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Abstract—In virtualization environments, static memory allocation for virtual machines (VMs) can lead to severe service level 

agreement (SLA) violations or inefficient use of memory. Dynamic memory allocation mechanisms such as ballooning and 

memory hotplug were proposed to handle the dynamics of memory demands. However, these mechanisms so far have not 

been quantitively or comparatively studied. In this paper, we first develop a runtime system called U-tube, which provides a 

framework to adopt memory hotplug or ballooning for dynamic memory allocation. We then implement fine-grained memory 

hotplug in Xen. We demonstrate the effectiveness of U-tube for dynamic memory management through two case studies: 

dynamic memory balancing and memory overcommitment. With these two case studies, we make a quantitative comparison 

between memory hotplug and ballooning. The experiments show that there is no absolute winner for different scenarios. Our 

findings can be very useful for practitioners to choose the suitable dynamic memory management techniques in different 

scenarios.  

Index Terms—Ballooning, Memory management, Memory Hotplug, Virtual Machine, Virtualization. 

——————————      —————————— 

1 INTRODUCTION

IRTUALIZATION provides a significant advantage 
for modern data centers to maximize physical re-
source utilization through server consolidation. Con-

tinuous advances of multi-core and I/O virtualization 
technologies [12] [18] [19] [36] have caused main memory 
to be a more valuable resource. It has become the primary 
capacity constraint for VM density and VM performance 
[25]. On the other hand, although many data intensive 
applications [26] have become memory hungry, they ex-
hibit significantly different memory consumption behav-
iors in terms of memory footprint and temporal memory 
usage. Effective memory allocation among different VMs 
remains a challenging research problem.  

In virtualization environments, most hypervisors typi-
cally allocate a fixed-size memory pool to each VM in-
stance at boot. A VM may be also configured with a pa-
rameter such as max_memory to specify the VM’s maxi-
mum memory capacity. We call it memory cap in this 
paper. As static memory allocation may lead to significant 
performance degradation or a waste of precious memory 
resource, ballooning is widely used in the state-of-the-art 
hypervisors such as VMware and Xen [7][32] for dynamic 
memory management. It enables the virtual machine 

monitor (VMM) to reclaim underutilized memory from a 
lightly loaded VM and re-allocate it to overloaded VMs.  

Although ballooning is widely used for VM memory 
resizing [11][17][39], it still has some limitations in several 
scenarios. In general, it is difficult to predict the exact 
demands of memory resource before a VM is created, so 
the maximum memory capacity is usually set by experi-
ence. However, in practice, the memory cap may become 
a risk of VM performance degradation when the applica-
tions exhibit drastic fluctuation of memory requirements. 
Ballooning is effective only when the scope of memory 
resizing do not exceed the VM memory cap. Otherwise, 
the VM needs to reboot for memory re-configuration. In 
high-availability systems, the cost of a reboot cycle for the 
sole purpose of adding system RAM is simply too expen-
sive. Although a large setting of memory cap can mitigate 
the limitation of ballooning, it can never eliminate the 
constraint of memory cap. Consider the following scenar-
io: when a VM’s memory requirement has exceeded the 
maximum memory capacity of its host machine, the VM 
should be migrated to another host with larger memory 
capacity. However, as the VM’s memory cap cannot ex-
ceed the memory capacity of its original physical host, 
ballooning cannot add more memory to the VM even if 
there are large amounts of spare memory in the new host. 
That means ballooning is constrained to the memory cap 
that originates from the VM’s creation and persists in the 
VM’s whole lifecycle. Another non-trivial shortcoming of 
ballooning is that it tends to reclaim memory that is free 
in a guest OS and thus fragments the memory map of the 
guest OS. Moreover, as it is hard to estimate the size of 
applications’ working set, ballooning may cause VM per-
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formance degradation and even crash the guest OS if it 
tries to steal too much memory from the guest. 

Due to the limitations of ballooning, memory hotplug 
was proposed to expand VMs’ memory capacity on the 
fly [3][4]. Memory hotplug was originally developed to 
add or replace RAM for a physical machine. In virtualiza-
tion environments, hotplugging can dynamically expand 
a VM’s physical address space beyond the memory cap 
specified at boot, and thus can arbitrarily increase a VM’s 
memory allocation without rebooting the VM. Further-
more, memory space added or removed by hotplugging 
is contiguous and large so that they do not cause external 
memory fragmentation. Due to these advantages, hot-
plugging is complementary to ballooning.  However, the 
existing work [29] only discussed hotplugging with bal-
looning qualitatively and the discussion are at high level 
and abstract. There has been little attention paid to a 
quantitative and comparative study on these two tech-
niques. Without these understandings, the system admin-
istrators may make wrong decisions on the alternatives. 
In this paper, we conduct a comprehensive comparison of 
hotplug and ballooning in terms of implementation de-
tails, performance overhead, memory fragmentation level, 
performance speedup of applications.  

As current memory hotplugging for VMs only support 
coarse-grained memory addition (section-level) [3], we 
first design and implement memory addition/removal in 
both section and page levels. To make the comparison of 
hotplug and ballooning more clearly, we then develop a 
dynamic memory management runtime named U-tube in 
virtualization environments. U-tube provides a frame-
work that can freely adopt hotplug or ballooning for dy-
namic memory allocation. We demonstrate the effective-
ness of U-tube for dynamic memory allocation in two 
case studies: dynamic memory balancing and memory 
overcommitment. We implement U-tube in Xen and 
compare memory hotplug and ballooning in various sys-
tem aspects.  We find that memory hotplug is more com-
plicated to implement than ballooning, and usually caus-
es higher performance overhead in section-level memory 
control than ballooning. However, memory hotplug 
shows better performance in page-level memory control 
and less memory fragmentation than ballooning. Moreo-
ver, unlike ballooning, memory hotplug is not con-
strained to VM’s memory cap, and thus offer better per-
formance improvement to applications than ballooning. 

The major contributions of this paper are summarized 
as follows: 

(1) We make a quantitative and comparative study of 
memory hotplug and ballooning by comparing their im-
plementation details, performance overheads, memory 
fragmentation levels, performance speedup of applica-
tions. This study can benefit system administrators to 
better understand their strengths and weaknesses.  

(2) We implement a runtime system called U-tube in 
Xen. We show that U-tube is able to significantly improve 
the performance of VMs that suffer from insufficient 
memory allocation by leveraging dynamic memory bal-
ancing strategies. Furthermore, exploitation of memory 
overcommitment improves the memory utilization and 

expands a physical server’s capacity modestly without 
compromising applications performance. 

Organization: the remainder of this paper is organized 
as follows. Section 2 briefly introduces ballooning and 
memory hotplug. Section 3 describes the design and im-
plementation of U-tube and its two typical applications. 
Section 4 presents the evaluation methodologies and ex-
perimental results. Section 5 describes the related work. 
Finally, we conclude in Section 6. 

2 BACKGROUND  

In this section, we briefly introduce ballooning and Linux 
memory hotplug. 

2.1 Ballooning 

Ballooning mechanism has been used to manage memory 
by many hypervisors such as Xen [7] and VMware [32]. 
Ballooning relies on a special driver that resides in each 
guest OS and cooperates with the hypervisor to adjust a 
VM’s memory size dynamically. The basic function of 
ballooning is to pass memory back and forth between the 
hypervisor and a guest OS. When the balloon inflates, the 
driver applies for memory from the guest OS and gives it 
to hypervisor. When the balloon deflates, the driver re-
trieves the loaned memory from the hypervisor and re-
turns it to guest OS. Thus the VMM creates an illusion 
that there is more memory resource than the actually 
available memory. This feature is also known as memory 
overcommitment [22].  

2.2 Memory Hotplug 

Memory hotplug was first studied in Linux kernel devel-
opment community [15] [28] [29]. The motivation of this 
technique is to expand system RAM capacity on demand 
without causing system downtime. To support this fea-
ture, the kernel needs to use SPARSEMEM memory mod-
el, which is an abstract of discontinuous memory map-
ping. SPARSEMEM logically divides physical memory 
into chunks of the same size. The chunk is called a section 
and its size is architecture-dependent. For example, x86-
64 uses 128MB while PowerPC uses 16MB. The memory 
unit of adding/removing operation is one section. 

The operation of memory hotplug can be divided into 
physical and logical phases. Physical memory hotplug is 
responsible for communicating the hardware/firmware 
and preparing the environment for hotplugged physical 
memory. The firmware such as ACPI supports notifica-
tion of connecting new memory to OS. Logical memory 
hotplug phase is responsible for changing memory state 
into available or unavailable for users. The amount of 
memory from a user's view is changed in this phase, 
which is also called online/offline operations.  

We call adding/removing memory sections hot-
add/hot-remove for short. Memory hot-add works when 
a physical DIMM is plugged. The firmware ACPI notifies 
the OS that a new range of memory address is available. 
The OS kernel initializes all memory in the DIMM as free 
pages and extends the mem_map data structure with one 
page table entry for each physical page. Finally the kernel 
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adds the new memory into the allocator and makes it 
available for users. Memory hot-remove makes memory 
sections unavailable for users. Page migration [9] tech-
nique should be leveraged to move the used pages in the 
specified section to other sections, and then pages in the 
target section can be removed from the allocator. Page 
migration causes a small performance penalty to memory 
hot-remove. However, the sections removed are large and 
contiguous so they don’t cause external memory frag-
mentation.  

To support memory hotplug in Xen platform, Daniel 
Kiper provided a patch [3] which had been incorporated 
into Linux kernel. However, Daniel’s approach only sup-
ports memory addition in coarse-grained sections, but 
cannot support memory removal. He aslo mentions that 
memory hot removal is quite complicated and cumber-
some to implement. In the existing approach, the function 
of memory removal is achieved by ballooning. However, 
this approach may cause significant performance penalty, 
especially for reclaiming a large amount of memory in a 
heavily fragmented VM, as shown in our experiments. 
This paper improves the current hotplug implementation 
in various aspects. The major ones include 1) a real im-
plementation of memory removal based on page migra-
tion; 2) fine-graind (page-level) memory addi-
tion/removal to support on-demand and lightweight 
memory allocation.  

3 SYSTEM AND IMPLEMENTATION 

For a quantitative and comparative study between bal-
looning and hotplug, we need a common platform to al-
low the integration of both techniques. That motivates us 
to develop U-tube, a dynamic memory management 
runtime on top of Xen. Since U-tube is developed on top 
of Xen, ballooning is naturally supported. We particularly 
focus on the details of memory hotplug implementation 
and dynamic memory allocation algorithms. 

3.1 System Overview 

Fig. 1 shows the system architecture of our U-tube proto-
type. It is composed of three main components: memory 
information monitor and memory hotplug driver that are 
deployed in each guest VM, and a dynamic memory allo-
cator residing in the privilege domain (domain 0) for 
global decision making. The memory hotplug module is 
implemented as a loadable device driver in each guest OS. 

It coordinates the memory management unit (MMU) of 
guest OSes with underlying hypervisor to dynamically 
adjust VMs’ memory allocations. U-tube provides a 
framework that can freely adopt hotplug or ballooning 
for dynamic memory allocation.  

 In each guest VM (domain U), there is a pseudo-
device driver called hotmem deployed in kernel space. 
Hotmem driver coordinates with the hypervisor to allocate 
or reclaim physical memory to/from each guest OS. Hot-
mem driver extends or shrinks a VM’s physical address 
space in coarse-grained sections through guest OS’s 
memory hotplug interface, and then allocates/reclaims 
memory in fine-grained pages to/from the guest OS by 
invoking hypercalls exposed by hypervisor’s memory 
management routines. We note that the hotmem driver can 
be replaced by a balloon driver if ballooning mechanism 
is used in U-tube framework. Each guest OS periodically 
collects the memory information statistics and sends it to 
domain 0 through Xenbus, which provides an interface for 
pseudo-devices including front-end and back-end drivers 
to communicate between domains.  

In domain 0, the memory statistics are stored in a di-
rectory-like structure Xenstore and referenced by their 
domain ID. A global memory allocator periodically re-
trieves the memory information of each VM from the 
Xenstore, and resizes each VM’s memory allocation based 
on two policies: dynamic memory balancing and memory 
overcommitment. If the global memory allocator finds 
some VMs’ memory is under-allocated (as described in 
Section 3.3), U-tube uses the dynamic memory balancing 
algorithm to re-allocate memory for each VMs and bal-
ances their memory pressure (as described in Subsection 
3.4.1). If the global memory utilization of the physical 
host exceeds a threshold (90% in our paper), then some 
VMs need to move to other hosts to release the memory 
pressure; otherwise, we continuously place more VMs on 
the host by using memory overcommit mechanism (as 
described in Subsection 3.4.2) until the whole memory 
utilization approaches to the threshold. In this way, U-
tube achieves high memory utilization of host machines 
while does not compromise the applications performance. 

3.2 Memory Hotplug 
A memory page has several possible states in U-tube, as 
shown in Fig. 2. The online pages are usable memory and 
the others are unavailable for guest OSes. Offline pages 
are generated when hotmem driver dynamically adds 
memory sections to a VM but only a part of them are set 
as online, and others are set as offline. For example, if a 
VM needs to add 200MB RAM and one section is 128MB, 
then two sections should be added but 56MB RAM is set 
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as offline pages. Offline section and reserved pages are 
generated by removing memory from a VM in sections 
and pages respectively. In order to bring some unavaila-
ble memory back online, the priority from high to low is 
reserved pages, offline pages and offline section. Re-
served pages are the first to be online because they frag-
ment the available memory space. Offline pages become 
online from low memory address to high in the second 
order. At last, an offline section will be online only when 
the required memory space exceeds a whole section.  

The following describes the details of memory hotplug 
implementation. U-tube uses an inter-domain communi-
cation mechanism to transfer the updates of a guest OS’s 
memory information. This mechanism relies on the 
Xenbus/Xenstore functionalities. Xenbus provides a bus 
abstraction for virtual device drivers to communicate be-
tween domains. Xenstore is a filesystem-like database that 
is accessible for all domains. In general, management 
tools configure and control pseudo-devices by writing 
values into keys in Xenstore that trigger events in drivers. 
As to hotmem driver, the target memory size of the guest 
OS is stored in a key memory/target and hotmem driver 
registers a Xenbus watch hotmem_watch on it. When the 
value of the key changes, the watch immediately re-
sponds by executing the function hotmem_set_new_target() 
to adapt to the requested size. At this time, a worker 
thread hotmem_process() is created, and we need to check 
whether the new target is a reasonable value. If so, we set 
the target value in a global structure (protected by a 
mutex), and signal our hotmem worker to perform 
add/remove memory operations.  

3.2.1 Add Memory  
When we need to extend a VM’s memory capacity, hot-
mem driver hot-adds new memory to the VM through the 
memory hotplug interface provided by guest kernel. It 
will allocate new page structures for the added memory. 
Hotmem driver gets memory from the hypervisor and en-
ables the pages online incrementally. The following de-
scribes two phases of memory addition for VMs. 

1) Expand memory space in coarse-grained sections: If 
the target size exceeds current memory capacity of the 
VM, the memory address space is not enough for exten-
sion. Hotmem driver extends memory address in sections 
using the interfaces provided by guest OS kernel. First, 
hotmem driver requests new memory address resource 
from guest kernel. The requests must be in sections. Sec-
ond, memory mapping is initialized for the new address 
space and the necessary date structures such as mem_map 
are set up. Finally, mapping tables from physical frames 
to machine frames (p2m) for the new addresses are con-
structed. At this time, the new memory address space is 
ready but needs to wait for real memory allocation from 
the hypervisor. 

2) Allocate memory in fine-grained pages: The former 
only support memory space expansion. At this time, the 
memory address space is sufficient but the physical 
frames aren’t available. Hotmem driver invokes a hyper-
call (an interface provided by VMM for guest OSes) to 
claim real memory from the hypervisor and map the 
memory to the new addresses. If the hypervisor does not 

have enough memory, it should shrink some VMs to 
squeeze the requested capacity. After that, these memory 
addresses are added to the guest OS’s memory allocator 
so as to make them available for applications. The 
memory is online only when the memory can be used by 
guest memory allocator, otherwise they are offline. In 
some cases, to increase a VM’s memory capacity, hotmem 
driver only needs to set some reserved pages or offline 
pages to online state if these pages are sufficient to satisfy 
the requirement. The priority of changing the state of of-
fline memory is first reserved pages and then offline pag-
es, as described above. 

As memory hot-add in sections needs to prepare run-
ning environments for the new added memory, it would 
suffer more performance penalty than ballooning mecha-
nism, which does not support capacity expansion beyond 
the memory cap. However, the memory added in sections 
is large and contiguous so they don’t cause external 
fragmentation. Daniel’s patch [3] only supports memory 
add in sections, the granularity is coarse in the sense that 
the memory added may exceed the requirement. In con-
trast, our implementation supports fine-grained memory 
extension that satisfies on-demand memory allocation. In 
practice, memory hot-add in sections is only needed 
when the memory requirement exceeds the VM’s capacity 
and the available offline memory cannot satisfy it, other-
wise, we only need to online the offline memory.  

3.2.2 Reclaim Memory 
When we need to reclaim memory from a VM for other 
uses, hotmem driver shrinks the VM’s capacity and return 
memory to the hypervisor. The following describes two 
granularities of memory removal for VMs. 

1) Reclaim memory in coarse-grained sections: If the 
memory to be removed is larger than the section size, 
hotmem driver needs to remove multiple memory sections. 
First, it traverses memory sections to find the removable 
sections. If a section contains some used pages that cannot 
be migrated (e.g. pages for kernel code and reserved pag-
es), the memory section cannot be removed. Second, if a 
section is removable, all the pages in this section should 
be freed by migrating all allocated pages to other sections 
and removing free pages from the allocator. Once a 
memory section is completely empty, all references to it 
will be removed. At this time, the memory section can be 
safely removed because it is no longer referenced by the 
kernel MMU. At last, the hotmem driver returns the re-
claimed memory to hypervisor.  

Note that not all pages are migratable. Migratable 
pages are anonymous pages and page caches in current 
Linux. If any of non-migratable memory is located in the 
target section for removal, the whole section cannot be 
removed. This poses a significant challenge for memory 
removal. Luckily, Linux memory allocator uses a flag 
called _GFP_MOVABLE to indicate whether a page is 
migatable or not at allocation time. Correspondingly, 
Linux MMU also provides a memory zone called 
ZONE_MOVABLE to partition memory between migrat-
able and non-migatable pages. ZONE_MOVABLE is only 
usable by allocations that specify both _GFP_HIGHMEM 
and _GFP_MOVABLE flags. This keeps all non-migatable 



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

AUTHOR ET AL.:  TITLE 5 

 

pages within a single memory partition while allowing 
migatable allocations to be satisfied by either partition. As 
all pages within ZONE_MOVABLE can be released by 
migrating or reclaiming, we always find a removable sec-
tion from ZONE_MOVABLE and migrate pages within 
this zone. This avoids non-migatable pages and facilitates 
the page migration. 

2) Reclaim memory in fine-grained pages: One ap-
proach to reclaiming memory in pages is similar to the 
ballooning driver. We can reclaim memory from the guest 
OS kernel in pages and sets these pages as reserved pages, 
which is no longer available to the guest OS. After that, it 
returns the memory to hypervisor by invoking a hyper-
call. However, reserved pages may fragment the VM’s 
memory address space. Another approach that can avoid 
memory fragmentation is to reclaim offline pages from 
the available highest address to low address in a descend-
ing order. These offline pages can be returned to the hy-
pervisor. This method causes less memory fragments 
than quasi-ballooning mechanism, which is used only 
when there are no offline pages available in the VM.  

Note that memory hotplug in Linux does not support a 
real page-granularity memory removing because hot-
plugable physical memory scales in sections. However, 
fine-grained page removing can be achieved in virtualiza-
tion environments because the memory resource is virtu-
alized and can be partitioned to arbitrary sizes. Reclaim-
ing memory in page granularity allows memory man-
agement routines to flexibly change a VM’s memory ca-
pacity when the amount of memory to be reclaimed is 
less than one section. We also note that current imple-
mentation of memory hotplug in Xen does not support 
hot-unplugging. Memory removal is achieved by balloon-
ing due to its simplicity. However, ballooning would 
fragment VMs’ memory space. Moreover, it may cause 
significant performance penalty in memory removal, es-
pecially for reclaiming a large amount of memory in a 
heavily fragmented VM (see more in Section 4.2). 

3.3 Memory Under-allocation Detection 

In a VM running dynamic workload, its memory re-
quirement is often changing all the time. How much 
memory does each VM really need? Accurate detection of 
memory under-allocation determines the benefit of 
memory re-allocation. Monitoring the memory usage is a 
well-used solution. However, modern OSes such as Linux 
are greedy to use up all its available free memory as page 
cache, which can probably speed up the access of data 
from disk. Thus the memory utilization of a VM cannot 
completely reflect its real memory requirement. High 
memory utilization doesn’t imply that the VM needs 
more memory because the memory used for page cache 
can be reclaimed or reused. Similarly, low memory utili-
zation cannot reflect how much memory can be reclaimed 
without potential performance loss. Another approach to 
memory under-allocation detection is to monitor the pag-
ing I/O rates or major page fault rates1 [23]. However, 

 

1 A major page fault occurs when a page is not loaded in memory at the 
time the fault is generated. It adds disk latency to the interrupted pro-
gram’s execution thus is more expensive than a minor page fault. 

this technology may not accurately reveal the relationship 
between page fault rate and the memory requirement. 
Thus when a VM’s memory is under-allocated, the page 
fault rate cannot accurately predict how much additional 
memory is required. On the other side, when a VM’s 
memory is over-allocated, it is unable to hint how much 
free memory can be reclaimed for other VMs. Previous 
work has demonstrated the effectiveness of using page 
protection techniques to track page accesses at finer gran-
ularity. However, this approach without assistance of 
dedicated hardware usually results in an unacceptably 
high overhead [5] [39]. 

We combine memory utilization and paging I/O rates 
monitoring together to detect memory under-allocated 
VMs. We obtain memory usage information of each VM 
from guest OS kernel. For Linux OS, the proc file system 
provides detailed memory statistics that can be used for 
further analysis. The memory utilization can be inferred 
from /proc/meminfo and the number of major page faults 
can be obtained from /proc/vmstat. Memory utilization of a 
VM is calculated by the ratio of memory usage to total 
memory allocation. Note that the guest memory usage is 
defined as the total amount of memory actively used by 
guest OS and applications, including buffer or page cache 
memory that is in active use [8]. Previous study had 
demonstrated that applications performance may signifi-
cantly degrade when memory utilization exceeds 90% 
[17]. Guided by this observation, we can experientially 
deem that the reasonable upper bound of memory utiliza-
tion for good application performance is 90%. If such case 
occurs and the observed number of major page faults is 
continuously increasing, we should immediately increase 
the VM’s memory allocation. However, the amount of 
memory requirement should be estimated by the changes 
of VM’s working set size. We will describe the detailed 
estimation in the following Subsection.  

3.4 Memory Allocation Algorithms 
In the following, we introduce two key applications of 
hotpluging or ballooning for dynamic memory manage-
ment. 

3.4.1 Dynamic Memory Balancing 
Dynamic memory allocation among VMs is essential to 
improve memory management in a virtualized environ-
ment. In order to satisfy the memory requirement on-
demand, we design dynamic memory balancing algo-
rithm and implement it as a daemon process in domain 0. 
The algorithm uses a global coordinator to automatically 
balance memory load among all VMs.  

We install a memory monitor in each VM. In each time 
window, the memory demand is written in Xenstore pe-
riodically. With the help of Xenbus callback function, it 
will immediately trigger a memory re-balancing by the 
global coordinator. Unlike the post-adjustment mecha-
nisms such as feedback control [17], dynamic memory 
balancing can pre-allocate memory to a VM that has po-
tential memory requirements before its memory becomes 
under-allocated, and thus can avoid applications perfor-
mance degradation and improve memory utilization of 
all VMs on a physical host. 
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In U-tube, domain 0 is usually configured with a fixed 
amount of memory because this privilege domain should 
reserve sufficient memory to handle all VMs’ I/O opera-
tions. The memory requirement of each VM can be par-
tially determined by the changes of memory usage, based 
on the assumption that if the used memory increases in 
current time window, the VM is more likely to use more 
memory in the next time window. We denote 𝑀 

 (𝑡) the 
memory size the VM i actually used at the time t, and 
∆𝑀 

 (𝑡) the change of used memory measured in the time 
window t, and ∆𝑆 (𝑡) the change of swap space in the 
time window t. The global memory allocator can calculate 
the change of memory usage of each guest VM i by the 
following equations: 

( ) ( ) ( 1)U U U

i i iM t M t M t    ,  (1) 

( ) ( ) ( 1)i i iS t S t S t    .   (2) 

We consider the increment of swap as memory re-
quirement because swap is used for paging only when 
usable memory is very scarce. We predict the memory 
requirement of VM i in the next time window: 

( 1) ( ) ( ( ) ( ))P U U

i i i iM t M t M t S t     , (3) 

where 𝜆 represents the coefficient of memory increment. 
If ∆𝑀 

 (𝑡) + ∆𝑆 (𝑡) > 0, the value of 𝜆 should be set larger 
than 1. A relatively large λ can reduce the frequency of 
memory allocation but may lead to a waste of memory, 
especially when the memory utilization of a whole host is 
very high. We thus determine the value of 𝜆 by equation 
𝜆 = 1.2 𝑈(𝑡)⁄ , where 𝑈(𝑡) denotes the global memory uti-
lization at time t. If ∆𝑀 

 (𝑡) + ∆𝑆 (𝑡) < 0, the VM would 
keep the reclaimable memory until the memory balancing 
algorithm is triggered by some under-allocated VMs. This 
avoids unnecessary memory re-allocation among all VMs. 

When the memory resource of a VM is under-allocated, 
U-tube resizes its memory and balances the memory 
pressure among all the VMs based on proportional 
memory allocation. Summing up each VM’s memory re-
quirement, the expected global memory utilization in a 
physical host becomes: 

1 1

( 1) ( 1) ( )
n n

P

i i

i i

U t M t M t
 

    ,  (4) 

where Mi (t) represents the total memory a VM owns, in-
cluding the used portion and free portion at time t. Eq. (3) 
only considers the memory requirement locally. While 
considering the other VMs’ demands, a fair memory allo-
cation scheme that balances all VM’s memory pressure 
can be represented as follows: 

( 1) ( 1)  ( 1)T P

i iM t M t U t    ,  (5) 

where 𝑀 
 (𝑡 + 1) represents the target memory size that 

the allocator should assign to the VM i. The target 
memory size should be never below the value of a kernel 
parameter Committed_AS, an estimate of memory size 
guarantees that “out of memory” exception never occurs 
for the workloads. 

Though memory adjustment can be done with mar-
ginal overhead, as shown in the performance evaluation 
section, we should avoid unnecessary memory allocation 
that doesn’t benefit to a VM’s execution. We set a thresh-
old δ to determine whether a memory adjustment should 
be performed: 

| ( 1) ( ) ( ) ( ) |T U

i i i iM t M t M t M t    . (6) 

That means memory adjustment occurs only when the 
expected increment of memory utilization is larger than 
the threshold δ, which is empirically set to 3% in U-tube. 

3.4.2 Memory Overcommit 
In a virtualized environment, server consolidation aims at 
maximizing resources utilization by placing several VMs 
on the same host. It is widely used in today’s data centers 
to improve memory utilization, and to save total cost of 
ownership. U-tube provides a mechanism to maximize 
servers’ capacity through memory overcommit. When the 
hypervisor does not have enough free memory to create a 
new VM, U-tube can reasonably shrink some VMs to 
squeeze the required capacity. Note that if the observed 
memory utilization of a VM exceeds 90%, U-tube would 
never take a risk to reclaim memory from this VM be-
cause of the potential performance degradation. Let MF(t) 
be the available free memory the hypervisor can provide, 
let MR be the memory requirement of the new VM. Under 
the assumption that the new VM can be successfully cre-
ated, we calculate the average memory utilization of ex-
isting resizable VMs by: 

1 1

( 1) ( ( )) ( ( ) ( ))
n n

R U F

i i

i i

U t M M t M t M t
 

     .  (7) 

If ( 1)U t  does not exceed 90%, then the new VM can 
be successfully created. At this time, U-tube adjusts the 
memory allocation of each VM that can be squeezed us-
ing balanced allocation as described in Eq. (5). 

3.5 Implementation 
The implementation of U-tube is based on Xen 4.2, with a 
guest Linux kernel 3.2. There are approximate 2300 lines 
of code in U-tube implementation. The implementation of 
memory hotplug driver mainly includes two parts: 950 
lines for a loadable pseudo-device driver in guest OS’s 
kernel, which includes functions implementation of 
memory allocation/reclaim in sections and pages. The 
other 250 lines contribute to the modification of the 
memory management routines of Xen hypervisor. This 
part includes the hypercalls of initializing new memory 
resource to a VM. The implementation of memory alloca-
tion policies and memory allocator is about 1100 lines 
within a daemon process running in domain 0. 600 lines 
contribute to the implementation of memory balancing 
algorithm and memory overcommitment algorithm. The 
remaining 500 lines are used for memory information 
monitoring and inter-domain communication. 

4 EVALUATIONS 

In this section, we present the evaluation of U-tube with 
several benchmarks. We begin by introducing our exper-
imental setup, and then compare memory hotplug with 
ballooning in terms of performance overhead, memory 
fragmentation level, performance speedup of applications.   

4.1 Experimental Setup 

We conducted all experiments on Dell PowerEdge1950 
servers with two Intel quad-core Xeon E5450 3GHz pro-
cessors, 12 GB RAM, one 250GB SATA hard disk, and 
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1Gbit Ethernet interface. The host machine ran RHEL 5 
distribution (x86-64) and the hypervisor was Xen 4.2 with 
Linux kernel 3.2. The privilege domain was configured to 
use one dedicated core. The guest OSes also ran RHEL 5 
with Linux kernel 3.2. We evaluate U-tube using the fol-
lowing benchmarks: 

TPC-C: it is an on-line transaction processing (OLTP) 
benchmark [1]. We used a public benchmark DBT-2 to 
simulate a complete computing environment where a 
number of users execute transactions against a database. 
The simulator and MYSQL database server all ran in a 
single VM. We configured 1000 terminal threads and 500 
database connections and ran the benchmark for 40 
minutes. The workload shows moderate memory de-
mand. 

SPEC CINT2006: it consists of a suite of applications 
for measuring compute-intensive integer performance [2]. 
The memory load varies dynamically when workload 
changes from one application to the other.  

DaCapo: it is a Java benchmark suite, which includes a 
set of real world applications with non-trivial memory 
loads [6]. We used JDK 1.6 as the applications execution 
environment.  

4.2 Performance Overhead  

To compare the performance overhead of memory hot-
plug with ballooning mechanism, we conducted experi-
ments to measure memory addition/removal perfor-
mances for both approaches. 

At first, we conducted an experiment to measure the 
performance of coarse-grained memory addition in sec-
tion. The VM to be resized was an idle Linux without any 
applications running on it. This assures there is no CPU 
resource contention that interferes with the hotmem driver 
and balloon driver. The VM was initialized with 512MB 
RAM and its max_memory capacity is set to 2GB. We in-
creased the VM’s memory in a 128MB step-size and the 
hypervisor always have sufficient free memory to satisfy 
the requirement of hotplug and balloon drivers. Fig. 3 
shows that the time cost of memory addition operations is 
linearly proportional to the amount of memory for both 
approaches. The hotmem driver costs 60ms per section 
while ballooning costs 55ms per 128MB. Hotplug costs 9.1% 
more time than ballooning because it needs to extend the 
VM’s memory address space first and then to initialize 
this portion of memory. Ballooning avoids such actions 
because they are done during the VM booting. However, 
the amount of memory added by ballooning cannot ex-
ceed the VM’s memory cap. When we tried to expand the 
VM capacity up to 2GB (1.5GB memory is added to the 
VM), the balloon driver caused a non-response failure 
while hotmem driver worked well. This experiment 
demonstrates that memory hotplug shows higher ap-
plicability than ballooning. 

To compare with the coarse-grained memory addition, 
we also evaluated the performance of fine-grained 
memory addition in pages. Assume there is sufficient 
offline memory for fine-grained control. As shown in Fig. 
4, page-granularity hotplugging shows the least execution 
time as it only needs to change the state of offline 

memory. For ballooning, it needs to apply for memory 
from the underling hypervisor, reconstruct the P2M table, 
and thus pose much higher performance overhead. For 
comparison, we also measure the section-granularity hot-
plugging. We deliberately added memory sections to a 
VM and then only set a portion of them as online. For 
example, when we intended to increase 32 MB and 160 
MB RAM to the VM, we should add one and two sections, 
respectively. However, due to the highest performance 
overhead, it is only used when the VM does not have 
enough address space for memory extension.  

Second, we measured the performance of memory re-
moval in two VMs. One was an idle Linux whose 
memory image consists of a large quantity of free 
memory. The other one was running OLTP application 
TPC-C for a long time, and thus its memory were mostly 
used as page cache and seriously fragmented. Both VMs 
were initially booted with 2GB RAM. We decreased its 
memory in a 128MB step-size. Fig. 5 shows the experi-
mental results. When we remove memory from the idle 
VM, hotplug driver costs 46ms per section while balloon-
ing costs 56ms per 128MB. Hotplugging shows 21.7% bet-
ter performance than ballooning. In contrast, when hot-
plug and balloon driver remove memory from the heavi-
ly-loaded VM running TPC-C benchmark, the time cost of 
memory removal significantly increases compared to that 
in the idle Linux. The performance overhead of hotplug 
mainly comes from page migration and paging a portion 
of memory to disk when the VM has not enough free 
memory for removal. The overhead of ballooning de-

0 256 512 768 1024 1280 1536 1792 2048
0

100

200

300

400

500

600

700

800

900

1000
 

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Amount of memory added (MB)

hotplug

balloon

Balloon fails to add more

than 1.5 GB RAM.

 

Fig. 3. The mean execution time of memory addition is linear with 
the amount of memory added by both hotplug and balloon driver. 
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Fig. 4. The mean execution time of memory addition varies with the 
amount of memory added by section- and page-granularity hotplug. 
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pends on the guest OS’s memory allocation algorithm 
and the layout of memory footprint. When a large 
amount of memory is removed from the VM, to squeeze a 
large and continuous region of memory, ballooning 
would trigger the guest kernel MMU to reclaim memory 
and swap pages to disk. Because hotplugging performs 
page migration in memory, and thus it is much faster 
than ballooning which should swap pages to disk. 
Memory hotplug reduces 30.4% response time compared 
to ballooning, especially when they remove a large region 
of memory, as shown in Fig. 5.  

To compare with the coarse-grained memory removal, 
we also evaluated the performance of page-granularity 
memory removal in an idle VM. Assume there is suffi-
cient offline memory for fine-grained control. As shown 
in Fig. 6, page-granularity hotplugging is much faster 
than ballooning as it only needs to return the offline 
memory to the hypervisor. However, if we deliberately 
removed memory in sections, oblivious to the available 
offline memory, the overhead of section-granularity hot-
plugging is usually higher than ballooning. The reason is 
that the overhead of hotplugging is linear to the number 
of sections removed, while the overhead of ballooning is 
linear to the amount of memory removed.  

4.3 Memory Fragmentation 

We also conducted an experiment to evaluate the impact 
of ballooning and hotplugging on memory fragmentation, 
which affect the size of large object that can be allocated. 

We measured the memory fragmentation level of a VM with 
1GB RAM running TPC-C application for 3 times. During 
the second and third runs, we conducted 50 times of 
memory allocation/reclaim using ballooning and hot-
plugging mechanism, respectively. In each operation, we 
first added 128MB RAM to the VM and then reclaimed it 
one minute later. In each test, we measured the memory 
fragmentation level, which is defined in the following 
formula [13]: 

2
n

i

i

i j

TotalFreePages k

Fraglevel
TotalFreePages



 




, 

where 2n is the largest free page block that can be allocat-
ed, i is the order of pages, j is the order of desired alloca-
tion and ki is the number of free page blocks of size 2i.  

We calculate the memory fragmentation level referring 
to different sizes of free memory block. The free page in-
formation is collected from /proc/buddyinfo. The exper-
imental results demonstrate that the fragmentation level 
affected by hotplugging is less than ballooning, especially 
when we refer to large free page blocks, as shown in Fig. 
7. As the ballooning tends to remove memory that is al-
ready free thus usually fragments the pseudo-physical 
memory map of the VM, causing the fragmentation level 
higher than the case of non-intrusive execution of TPC-C. 
In contrast, hotplugging is able to allocate/reclaim con-
tiguous regions of memory and thus it avoids fragmenta-
tion of the memory map. Moreover, removing memory 
with hotplugging often leads to pages migration that is 
able to eliminate memory fragmentation. 

4.4 Improvement of Application Performance and 
VM Density 

We ran benchmarks TPC-C, SPEC CINT2006, DaCapo 
and a suite of mixed workloads to evaluate the perfor-
mance improvement due to dynamic memory allocation, 
and VM density improvement due to memory overcom-
mitment. We observed that most of applications in our 
experiments show relatively small working set. To simply 
simulate memory overload scenarios, if not expressly 
stated in the following, each VM we used to run the ap-
plications was initialized with 512MB RAM and one vir-
tual CPU, and 50% memory capacity extension. That 
means the parameter max_memory is configured as 768MB. 
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Fig. 7. The memory fragmentation level affected by hotplugging and 
ballooning. 
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Fig. 5. The mean execution time of memory removal varies with the 
amount of memory removed by hotplug and balloon driver in both 
light-loaded and heavily-loaded VMs. 

32 64 96 128 160 192
0

20

40

60

80

100

120

140
 

 

 

 
E

x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Amount of memory removed (MB)

 page granularity (hotplug)

 section granularity (hotplug)

 ballooning

 

Fig. 6. The mean execution time of memory removal varies with the 
amount of memory removed by section- and page-granularity hot-
plug in a light-loaded VM. 
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We set a 5-second time window to collect the memory 
usage information of each VM and balance VMs’ memory 
pressure by making a tradeoff between runtime overhead 
and the sensitivity of memory adjustment.  

We conducted each experiment on four hosts with 12 
GB RAM. We allocated 0.5 GB RAM to domain 0 thus 
each host has 11.5 GB spare memory to accommodate 
VMs. We created 23 VMs with initial 0.5GB RAM on the 
target host that we evaluated, and some VMs were creat-
ed on other two host for increasing the target host’s load 
if its memory was under-allocated. Another resourceful 
host was provisioned for receiving VMs migrated from 
the target host if its memory was over-allocated. When 
the VMs were ready, we started the workload in all VMs 
concurrently, and monitored the target host’s memory 
load to determine VM migrations. To simulate the scenar-
io of memory overcommitment, we continuously placed 
VMs to the target host one by one until it had no space to 
accommodate more VMs. That reveals the memory utili-
zation of all VMs on the target host reach to 90% and the 
hypervisor does not have spare memory. Meanwhile, if 
the total memory utilization of target host exceeds 90% as 
the load increases, U-tube moved some VMs to the re-
served host to guarantee the application performance. We 
measured the application performance improvement and 

VM density using both hotplug-based and balloon-based 
dynamic memory allocation approaches using the same 
policy (as described in Subsection 3.4 and 3.5). 

Fig. 8 shows that the response time of one type of 
TPC-C transactions (new order) varies at different phases 
of execution using static, hotplug-based and ballooning-
based dynamic memory allocations. Fig. 9 shows the cor-
responding major page faults, which is an important per-
formance metric to evaluate how well the memory re-
quirement is satisfied. When the benchmark began, the 
VM exhibited almost linear increase of memory require-
ment for the upcoming transactions. We found that the 
response time increases significantly when the memory 
utilization went beyond 90%. Once the VM experiences 
significant memory pressure, it needs to reclaim memory 
for new transactions by paging some used memory to 
disk. This results in significant increase of major page 
fault, as shown in Fig. 9. Compared to the static memory 
allocation, Hotplug and balloon reduce the major page 
faults by 89% and 20%, respectively. For static memory 
allocation, the response time of TPC-C transactions and 
the VM’s major page faults significantly increased at 642 
seconds when the 512MB memory is used up. For bal-
looning-based dynamic memory allocation, the bursty 
increase of response time and major page fault occurred 
at 986 seconds when the memory requirement exceeded 
the VM memory cap. In contrast, in U-tube, memory un-
der-allocation never occur because hotplug is not con-
strained to the VM’s memory cap. The VMs’ memory uti-
lization is relatively high but is below the threshold for 
memory extension. Otherwise, some VMs would be mi-
grated to other host to release the memory pressure. 

Table 1 shows the statistics of TPC-C performance and 
VM density in a fully-utilized host using different 
memory allocation strategies. Compared to the balloon-
based dynamic allocation, hotplug is able to reduce the 
total mean response time by 92% and increase the 
throughput by 93%. Especially, both hotplug-based and 
balloon-based memory overcommitment can expand the 
host capacity by 35% when the VMs’ memory is over-
allocated at the beginning. Then the VM density is con-
tinuously decreasing with the increase of memory re-
quired by the VM workloads, and finally the minimum 
VM density of hotplug is less than balloon because much 
more memory is allocated to each VM. This reveals that 
hotplug shows more applicability in memory extension 
than balloon. 

For SPEC CINT2006 and DaCapo, we also observed 
that memory hotplug always perform better than balloon-

TABLE 1 
TPC-C PERFORMANCE AND VM DENSITY 

Mean Resp. Time(secs) Throughput 

(trans/min)
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Fig. 8. The mean response time of TPC-C transactions varies with 

memory utilization using static and hotplug-based, balloon-based 

dynamic memory allocation. 

0 400 800 1200 1600 2000 2400 2800
0

100k

200k

300k

400k

500k

600k

N
u

m
b

e
r 

o
f 

m
a

jo
r 

p
a

g
e

 f
a

u
lt
s

memory under-allocated

 

 

 

Elapsed time(secs)

 static

 dynamic (hotplug)

 dynamic (balloon)

 

Fig. 9. The number of major page faults generated when TPC-C is 

running with static and hotplug-based, balloon-based dynamic 

memory allocation.  
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ing and static memory allocation policies. Here, we only 
show the normalized performance and major page faults 
of typical applications in Fig. 10 and Fig.11, respectively. 
For the selected applications, bzip2, gcc (both in SPEC 
CINT2006 suite) and h2 (DaCapo) are memory-intensive, 
and hmmer (SPEC CINT2006) shows small working set 
and is not sensitive to memory allocation. The perfor-
mance of bzip2, gcc, h2, and hmmer were measured in exe-
cution time, and TPC-C was measured in mean response 
time. For memory-intensive applications such as bzip2, 
hotplugging and ballooning reduce the application execu-
tion time by 18% and 10% compared to static memory 
allocation, respectively. Correspondingly, hotplug and 
ballooning can significantly reduce the number of major 
page faults by 84.1% and 65.5%, respectively. The other 
memory over-allocated applications such as hmmer show 
1~4% increase of execution time due to the cost of 
memory usage monitoring and re-allocation. For DaCapo, 
memory hotplug can reduce the execution time of h2 pro-
gram even by 85%. Correspondingly, the number of ma-
jor page faults can be significantly reduced by up to 99%. 
However, for ballooning, the VM’s memory cap causes a 
large number of major page faults during h2’s execution. 
As too much time was wasted for handling major page 
faults, the performance of h2 significantly degraded by 
using static and balloon-based memory allocation.  

4.5 Summary of Comparison 

Finally, we give a summary of the detailed comparison 

between hotplugging and ballooning, as shown in Table 2. 
A definite advantage of ballooning is that it can directly 
use the native MMU of the guest OS, and thus facilitate 
the ballooning implementation. However, memory ex-
pansion cannot go beyond a guest OS’s memory cap con-
figured at booting time. The memory cap poses a signifi-
cant limitation in VMs capacity extension. Furthermore, 
the ballooning relies on the buddy system of guest MMU, 
and thus fragments the pseudo-physical memory map of 
the guest OS when it inflates. In contrast, memory hot-
plug can add/remove whole sections at a time, avoiding 
memory fragmentation of VMs. The significant advantage 
of hotplug is that it is able to expand a VM’s capacity be-
yond its memory cap in the fly. The better scalability of 
hotplugging always means better application perfor-
mance. However, the overhead of coarse-grained section 
control is usually higher than ballooning.  

4.6 Fairness of Dynamic Memory Balancing  

We compare the policy of dynamic memory balancing 
(Subsection 3.4) with VMware memory management. 
VMware EXS server uses proportional-share algorithm 
combining with idle memory tax mechanism to allocate 
memory to each VM [32]. In the cloud environment, this 
is related to economic fairness [35], which is important for 
the monetary cost and performance of multi-tenant sys-
tems. To present the actions of memory dynamic alloca-
tion more clearly, we only co-locate two VMs on a single 
host. One runs DaCapo and another runs TPC-C. Both 
VMs are configured with 1GB RAM. The other RAM are 
allocated to domain 0 and can not be deprived by the two 
VMs. Such setting implies that the two VMs can share 
2GB RAM at most. In our experiment, we set the tax rate 
as 75% and start reclaiming memory when the percentage 
of free memory drops below 10%.  

Fig. 12 shows the memory utilization of two VMs us-
ing two different policies. For U-tube, as shown in Fig. 12 
(a), the two VM show almost the same memory utiliza-
tion all the time. The policy is similar to the principle of 
U-tube in which liquid can always balance in two col-
umns automatically. For the policy of VMware, the two 
VM shows significant difference of memory utilization. 
When memory utilization of the VM running DaCapo 
reaches 90%, idle memory is reclaimed from the VM run-

TABLE 2 
SUMMARY OF COMPARISON BETWEEN MEMORY HOTPLUG 

AND BALLOONING 

 Memory hotplug Ballooning 

Implementation Complicated Easy 

Dependence 
hotplug driver 
of guest OSes 

MMU of guest 
OSes 

Constraints No Memory cap 

Performance 
overhead 
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control is lower 

Memory frag-
mentation 
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VM performance 
improvement 

Best Moderate 
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Fig. 10. Application performance improved by hotplug-based and 

balloon-based dynamic memory allocation. 
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Fig. 11. The major page faults reduced by hotplug-based and bal-

loon-based dynamic memory allocation. 
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ning TPC-C and reallocated to the under-allocated one. 
This operation is performed many times during the exe-
cution of eclipse and h2, and thus significantly increase the 
application execution time. Unlike the post-adjustment 
mechanisms, U-tube avoid the memory under-allocations 
and improve the application performance. Moreover, U-
tube is also immune to the prediction error of memory 
requirements. 

We evaluate the above two polices in terms of fairness, 
which is defined as the Min-Max Ratio (MMR) of memory 
utilization between the two applications, namely 
Umin/Umax. As shown in Fig.13, the gray line shows the 
fairness of memory allocation using policy of VMware. 
The MMR significantly fluctuates with the variation of 
memory load. In contrast, the results of U-tube are more 
stable and all approximates to one. There are only num-
bers of pulses when the working set of applications sig-
nificantly changes.  In summary, the memory allocation 
policy of VMware achieves 61% fairness on average, 
while U-tube can achieve even up to 90% fairness on av-
erage. 

5 RELATED WORK 

There are many works focusing on memory dynamic 
management in virtualization environments, such as page 
sharing, memory mapped I/O [21] [40], ballooning [7] [14] 
[32], hotplug [27]. One of the most important techniques 
is ballooning. It is widely used by many hypervisors for 
dynamic memory management [7][32].  

There are several works on dynamic memory alloca-
tion using ballooning mechanism [31][38][39]. Memory 

Balancer (MEB) [39] is a system designed for dynamic 
memory management based on ballooning. MEB moni-
tors the memory usage of each virtual machine, predicts 
its memory need using Least Recently Used (LRU) histo-
gram, and periodically adjusts a VM’s memory using bal-
looning mechanism. MEB tracks normal memory accesses 
by revoking user access permission and trapping them 
into VMM as page faults, and constructs a LRU histogram 
to predict memory need of each VM. Although this ap-
proach provides a reasonably accurate prediction, it caus-
es considerable performance penalty due to the costly 
memory access tracking. Xiao, et al. proposed a more effi-
cient approach to memory demand prediction by leverag-
ing an exponentially weighted moving average (EWMA) 
scheme [38]. Bayllocator [31] employed Bayesian net-
works to predict memory requirements, and provided 
proactive dynamic memory allocation based on balloon-
ing. These works primarily focused on memory demand 
prediction. They are orthogonal to the theme of this paper, 
but can be complementary to our work. 

Another important concept of ballooning is memory 
overcommitment. It can significantly increase the number 
of VMs that can be hosted in a single physical server. 
Ginkgo [11] is a memory overcommitment framework 
that leverages ballooning mechanism to dynamically ad-
just memory capacity of each VM in cloud computing 
environment. A feedback control method for dynamic 
memory allocation was proposed in [17], which also em-
ployed ballooning mechanism for VM memory resizing. 
In comparison with the feedback strategy, U-tube uses a 
dynamic memory balancing algorithm to pre-allocate 
memory to a VM that has potential memory requirements, 
and thus avoids application performance degradation.  

Although ballooning can improve VMs’ memory us-
age through dynamic allocation, it may impact the per-
formance of applications which manage their own 
memory, such as databases and Java runtimes. Salomie, et 
al. motivated by this problem and proposed an applica-
tion-level ballooning mechanism for server memory over-
commitment [30].  

The following introduces other dynamic memory 
management techniques that are different from balloon-
ing. Transcendent Memory [24] provides sharable 
memory pools among different VMs to manage the phys-
ical memory. The hypervisor collects idle memory from 
different VMs and manages it as one or more physical 
memory pools. A guest OS can indirectly access this 
memory with a well-defined API which imposes a care-
fully-crafted set of rules and restrictions. From the per-
spective of a guest OS, a memory pool appears to be a fast 
RAM disk with nondeterministic and varying size. A 
guest OS may use a memory pool as an extension to its 
memory, thus reduce disk I/O and improve performance. 
However, the management of memory pools is very 
complicated. SwapBypass [21] is somewhat similar to 
transcendent memory. It is a proof-of-concept symbiotic 
service implemented in Palacios VMM. SwapBypass im-
poses SymCall to re-consider swap decisions made by a 
symbiotic Linux guest, adapting to guest memory pres-
sure. Although a page in the VM may be swapped out 
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Fig. 12. Memory utilization of two co-located VMs running DaCapo 

and TPC-C. Sub-figure (a) and (b) use memory management poli-

cies of U-tube and VMware, respectively. 
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Fig. 13. The fairness of memory allocation achieved by memory 

management policies of U-tube and VMware. 
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when the guest is experiencing high memory pressure, 
SwapBypass can still keep the page in memory and mark 
it available in the shadow page table. In this way, Swap-
Bypass allows a guest to access the swapped pages at 
main memory speeds and use more physical memory 
than it was initially allocated. Overdriver [33] was pro-
posed to expand VM memory capacity through both VM 
live migration and network memory techniques, but in-
troduced much performance overhead in terms of net-
work traffic and latency. These works all impose indirect 
memory accessing mechanisms to expand VMs’ memory 
capacity, and thus introduce an additional latency com-
pared to native memory accessing. In contrast, the 
memory added by hotplugging can be directly accessed 
by guest OSes, and thus does not cause performance deg-
radation.  

This paper mainly focuses on the comparison within a 
single machine. Recently, resource management on multi-
tier applications are emerging in the cloud environment 
[16][20]. It is out of the scope of this paper to revisit dif-
ferent memory management techniques in those envi-
ronments.  

6 CONCLUSION 

In virtualization environments, it remains challenging to 
effectively manage the main memory resource. Dynamic 
memory allocation mechanisms such as ballooning and 
hotplug were proposed to handle the dynamics of 
memory demands. However, so far there is no quantita-
tive comparsion between these two mechanisms. In this 
paper, we first develop a runtime system called U-tube, 
which can adopt hotplug or ballooning for dynamic 
memory allocation freely. We then propose dynamic 
memory balancing and memory overcommitment algo-
rithms to manage memory resource for VMs dynamically. 
Finally, we make a quantitative and comparative compar-
ison between hotplug and ballooning in terms of imple-
mentation details, performance overhead, memory frag-
mentation level, performance speedup of applications. 
This study can benefit system administrators to better 
understand strengths and weaknesses of the two ap-
proaches, and thus make better decisions on the alterna-
tives in different scenarios.  

There are a number of extensions for U-tube in the fu-
ture. First, it is interesting to study U-tube in NUMA en-
vironments, such as the issues of memory locality and 
load balancing. Second, releasing the constraint of 
memory cap may introduce security concerns because a 
malicious VM may continuously request memory and 
finally exhaust all memory resource on a host. This is a 
general security issue and there are numbers of works on 
memory leak detection [10][37]. It could be interesting to 
address this issue through memory allocation policies, 
such as max-min fairness. Third, the memory hotplug 
technique provides an opportunity for rank-aware RAM 
power saving [34]. 
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