensure the effectiveness
of partial checkpointing. Given a coldness threshold TC ,
we develop the algorithm to estimate Npartial and Nfinal

(described in Section 4.1.1).
To put them all together, the cost model determines the

threshold values in Algorithm 2. We iterate all the possible
values for TC , and find the best Ctotal . To reduce the number
of iterations, we iterate TC with a unit of δ cycles (δ is set
to be 1% of the checkpointing interval in our experiments).
Additionally, in practice, we observe that Ctotal is usually a
concave function to TC . Thus, we can stop the iterations
right after reaching the minimum TC .

Algorithm 2 The workflow of determining suitable thresh-
old values with the cost model

1: Initialize curCost = 0, Ctotal = +∞, I to be the length of the
checkpointing interval;

2: for TC = 0, δ, 2δ, ..., I do
3: According to TC , determine Npartial and Nfinal ;

/*Section 4.1.1*/
4: According to Npartial in Line 3, determine Wpartial ;

/*Section 4.1.2*/
5: Based on the results of Lines 3 and 4, calculate the total

checkpointing cost to be curCost;
6: if curCost < Ctotal then
7: Ctotal = curCost;
8: Update threshold values with the new obtained setting;
9: Return threshold values that result in the smallest Ctotal ;

4.1.1 Estimating Npartial and Nfinal

We now discuss how to estimate Npartial and Nfinal , given a
coldness threshold TC . The estimation is based on a history
window with length equal to one checkpointing interval. We
derive Npartial and Nfinal based on the historical memory
access statistics. Specifically, the coldness of a page is
indicated by the elapsed time since its last write access. We
record each page’s first write access time, last write access
time and the total number of write accesses, denoted as
Tfirst , Tlast and Nwrite , respectively.

We model the problem as a sweeping line on a plane. An
example is given in Figure 3. Each page Pi is represented as
an interval or a dot <Tfirst , Tlast , addr> on the plane, where
addr is the starting address of Pi (such as P1 through P4 in
Figure 3). Assuming line l at time Tl is sweeping from the
plane’s right boundary to its left boundary. Each time line l
sweeps a distance of δ. The time difference between l and the
right boundary is thus viewed as the coldness threshold TC .
That is, as line l sweeps to the left, we essentially increase TC

as in Line 2 of Algorithm 2. Depending on a page’s access
span Tspan = Tlast − Tfirst and its Nwrite , the sweeping line l
divides all the pages into the following three categories:

• Category 1: If Pi ’s Tfirst is larger than Tl (e.g., P4),
this page is not cold and should be written to PCM
only once in final checkpointing.

• Category 2: If Pi ’s Tlast is smaller than Tl (e.g., P1),
it has been written to PCM in partial checkpointing.
To predict the number of writes to PCM, we further
compare its Tspan and Nwrite in two cases: 1) If
Pi ’s Nwrite is larger than dTspan/TC e, Pi is frequently
written. We will only write it once after its last write
access, since Pi will never be cold enough during its
Tspan . 2) Otherwise, Pi will be written to PCM at
most Nwrite times under the assumption that each of
the time span between two successive write accesses is
long enough that Pi has to be written once.

• Category 3: For Pi ’s Tspan is stabbed by line l (e.g.,
P2 and P3), we apply the same idea as in the second
category: 1) If Pi ’s Nwrite is larger than dTspan/TC e, we
will only write it once during final checkpointing. 2)
Otherwise, Pi will be written at least once. Moreover,
it may also be written at most Nwrite − 1 times during
partial checkpointing.

Given the three categories, we calculate Npartial and Nfinal

as in Algorithm 3 by counting all the pages in each category.
The estimation is light-weight. For each page, Mona

maintains three metadata (Tstart , Tend and Naccess) in the
form of three integers. They are kept in the page-header,



Figure 3: An example of determining the coldness threshold

Algorithm 3 Finding Npartial and Nfinal given a coldness
threshold TC at sweeping line Tl

1: Initialize Npartial = 0, Nfinal = 0;
2: for each page Pi do
3: if Tfirst > Tl then
4: Nfinal + +;
5: else if Tlast < Tl then
6: if Nwrite > dTspan/TC e then
7: Npartial + +;
8: else
9: Npartial + = Nwrite ;
10: else
11: Nfinal + +;
12: if Nwrite <= dTspan/TC e then
13: Npartial + = Nwrite − 1;

which requires no hardware cost. The maintenance can be
piggy-backed into the page-header update process of the
virtual-memory system of the operating system. We adopt
a similar approach proposed by Zhou et al. [38]. After each
DRAM write operation, we update the coldness information.
Noted that this update cost is very small, as we only need
to update one piece of information.

4.1.2 Estimating Wpartial

After getting Npartial and Nfinal , we now estimate the
average cost of a PCM write (Wpartial) during partial check-
pointing. Recall that, during partial checkpointing, we take
advantage of idle periods to perform PCM writes. Thus, the
actual cost of a PCM write on the application execution is
affected by the length of an idle period. If the idle period
is too short, the PCM write can cause significant penalty,
because the PCM write is much slower than the DRAM
access. On the other hand, if the idle period is lengthy,
there are opportunities of performing multiple PCM writes.
However, it is impossible to predict the length of the current
idle period without a priori knowledge. Thus, we estimate
the idle period length distribution in a slot. Then, we adopt
a simple approach to determine whether to perform a PCM
write: if the current idle period is longer than the write
threshold, we perform the PCM write.

We use a histogram to represent the distribution of idle
lengths. Particularly, the histogram is used to hold the
frequency counts of the idle period lengths. Suppose the
histogram has T + 1 buckets denoted as Hist[i], i =
0, 1, ..., T , where Hist[i] denotes the frequency count for
the idle period with a length of i cycles. Hist[0] simply
represents the number of memory access cycles. Given
a write threshold of t cycles, a memory access delay of
(t+WPCM − i) will happen for an idle period of i cycles.

To support multiple PCM writes in a lengthy idle period,
we use a vector ~t to represent the write threshold values

Algorithm 4 Obtain the optimal write threshold vector ~t
for an idle period

1: Initialize ~t = null, curWrite = 0, curCost = 0, minCost = +∞;
2: FindTI (t, curWrite, curCost, minCost, Hist);

Procedure FindTI (~t, curWrite, curCost, minCost,
Hist)

1: for t = 0, 1, ..., T do
2: for i = t+ 1, 2, ..., t+WPCM do
3: curCost+ = (t+WPCM − i)×Hist[i];
4: curWrite+ = Hist[i];
5: if curWrite ≥ Npartial then
6: break;
7: else
8: if i = t+WPCM then
9: for i = t+WPCM , ..., T do
10: Hist′[i]=Hist[i− (t+WPCM )];

11: FindTI (~t, curWrite, curCost, minCost, Hist′);
12: if curCost < minCost then
13: minCost = curCost
14: TI = t;
15: else
16: add TI to ~t;

within the same idle period. ~t[i] is the write threshold value
for the ith PCM write. Consider the scenario that an idle
period starts. We perform the first PCM write if the idle
period reaches ~t[0] cycle. After the PCM write finishes, if
we are still in the same idle period, we will perform the
second PCM write if the idle period lasts for ~t[1] cycles more.
Thus, we perform a recursive algorithm to find the vector,
as illustrated in Algorithm 4. When the number of PCM
writes that have been performed is smaller than Npartial , we
need to find one more level of PCM writes in the relatively
long idle periods. We derive this process as a subproblem of
the original problem (Line 11), with the updated histogram
as input to Procedure FindTI.

Previous studies [13, 31, 17] have shown that the idle pe-
riods usually demonstrate a “long tail” phenomenon, where
there are many short idle periods and very few long idle
periods. Thus, as we increase the write threshold value t,
the optimal cost first decreases as we can skip the short idle
periods, and then increases as we miss those sufficiently long
idle periods. We take advantage of this property to reduce
the computation for Procedure FindTI (Lines 12–16).

4.2 Load Balancing
The cost model guides the configuration parameters for an

individual DRAM rank. However, the total page migration
time is bounded by the longest migration time among
all DRAM ranks. There are two kinds of skews among
DRAM ranks. First, in partial checkpointing, a DRAM
rank may consist of many dirty pages and too few lengthy
idle periods. This causes the imbalance in the cost of
partial checkpointing. Second, in final checkpointing, a
DRAM rank may consist of a much larger number of dirty
pages than other ranks. This causes the imbalance in final
checkpointing. In the following, we present algorithms for
addressing the cost imbalance caused by these two kinds of
skews.

Balancing final checkpointing. In final checkpointing,
the set of dirty pages to be written from DRAM to PCM
is already known. The goal is to balance the dirty pages
among DRAM ranks. Since DRAM accesses are much faster
than PCM writes, one simple approach is to perform page
migrations among DRAM ranks before starting PCM writes.
The page migration moves the dirty pages from the DRAM



rank that has more dirty pages (denoted as H) to another
DRAM rank with fewer dirty pages (denoted as L). If L does
not have sufficient free space for the migrated dirty pages,
we move clean pages from L to H. Particularly, we choose
a dirty page from H to L and randomly choose a clean page
from L to H as appropriate. We further adopt the parallel
page migration approach of the previous study [31] to better
utilize the memory bandwidth. The migration ends when
the dirty pages are even among the DRAM ranks.

Balancing partial checkpointing. We have devel-
oped two approaches to balance partial checkpointing: one
with page migrations and the other with parameter tuning
(namely LB-PM and LB-PT, respectively). With the cost
model, Mona is able to compare the estimated cost of these
two approaches, and choose the one with the smaller cost.

In LB-PM, we attempt to balance the partial checkpoint
overhead among DRAM ranks through page migrations.
Here, we only need to balance the partial checkpointing
cost, since the final checkpointing cost among ranks will be
balanced later. The basic idea is to migrate pages from the
rank with the highest cost to the rank with the lowest cost.

The page migration is performed in an iterative manner.
In each iteration, we first run the cost model and get the
total cost of partial checkpointing for each rank. If the cost
is almost even among DRAM ranks (the difference is smaller
than 3% in our experiments), we end the page migration
process. Otherwise, we adopt a greedy method to choose
the rank with the highest cost as RankS and the rank with
the lowest delay as RankT . We migrate pages from RankS
to RankT . The number of pages migrated at a time is a
tuning parameter, which affects the overhead of running the
cost model and the evenness of the migration cost among
DRAM ranks. We have experimentally evaluated its impact
and choose eight pages at a time as the default setting.

The page chosen to be migrated needs careful considera-
tion. To reduce the number of page migrations, we should
choose those pages that affect the checkpointing cost more
significantly. Thus, we choose the dirty pages with the least
write localities in RankS . In LRU, we choose the page from
the least recent accessed position in the LRU queue. If
RankT does not have sufficient free space, we choose the
clean pages with the least read localities in RankT and move
them to RankS . Since the selected pages are the least recent
accessed ones, we ignore their impact on the histogram of
idle periods for simplicity.

Unlike LB-PM resulting in the page migration overhead,
LB-PT simply adjusts the write threshold values and cold-
ness threshold to balance the cost of partial checkpointing.
Specifically, through parameter tuning on TC and ~t, we
adjust the Cpartial and Cfinal for each rank so that all
ranks have similar Cpartial . Meanwhile, the largest total
checkpointing cost of all ranks is minimized. Please note,
LB-PT considers the load balancing for final checkpointing
as well. LB-PT relies on the intermediate output in the
cost model (Algorithm 2) to find the threshold values when
adjusting Cpartial and Cfinal . Particularly, the computation
process of the cost model gives different mappings from (TC ,
~t) to (Cpartial , Cfinal). Originally, we choose the lowest total
cost for each rank. Now, we need to choose TC and ~t that
can balance the cost across different ranks.

We briefly describe the load balancing algorithm of LB-
PT as follows. For Rank i (1 ≤ i ≤ Rdram), we maintain a
sorted queue Qi to hold all pairs of Cpartial and Cfinal , in the

ascending order of Cpartial . Initially, we pop the head of each
Qi and form a set of possible cost combinations, Setcandidate .
We calculate the total cost among all ranks (denoted as C)
after balancing final checkpointing. After that, we remove
one pair of Cpartial and Cfinal with the highest Cpartial from
Setcandidate and add a new pair of Cpartial and Cfinal from
the corresponding queue. We repeat this process until we
find the minimal C. Then, we can find the corresponding
thresholds for each rank based on Setcandidate .

4.3 Other Implementation Details
Mona adds a few new components to the memory con-

troller and operating system. Our design and implementa-
tions balance the issues on simplicity and efficiency. For
example, the memory requests from page migrations are
designed off the critical path of memory accesses, giving the
priority to the memory accesses from other logics. In the
following, we briefly present the following issues for Mona.

Multi-level checkpointing. We extend Mona to han-
dle multi-level checkpointing in two steps, following the
design of previous NVRAM-assisted multi-level checkpoint
designs [6, 7]. First, each node performs local checkpointing
according to Mona. Second, after several local checkpoint
intervals, a global checkpoint is initiated. A new global
checkpoint is created from the latest local checkpoints and
stored in the parallel file system.

Runtime and storage overhead. The structure com-
plexity and storage overhead of Mona are similar to the pre-
vious proposals, e.g., [25, 31]. For example, our design has
small DRAM space requirement (less than 2% of the total
amount of DRAM), and an acceptable runtime overhead in
maintaining the cost model and page access statistics (less
than 3% of the total application execution time). For page
migrations, only page descriptors and their mapping tables
are stored. For the histogram in the cost model, we use
the two-array storage method of the previous study [31] to
reduce the storage overhead.

Limitations. Compared with existing NVRAM-assisted
checkpoint designs, Mona has the following limitations.
First, Mona relies on the history of memory accesses for cost
estimation. More advanced workload prediction mechanisms
are helpful to improve the robustness. Second, Mona
has more PCM writes, which decrease PCM’s lifetime.
Our on-going work is to integrate/adapt the wear-leveling
techniques to extend the lifetime of PCM (e.g., [24, 4]). Also,
another possible solution is to leverage write consolidation
techniques [32] to reduce the number of writes. We leave it
as future work. Nevertheless, the predictions [25] for future
PCM cells suggest significant endurance improvement (from
109 in 2012 to 1015 writes by 2022).

5. EVALUATION
5.1 Experiment Setup

We have developed a cycle-accurate simulator based on
PTLSim v3.0 simulator [36]. Our simulator models all
relevant aspects of the OS, memory controller, DRAM
and PCM devices. In the simulator, the DRAM can be
configured with different capacities (64GB to 512GB). For
a fair comparison, we adopt the configurations from the
previous study [6]. We simulate multiple CPUs, each
running at 2.667 GHz, L1 I/D cache of 48 KB each and
L2/L3 shared cache 256KB/4MB. The cache line and page
size are set at 64B and 4KB, respectively. We use the DDR3-



Table 2: Mixed workload: memory footprint (FP), memory
accesses statistics per 5× 108 cycles (Mean and Stdev

Mean
).

Name FP
(MB)

Mean
(106)

Stdev
Mean Applications

M1 661 0.6 1.02 gromacs, gobmk, hmmer, bzip
M2 1477 1.7 1.11 bzip, soplex, sjeng, cactusADM
M3 626 2.9 0.59 soplex, sjeng, gcc, zeusmp

1333 architecture from Micron’s configuration1. By default,
we assume a 16-rank hybrid memory system, with 128GB
DRAM in 8 homogeneous ranks and with 256GB PCM in
another 8 homogeneous ranks. The PCM can be configured
with different PCM write delays. By default, we assume
the write delay of PCM is 10 times of that of DRAM. The
average latencies of DRAM and PCM are 100 and 1000
cycles, respectively.

Workloads. Since it is hard to mimic the memory
trace of a real large-scale parallel processing system, we
use both micro and macro benchmarks for performance
evaluation. Micro benchmarks are used to perform detailed
evaluation on using Mona as a local checkpoint design of
each machine in a large-scale system. In contrast, macro
benchmarks are used to assess multi-level checkpointing in
a parallel processing system. Particularly, we execute the
NAS Parallel Benchmark (NPB) [29] on our local cluster.

Micro benchmark. The micro benchmark include real
workloads as well as synthetic workloads on a single ma-
chine. For real workloads, we selected 12 applications
from SPEC 2006. These applications have widely different
memory footprints and localities. To evaluate our techniques
under the context of multi-core CPUs, we study 3 mixed
workloads (denoted by M1, M2, and M3), each with four
different applications (see Table 2) as one batch. Each mixed
workload is generated by starting the four applications at
the same time as one batch. In order to scale the memory
footprint and accesses, we run 50 batches of each workload
simultaneously in the system. The memory access statistics
of these workloads, including the average number of memory
accesses (Mean) and the standard deviation ( Stdev

Mean
) per

5 × 108 cycles, is shown in Table 2. We report the results
of three particular applications, i.e., cactusADM, gcc, and
gemsFDTD (denoted by S1, S2, and S3, respectively). Also,
we run 50 instances each of the workload for scaling the
memory footprint and memory accesses. We set the number
of CPU cores according to the number of applications.

Synthetic workloads allow us to extensively evaluate dif-
ferent memory access patterns. For synthetic workloads, we
assume that the arrival of page accesses follows a Poisson
distribution, and thus the idle periods follow an exponential
distribution with an expected value σ. The default value
of σ is set at 2,000 cycles. We assume that the accesses
over different pages follow a Zipf distribution with 1.5 as
the skewness parameter. The read-write ratio is set at 3:1.

For each micro benchmark workload, we measure the
performance after system warm-up (i.e., DRAM is filled
up). For Mona, the initial coldness threshold and write
threshold are derived based on the system statistics collected
during the warm-up period. Each measurement lasts for
15 × 109 cycles in the original PTLSim simulation, which
represents a stable and sufficiently long execution behavior
[31]. The default checkpointing interval is 1 × 109 cycles,
and the prediction slot is 2 × 108 cycles. Such fine-

1http://download.micron.com/pdf/datasheets/dram/ddr3/1Gb
DDR3 SDRAM.pdf

Figure 4: Performance of real workloads

grained checkpointing intervals are specifically designed for
the rigid requirement of critical jobs. We observed similar
performance improvement when varying the interval and slot
in a reasonable domain.

Marco benchmark. We run NPB [29] in a local clus-
ter. NPB includes eight benchmark programs derived
from computational fluid dynamics (CFD) applications.
We run both class B and class C for each of the NPB
programs. The number of processes is 64 by default.
We focus on the results in class C. The cluster has 16
nodes, each with CentOS 5.0, two Intel Xeon E5430 4-
core processors and 24GB DRAM. They are interconnected
via QDR InfiniBand network. NFS is used as the shared
file system. The MPI library is Intel MPI 4.0.1. We
adopt a hybrid approach of simulation/execution: the local
checkpointing process is simulated by our simulator, and
the other operations like MPI communications and global
checkpointing are performed on the real environments. We
focus on total checkpoint overhead by summing all local
checkpoint overhead from each simulator.

Comparisons. We compare the state-of-the-art NVRAM-
assisted checkpointing method [6, 7] (denoted as baseline)
with Mona. In the baseline method, the system is suspended
and then incremental checkpointing is performed. Its cost
is the elapsed time in writing all dirty pages from memory
ranks to PCM. To minimize the elapsed time in concurrent
writing, like Mona, we also perform page migrations so as
to even out the write workloads across different ranks. For
clarity of presentation, we normalize the partial and final
checkpointing cost of Mona to the total cost of the baseline
method.

5.2 Overall Micro Benchmark Results
We first present the overall comparison results in Figure 4,

where the cost of Mona is normalized by that of the
baseline checkpointing method. For real workloads, Mona
achieves 16% to 39% of performance improvement against
the baseline method on the overall checkpointing cost. Mona
can adjust the costs between partial and final checkpointings
for different workloads. In Figure 5, we plot the results
of synthetic workloads. We vary the PCM write delay per
page with 500, 1000 (default), and 2000 cycles (denoted as
PCM1, PCM2, and PCM3, respectively). We also vary the
expected idle period with 1000, 2000 (default), and 4000
cycles (denoted as Idle1, Idle2, and Idle3, respectively).
Mona achieves an improvement of up to 65% over the
baseline method. The improvement is relatively higher for
short PCM write delays and long idle periods.

To further understand the improvement, we plot the
actual number of PCM writes of the synthetic workloads
in Figure 6. For Mona, we show the counts for three
kinds of PCM writes: PCM writes in final checkpointing,
PCM writes with and without causing a delay during partial
checkpointing. Mona has a large portion of PCM writes in



Figure 5: Performance of synthetic workloads

Figure 6: Number of PCM writes in synthetic workloads

partial checkpointing that cause no penalty under a short
PCM write delay or a long idle period. That suggests our
cost model is able to adapt to the system parameters and
reduce the cost of partial checkpointing. Although Mona
performs more partial checkpointing, the overall cost still
becomes less. This phenomenon can also be observed by
comparing the cost ratio of partial checkpointing to total
checkpointing. Under the shortest PCM write delay, the
ratio of partial checkpointing increases to about 47% of the
total cost. On average, Mona has 28% more PCM writes
than the baseline approach on all workloads.

To better understand the performance of Mona, in the
following sections, we show more detailed results with the
synthetic workloads (PCM2 by default).

5.3 Cost Model Evaluation
To reveal the effectiveness of our cost model, we present

the prediction results for a memory rank during one check-
pointing interval. In Figure 7, we plot the predicted write
counts of partial and final checkpointings for DRAM Rank
1, under different coldness thresholds. We observe similar
results on other DRAM ranks. With a larger threshold,
more pages are written during final checkpointing, since they
are not “cold” enough to be written to PCM during partial
checkpointing. Thus, the dominant portion of the total cost
changes from partial checkpointing to final checkpointing.
As a result, the total cost decreases at first, and then
increases as the threshold continues to enlarge. Through
this cost model, we can find the minimal cost and its
corresponding coldness threshold and write threshold.

Figure 7: Number of PCM writes and cost estimation (on
PCM2)

(a) Write counts (b) Write costs

Figure 8: Comparison between estimation and actual
execution (on PCM2)

(a) (b)

Figure 9: Individual techniques: a) adaptive cost estimation,
b) load-balancing methods.

Figure 8 validates our prediction by comparing the pre-
dicted and the actual write counts and costs. The error is
only at most 6% for both predictions. We observed similar
results on other DRAM ranks. This implies that our model
can guide the checkpointing process with an accurately
predicted cost.

5.4 Impacts of Individual Techniques
Adaptive Cost Estimation. We now compare the

results between dynamic and static predictions in Figure 9a.
For the dynamic method, we keep a sliding window and tune
the system parameters at every slot. For the static method,
we only use the initial predicted thresholds. We show the
results on two dynamic page access patterns: (Pattern 1)
wi = 0.95w0 · (i mod 2) + w0 · ((i+ 1) mod 2) and (Pattern
2) wi = w0(1 + i%), where wi is the write ratio within the
(i + 1)-th checkpoint, and w0 is the default setting (0.25).
Pattern 1 simulates the case where the workload periodically
changes. Pattern 2 simulates the case where write requests
gradually become dominant in the workload. As shown in
Figure 9a, our adaptive prediction achieves 6% to 13% better
performance than the static method. A higher improvement
is observed for Pattern 2, because there are more write
requests in Pattern 2, incurring more performance penalty
in the static cost model.

Load balancing methods. To investigate the per-
formance advantage of load balancing, we compare three
approaches in Figure 9b: Mona without load balancing, the
page-migration method, and the parameter-tuning method.
We set the variations of mean idle period and read-write
ratio between different ranks as 200 and 0.1 (Var1), 400 and
0.2 (Var2), 600 and 0.3 (Var3), to 800 and 0.4 (Var4). Under
small variations, both migration methods do not perform
well, because the migration cost or the parameter tuning
cost may exceed the benefits on the overall checkpointing
process. Under large variations, both methods outperform
the method without any load balancing. Specifically, the
parameter-tuning method achieves the best result and out-
performs the page-migration method by about 10% with
the largest variation. This is because the page-migration
method involves a relatively high migration overhead. For



Figure 10: Total checkpoint overhead of Mona (normalized
to the baseline approach). Local and global checkpointing
intervals are 40 and 400 seconds, respectively.

Figure 11: Total checkpoint overhead of Mona (normalized
to the baseline approach). Local and global checkpointing
intervals are 1 and 10 seconds, respectively.

the parameter-tuning method, the overhead of not choosing
the optimal settings for individual ranks is worthy to achieve
a better overall performance. In experiments, Mona chooses
the best policy to be the one with the smallest estimated
cost (Section 4.2).

5.5 Macro Benchmark Results
We now present the macro benchmark results on multi-

level checkpointing. Overall, we have observed that Mona
significantly improves the performance of multi-level check-
pointing, thanks to the efficiency in the local checkpointing
of each machine. More frequent checkpoints increase system
availability, but degrades the baseline approach significantly.

Figure 10 reports the normalized total checkpoint over-
head on coarse-grained checkpointing when the local and
global checkpointing intervals are 40 and 400 seconds, re-
spectively. The average checkpoint overhead reduction of
Mona is 22% over the baseline approach. The performance
improvement of Mona is slightly smaller for coarse-grained
checkpointing than those reported in the paper, since some
pages need to be written for multiple times.

Figure 11 shows the comparison with fine-grained check-
pointing when the local and global checkpointing intervals
are 1 and 10 seconds, respectively. The average checkpoint
overhead reduction of Mona is 33% over the baseline ap-
proach. The improvement is much more significant than
those observed in Figure 10. Mona achieves a much lower
overhead while also delivering fine-grained checkpointing for
critical jobs. The findings with the hybrid local/global
checkpointing algorithm are consistent with the results in
a single node.

5.6 Sensitivity Studies
We present our sensitivity studies in Figure 12. First, we

vary the DRAM size to be 64GB, 128GB (default), 256GB,
and 512GB. A higher performance improvement is observed
as the DRAM size increases. Second, we vary the number of
DRAM ranks to be 2, 4 and 8 (default), and keep the number
of DRAM ranks equal to the number of PCM ranks. The
performance improvement slightly improves for more ranks
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Figure 13: Results on optimizing checkpoint interval

in the memory system. We also vary the read ratio from 0.6
to 0.9, and have observed similar performance improvement.

5.7 Optimizing Checkpointing Interval
Finally, we present the results when Mona’s optimization

goal is set to minimize the checkpoint interval. This goal
also means minimizing the restart time (i.e., the total time
of loading the lastest checkpoint and re-execution till the
point of failure). We vary the ratio of total allowed cost
budget from 1% to 3% to the application execution time
and compare the total checkpointing count. As shown in
Figure 13, Mona achieves 10% to 80% of improvement on the
checkpoint frequency. The improvement generally decreases
as the allowed cost ratio increases. This is because as the
interval becomes smaller, Mona tends to behave like the
baseline method. In the extreme case where the allowed
cost ratio is very large, Mona and the baseline method will
have the same checkpointing cost, which writes out every
page right after it becomes dirty.

6. RELATED WORK
There have been decades of research on checkpointing-

restart mechanisms. More related works can be found
in a recent survey [9]. Incremental checkpointing [1] can
reduce the checkpoint file size, and speculative checkpoint-
ing [18] can reduce the downtime. Mona adopts page-level
incremental checkpointing, and the partial checkpointing of
Mona is inspired by speculative checkpointing. Differently,
our checkpointing leverages idle period distributions, and
relies on a cost model to minimize the interference to the
application execution.

Similar to our study, Dong et al. [6] proposed a hybrid
checkpoint model by investigating different architectural
design options for PCM-based checkpointing systems. Zhou
et al. [37] used writeback information to partition bandwidth
for hybrid memory. Essen et al. [30] developed PerMA
NVRAM simulator to study different roles of NVRAM in
data-intensive architectures. Li et al. [16] studied the oppor-
tunities of NVRAM for extreme-scale scientifc applications.
Our study further enables the real-time checkpointing for
extreme-scale applications. Mona addresses the limitation of
the previous work [6, 7, 14] with two novel techniques. First,
Mona has a model-guided dynamic partial checkpointing
during application execution, which can accurately write
back the more valuable pages. Second, Mona develops finer-
grained load balancing mechanisms among memory ranks.



NVRAM has been used for checkpointing in other scenar-
ios. UniFI [26] aims at energy saving and fault tolerance by
exploiting NVRAM in both CPU caches and main memory.
Yoon et at. [35] proposed a new architecture for Multilevel-
cell phase change memory to cope with the problem of
resistance drift. However, this work focus on the hardware
design, instead of new checkpoint system. In [21], Oikawa
proposed a checkpointing mechanism for operating system
kernel rejuvenation. In our study, we target at a hybrid
memory system, since the low access latency of PCM make
it infeasible to independently serve as the main memory.

As for multi-level checkpointing, Moody et al. [19] per-
formed extensive modeling and evaluations and showed that
the benefits of multi-level checkpointing increase as the
system size increases. Sato et al. [27] studied a non-blocking
checkpoint system to reduce the I/O contention on PFS.
This paper demonstrates that a novel NVRAM-assisted
design can further improve multi-level checkpointing.

7. CONCLUSION
Real-time in-memory checkpointing is essential for reli-

able large-scale parallel processing systems. This paper
optimizes the runtime overhead of in-memory checkpointing
in a hybrid memory system with PCM and DRAM. It
embraces dynamic partial checkpointing during application
execution with optimizations on reducing the interference
and load balancing among ranks to reduce the checkpoint
overhead. Those decisions are guided by a cost model.
We conduct simulation-based experiments to evaluate the
performance of Mona under various workloads. Compared
to the state-of-the-art checkpointing method, Mona reduces
the total checkpointing cost by up to 65% under the goal of
minimizing the checkpointing cost.
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