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Abstract—MapReduce is a popular computing paradigm for large-scale data processing in cloud computing. However, the slot-based
MapReduce system (e.g., Hadoop MRv1) can suffer from poor performance due to its unoptimized resource allocation. To address it,
this paper identifies and optimizes the resource allocation from three key aspects. First, due to the pre-configuration of distinct map
slots and reduce slots which are not fungible, slots can be severely under-utilized. Because map slots might be fully utilized while
reduce slots are empty, and vice-versa. We proposes an alternative technique called Dynamic Hadoop Slot Allocation by keeping the
slot-based model. It relaxes the slot allocation constraint to allow slots to be reallocated to either map or reduce tasks depending on their
needs. Second, the speculative execution can tackle the straggler problem, which has shown to improve the performance for a single
job but at the expense of the cluster efficiency. In view of this, we propose Speculative Execution Performance Balancing to balance the
performance tradeoff between a single job and a batch of jobs. Third, delay scheduling has shown to improve the data locality but at the
cost of fairness. Alternatively, we propose a technique called Slot PreScheduling that can improve the data locality but with no impact
on fairness. Finally, by combining these techniques together, we form a step-by-step slot allocation system called DynamicMR that can
improve the performance of MapReduce workloads substantially. The experimental results show that our DynamicMR can improve the
performance of Hadoop MRv1 significantly while maintaining the fairness, by up to 46% � 115% for single jobs and 49% � 112%

for multiple jobs. Moreover, we make a comparison with YARN experimentally, showing that DynamicMR outperforms YARN by about
2% � 9% for multiple jobs due to its ratio control mechanism of running map/reduce tasks.
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1 INTRODUCTION

In recent years, MapReduce has become a popular high per-

formance computing paradigm for large-scale data processing

in clusters and data centers [6]. Hadoop [10], an open source

implementation of MapReduce, has been deployed in large

clusters containing thousands of machines by companies such

as Yahoo! and Facebook to support batch processing for

large jobs submitted from multiple users (i.e., MapReduce

workloads).

Despite many studies in optimizing MapReduce/Hadoop,

there are several key challenges for the utilization and per-

formance improvement of a Hadoop cluster.

Firstly, the compute resources (e.g., CPU cores) are ab-

stracted into map and reduce slots, which are basic compute

units and statically configured by administrator in advance. A

MapReduce job execution has two unique features: 1) the slot

allocation constraint assumption that map slots can only be

allocated to map tasks and reduce slots can only be allocated

to reduce tasks, and 2) the general execution constraint that

map tasks are executed before reduce tasks. Due to these

features, we have two observations: (I). there are significantly

different performance and system utilization for a MapReduce

workload under different slot configurations, and (II). even

under the optimal map/reduce slot configuration, there can be

many idle reduce (or map) slots, which adversely affects the

system utilization and performance.
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Secondly, due to unavoidable run-time contention for pro-

cessor, memory, network bandwidth and other resources, there

can be straggled map or reduce tasks, causing significant delay

of the whole job [2].
Thirdly, data locality maximization is very important for

slot utilization efficiency and performance improvement of

MapReduce workloads. However, there is often a conflict

between fairness and data locality optimization in a shared

Hadoop cluster among multiple users [37].
To address the above-mentioned challenges, we present Dy-

namicMR, a dynamic slot allocation framework to improve the

performance of a MapReduce cluster via optimizing the slot

utilization. Specifically, DynamicMR focuses on Hadoop Fair

Scheduler (HFS). This is because the cluster utilization and

performance for MapReduce jobs under HFS are much poorer

(or more serious) than that under FIFO scheduler. But it is

worth mentioning that our DynamicMR can be used for FIFO

scheduler as well. DynamicMR consists of three optimization

techniques, namely, Dynamic Hadoop Slot Allocation (DHSA),
Speculative Execution Performance Balancing (SEPB) and

Slot PreScheduling from different key aspects:
Dynamic Hadoop Slot Allocation (DHSA). In contrast to

YARN which proposes a new resource model of ’container’

that both map and reduce tasks can run on, DHSA keeps the

slot-based resource model. The idea for DHSA is to break the

assumption of slot allocation constraint to allow that:

(I). Slots are generic and can be used by either map or
reduce tasks, although there is a pre-configuration for the
number of map and reduce slots. In other words, when

there are insufficient map slots, the map tasks will use up

all the map slots and then borrow unused reduce slots.
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Similarly, reduce tasks can use unallocated map slots if

the number of reduce tasks is greater than the number of

reduce slots.

(II). Map tasks will prefer to use map slots and likewise reduce
tasks prefer to use reduce slots. The benefit is that, the

pre-configuration of map and reduce slots per slave node

can still work to control the ratio of running map and

reduce tasks during runtime, better than YARN which

has no control mechanism for the ratio of running map

and reduce tasks. The reason is that, without control, it

easily occurs that there are too many reduce tasks running

for data shuffling, causing the network to be a bottleneck

seriously (See Section 3.6).

Speculative Execution Performance Balancing (SEPB).
Speculative execution is an important technique to address the

problem of slow-running task’s influence on a single job’s

execution time by running a backup task on another machine.

However, it comes at the cost of cluster efficiency for the

whole jobs due to its resource competition with other running

tasks. We propose a dynamic slot allocation technique called

Speculative Execution Performance Balancing (SEPB) for the

speculative task. It can balance the performance tradeoff

between a single job’s execution time and a batch of jobs’

execution time by determining dynamically when it is time to

schedule and allocate slots for speculative tasks.
Slot PreScheduling. Delay scheduling has been shown to

be an effective approach for the data locality improvement in

MapReduce [37]. It achieves better data locality by delaying

slot assignments in jobs where there are no currently local

tasks available. However, it is at the cost of fairness. In

view of this, we propose an alternative technique named Slot
PreScheduling that can improve the data locality but has no

negative impact on fairness. It is achieved at the expense of

load balance between slave nodes. By observing that there are

often some idle slots which cannot be allocated due to the

load balancing constrain during runtime, we can pre-allocate

those slots of the node to jobs to maximize the data locality.
We have integrated DynamicMR into Hadoop (particularly

Apache Hadoop 1.2.1). We evaluate it using testbed workloads.

Experimental results show that, the original Hadoop is very

sensitive to the slot configuration, whereas our DynamicMR

does not. DynamicMR can improve the utilization and per-

formance of MapReduce workloads significantly, with 46% �

115% performance improvement for single jobs and 49% �

112% for multiple jobs. Moreover, we make a comparison with

YARN. The experiments show that, DynamicMR consistently

outperforms YARN for batch jobs by about 2% � 9%.

The main contributions of this paper are summarized as

follows:

� Propose a Dynamic Hadoop Slot Allocation (DHSA)

technique to maximize the slot utilization for Hadoop.

� Propose a Speculative Execution Performance Balancing

(SEPB) technique to balance the performance tradeoff

between a single job and a batch of jobs.

� Propose a PreScheduling technique to improve the data

locality at the expense of load balance across nodes,

which has no negative influence on fairness.

� Develop a system called DynamicMR by combining these

three techniques in Hadoop MRv1.

� Perform extensive experiments to validate the effective-

ness of DynamicMR and its three step-by-step techniques.

Organization. The rest of the paper is organized as follows.

Section 2 introduces our DynamicMR framework, starting

with an overview and then the details on the three techniques,

namely, DHSA, SEPB, Slot PreScheduling. Section 3 eval-

uates DynamicMR experimentally. Section 4 reviews related

work. Finally, Section 5 concludes the paper and gives the

future work.

2 OVERVIEW OF DYNAMICMR
We improve the performance of a MapReduce cluster via

optimizing the slot utilization primarily from two perspec-

tives. First, we can classify the slots into two types, namely,

busy slots (i.e., with running tasks) and idle slots (i.e., no

running tasks). Given the total number of map and reduce

slots configured by users, one optimization approach (i.e.,

macro-level optimization) is to improve the slot utilization

by maximizing the number of busy slots and reducing the

number of idle slots (Section 2.1). Second, it is worth noting

that not every busy slot can be efficiently utilized. Thus, our

optimization approach (i.e., micro-level optimization) is to

improve the utilization efficiency of busy slots after the macro-

level optimization (Section 2.2 and Section 2.3). Particularly,

we identify two main affecting factors: (1). Speculative tasks

(Detailed in Section 2.2); (2). Data locality (Detailed in

Section 2.3). Based on these, we propose DynamicMR, a

dynamic utilization optimization framework for MapReduce,

to improve the performance of a shared Hadoop cluster under

a fair scheduling between users.

Fig. 1: Overview of DynamicMR Framework.

Figure 1 gives an overview of DynamicMR. It consists

of three slot allocation techniques, i.e., Dynamic Hadoop
Slot Allocation (DHSA), Speculative Execution Performance
Balancing (SEPB), and Slot PreScheduling.

Each technique considers the performance improvement

from different aspects. DHSA attempts to maximize slot uti-

lization while maintaining the fairness, when there are pending

tasks (e.g., map tasks or reduce tasks). SEPB identifies the slot

resource in-efficiency problem for a Hadoop cluster, caused by

speculative tasks. It works on top of the Hadoop speculative

scheduler to balance the performance tradeoff between a single

job and a batch of jobs. Slot PreScheduling improves the

slot utilization efficiency and performance by improving the

data locality for map tasks while keeping the fairness. It pre-

schedules tasks when there are pending map tasks with data
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on that node, but no allowable idle map slots (See Definition 1

in Section 2.3.1).

By incorporating the three techniques, it enables Dynam-

icMR to optimize the utilization and performance of a Hadoop

cluster substantially with the following step-by-step processes:

1©. Whenever there is an idle slot available, DynamicMR will

first attempt to improve the slot utilization with DHSA. It

decides dynamically whether to allocate it or not, subject

to the numerous constrains, e.g., fairness, load balance.
2©. If the allocation is true, DynamicMR will further optimize

the performance by improving the efficiency of slot

utilization with SEPB. Since the speculative execution

can improve the performance of a single job but at the

expense of cluster efficiency, SEPB acts as an efficiency

balancer between a single job and a batch of jobs. It

works on top of Hadoop speculative scheduler to deter-

mine dynamically whether allocating the idle slot to the

pending task or speculative task.
3©. When to allocate the idle slots for pending/speculative

map tasks, DynamicMR will be able to further improve

the slot utilization efficiency from the data locality opti-

mization aspect with Slot PreScheduling.

Moreover, we want to mention that the three techniques

are at different levels, i.e., they can be applied together or

individually. The detailed description for each technique is

given as follows.

2.1 Dynamic Hadoop Slot Allocation (DHSA)
Current design of MapReduce suffers from a under-utilization

of the respective slots as the number of map and reduce tasks

varies over time, resulting in occasions where the number of

slots allocated for map/reduce is smaller than the number of

map/reduce tasks. Our dynamic slot allocation policy is based

on the observation that at different period of time there may

be idle map (or reduce) slots, as the job proceeds from map

phase to reduce phase. We can use the unused map slots for

those overloaded reduce tasks to improve the performance of

the MapReduce workload, and vice versa. For example, at the

beginning of MapReduce workload computation, there will be

only computing map tasks and no computing reduce tasks,

i.e., all the computation workload lies in the map-side. In that

case, we can make use of idle reduce slots for running map

tasks. That is, we break the implicit assumption for current

MapReduce framework that the map tasks can only run on map

slots and reduce tasks can only run on reduce slots. Instead,

we modify it as follows: both map and reduce tasks can be
run on either map or reduce slots.

However, there are two challenges that should be considered

as follows:

(C1). Fairness is an important metric in Hadoop Fair Scheduler

(HFS). We say it is fair when all pools have been

allocated with the same amount of resources. In HFS,

task slots are first allocated across the pools, and then

the slots are allocated to the jobs within the pool [36].

Moreover, a MapReduce job computation consists of two

parts: map-phase task computation and reduce-phase task

computation. One question is about how to define and

ensure fairness under the dynamic slot allocation policy.

(C2). The resource requirements between the map slot and re-

duce slot are generally different. This is because the map

task and reduce task often exhibit completely different

execution patterns. Reduce task tends to consume much

more resources such as memory and network bandwidth.

Simply allowing reduce tasks to use map slots requires

configuring each map slot to take more resources, which

will consequently reduce the effective number of slots

on each node, causing resource under-utilized during

runtime. Thus, a careful design of dynamic allocation

policy is important and needed to be aware of such

difference.

With respect to (C1), we propose a Dynamic Hadoop Slot
Allocation (DHSA). It contains two alternatives, namely, pool-

independent DHSA(PI-DHSA) and pool-dependent DHSA

(PD-DHSA), each of which considers the fairness from dif-

ferent aspects.

2.1.1 Pool-Independent DHSA (PI-DHSA)

Fig. 2: Example of the fairness-based slot allocation flow for PI-
DHSA. The black arrow line and dash line show movement of slots
between the map-phase pools and the reduce-phase pools.

HFS adopts max-min fairness [17] to allocate slots across

pools with minimum guarantees at the map-phase and reduce-

phase, respectively. Pool-Independent DHSA (PI-DHSA) ex-

tends the HFS by allocating slots from the cluster global level,

independent of pools. It considers fair when the numbers of

typed slots allocated across typed-pools within each phase (i.e.,

map-phase, reduce-phase) are the same.
As shown in Figure 2, it presents the slot allocation flow for

PI-DHSA. It is a typed phase-based dynamic slot allocation

policy. The allocation process consists of two parts, as shown

in Figure 2:
(1). Intra-phase dynamic slot allocation. Each pool is split

into two sub-pools, i.e., map-phase pool and reduce-phase

pool. At each phase, each pool will receive its share of slots.

An overloaded pool, whose slot demand exceeds its share,

can dynamically borrow unused slots from other pools of the

same phase. For example, an overloaded map-phase Pool 1

can borrow map slots from map-phase Pool 2 or Pool 3 when

Pool 2 or Pool 3 is under-utilized, and vice versa, based on

max-min fair policy.
(2). Inter-phase dynamic slot allocation. After the intra-

phase dynamic slot allocation for both the map-phase and

reduce-phase, we can now perform dynamic slot allocation

across typed phases. That is, when there are some unused

reduce slots at the reduce phase, and the number of map slots

at the map phase is insufficient for map tasks, it will borrow

some idle reduce slots for map tasks, to maximize the cluster

utilization, and vice versa.
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Overall, there are four possible scenarios. Let NM and NR

be the total number of map tasks and reduce tasks respectively,

while SM and SR be the total number of map and reduce slots

configured by users respectively. The four scenarios are below:

Case 1: When NM � SM and NR � SR, the map tasks

are run on map slots and reduce tasks are run on reduce slots,

i.e., no borrowing of map and reduce slots.

Case 2: When NM � SM and NR � SR, we satisfy reduce

tasks for reduce slots first and then use those idle reduce slots

for running map tasks.

Case 3: When NM � SM and NR � SR, we can schedule

those unused map slots for running reduce tasks.

Case 4: When NM � SM and NR � SR, the system should

be in completely busy state, and similar to (1), there will be

no movement of map and reduce slots.

Thereby, the whole dynamic slot allocation flow is that,

Whenever a heartbeat is received from a compute node, we

first compute the total demand for map slots and reduce slots

for the current MapReduce workload.

Next we determine dynamically the need to borrow map (or

reduce) slots for reduce (or map) tasks based on the demand

for map and reduce slots, in terms of the above four scenarios.

The specific number of map (or reduce) slots to be borrowed

is determined based on the number of unused reduce (or map)

slots and its map (or reduce) slots required.

In practice, instead of borrowing all unused map (or reduce)

slots, we may often want to reserve some unused slots at each

phase to minimize the possible starvation of slots for incoming

MapReduce jobs. A question would be how to control the

number of reserved slots dynamically.

To achieve the reservation functionality, we provide two

variables percentageOfBorrowedMapSlots and percentageOf-
BorrowedReduceSlots, defined as the percentage of unused

map and reduce slots that can be borrowed, respectively. We

can thereby limit the number of unused map and reduce slots

that should be allocated for map and reduce tasks at each

heartbeat of that tasktracker.

With these two parameters, users can flexibly balance the

tradeoff between the performance optimization and the star-

vation minimization. If users are more prone to performance

improvement, they can configure these parameters with large

values, as discussed in Appendix F of the supplemental

material. On the other hand, if users prefer to avoid starvation,

they can set these parameters with small values to reserve

some unused slots for incoming tasks, instead of using them

immediately.

Moreover, Challenge (C2) reminds us that we cannot treat

map and reduce slots the same, and simply borrow unused

slots for map and reduce tasks. Instead, we should be aware

of varied resource sizes of map and reduce slots. A slot weight-

based approach is thus proposed to address the problem. We

assign the map and reduce slots with different weight values,

in terms of the resource configurations. Based on the weights,

we can dynamically determine how much map and reduce

tasks should be spawn during runtime. For example, consider

a tasktracker with the map/reduce slot configuration of 8/4.

According to varied resource requirements, let’s assume that

the weights for map and reduce slots are 1 and 2, respectively.

Thus, the total resource weight is 8�1�4�2 � 16. With slot

weight-based approach for dynamic borrowing, the maximum

number of running map tasks can be 16 in that compute node,

whereas the number of running reduce tasks is at most 8�2�
4 � 8 rather than 16.

Finally, the details of DHSA are shown in Algorithm 1 of

the supplemental material.

2.1.2 Pool-Dependent DHSA (PD-DHSA)

Fig. 3: Example of the fairness-based slot allocation flow for PD-
DHSA. The black arrow line and dash line show the borrow flow for
slots across pools.

In contrast to PI-DHSA that considers the fairness in its

dynamic slot allocation independent of pools, Pool-Dependent

DHSA (PD-DHSA) considers another fairness for the dynamic

slot allocation across pools, as shown in Figure 3. It assumes

that each pool, consisting of two parts: map-phase pool and

reduce-phase pool, is selfish. That is, it always tries to satisfy

its own shared map and reduce slots for its own needs at

the map-phase and reduce-phase as much as possible before

lending them to other pools. It considers fair when total

numbers of map and reduce slots allocated across pools are

the same with each other. PD-DHSA will be done with the

following two processes:

(1). Intra-pool dynamic slot allocation. First, each typed-

phase pool will receive its share of typed-slots based on

max-min fairness at each phase. There are four possible

relationships for each pool regarding its demand (denoted as

mapSlotsDemand, reduceSlotsDemand) and its share (marked

as mapShare, reduceShare) between two phases:

Case (a). mapSlotsDemand � mapShare, and reduceSlots-
Demand � reduceShare. We can borrow some unused map

slots for its overloaded reduce tasks from its reduce-phase pool

first before yielding to other pools.

Case (b). mapSlotsDemand � mapShare, and reduceSlots-
Demand � reduceShare. In contrast, we can satisfy some

unused reduce slots for its map tasks from its map-phase pool

first before giving to other pools.

Case (c). mapSlotsDemand � mapShare, and reduceSlots-
Demand � reduceShare. Both map slots and reduce slots are

enough for its own use. It can lend some unused map slots

and reduce slots to other pools.

Case (d). mapSlotsDemand � mapShare, and reduceSlots-
Demand � reduceShare. Both map slots and reduce slots for a

pool are insufficient. It might need to borrow some unused map

or reduce slots from other pools through inter-Pool dynamic
slot allocation below.

(2). Inter-pool dynamic slot allocation. It is obvious that, (i).

for a pool, when its mapSlotsDemand + reduceSlotsDemand �
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mapShare + reduceShare. The slots are enough for the pool

and there is no need to borrow some map or reduce slots

from other pools. It is possible for the cases: (a), (b), (c)

mentioned above. (ii). On the contrary, when mapSlotsDemand
+ reduceSlotsDemand � mapShare + reduceShare, the slots

are not enough even after Intra-pool dynamic slot allocation.

It will need to borrow some unused map and reduce slots

from other pools, i.e., Inter-pool dynamic slot allocation, to

maximize its own need if possible. It can occurs for pools in

the following cases: (a), (b), (d) above.

The overall slot allocation process for PD-DHSA is as

follows:

When a tasktracker receives a heartbeat, instead of allocat-

ing map and reduce slots separately, it treats them as a whole

during the allocation for pools. It first computes the maximum

number of free slots that can be allocated at each round of

heartbeat for the tasktracker. Next it starts the slot allocation

for pools. For each pool, there are four possible slot allocations

as illustrated in Figure 4 below (The number labeled in the

graph denotes the corresponding case):

Case (1): We first try the map tasks allocation if there are

idle map slots for the tasktracker, and there are pending map

tasks for the pool.

Case (2): If the attempt of Case (1) fails since the condition

does not hold or it cannot find a map task satisfying the valid

data-locality level, we continue to try reduce tasks allocation

when there are pending reduce tasks and idle reduce slots.

Case (3): If Case (2) fails due to the required condition does

not hold, we try for map task allocation again. Case (1) fails

might be that there are no idle map slots available. In contrast,

Case (2) fails might be due to no pending reduce tasks. In this

case, we can try reduce slots for map tasks of the pool.

Case (4): If Case (3) fails, we try for reduce task allocation

again. Case (1) and Case (3) fail might be due to no valid

locality-level pending map tasks available, whereas there are

idle map slots. In contrast, Case (2) might be that there are no

idle reduce slots available. In that case, we can allocate map

slots for reduce tasks of the pool.

Moreover, there is a special scenario that needs to be

particularly considered. Note it is possible that all the above

four possible slot allocation attempts fail for all pools, due

to the data locality consideration for map tasks. For example,

it is possible that there is a new compute node added to the

Hadoop cluster. It may be empty and does not contain any data.

Thus, the data locality for all map tasks might not be satisfied

and all pending map tasks cannot be issued. The failures of

both Case (2) and Case (4) indicate that there are no pending

reduce tasks available for all pools. However, there might be

some pending map tasks available. Therefore, there is a need to

run some map tasks by ignoring the data locality consideration

on that new compute node to maximize the system utilization.

To implement this, we make a mark visitedForMap for each

job visited for map tasks. The data locality will be considered

when visitedForMap does not contain scanned job. Otherwise,

it will relax the data locality constrain for map tasks.

Finally, The detailed implementation for PD-DHSA is given

in Algorithm 2 of the supplemental material. Moreover, some

discussions on DHSA are presented in Appendix C of the

supplemental material.

Fig. 4: The slot allocation flow for each pool under PD-DHSA.
The numbers labeled in the graph corresponds to Case (1)-(4) in
Section 2.1.2, respectively.

2.2 Speculative Execution Performance Balancing
(SEPB)
MapReduce job’s execution time is very sensitive to slow-

running tasks (namely straggler) [34]. There are various

reasons that cause stragglers, including faulty hardware and

software mis-configuration [35]. We classify the stragglers into

two types, namely, Hard Straggler and Soft Straggler, defined

as follows:

� Hard Straggler: A task that goes into a deadlock status

due to the endless waiting for certain resources. It cannot

stop and complete unless we kill it.

� Soft Straggler: A task that can complete its computation

successfully, but will take much longer time than the

common tasks.

For the hard straggler, we should kill it and run another

equivalent task, or called a backup task, immediately once it

was detected. In contrast, there are two possibilities between

the soft straggler and its backup task:

(S1). Soft straggler completes first or the same as its backup

task. For this case, there is no need to run a backup task.

(S2). Soft straggler finishes later than the backup task. We

should kill it and run a backup task immediately.

To deal with the straggler problem, speculative execution is

used in Hadoop. Instead of diagnosing and fixing straggling

tasks, it detects the straggling task dynamically using heuristic

algorithms such as LATE [35]. Once detected, however, it can-

not simply kill the straggler immediately due to the following

facts:

� Hadoop does not have a mechanism to distinguish be-

tween the hard straggler and the soft straggler;

� Moreover, for the soft straggler, it’s also difficult to judge

whether it belongs to (S1) or (S2) before running. Simply

killing the straggler will harm the case of (S1).
Instead, it spawns a backup task and allows it to run concur-

rently with the straggler, i.e., there is a computation overlap

between the straggler and the backup task. The task killing

operation will occurs when either of the two tasks completed.

It is worth mentioning that, although the speculative execution

can reduce a single job’s execution time, but it comes at the

cost of cluster efficiency [34]. Speculative tasks are not free,

i.e., they compete for certain resources, including map slots,
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reduce slots and network, with other running tasks of jobs,

which could have a negative impact for the performance of

a batch of jobs. Therefore, it arises a challenge issue for

speculative tasks on how to mitigate its negative impact for

the performance of a batch of jobs.

To maximize the performance for a batch of jobs, an

intuitive solution is that, given available task slots, we should

satisfy pending tasks first before considering speculative tasks.

That is, when a node has an idle map slot, we should choose

pending map tasks first before looking for speculative map

tasks for a batch of jobs. Moreover, recall that in our dynamic

scheduler, the map slot is no longer restricted to map task,

it can serve reduce task. It means that, for an empty map

slot, we should consider choosing tasks in the following order:

pending map task, pending reduce task, speculative map task,

and speculative reduce task if we want to further maximize the

performance for a batch of jobs. We do likewise for reduce

slots.

We propose a dynamic task allocation mechanism called

Speculative Execution Performance Balancing (SEPB) for a

batch of jobs with speculative execution tasks on top of

Hadoop’s current task selection policy. Hadoop chooses a

task from a job based on the following priority: first, any

failed task is given the highest priority. Second, the pending

tasks are considered. For map, tasks with data local to the

compute node are chosen first. Finally, Hadoop looks for a

straggling task to execute speculatively. In our task scheduling

mechanism, we define a variable percentageOfJobsChecked-
ForPendingTasks with value domain between 0.0 and 1.0,

configurable by users, to control maxNumOfJobsCheckedFor-
PendingTasks, which is the maximum number of jobs that are

checked for pending map and reduce tasks for a batch of

jobs, as shown in Figure 5. Users can balance the tradeoff

between the performance for a batch of jobs and a single

job’s response time, with speculative task execution. Better

performance for the whole job is obtained when percenta-
geOfJobsCheckedForPendingTasks is large, Otherwise it will

be better for a single job’s response time. The detail of our

mechanism is that, when there is an idle map slot, we first

check jobs �J1, J2, J3, ..., � for map tasks. For each job Ji,
we compute the total number of pending map and reduce

tasks by scanning all jobs between Ji and Jj , where i �
1, 2, 3, ..., j � i�maxNumOfJobsCheckedForPendingTasks�1.

Next, we check each job Ji for the following conditions:

(1). No failed map tasks and pending map tasks for job Ji;
(2). The total number of pending map tasks is larger than

zero;

(3). The total number of pending reduce tasks is larger than

zero, and percentageOfBorrowedMapSlots is larger than zero.

The job Ji will be skipped for looking for speculative map

tasks when either Conditions (1) and (2), or Condition (1) and

(3) is satisfied. Otherwise, we will scan it for possible specula-

tive map tasks, with Hadoop’s speculative task mechanism[34],

or LATE [35].

However, delaying the scheduling of speculative task will

bring another challenging problem. For the hard straggler or

the soft straggler of (S2) that occupies a slot for a really

long time, if we do not solve it as early as possible, then

the resource allocated to the slot are being used inefficiently,

hence reducing the efficiency of the cluster.

To address this problem, we currently use a simple heuristic

algorithm: We estimate the execution time for each task. When

it took twice longer than the average execution time of tasks,

we kill it directly to yield the slot. Since failed/killed tasks

have the highest priority to run in Hadoop, a backup task will

be created to replace it quickly, improving the performance of

a single job and mitigating the negative impact on the cluster

efficiency.

Finally, speculative reduce tasks are handled similarly. The

detailed implementation of SEPB is given in Algorithm 3 of

the supplemental material.

Fig. 5: The computation policy for the totalNumOfPendingMapTasks
and totalNumOfPendingReduceTasks.

2.2.1 Discussion on SEPB VS LATE

The benefit of SEPB over LATE lies in its policy for slot

allocation to speculative tasks. For LATE, whenever there is

a straggled task for a job, it will create a backup task and

allocate a slot to run it immediately from an individual job’s

view if the total number of speculative tasks is less than the

threshold SpeculativeCap, a parameter for capping the number

of running speculative tasks. In contrast, SEPB performs the

resource allocation for speculative tasks from a global view

by considering multiple jobs (determined by the argument

maxNumOfJobsCheckedForPendingTasks). It will delay the

slot allocation to speculative tasks whenever there are pending

tasks for the multiple jobs. Consider an example with 6 jobs

as shown in Figure 5. The maxNumOfJobsCheckedForPend-
ingTasks is 4 and SpeculativeCap for LATE is 4. Assume at

a moment that total number of idle slots is 4, the numbers

of straggled tasks for J1, J2, J3, J4, J5, J6 are 5, 4, 3, 2, 1, 0,

nd the numbers of pending tasks for J1, J2, J3, J4, J5, J6 are

0, 0, 10, 10, 15, 20, respectively. With LATE, it will spawn 4

speculative tasks for J1 to possess all idle slots. However, with

SEPB, it will allocate all 4 idle slots to the pending tasks

of J3, J4 to improve the slot utilization efficiency, instead

of speculative tasks of J1. The relationship between SEPB

and LATE is that, SEPB works on top of LATE and is an

enhancement of LATE in scheduling speculative tasks. When

LATE detects a straggled task and an idle slot, it first checks

the number of running speculative tasks. When it is smaller

than SpeculativeCap, instead of creating speculative tasks for

straggled tasks immediately, LATE will inform SEPB. The

SEPB then determines whether to create a speculative task

to re-compute data or not from a global view by checking

multiple jobs. If SEPB finds pending tasks, it will allocate the

idle slot to a pending task. If not, a new speculative task will

then be created to possess the idle slot.
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2.3 Slot PreScheduling
Keeping the task computation at the computing node with the

local data (i.e., Data locality) is an efficient and important

approach to improve the efficiency of slot utilization and per-

formance. Delay Scheduler has been proposed to improve the

data locality in MapReduce by [37]. It delays the scheduling

for a job by a small amount of time, when it detects there are

no local map tasks from that job on a node where its input

data reside. However, it is at the expense of fairness. There is

a tradeoff between the data locality and fairness optimization

with delay scheduler. It means that, in HFS, delay scheduling

is not enough and there is still optimization space for data

locality improvement. A challenging question will be: Are

there any solutions that can further improve the data locality

while have no impact on fairness?

To answer this question, we propose a Slot PreScheduling
technique that can improve the data locality while having no

negative impact on the fairness of MapReduce jobs. In contrast

to delay scheduler, it is achieved at the expense of load balance

across slave nodes. The basic idea is that, in light of the fact

that there are often some idle slots which cannot be allocated

due to the load balancing constrain during runtime, we can

pre-allocate those slots of the node to jobs to maximize the

data locality.

2.3.1 Preliminary
In Hadoop task scheduling, there is a load manager that at-

tempts to balance the workload across slave nodes, making the

ratios of used resources close to each other among slave nodes

(i.e., load balancing). Prior to presenting Slot PreScheduling,

we start with two definitions:

Definition 1. The allowable idle map (or reduce) slots refer

to the maximum number of idle map (or reduce) slots that can

be allocated for a tasktracker, considering the load balancing

between machines.
Definition 2. The extra idle map (or reduce) slots refer to

the remaining idle map (or reduce) slots by subtracting the

maximum value of used map (or reduce) slots and allowable
idle map (or reduce) slots from the total number of map

slots for a tasktracker, considering the load balancing between

machines.

Fig. 6: An example of unbalanced workload distribution of running
map tasks in a Hadoop cluster. We assume the current priority order
of fair-share allocation is J1 � J2 � J3 � J4.

As illustrated in Figure 6, the workload balancing line

shows the current number of map slots that can be used under

an ideally balanced case. The allowable idle map slots are

illustrated by the white area below the workload balancing

line. We can note that Tasktracker 1 and 3 have some allowable

idle map slots, whereas there are no allowable idle map slots
available for Tasktracker 2 and 4. In contrast, all tasktrackers

have extra idle map slots (See Definition 2), which are

illustrated with the white area above the workload balancing

line.

There is a tradeoff between data locality and load balancing.

It occurs that, when a job has a local data on a slave node (e.g.,

J1 in TaskTracker 2). The slave node has some idle slots but

the load manager do not allow it to use (i.e., no allowable idle

slots) considering the load balancing issue. Improving the data

locality in this scenario will hurt the load balancing. Reversely,

achieving load balance will negative affect data locality.

2.3.2 Observation and Optimization
In practice, for a MapReduce cluster, the computing workloads

of running map (or reduce) tasks between tasktrackers (i.e.,

machines) are generally varied, because of the following facts.

(1). Lots of MapReduce clusters in real world consist of

heterogeneous machines (i.e., different computing powers

between machines),

(2). There are often varied computing loads (i.e., execution

time) for map and reduce tasks from different jobs, due

to the varied input data sizes as well as applications,

(3). Even for a single job under the homogenous environment,

the execution time for map (or reduce) tasks may still

not be the same, due to the skew caused by an uneven

distribution of input data to tasks and some portions of

the input data might take longer time to process than

others [16],

For example, Figure 6 illustrates an unbalanced workload

distribution of running map tasks in a Hadoop cluster, con-

sisting of two racks each with two machines. To balance

the workload, Hadoop provides a mechanism to dynamically

control the number of allowable idle map (or reduce) slots
(See Definition 1) for a tasktracker in a heartbeat as the

following three steps.

Step 1#: Compute the load factor mapSlotsLoadFactor as the

sum of pending map tasks and running map tasks from all

jobs divided by the cluster map slot capacity.

Step 2#: Compute the current maximum number of usable

map slots by multiplying min{mapSlotsLoadFactor,1} with

the number of map slots in a tasktracker.

Step 3#: Finally, we can compute the current allowable idle
map (or reduce) slots for a tasktracker, by subtracting the

current number of used map (or reduce) slots from the current

maximum number of usable map slots.

Let’s suppose that there are four running jobs and two

replicas for each block data in Figure 6. Let’s assume the

priority order of fairness allocation is J1 � J2 � J3 � J4.

Under the current load distribution, we can see that there are

no allowable idle map slots for all those tasktrackers (e.g.,

Tasktracker 2 and 4) with local block data of J1. It means that,

based on the delay scheduling, J1 will be delayed to schedule

within a time limit, at the expense of fairness, no matter which

tasktracker connects to the jobTracker in a heartbeat (See

more explanations on it in Appendix D of the supplemental

material). However, we can see that there are idle map slots
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for each tasktracker. If we relax the strict load balancing

constrain when Tasktracker 2 or 4 connects to the Jobtracker,

we can proactively allocate the extra idle map slots to J1,

satisfying both the data locality and fairness requirements.

Based on this observation, we propose a scheduler named

Slot PreScheduling to proactively allocate slots to those jobs

with local map tasks, aiming to achieve both the data locality

maximization and fairness requirement.

There are two cases for using Slot PreScheduling. The first

case considers a tasktracker tts on which there are extra idle

map slots available, but no allowable idle map slots. For a

headed job following the fair-share priority order, when it has

local map tasks with block data on the tts, instead of skipping

it by the default Hadoop scheduler, we can proactively allocate

extra map slots to the job.

The second case is for DHSA. When there are no idle map

slots but some idle reduce slots available, for a connected

tasktracker tts in a heartbeat, we can proactively borrow idle

reduce slots for local pending map tasks and restore them later,

in order to maximize the data locality.

2.3.3 Comparison with Delay Scheduler
In this section, we make a comparison and discussion between

Delay Scheduler and Slot PreScheduling. First, they consider

completely opposite scenarios. That is, Slot PreScheduling

works for the case when there are pending map tasks for the

current job with local block data on the tasktracker tts, whereas

Delay Scheduler considers the case without local pending

map tasks. Based on this fact, in our work, we combine

them together to improve the data locality. For example, in

Figure 6, when the current connected tasktracker in a heartbeat

is Tasktracker 1 or 3, the Delay Scheduler will work to delay

the scheduling of J1, to improve the data locality. In contrast,

when either Tasktracker 2 or 4 connects to the jobTracker,

the Slot PreScheduling will work by allocating the extra idle

map slots to J1, improving the data locality and guaranteeing

fairness.

Table 1 lists the benefits and costs for Slot PreScheduling

and Delay Scheduler under different metrics, including Fair-

ness, Data Locality and Load Balance. We can see that, the

Slot PreScheduling can benefits (or improves) both fairness

and data locality metrics, but at the expense of load balance,

since it uses the extra idle map slots. However, for Delay

Scheduler, it is favorable for data locality and load balance,

whereas at the cost of fairness.

Fairness Data Locality Load Balance

Slot PreScheduling � � �
Delay Scheduler � � �

TABLE 1: Benefit and Cost Comparison between Slot PreSchedul-
ing and Delay Scheduler. ’�’ denotes the benefit, while ’�’ repre-
sents the cost (or expense).

2.4 Discussion
The goal of our work is to improve the performance for

MapReduce workloads while maintaining the fairness across

pools when HFS is adopted. To achieve it, we propose a

framework called DynamicMR (See Appendix B of the supple-

mental material for details on how to implement DynamicMR

into Hadoop system.) consisting of three different dynamic slot

allocation policies, i.e., DHSA, SEPB, Slot PreScheduling.

Table 2 summarizes the comparison results for the three

policies with respect to different metrics (e.g., fairness, slot

utilization, and performance). First, all the three polices are

favorable for the performance improvement of MapReduce

workloads, due to the benefits from slot utilization optimiza-

tion. Specifically, DHSA improves the performance by increas-

ing the slot utilization. In contrast, rather than attempting to

improve the slot utilization, SEPB and Slot PreScheduling

achieve the performance improvement by maximizing the

efficiency of slot utilization, under a given slot utilization. For

fairness metric, both DHSA and DS (i.e., Delay Scheduler)

have an impact on it, whereas SEPB does not. Specifically,

PI-DHSA, PD-DHSA and SPS (i.e., Slot PreScheduling) can

benefit fair sharing, whereas DS has a negative impact on

fairness.

Techniques Fairness Slots Utilization Performance

DHSA
PI-DHSA

� � �
PD-DHSA

SEPB %��� �
DS �

%��� �
SPS �

TABLE 2: Benefit and cost comparison for allocation techniques
regarding each metric. ’DS’ is an abbreviation for Delay Scheduler,
while ’SPS’ is short for Slot PreScheduling. ’�’ denotes the benefit.
’�’ represents the cost (or expense). ’%’ denotes the efficiency.

3 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance

benefit of DynamicMR. We first evaluate the individual im-

pact of each optimization technique of DynamicMR (i.e.,

DHSA, SEPB, Slot PreScheduling in Section 3.2, 3.3 and 3.4,

separately). Next, we present the combined performance im-

provement achieved by DynamicMR in Section 3.5. Later we

compare our DynamicMR with YARN in performance.

3.1 Experimental Setup

We ran our experiments in a cluster consisting of 10 compute

nodes, each with two Intel X5675 CPUs (4 CPU cores per

CPU with 3.07 GHz), 24GB memory and 56GB hard disks.

We configure one node as master and namenode, and the other

9 nodes as slaves and datanodes. The latest version of Hadoop

1.2.1 is chosen in our experiment. We generate our testbed

workloads by choosing 9 benchmarks arbitrarily from Purdue

MapReduce Benchmarks Suite [1] and using their provided

datasets as show in Table 3, where the input data sizes are

chosen according to the processing capability of our cluster.

3.2 Performance Evaluation for DHSA

In this section, we first show the dynamic tasks execution

processes for PI-DHSA and PD-DHSA. Then we evaluate and

compare the performance improvement by PI-DHSA and PD-

DHSA under different slot configuration. Third, we make a

discussion on the performance influence of the arguments of

the percentage of map and reduce slots that can be borrowed

for our DHSA in Appendix F of the supplemental material.
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Benchmark Input Data
Name Description Data Source Data Size (GB)

WordCount computes the occurrence frequency of each word in a document. wikipedia [29] 10
Sort sorts the data in the input files in a dictionary order. wikipedia [29] 20
Grep finds the matches of a regex in the input files. wikipedia [29] 30

InvertedIndex takes a list of documents as input and generates word-to-document indexing. wikipedia [29] 40

Classification
classifies the input into one of k pre-determined clusters. movie ratings

dataset [29]
20

HistogramMovies
generates a histogram of input data and is a generic tool used in many data analyses. movie ratings

dataset [29]
20

HistogramRatings
generates a histogram of the ratings as opposed to that of the movies based on their
average ratings.

movie ratings
dataset [29]

20

SequenceCount
generates a count of all unique sets of three consecutive words per document in the
input data.

wikipedia [29]
30

SelfJoin generates association among k+1 fields given the set of k-field associations. synthetic data [29] 40

TABLE 3: The job information for Purdue MapReduce benchmarks and data sets.

(a) PI-DHSA (b) PD-DHSA

Fig. 7: The execution flow for the two DHSAs. There are three pools,
with one running job each.

3.2.1 Dynamic Tasks Execution Processes for PI-DHSA
and PD-DHSA

To show different levels of fairness for the dynamic tasks

allocation algorithms, PI-DHSA and PD-DHSA, we perform

an experiment by considering three pools, each with one job

submitted. Figure 7 shows the execution flow for the two

DHSAs, with 10 sec per time step. The number of running map

and reduce tasks for each pool at each time step is recorded.

For PI-DHSA, as illustrated in Figure 7(a), we can see that,

at the beginning, there are only map tasks, with all slots used

by map tasks under PI-DHSA. Each pool shares 1
3 of the total

slots (i.e., 36 slots out of 108 slots), until the 5th time step. The

map slot demand for Pool 1 begins to shrink and the unused

map slots of its share are yielded to Pool 2 and Pool 3 from

the 6th time step. Next from 6th to 10th time step, the map

tasks from Pool 2 and Pool 3 equally share all map slots and

the reduce tasks from Pool 1 possess all reduce slots, based on

the typed-phase level fairness policy of PI-DHSA(i.e., intra-

phase dynamic slot allocation). From 11th to 18th time step,

there are some unused map slots from Pool 2 and they are

possessed by map tasks from Pool 3 (i.e., intra-phase dynamic

slot allocation). Later, there are some unused map slots from

Pool 3 and they are used by reduce tasks from Pool 1 and

Pool 2 from 22st to 25th time step (i.e., inter-phase dynamic

slot allocation).

For PD-DHSA, similar to PI-DHSA at the beginning, each

pool obtains 1
3 of the total slots from the 1th to 5rd time step,

as shown in Figure 7(b). Some unused map slots from Pool 1

are yielded to Pool 2 and Pool 3 from 6th to the 7th time step.

However, from the 8th to 12th, the map tasks from Pool 2 and

Pool 3 and the reduce tasks from Pool 1 takes 1
3 of the total

slots, subject to the pool-level fairness policy of PD-DHSA

(i.e., intra-pool dynamic slot allocation). Finally, the unused

slots from Pool 1 begins to yield to Pool 2 and Pool 3 since

13th time step (i.e., inter-pool dynamic slot allocation).

3.2.2 Performance Improvement Comparison

Fig. 8: The performance improvement by DHSA under various slot
configuration for Sort benchmark.

Figure 8 presents the performance improvement results in

comparison with original Hadoop under various slot con-

figurations, for our proposed DHSA (See Figure 2 in the

supplemental material for more results of other benchmarks).

Note that there are 12 CPU cores per slave node and we

assume that one MapReduce slot corresponds to a CPU core.

Thereby, we vary the number of map slots per slave node

from 1 to 11. Particularly, we define the speedup here as the

ratio of the execution time of the original Hadoop under 1/11

map/reduce slot configuration per slave node, to the current

execution time.

We have the following three observations.

Firstly, the original Hadoop is very sensitive to the

map/reduce slot configuration, whereas there is little impact

for the map/reduce slot configuration on our DHSA (i.e.,

the speedup keeps stable under different map/reduce slot

configurations). For example, there are about 1.8x performance

differences for Sort benchmark in Figure 8 between the

optimal and worst-case map/reduce slot configurations for the

original Hadoop.

To explain the reason behind it, let’s take a single job

for example. Let NM and NR denote the number of map

tasks and reduce tasks. Let tM and tR denote the execution

time for a single map task and reduce task. Let SM and SR

denote the number of map slots and reduce slots. Moreover,

we assume that there is one slot per CPU core and thus
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the sum of map slots and reduce slots is fixed for a given

cluster. Then for the traditional Hadoop cluster, the execution

time will be �NM

SM
� � tM � �NR

SR
� � tR. In contrast, it will be

� NM

SM�SR
� � tM � � NR

SM�SR
� � tR for our DHSA. Based on the

formula, we can see varied performance from the traditional

Hadoop under different slot configurations. However, there is

little impact on the performance for different slot configura-

tions under DHSA.

Secondly, compared with the original Hadoop, both PI-

DHSA and PD-DHSA can improve the performance of

MapReduce jobs significantly, especially under the worst-case

map/reduce slot configuration. For example, there are about

2x performance improvement for Sort benchmnark under

the worst-case configuration (e.g., the x-axis point 1/11 in

Figure 8), with our proposed DHSA.

Thirdly, the performance improvement is stable and very

close to each other for both PI-DHSA and PD-DHSA. The

reason is that, although PI-DHSA and PD-DHSA have differ-

ent fairness concepts (See Section 2.1), they follow strictly the

same principle of slot utilization maximization, by switching

the allocation of the map/reduce slots for map/reduce tasks

dynamically.

3.3 Speculative Execution Control for Performance

(a) The performance improvement un-
der different percentages.

(b) The detailed job execution time for
the workload of 5 jobs.

Fig. 9: The performance results with SEPB.

Recall in Section 2.2, we stated that speculative task

execution can overcome the problem of straggler (i.e., the

slow-running task) for a job, but it is at the cost of cluster

utilization. We define a user’s configurable variable percent-
ageOfJobsCheckedForPendingTasks to determine the time to

schedule speculative tasks. To validate the effectiveness of our

dynamic speculative execution control policy, we perform an

experiment with 5 jobs, 10 jobs and 20 jobs by varying the

values of percentageOfJobsCheckedForPendingTasks.

Note that LATE [35] has been implemented in Hadoop

1.2.1. Figure 9 presents the performance results with SEPB in

comparison to LATE. All speedups are computed with respect

to the case that percentageOfJobsCheckedForPendingTasks is

equal to zero. We have the following findings:

First, SEPB can improve the performance of Hadoop from

3% � 10%, shown in Figure 9(a). As the value of per-
centageOfJobsCheckedForPendingTasks increases, the trend of

performance improvement tends to be large and the optimal

configurations could be distinct for different workloads. For

example, the optimal configuration for 5 jobs is 80%, but for

10 jobs is 100%. The reason is that, large value of percentage-
OfJobsCheckedForPendingTasks will let more numbers of jobs

be checked for pending tasks before considering speculative

execution for each slot allocation, i.e., It is more likely to

allocate a slot to a pending task first, rather than a specula-

tive task, which benefits more for the whole jobs. However,

large value of percentageOfJobsCheckedForPendingTasks will

delay the speculative execution for straggled jobs, hurting

their performance. For some workloads, too large value of

percentageOfJobsCheckedForPendingTasks will degrade the

performance for straggled jobs a lot and in turn affect the

overall jobs, explaining why the optimal configuration is not

always 100%. We recommend users to configure percenta-
geOfJobsCheckedForPendingTasks at 60% � 100% for their

workloads.

Second, there is a performance tradeoff between an individ-

ual jobs and the whole jobs with SEPB. We show a case for the

workload of 5 jobs when setting percentageOfJobsChecked-
ForPendingTasks to be 0 and 100%, respectively. As results

shown in Figure 9(b), Job 2 and 4 are negative affected due

to the constrain on speculative execution from SEPB, whereas

it favors the performance for whole jobs (i.e., the maximum

execution time of jobs).

3.4 Data Locality Improvement Evaluation for Slot
PreScheduling

Fig. 10: The data locality improvement by Slot PreScheduling for
Sort benchmark.

Fig. 11: The performance improvement under Slot PreScheduling.

To test the effect of Slot PreScheduling on data locality

improvement, we ran MapReduce jobs with 16, 32, and 160

map tasks on the Hadoop cluster. We compare fair sharing

results with and without Slot PreScheduling under the default

HFS. It is worth mentioning that Delay Scheduler has been

added to the default HFS for the traditional Hadoop and

keeps working always. Therefore, our work turns to be the

comparison between the case with Delay Scheduler only and

the case with Delay Scheduler plus Slot PreScheduling.
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Figure 10 shows the data locality results with and without

Slot PreScheduling for Sort benchmark (See Figure 2 in the

supplemental material for more results) With Slot PreSchedul-

ing, there are about 2% � 25% locality improvement on top

of Delay Scheduler for Sort benchmark.

Figure 11 presents the corresponding performance results

benefiting from the data locality improvement made by Slot

PreScheduling. There are about 1% � 9% performance

improvement with respect to the original Hadoop for the

aforementioned 9 benchmarks respectively.

Moreover, we measure and compare the load unbalanced

degree and unfairness degree for Hadoop cluster with and

without Slot PreScheduling in Appendix E of the supplemental

material.

3.5 Performance Improvement for DynamicMR

(a) A single MapReduce job

(b) MapReduce workloads with multiple jobs, referring
to Table 3 of the supplemental material for details.

Fig. 12: The performance improvement with our DynamicMR
system for MapReduce workloads.

In this section, we evaluate DynamicMR system in overall

by enabling all its three sub-schedulers so that they can work

corporately to maximize the performance as much as possible.

For DHSA part, we arbitrarily choose PI-DHSA, noting that

PI-DHSA and PD-DHSA have very similar performance im-

provement (See Section 3.2.2). For the original Hadoop, we

choose the optimal slot configuration for MapReduce jobs by

enumerating all the possible slot configurations. We aim to

compare the performance for DynamicMR with the original

Hadoop under the optimal map/reduce slot configuration for

MapReduce jobs. Figure 12 presents the evaluation results for

a single MapReduce job as well as MapReduce workloads

consisting of multiple jobs. Particularly, for multiple jobs,

we consider 5 jobs, 10 jobs, 20 jobs, and 30 jobs (See

detailed information for multiple jobs in Table 3 of the

supplemental material) under a batch submission, i.e., all jobs

submitted at the same time. All speedups are calculated with

respect to the original Hadoop. We can see that, even under

the optimized map/reduce slot configuration for the original

Hadoop, our DynamicMR system can still further improve

the performance of MapReduce jobs significantly, i.e., there

are about 46% � 115% for a single job and 49% � 112% for

MapReduce workloads with multiple jobs.
Moreover, we also implement our DynamicMR for Hadoop

FIFO scheduler. To validate the effectiveness of our Dy-

namicMR, we perform experiments with the aforementioned

MapReduce workloads. The results are shown in Figure 13. It

illustrates that, our DynamicMR system can improve the per-

formance of Hadoop jobs significantly under FIFO scheduler

as well.

Fig. 13: The performance improvement with our DynamicMR
system for MapReduce workloads under Hadoop FIFO scheduler.

3.6 Performance Comparison With YARN

(a) A single MapReduce job

(b) MapReduce workloads with multiple jobs, re-
ferring to Table 3 of the supplemental material for
details.)

Fig. 14: The comparison results between YARN and DynamicMR
for MapReduce workloads.

In YARN, there is no more concept of ’slot’. Instead, it pro-

poses a concept of ’container’ consisting of a certain amount
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of resources (e.g., memory) that both map and reduce tasks

can run on. It is claimed that it can overcome the utilization

problem of static slot-based approach. In this section, we

perform an experimental comparison between YARN and our

DynamicMR.

To make it comparable, in our argument settings of YARN,

we configure the allocated memory resources for each con-

tainer carefully so that the number of containers in each

slave node is equal to the number of ’slot’ in Hadoop

MRv1. We also check other same arguments (e.g. mapre-
duce.job.reduce.slowstart.completedmaps) to ensure that they

have the same configured value for YARN and Hadoop MRv1.

Figure 14 shows the compared performance results of

speedup with respect to YARN. For single MapReduce jobs

in Figure 14 (a), we can not claim that which one is better

than the other absolutely. For example, Our DynamicMR

outperforms YARN for benchmarks Sort, SelfJoin and Classi-

fication, whereas YARN is better than DynamicMR for other

remaining benchmarks. This is because with a single job, there

is no difference in resource utilization optimization mechanism

between YARN and DynamicMR (i.e., both of them use all

resources for map tasks at the map-phase first and then utilize

all resources for reduce tasks at the reduce-phase).

However, for multiple jobs, we can see in Figure 14 (b)

that our DynamicMR is better than YARN by about 2% � 9%,

especially when the number of jobs is large. The reason is due

to the network contention mainly from reduce tasks caused in

their shuffle phase. Given a certain number of resources, it is

obvious that the performance for the case with a ratio control

of concurrently running map and reduce tasks is better than

without control. Because without control, it easily occurs that

there are too many reduce tasks running, causing the network

to be a bottleneck seriously.

For YARN, both map and reduce tasks can run on any

idle container. There is no control mechanism for the ratio

of resource allocation between map and reduce tasks. It

means that when there are pending reduce tasks, the idle

container will be most likely possessed by them. In contrast,

our DynamicMR follows the traditional slot-based model. In

contrast to the ’hard’ constrain of slot allocation that map slots

have to be allocated to map tasks and reduce tasks should

be dispatched to reduce tasks, we propose a ’soft’ constrain

of slot allocation to allow that map slot can be allocated to

reduce task and vice versa. But whenever there are pending

map tasks, the map slot should be given to map tasks first,

and the rule is similar for reduce tasks. It means that, the

traditional way of static map/reduce slot configuration for

the ratio control of running map/reduce tasks still works for

DynamicMR. In comparison to YARN which maximizes the

resource utilization only, our DynamicMR can maximize the

slot resource utilization and meanwhile dynamically control

the ratio of running map/reduce tasks via map/reduce slot

configuration.

To validate our explanation, we make a throughput test

for data shuffling of reduce tasks over time by running a

MapReduce workloads of 5 jobs. Figure 15 illustrates the

shuffle data throughput for YARN and DynamicMR. The

larger throughput indicates that there are more reduce tasks

performing data shuffling. We can see that the data throughput

for YARN fluctuates greatly over time and its peak value is

much higher than DynamicMR, demonstrating the correctness

of our clarification.

Fig. 15: The network throughput comparison between YARN and
DynamicMR for data shuffling over time. Each time step are 2
seconds.

4 RELATED WORK

There is a large body of research work on the performance op-

timization for MapReduce jobs. We summarize and categorize

the closely related work to ours as follows.

� Scheduling and Resource Allocation Optimization.

There are some computation scheduling and resource allo-

cation optimization work for MapReduce jobs. [18], [31], [32],

[24], [25] consider job ordering optimization for MapReduce

workloads. They model the MapReduce as a two-stage hybrid

flow shop with multiprocessor tasks [19], where different job

submission orders will result in varied cluster utilization and

system performance. However, there is an assumption that

the execution time for map and reduce tasks for each job

should be known in advance, which may not be available in

many real-world applications. Moreover, it is only suitable

for independent jobs, but fails to consider those jobs with

dependency, e.g., MapReduce workflow. In comparison, our

DHSA is not constrained by such assumption and can be used

for any types of MapReduce workloads (i.e., independent and

dependent jobs).

Hadoop configuration optimization is another approach,

including [13], [14]. For example, Starfish [13] is a self-

tuning framework that can adjust the Hadoop’s configuration

automatically for a MapReduce job such that the utilization

of Hadoop cluster can be maximized, based on the cost-

based model and sampling technique. However, even under

an optimal Hadoop configuration, e.g., Hadoop map/reduce

slot configuration, there is still room for performance im-

provement of a MapReduce job or workload, by maximizing

the utilization of map and reduce slots (See results shown in

Section 3.2.2).

Guo et al. [7] propose a resource stealing method to enable

running tasks to steal resources reserved for idle slots and give

them back proportionally whenever new tasks are assigned,

by adopting multithreading technique for running tasks on

multiple CPU cores. However, it cannot work for the utiliza-

tion improvement of those purely idle slave nodes without

any running tasks. Polo et al. [21] present a resource-aware

scheduling technique for MapReduce multi-job workloads
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that aims at improving resource utilization by extending the

abstraction of traditional ’task slot’ of Hadoop to ’job slot’,

which is an execution slot that is bound to a particular job,

and a particular task type (map or reduce) within that job. In

contrast, in our proposed DHSA, we keep the traditional task

slot model and maximize the system utilization by dynamically

allocating unused map (or reduce) slots to overloaded reduce

(or map) tasks.

YARN [3] is a new version of Hadoop with totally different

architecture. In contrast to our DynamicMR, it overcomes the

inefficiency problem of the Hadoop MRv1 from the resource

management perspective. There is no more concept of slot.
Instead, it manages resources into containers consisting of a

amount of resources (e.g., memory). Both map and reduce

tasks can run on any container. Our experimental results in

Section 3.6 show that when in a single job, we cannot claim

which one is better than the other; However, for multiple jobs,

our DynamicMR outperforms YARN.

� Speculative Execution Optimization.

Speculative execution is an important task scheduling strat-

egy in MapReduce for dealing with straggler problem for

a single job, including LATE [35], BASE [7], Mantri [2],

MCP [5]. Longest Approximate Time to End (LATE) [35] is a

speculative execution algorithm that focuses on heterogeneous

environments by prioritizing tasks to speculate, selecting fast

nodes to run on, and capping speculative tasks. Guo et al. [7]

further improve the performance for LATE by proposing a

Benefit Aware Speculative Execution (BASE) algorithm that

can evaluate the potential benefit of speculative tasks and

eliminate unnecessary runs. Mantri [2] provided a specula-

tive execution strategy that focuses more on saving culster

computing resource, i.e., task slots, by monitoring tasks and

culling outliers based on their causes. Chen et al. [5] proposed

a new speculative execution algorithm called Maximum Cost

Performance (MCP) to overcome the problems that affect the

performance for previous speculative execution strategies, e.g.,

data skew, task that start asynchronously, improper configura-

tion of phase percentage. However, it is worth mentioning that

all speculative executions mentioned above are not free. They

come at the cost of cluster efficiency [34], which could have

a negative impact for the performance of a batch of jobs. We

thereby proposed SEPB to balance the performance tradeoff

between a single job and a batch of jobs for all speculative

executions mentioned above.

� Data Locality Optimization.

Data locality optimization has been shown to be a critical

method for the performance and efficiency improvement of the

cluster utilization by previous works (e.g., [37]�[23]). For

MapReduce, there are map-side and reduce-side data locality.

The map-side data locality optimization considers moving the

map tasks computation close to the input data blocks (e.g.,

[37]�[9]). For example, when there are lots of small-size jobs

in a environment, Delay Scheduler can improve the data local-

ity by delaying the scheduling of map tasks whose data locality

cannot be satisfied for a short period of time, at the expense

of fairness [37]. Purlieus classifies the MapReduce jobs into

three types, map-input heavy, map-and-reduce-input heavy and

reduce-input heavy, and proposes data and virtual machine

locality-awareness placement strategies accordingly in a cloud

environment to improve the runtime performance [20]. Guo et

al. [8], [9] propose a mathematical model and theoretically

analyze the relationship between system factors and data

locality. Moreover, they also provide an algorithm for users

to adjust the tradeoff between fairness and data locality. In

contrast, the reduce-side data locality optimization considers

placing reduce tasks to the machines that are closest to the

majority of the already generated intermediate data by map

tasks, either by proposing some greedy algorithms (e.g., [20],

[11], [12]) or by formulating the reduce task assignment

problem as a stochastic optimization problem theoretically

(e.g., [22], [23]).

Slot PreScheduling belongs to the map-side data locality

optimization. In contrast to Delay Scheduler, Slot PreSchedul-

ing, as its complementary part, considers a different scenario

that there are local map tasks for a job on a node, but no

allowable idle map slots (See Definition 1 in Section 2.3)

available on that node due to the load balancing constrain.

It pre-schedules local map tasks using extra idle slots (See

Definition 2 in Section 2.3) to maximize the data locality while

maintaining the fairness. Importantly, in comparison to those

map-side optimization methods aforementioned, we argue that

both Delay Scheduler and Slot PreScheduling are simple (i.e.,

easy to implement in practise), generic and much effective for

fairness and data locality maximization (See Section 3.4).

Our preliminary study [26] has presented our initial studies

on DHSA in improving the slot utilization of MapReduce.

This paper goes beyond the preliminary study in the following

major aspects. Firstly, we further develop two types of slot

optimizers including SEPB and Slot PreScheduling, which

contribute to the accumulative performance improvement of

DHSA. Secondly, putting them all together, we have devel-

oped a holistic and dynamic slot allocation and scheduling

framework and performed more extensive experiments.

� MapReduce Optimization on Cloud Computing.

There are lots of optimization works for MapReduce on

cloud computing. The main works focus on the optimization

for deadline and budget, such as [33], [28], [38], [30], [15],

[27]. They proposed algorithms and cost models to optimize

the task scheduling and manage the resource allocation for

MapReduce workloads (e.g., workflows) for each metric.

However, their works (i.e., workflow scheduling) are on top of

Hadoop framework, belonging to the coarse-grained optimiza-

tions. In contrast, DynamicMR is a fine-grained optimization

for Hadoop, optimizing Hadoop itself. Thus, we can combine

existing work and DynamicMR together to further optimize

the deadline and budget in cloud computing.

5 CONCLUSION AND FUTURE WORK
This paper proposes a DynamicMR framework aiming to im-

prove the performance of MapReduce workloads while main-

taining the fairness. It consists of three techniques, namely,

DHSA, SEPB, Slot PreScheduling, all of which focus on

the slot utilization optimization for MapReduce cluster from

different perspectives. DHSA focuses on the slot utilization

maximization by allocating map (or reduce) slots to map

and reduce tasks dynamically. Particularly, it does not have
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any assumption or require any prior-knowledge and can be

used for any kinds of MapReduce jobs (e.g., independent or

dependent ones). Two types of DHSA are presented, namely,

PI-DHSA and PD-DHSA, based on different levels of fairness.

User can choose either of them accordingly. In contrast to

DHSA, SEPB and Slot PreScheduling consider the efficiency

optimization for a given slot utilization. SEPB identifies the

slot inefficiency problem of speculative execution. It can

balance the performance tradeoff between a single job and

a batch of jobs dynamically. Slot PreScheduling improves the

efficiency of slot utilization by maximizing its data locality. By

enabling the above three techniques to work cooperatively, the

experimental results show that our proposed DynamicMR can

improve the performance of the Hadoop system significantly

(i.e., 46% � 115% for single jobs and 49% � 112%
for multiple jobs). Moreover, we also have a comparison

with YARN. The experiments show that, 1) for single jobs,

the result is inconclusive, 2) for multiple jobs, DynamicMR

consistently outperforms YARN by about 2% � 9%.

In future, we plan to consider implementing DynamicMR

for cloud computing environment with more metrics (e.g., bud-

get, deadline) considered and different platforms by reviewing

some existing works such as [33], [38], [30].

Finally, the DynamicMR source code is publicly available

for downloading at http://sourceforge.net/projects/dynamicmr/.
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