
1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEM, MANUSCRIPT ID 1

Hotplug or Ballooning: A Comparative Study
on Dynamic Memory Management
Techniques for Virtual Machines

Haikun Liu, Member, IEEE, Hai Jin, Senior Member, IEEE, Xiaofei Liao, Member, IEEE, Wei

Deng, Bingsheng He, and Cheng-zhong Xu, Senior Member, IEEE

Abstract—In virtualization environments, static memory allocation for virtual machines (VMs) can lead to severe service level

agreement (SLA) violations or inefficient use of memory. Dynamic memory allocation mechanisms such as ballooning and

memory hotplug were proposed to handle the dynamics of memory demands. However, these mechanisms so far have not

been quantitively or comparatively studied. In this paper, we first develop a runtime system called U-tube, which provides a

framework to adopt memory hotplug or ballooning for dynamic memory allocation. We then implement fine-grained memory

hotplug in Xen. We demonstrate the effectiveness of U-tube for dynamic memory management through two case studies:

dynamic memory balancing and memory overcommitment. With these two case studies, we make a quantitative comparison

between memory hotplug and ballooning. The experiments show that there is no absolute winner for different scenarios. Our

findings can be very useful for practitioners to choose the suitable dynamic memory management techniques in different

scenarios.

Index Terms—Ballooning, Memory management, Memory Hotplug, Virtual Machine, Virtualization.

—————————— ——————————

1 INTRODUCTION

IRTUALIZATION provides a significant advantage
for modern data centers to maximize physical re-
source utilization through server consolidation. Con-

tinuous advances of multi-core and I/O virtualization
technologies [12] [18] [19] [36] have caused main memory
to be a more valuable resource. It has become the primary
capacity constraint for VM density and VM performance
[25]. On the other hand, although many data intensive
applications [26] have become memory hungry, they ex-
hibit significantly different memory consumption behav-
iors in terms of memory footprint and temporal memory
usage. Effective memory allocation among different VMs
remains a challenging research problem.

In virtualization environments, most hypervisors typi-
cally allocate a fixed-size memory pool to each VM in-
stance at boot. A VM may be also configured with a pa-
rameter such as max_memory to specify the VM’s maxi-
mum memory capacity. We call it memory cap in this
paper. As static memory allocation may lead to significant
performance degradation or a waste of precious memory
resource, ballooning is widely used in the state-of-the-art
hypervisors such as VMware and Xen [7][32] for dynamic
memory management. It enables the virtual machine

monitor (VMM) to reclaim underutilized memory from a
lightly loaded VM and re-allocate it to overloaded VMs.

Although ballooning is widely used for VM memory
resizing [11][17][39], it still has some limitations in several
scenarios. In general, it is difficult to predict the exact
demands of memory resource before a VM is created, so
the maximum memory capacity is usually set by experi-
ence. However, in practice, the memory cap may become
a risk of VM performance degradation when the applica-
tions exhibit drastic fluctuation of memory requirements.
Ballooning is effective only when the scope of memory
resizing do not exceed the VM memory cap. Otherwise,
the VM needs to reboot for memory re-configuration. In
high-availability systems, the cost of a reboot cycle for the
sole purpose of adding system RAM is simply too expen-
sive. Although a large setting of memory cap can mitigate
the limitation of ballooning, it can never eliminate the
constraint of memory cap. Consider the following scenar-
io: when a VM’s memory requirement has exceeded the
maximum memory capacity of its host machine, the VM
should be migrated to another host with larger memory
capacity. However, as the VM’s memory cap cannot ex-
ceed the memory capacity of its original physical host,
ballooning cannot add more memory to the VM even if
there are large amounts of spare memory in the new host.
That means ballooning is constrained to the memory cap
that originates from the VM’s creation and persists in the
VM’s whole lifecycle. Another non-trivial shortcoming of
ballooning is that it tends to reclaim memory that is free
in a guest OS and thus fragments the memory map of the
guest OS. Moreover, as it is hard to estimate the size of
applications’ working set, ballooning may cause VM per-

xxxx-xxxx/0x/$xx.00 © 200x IEEE

V

————————————————

 H. Liu, H. Jin, X. Liao, and W. Deng are with Services ComputingTech-
nology and System Lab, Cluster and Grid Computing Lab, School of Com-
puter Science and Technology, Huazhong University of Science and Tech-
nology, Wuhan, 430074, China. E-mail: haikunliu@gmail.com, {hjin,
xfliao}@hust.edu.cn.

 B. He is with Nanyang Technological University, 635798, Singapore,
Email: he.bingsheng@gmail.com.

 C. Xu is with Wayne State University, Detroit, MI, 48202, USA. E-mail:
czxu@wayne.edu.

Manuscript received Jan 24, 2014.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

formance degradation and even crash the guest OS if it
tries to steal too much memory from the guest.

Due to the limitations of ballooning, memory hotplug
was proposed to expand VMs’ memory capacity on the
fly [3][4]. Memory hotplug was originally developed to
add or replace RAM for a physical machine. In virtualiza-
tion environments, hotplugging can dynamically expand
a VM’s physical address space beyond the memory cap
specified at boot, and thus can arbitrarily increase a VM’s
memory allocation without rebooting the VM. Further-
more, memory space added or removed by hotplugging
is contiguous and large so that they do not cause external
memory fragmentation. Due to these advantages, hot-
plugging is complementary to ballooning. However, the
existing work [29] only discussed hotplugging with bal-
looning qualitatively and the discussion are at high level
and abstract. There has been little attention paid to a
quantitative and comparative study on these two tech-
niques. Without these understandings, the system admin-
istrators may make wrong decisions on the alternatives.
In this paper, we conduct a comprehensive comparison of
hotplug and ballooning in terms of implementation de-
tails, performance overhead, memory fragmentation level,
performance speedup of applications.

As current memory hotplugging for VMs only support
coarse-grained memory addition (section-level) [3], we
first design and implement memory addition/removal in
both section and page levels. To make the comparison of
hotplug and ballooning more clearly, we then develop a
dynamic memory management runtime named U-tube in
virtualization environments. U-tube provides a frame-
work that can freely adopt hotplug or ballooning for dy-
namic memory allocation. We demonstrate the effective-
ness of U-tube for dynamic memory allocation in two
case studies: dynamic memory balancing and memory
overcommitment. We implement U-tube in Xen and
compare memory hotplug and ballooning in various sys-
tem aspects. We find that memory hotplug is more com-
plicated to implement than ballooning, and usually caus-
es higher performance overhead in section-level memory
control than ballooning. However, memory hotplug
shows better performance in page-level memory control
and less memory fragmentation than ballooning. Moreo-
ver, unlike ballooning, memory hotplug is not con-
strained to VM’s memory cap, and thus offer better per-
formance improvement to applications than ballooning.

The major contributions of this paper are summarized
as follows:

(1) We make a quantitative and comparative study of
memory hotplug and ballooning by comparing their im-
plementation details, performance overheads, memory
fragmentation levels, performance speedup of applica-
tions. This study can benefit system administrators to
better understand their strengths and weaknesses.

(2) We implement a runtime system called U-tube in
Xen. We show that U-tube is able to significantly improve
the performance of VMs that suffer from insufficient
memory allocation by leveraging dynamic memory bal-
ancing strategies. Furthermore, exploitation of memory
overcommitment improves the memory utilization and

expands a physical server’s capacity modestly without
compromising applications performance.

Organization: the remainder of this paper is organized
as follows. Section 2 briefly introduces ballooning and
memory hotplug. Section 3 describes the design and im-
plementation of U-tube and its two typical applications.
Section 4 presents the evaluation methodologies and ex-
perimental results. Section 5 describes the related work.
Finally, we conclude in Section 6.

2 BACKGROUND

In this section, we briefly introduce ballooning and Linux
memory hotplug.

2.1 Ballooning

Ballooning mechanism has been used to manage memory
by many hypervisors such as Xen [7] and VMware [32].
Ballooning relies on a special driver that resides in each
guest OS and cooperates with the hypervisor to adjust a
VM’s memory size dynamically. The basic function of
ballooning is to pass memory back and forth between the
hypervisor and a guest OS. When the balloon inflates, the
driver applies for memory from the guest OS and gives it
to hypervisor. When the balloon deflates, the driver re-
trieves the loaned memory from the hypervisor and re-
turns it to guest OS. Thus the VMM creates an illusion
that there is more memory resource than the actually
available memory. This feature is also known as memory
overcommitment [22].

2.2 Memory Hotplug

Memory hotplug was first studied in Linux kernel devel-
opment community [15] [28] [29]. The motivation of this
technique is to expand system RAM capacity on demand
without causing system downtime. To support this fea-
ture, the kernel needs to use SPARSEMEM memory mod-
el, which is an abstract of discontinuous memory map-
ping. SPARSEMEM logically divides physical memory
into chunks of the same size. The chunk is called a section
and its size is architecture-dependent. For example, x86-
64 uses 128MB while PowerPC uses 16MB. The memory
unit of adding/removing operation is one section.

The operation of memory hotplug can be divided into
physical and logical phases. Physical memory hotplug is
responsible for communicating the hardware/firmware
and preparing the environment for hotplugged physical
memory. The firmware such as ACPI supports notifica-
tion of connecting new memory to OS. Logical memory
hotplug phase is responsible for changing memory state
into available or unavailable for users. The amount of
memory from a user's view is changed in this phase,
which is also called online/offline operations.

We call adding/removing memory sections hot-
add/hot-remove for short. Memory hot-add works when
a physical DIMM is plugged. The firmware ACPI notifies
the OS that a new range of memory address is available.
The OS kernel initializes all memory in the DIMM as free
pages and extends the mem_map data structure with one
page table entry for each physical page. Finally the kernel

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

AUTHOR ET AL.: TITLE 3

adds the new memory into the allocator and makes it
available for users. Memory hot-remove makes memory
sections unavailable for users. Page migration [9] tech-
nique should be leveraged to move the used pages in the
specified section to other sections, and then pages in the
target section can be removed from the allocator. Page
migration causes a small performance penalty to memory
hot-remove. However, the sections removed are large and
contiguous so they don’t cause external memory frag-
mentation.

To support memory hotplug in Xen platform, Daniel
Kiper provided a patch [3] which had been incorporated
into Linux kernel. However, Daniel’s approach only sup-
ports memory addition in coarse-grained sections, but
cannot support memory removal. He aslo mentions that
memory hot removal is quite complicated and cumber-
some to implement. In the existing approach, the function
of memory removal is achieved by ballooning. However,
this approach may cause significant performance penalty,
especially for reclaiming a large amount of memory in a
heavily fragmented VM, as shown in our experiments.
This paper improves the current hotplug implementation
in various aspects. The major ones include 1) a real im-
plementation of memory removal based on page migra-
tion; 2) fine-graind (page-level) memory addi-
tion/removal to support on-demand and lightweight
memory allocation.

3 SYSTEM AND IMPLEMENTATION

For a quantitative and comparative study between bal-
looning and hotplug, we need a common platform to al-
low the integration of both techniques. That motivates us
to develop U-tube, a dynamic memory management
runtime on top of Xen. Since U-tube is developed on top
of Xen, ballooning is naturally supported. We particularly
focus on the details of memory hotplug implementation
and dynamic memory allocation algorithms.

3.1 System Overview

Fig. 1 shows the system architecture of our U-tube proto-
type. It is composed of three main components: memory
information monitor and memory hotplug driver that are
deployed in each guest VM, and a dynamic memory allo-
cator residing in the privilege domain (domain 0) for
global decision making. The memory hotplug module is
implemented as a loadable device driver in each guest OS.

It coordinates the memory management unit (MMU) of
guest OSes with underlying hypervisor to dynamically
adjust VMs’ memory allocations. U-tube provides a
framework that can freely adopt hotplug or ballooning
for dynamic memory allocation.

 In each guest VM (domain U), there is a pseudo-
device driver called hotmem deployed in kernel space.
Hotmem driver coordinates with the hypervisor to allocate
or reclaim physical memory to/from each guest OS. Hot-
mem driver extends or shrinks a VM’s physical address
space in coarse-grained sections through guest OS’s
memory hotplug interface, and then allocates/reclaims
memory in fine-grained pages to/from the guest OS by
invoking hypercalls exposed by hypervisor’s memory
management routines. We note that the hotmem driver can
be replaced by a balloon driver if ballooning mechanism
is used in U-tube framework. Each guest OS periodically
collects the memory information statistics and sends it to
domain 0 through Xenbus, which provides an interface for
pseudo-devices including front-end and back-end drivers
to communicate between domains.

In domain 0, the memory statistics are stored in a di-
rectory-like structure Xenstore and referenced by their
domain ID. A global memory allocator periodically re-
trieves the memory information of each VM from the
Xenstore, and resizes each VM’s memory allocation based
on two policies: dynamic memory balancing and memory
overcommitment. If the global memory allocator finds
some VMs’ memory is under-allocated (as described in
Section 3.3), U-tube uses the dynamic memory balancing
algorithm to re-allocate memory for each VMs and bal-
ances their memory pressure (as described in Subsection
3.4.1). If the global memory utilization of the physical
host exceeds a threshold (90% in our paper), then some
VMs need to move to other hosts to release the memory
pressure; otherwise, we continuously place more VMs on
the host by using memory overcommit mechanism (as
described in Subsection 3.4.2) until the whole memory
utilization approaches to the threshold. In this way, U-
tube achieves high memory utilization of host machines
while does not compromise the applications performance.

3.2 Memory Hotplug
A memory page has several possible states in U-tube, as
shown in Fig. 2. The online pages are usable memory and
the others are unavailable for guest OSes. Offline pages
are generated when hotmem driver dynamically adds
memory sections to a VM but only a part of them are set
as online, and others are set as offline. For example, if a
VM needs to add 200MB RAM and one section is 128MB,
then two sections should be added but 56MB RAM is set

Xen MMU

Kernel space

Domain U

Xen

Domain 0

Hardware

Mem hotplug

driver(hotmem)

Kernel space

Xenstore

Mem info

monitor
Dynamic

mem allocator

Kernel space

Domain U

Mem hotplug

driver(hotmem)

Mem info

monitor

Hypercall

Policy

Backend driver

Frontend

driver

Frontend

driver

Fig. 1. System architecture of U-tube.

Online pages

Physical address space of virtual machines

Offline section
Reserved

pages

Offline

pages

Fig. 2. A VM’s Memory footprint with hotplugged pages.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

as offline pages. Offline section and reserved pages are
generated by removing memory from a VM in sections
and pages respectively. In order to bring some unavaila-
ble memory back online, the priority from high to low is
reserved pages, offline pages and offline section. Re-
served pages are the first to be online because they frag-
ment the available memory space. Offline pages become
online from low memory address to high in the second
order. At last, an offline section will be online only when
the required memory space exceeds a whole section.

The following describes the details of memory hotplug
implementation. U-tube uses an inter-domain communi-
cation mechanism to transfer the updates of a guest OS’s
memory information. This mechanism relies on the
Xenbus/Xenstore functionalities. Xenbus provides a bus
abstraction for virtual device drivers to communicate be-
tween domains. Xenstore is a filesystem-like database that
is accessible for all domains. In general, management
tools configure and control pseudo-devices by writing
values into keys in Xenstore that trigger events in drivers.
As to hotmem driver, the target memory size of the guest
OS is stored in a key memory/target and hotmem driver
registers a Xenbus watch hotmem_watch on it. When the
value of the key changes, the watch immediately re-
sponds by executing the function hotmem_set_new_target()
to adapt to the requested size. At this time, a worker
thread hotmem_process() is created, and we need to check
whether the new target is a reasonable value. If so, we set
the target value in a global structure (protected by a
mutex), and signal our hotmem worker to perform
add/remove memory operations.

3.2.1 Add Memory
When we need to extend a VM’s memory capacity, hot-
mem driver hot-adds new memory to the VM through the
memory hotplug interface provided by guest kernel. It
will allocate new page structures for the added memory.
Hotmem driver gets memory from the hypervisor and en-
ables the pages online incrementally. The following de-
scribes two phases of memory addition for VMs.

1) Expand memory space in coarse-grained sections: If
the target size exceeds current memory capacity of the
VM, the memory address space is not enough for exten-
sion. Hotmem driver extends memory address in sections
using the interfaces provided by guest OS kernel. First,
hotmem driver requests new memory address resource
from guest kernel. The requests must be in sections. Sec-
ond, memory mapping is initialized for the new address
space and the necessary date structures such as mem_map
are set up. Finally, mapping tables from physical frames
to machine frames (p2m) for the new addresses are con-
structed. At this time, the new memory address space is
ready but needs to wait for real memory allocation from
the hypervisor.

2) Allocate memory in fine-grained pages: The former
only support memory space expansion. At this time, the
memory address space is sufficient but the physical
frames aren’t available. Hotmem driver invokes a hyper-
call (an interface provided by VMM for guest OSes) to
claim real memory from the hypervisor and map the
memory to the new addresses. If the hypervisor does not

have enough memory, it should shrink some VMs to
squeeze the requested capacity. After that, these memory
addresses are added to the guest OS’s memory allocator
so as to make them available for applications. The
memory is online only when the memory can be used by
guest memory allocator, otherwise they are offline. In
some cases, to increase a VM’s memory capacity, hotmem
driver only needs to set some reserved pages or offline
pages to online state if these pages are sufficient to satisfy
the requirement. The priority of changing the state of of-
fline memory is first reserved pages and then offline pag-
es, as described above.

As memory hot-add in sections needs to prepare run-
ning environments for the new added memory, it would
suffer more performance penalty than ballooning mecha-
nism, which does not support capacity expansion beyond
the memory cap. However, the memory added in sections
is large and contiguous so they don’t cause external
fragmentation. Daniel’s patch [3] only supports memory
add in sections, the granularity is coarse in the sense that
the memory added may exceed the requirement. In con-
trast, our implementation supports fine-grained memory
extension that satisfies on-demand memory allocation. In
practice, memory hot-add in sections is only needed
when the memory requirement exceeds the VM’s capacity
and the available offline memory cannot satisfy it, other-
wise, we only need to online the offline memory.

3.2.2 Reclaim Memory
When we need to reclaim memory from a VM for other
uses, hotmem driver shrinks the VM’s capacity and return
memory to the hypervisor. The following describes two
granularities of memory removal for VMs.

1) Reclaim memory in coarse-grained sections: If the
memory to be removed is larger than the section size,
hotmem driver needs to remove multiple memory sections.
First, it traverses memory sections to find the removable
sections. If a section contains some used pages that cannot
be migrated (e.g. pages for kernel code and reserved pag-
es), the memory section cannot be removed. Second, if a
section is removable, all the pages in this section should
be freed by migrating all allocated pages to other sections
and removing free pages from the allocator. Once a
memory section is completely empty, all references to it
will be removed. At this time, the memory section can be
safely removed because it is no longer referenced by the
kernel MMU. At last, the hotmem driver returns the re-
claimed memory to hypervisor.

Note that not all pages are migratable. Migratable
pages are anonymous pages and page caches in current
Linux. If any of non-migratable memory is located in the
target section for removal, the whole section cannot be
removed. This poses a significant challenge for memory
removal. Luckily, Linux memory allocator uses a flag
called _GFP_MOVABLE to indicate whether a page is
migatable or not at allocation time. Correspondingly,
Linux MMU also provides a memory zone called
ZONE_MOVABLE to partition memory between migrat-
able and non-migatable pages. ZONE_MOVABLE is only
usable by allocations that specify both _GFP_HIGHMEM
and _GFP_MOVABLE flags. This keeps all non-migatable

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

AUTHOR ET AL.: TITLE 5

pages within a single memory partition while allowing
migatable allocations to be satisfied by either partition. As
all pages within ZONE_MOVABLE can be released by
migrating or reclaiming, we always find a removable sec-
tion from ZONE_MOVABLE and migrate pages within
this zone. This avoids non-migatable pages and facilitates
the page migration.

2) Reclaim memory in fine-grained pages: One ap-
proach to reclaiming memory in pages is similar to the
ballooning driver. We can reclaim memory from the guest
OS kernel in pages and sets these pages as reserved pages,
which is no longer available to the guest OS. After that, it
returns the memory to hypervisor by invoking a hyper-
call. However, reserved pages may fragment the VM’s
memory address space. Another approach that can avoid
memory fragmentation is to reclaim offline pages from
the available highest address to low address in a descend-
ing order. These offline pages can be returned to the hy-
pervisor. This method causes less memory fragments
than quasi-ballooning mechanism, which is used only
when there are no offline pages available in the VM.

Note that memory hotplug in Linux does not support a
real page-granularity memory removing because hot-
plugable physical memory scales in sections. However,
fine-grained page removing can be achieved in virtualiza-
tion environments because the memory resource is virtu-
alized and can be partitioned to arbitrary sizes. Reclaim-
ing memory in page granularity allows memory man-
agement routines to flexibly change a VM’s memory ca-
pacity when the amount of memory to be reclaimed is
less than one section. We also note that current imple-
mentation of memory hotplug in Xen does not support
hot-unplugging. Memory removal is achieved by balloon-
ing due to its simplicity. However, ballooning would
fragment VMs’ memory space. Moreover, it may cause
significant performance penalty in memory removal, es-
pecially for reclaiming a large amount of memory in a
heavily fragmented VM (see more in Section 4.2).

3.3 Memory Under-allocation Detection

In a VM running dynamic workload, its memory re-
quirement is often changing all the time. How much
memory does each VM really need? Accurate detection of
memory under-allocation determines the benefit of
memory re-allocation. Monitoring the memory usage is a
well-used solution. However, modern OSes such as Linux
are greedy to use up all its available free memory as page
cache, which can probably speed up the access of data
from disk. Thus the memory utilization of a VM cannot
completely reflect its real memory requirement. High
memory utilization doesn’t imply that the VM needs
more memory because the memory used for page cache
can be reclaimed or reused. Similarly, low memory utili-
zation cannot reflect how much memory can be reclaimed
without potential performance loss. Another approach to
memory under-allocation detection is to monitor the pag-
ing I/O rates or major page fault rates1 [23]. However,

1 A major page fault occurs when a page is not loaded in memory at the
time the fault is generated. It adds disk latency to the interrupted pro-
gram’s execution thus is more expensive than a minor page fault.

this technology may not accurately reveal the relationship
between page fault rate and the memory requirement.
Thus when a VM’s memory is under-allocated, the page
fault rate cannot accurately predict how much additional
memory is required. On the other side, when a VM’s
memory is over-allocated, it is unable to hint how much
free memory can be reclaimed for other VMs. Previous
work has demonstrated the effectiveness of using page
protection techniques to track page accesses at finer gran-
ularity. However, this approach without assistance of
dedicated hardware usually results in an unacceptably
high overhead [5] [39].

We combine memory utilization and paging I/O rates
monitoring together to detect memory under-allocated
VMs. We obtain memory usage information of each VM
from guest OS kernel. For Linux OS, the proc file system
provides detailed memory statistics that can be used for
further analysis. The memory utilization can be inferred
from /proc/meminfo and the number of major page faults
can be obtained from /proc/vmstat. Memory utilization of a
VM is calculated by the ratio of memory usage to total
memory allocation. Note that the guest memory usage is
defined as the total amount of memory actively used by
guest OS and applications, including buffer or page cache
memory that is in active use [8]. Previous study had
demonstrated that applications performance may signifi-
cantly degrade when memory utilization exceeds 90%
[17]. Guided by this observation, we can experientially
deem that the reasonable upper bound of memory utiliza-
tion for good application performance is 90%. If such case
occurs and the observed number of major page faults is
continuously increasing, we should immediately increase
the VM’s memory allocation. However, the amount of
memory requirement should be estimated by the changes
of VM’s working set size. We will describe the detailed
estimation in the following Subsection.

3.4 Memory Allocation Algorithms
In the following, we introduce two key applications of
hotpluging or ballooning for dynamic memory manage-
ment.

3.4.1 Dynamic Memory Balancing
Dynamic memory allocation among VMs is essential to
improve memory management in a virtualized environ-
ment. In order to satisfy the memory requirement on-
demand, we design dynamic memory balancing algo-
rithm and implement it as a daemon process in domain 0.
The algorithm uses a global coordinator to automatically
balance memory load among all VMs.

We install a memory monitor in each VM. In each time
window, the memory demand is written in Xenstore pe-
riodically. With the help of Xenbus callback function, it
will immediately trigger a memory re-balancing by the
global coordinator. Unlike the post-adjustment mecha-
nisms such as feedback control [17], dynamic memory
balancing can pre-allocate memory to a VM that has po-
tential memory requirements before its memory becomes
under-allocated, and thus can avoid applications perfor-
mance degradation and improve memory utilization of
all VMs on a physical host.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

In U-tube, domain 0 is usually configured with a fixed
amount of memory because this privilege domain should
reserve sufficient memory to handle all VMs’ I/O opera-
tions. The memory requirement of each VM can be par-
tially determined by the changes of memory usage, based
on the assumption that if the used memory increases in
current time window, the VM is more likely to use more
memory in the next time window. We denote 𝑀

 (𝑡) the
memory size the VM i actually used at the time t, and
∆𝑀

 (𝑡) the change of used memory measured in the time
window t, and ∆𝑆 (𝑡) the change of swap space in the
time window t. The global memory allocator can calculate
the change of memory usage of each guest VM i by the
following equations:

() () (1)U U U

i i iM t M t M t , (1)

() () (1)i i iS t S t S t . (2)

We consider the increment of swap as memory re-
quirement because swap is used for paging only when
usable memory is very scarce. We predict the memory
requirement of VM i in the next time window:

(1) () (() ())P U U

i i i iM t M t M t S t , (3)

where 𝜆 represents the coefficient of memory increment.
If ∆𝑀

 (𝑡) + ∆𝑆 (𝑡) > 0, the value of 𝜆 should be set larger
than 1. A relatively large λ can reduce the frequency of
memory allocation but may lead to a waste of memory,
especially when the memory utilization of a whole host is
very high. We thus determine the value of 𝜆 by equation
𝜆 = 1.2 𝑈(𝑡)⁄ , where 𝑈(𝑡) denotes the global memory uti-
lization at time t. If ∆𝑀

 (𝑡) + ∆𝑆 (𝑡) < 0, the VM would
keep the reclaimable memory until the memory balancing
algorithm is triggered by some under-allocated VMs. This
avoids unnecessary memory re-allocation among all VMs.

When the memory resource of a VM is under-allocated,
U-tube resizes its memory and balances the memory
pressure among all the VMs based on proportional
memory allocation. Summing up each VM’s memory re-
quirement, the expected global memory utilization in a
physical host becomes:

1 1

(1) (1) ()
n n

P

i i

i i

U t M t M t

 , (4)

where Mi (t) represents the total memory a VM owns, in-
cluding the used portion and free portion at time t. Eq. (3)
only considers the memory requirement locally. While
considering the other VMs’ demands, a fair memory allo-
cation scheme that balances all VM’s memory pressure
can be represented as follows:

(1) (1) (1)T P

i iM t M t U t , (5)

where 𝑀
 (𝑡 + 1) represents the target memory size that

the allocator should assign to the VM i. The target
memory size should be never below the value of a kernel
parameter Committed_AS, an estimate of memory size
guarantees that “out of memory” exception never occurs
for the workloads.

Though memory adjustment can be done with mar-
ginal overhead, as shown in the performance evaluation
section, we should avoid unnecessary memory allocation
that doesn’t benefit to a VM’s execution. We set a thresh-
old δ to determine whether a memory adjustment should
be performed:

| (1) () () () |T U

i i i iM t M t M t M t . (6)

That means memory adjustment occurs only when the
expected increment of memory utilization is larger than
the threshold δ, which is empirically set to 3% in U-tube.

3.4.2 Memory Overcommit
In a virtualized environment, server consolidation aims at
maximizing resources utilization by placing several VMs
on the same host. It is widely used in today’s data centers
to improve memory utilization, and to save total cost of
ownership. U-tube provides a mechanism to maximize
servers’ capacity through memory overcommit. When the
hypervisor does not have enough free memory to create a
new VM, U-tube can reasonably shrink some VMs to
squeeze the required capacity. Note that if the observed
memory utilization of a VM exceeds 90%, U-tube would
never take a risk to reclaim memory from this VM be-
cause of the potential performance degradation. Let MF(t)
be the available free memory the hypervisor can provide,
let MR be the memory requirement of the new VM. Under
the assumption that the new VM can be successfully cre-
ated, we calculate the average memory utilization of ex-
isting resizable VMs by:

1 1

(1) (()) (() ())
n n

R U F

i i

i i

U t M M t M t M t

 . (7)

If (1)U t does not exceed 90%, then the new VM can
be successfully created. At this time, U-tube adjusts the
memory allocation of each VM that can be squeezed us-
ing balanced allocation as described in Eq. (5).

3.5 Implementation
The implementation of U-tube is based on Xen 4.2, with a
guest Linux kernel 3.2. There are approximate 2300 lines
of code in U-tube implementation. The implementation of
memory hotplug driver mainly includes two parts: 950
lines for a loadable pseudo-device driver in guest OS’s
kernel, which includes functions implementation of
memory allocation/reclaim in sections and pages. The
other 250 lines contribute to the modification of the
memory management routines of Xen hypervisor. This
part includes the hypercalls of initializing new memory
resource to a VM. The implementation of memory alloca-
tion policies and memory allocator is about 1100 lines
within a daemon process running in domain 0. 600 lines
contribute to the implementation of memory balancing
algorithm and memory overcommitment algorithm. The
remaining 500 lines are used for memory information
monitoring and inter-domain communication.

4 EVALUATIONS

In this section, we present the evaluation of U-tube with
several benchmarks. We begin by introducing our exper-
imental setup, and then compare memory hotplug with
ballooning in terms of performance overhead, memory
fragmentation level, performance speedup of applications.

4.1 Experimental Setup

We conducted all experiments on Dell PowerEdge1950
servers with two Intel quad-core Xeon E5450 3GHz pro-
cessors, 12 GB RAM, one 250GB SATA hard disk, and

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

AUTHOR ET AL.: TITLE 7

1Gbit Ethernet interface. The host machine ran RHEL 5
distribution (x86-64) and the hypervisor was Xen 4.2 with
Linux kernel 3.2. The privilege domain was configured to
use one dedicated core. The guest OSes also ran RHEL 5
with Linux kernel 3.2. We evaluate U-tube using the fol-
lowing benchmarks:

TPC-C: it is an on-line transaction processing (OLTP)
benchmark [1]. We used a public benchmark DBT-2 to
simulate a complete computing environment where a
number of users execute transactions against a database.
The simulator and MYSQL database server all ran in a
single VM. We configured 1000 terminal threads and 500
database connections and ran the benchmark for 40
minutes. The workload shows moderate memory de-
mand.

SPEC CINT2006: it consists of a suite of applications
for measuring compute-intensive integer performance [2].
The memory load varies dynamically when workload
changes from one application to the other.

DaCapo: it is a Java benchmark suite, which includes a
set of real world applications with non-trivial memory
loads [6]. We used JDK 1.6 as the applications execution
environment.

4.2 Performance Overhead

To compare the performance overhead of memory hot-
plug with ballooning mechanism, we conducted experi-
ments to measure memory addition/removal perfor-
mances for both approaches.

At first, we conducted an experiment to measure the
performance of coarse-grained memory addition in sec-
tion. The VM to be resized was an idle Linux without any
applications running on it. This assures there is no CPU
resource contention that interferes with the hotmem driver
and balloon driver. The VM was initialized with 512MB
RAM and its max_memory capacity is set to 2GB. We in-
creased the VM’s memory in a 128MB step-size and the
hypervisor always have sufficient free memory to satisfy
the requirement of hotplug and balloon drivers. Fig. 3
shows that the time cost of memory addition operations is
linearly proportional to the amount of memory for both
approaches. The hotmem driver costs 60ms per section
while ballooning costs 55ms per 128MB. Hotplug costs 9.1%
more time than ballooning because it needs to extend the
VM’s memory address space first and then to initialize
this portion of memory. Ballooning avoids such actions
because they are done during the VM booting. However,
the amount of memory added by ballooning cannot ex-
ceed the VM’s memory cap. When we tried to expand the
VM capacity up to 2GB (1.5GB memory is added to the
VM), the balloon driver caused a non-response failure
while hotmem driver worked well. This experiment
demonstrates that memory hotplug shows higher ap-
plicability than ballooning.

To compare with the coarse-grained memory addition,
we also evaluated the performance of fine-grained
memory addition in pages. Assume there is sufficient
offline memory for fine-grained control. As shown in Fig.
4, page-granularity hotplugging shows the least execution
time as it only needs to change the state of offline

memory. For ballooning, it needs to apply for memory
from the underling hypervisor, reconstruct the P2M table,
and thus pose much higher performance overhead. For
comparison, we also measure the section-granularity hot-
plugging. We deliberately added memory sections to a
VM and then only set a portion of them as online. For
example, when we intended to increase 32 MB and 160
MB RAM to the VM, we should add one and two sections,
respectively. However, due to the highest performance
overhead, it is only used when the VM does not have
enough address space for memory extension.

Second, we measured the performance of memory re-
moval in two VMs. One was an idle Linux whose
memory image consists of a large quantity of free
memory. The other one was running OLTP application
TPC-C for a long time, and thus its memory were mostly
used as page cache and seriously fragmented. Both VMs
were initially booted with 2GB RAM. We decreased its
memory in a 128MB step-size. Fig. 5 shows the experi-
mental results. When we remove memory from the idle
VM, hotplug driver costs 46ms per section while balloon-
ing costs 56ms per 128MB. Hotplugging shows 21.7% bet-
ter performance than ballooning. In contrast, when hot-
plug and balloon driver remove memory from the heavi-
ly-loaded VM running TPC-C benchmark, the time cost of
memory removal significantly increases compared to that
in the idle Linux. The performance overhead of hotplug
mainly comes from page migration and paging a portion
of memory to disk when the VM has not enough free
memory for removal. The overhead of ballooning de-

0 256 512 768 1024 1280 1536 1792 2048
0

100

200

300

400

500

600

700

800

900

1000

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Amount of memory added (MB)

hotplug

balloon

Balloon fails to add more

than 1.5 GB RAM.

Fig. 3. The mean execution time of memory addition is linear with
the amount of memory added by both hotplug and balloon driver.

32 64 96 128 160 192
0

20

40

60

80

100

120

140

E

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Amount of memory added (MB)

 page granularity (hotplug)

 section granularity (hotplug)

 ballooning

Fig. 4. The mean execution time of memory addition varies with the
amount of memory added by section- and page-granularity hotplug.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

pends on the guest OS’s memory allocation algorithm
and the layout of memory footprint. When a large
amount of memory is removed from the VM, to squeeze a
large and continuous region of memory, ballooning
would trigger the guest kernel MMU to reclaim memory
and swap pages to disk. Because hotplugging performs
page migration in memory, and thus it is much faster
than ballooning which should swap pages to disk.
Memory hotplug reduces 30.4% response time compared
to ballooning, especially when they remove a large region
of memory, as shown in Fig. 5.

To compare with the coarse-grained memory removal,
we also evaluated the performance of page-granularity
memory removal in an idle VM. Assume there is suffi-
cient offline memory for fine-grained control. As shown
in Fig. 6, page-granularity hotplugging is much faster
than ballooning as it only needs to return the offline
memory to the hypervisor. However, if we deliberately
removed memory in sections, oblivious to the available
offline memory, the overhead of section-granularity hot-
plugging is usually higher than ballooning. The reason is
that the overhead of hotplugging is linear to the number
of sections removed, while the overhead of ballooning is
linear to the amount of memory removed.

4.3 Memory Fragmentation

We also conducted an experiment to evaluate the impact
of ballooning and hotplugging on memory fragmentation,
which affect the size of large object that can be allocated.

We measured the memory fragmentation level of a VM with
1GB RAM running TPC-C application for 3 times. During
the second and third runs, we conducted 50 times of
memory allocation/reclaim using ballooning and hot-
plugging mechanism, respectively. In each operation, we
first added 128MB RAM to the VM and then reclaimed it
one minute later. In each test, we measured the memory
fragmentation level, which is defined in the following
formula [13]:

2
n

i

i

i j

TotalFreePages k

Fraglevel
TotalFreePages

,

where 2n is the largest free page block that can be allocat-
ed, i is the order of pages, j is the order of desired alloca-
tion and ki is the number of free page blocks of size 2i.

We calculate the memory fragmentation level referring
to different sizes of free memory block. The free page in-
formation is collected from /proc/buddyinfo. The exper-
imental results demonstrate that the fragmentation level
affected by hotplugging is less than ballooning, especially
when we refer to large free page blocks, as shown in Fig.
7. As the ballooning tends to remove memory that is al-
ready free thus usually fragments the pseudo-physical
memory map of the VM, causing the fragmentation level
higher than the case of non-intrusive execution of TPC-C.
In contrast, hotplugging is able to allocate/reclaim con-
tiguous regions of memory and thus it avoids fragmenta-
tion of the memory map. Moreover, removing memory
with hotplugging often leads to pages migration that is
able to eliminate memory fragmentation.

4.4 Improvement of Application Performance and
VM Density

We ran benchmarks TPC-C, SPEC CINT2006, DaCapo
and a suite of mixed workloads to evaluate the perfor-
mance improvement due to dynamic memory allocation,
and VM density improvement due to memory overcom-
mitment. We observed that most of applications in our
experiments show relatively small working set. To simply
simulate memory overload scenarios, if not expressly
stated in the following, each VM we used to run the ap-
plications was initialized with 512MB RAM and one vir-
tual CPU, and 50% memory capacity extension. That
means the parameter max_memory is configured as 768MB.

0 2 4 6 8 10 12 14 16
0%

20%

40%

60%

80%

100%

F
ra

g
m

e
n

ta
ti
o

n
 l
e

v
e

l(
%

)

The order of free page block of size 2
x

 TPC-C+ Hotplugging

 TPC-C+ Ballooning

 TPC-C

Fig. 7. The memory fragmentation level affected by hotplugging and
ballooning.

0 256 512 768 1024 1280 1536

0

500

1000

1500

2000

2500

3000

Amount of memory removed (MB)

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

 hotplug (idle Linux)

 ballooning (idle Linux)

 hotplug (TPC-C)

 ballooning (TPC-C)

Fig. 5. The mean execution time of memory removal varies with the
amount of memory removed by hotplug and balloon driver in both
light-loaded and heavily-loaded VMs.

32 64 96 128 160 192
0

20

40

60

80

100

120

140

E

x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Amount of memory removed (MB)

 page granularity (hotplug)

 section granularity (hotplug)

 ballooning

Fig. 6. The mean execution time of memory removal varies with the
amount of memory removed by section- and page-granularity hot-
plug in a light-loaded VM.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

AUTHOR ET AL.: TITLE 9

We set a 5-second time window to collect the memory
usage information of each VM and balance VMs’ memory
pressure by making a tradeoff between runtime overhead
and the sensitivity of memory adjustment.

We conducted each experiment on four hosts with 12
GB RAM. We allocated 0.5 GB RAM to domain 0 thus
each host has 11.5 GB spare memory to accommodate
VMs. We created 23 VMs with initial 0.5GB RAM on the
target host that we evaluated, and some VMs were creat-
ed on other two host for increasing the target host’s load
if its memory was under-allocated. Another resourceful
host was provisioned for receiving VMs migrated from
the target host if its memory was over-allocated. When
the VMs were ready, we started the workload in all VMs
concurrently, and monitored the target host’s memory
load to determine VM migrations. To simulate the scenar-
io of memory overcommitment, we continuously placed
VMs to the target host one by one until it had no space to
accommodate more VMs. That reveals the memory utili-
zation of all VMs on the target host reach to 90% and the
hypervisor does not have spare memory. Meanwhile, if
the total memory utilization of target host exceeds 90% as
the load increases, U-tube moved some VMs to the re-
served host to guarantee the application performance. We
measured the application performance improvement and

VM density using both hotplug-based and balloon-based
dynamic memory allocation approaches using the same
policy (as described in Subsection 3.4 and 3.5).

Fig. 8 shows that the response time of one type of
TPC-C transactions (new order) varies at different phases
of execution using static, hotplug-based and ballooning-
based dynamic memory allocations. Fig. 9 shows the cor-
responding major page faults, which is an important per-
formance metric to evaluate how well the memory re-
quirement is satisfied. When the benchmark began, the
VM exhibited almost linear increase of memory require-
ment for the upcoming transactions. We found that the
response time increases significantly when the memory
utilization went beyond 90%. Once the VM experiences
significant memory pressure, it needs to reclaim memory
for new transactions by paging some used memory to
disk. This results in significant increase of major page
fault, as shown in Fig. 9. Compared to the static memory
allocation, Hotplug and balloon reduce the major page
faults by 89% and 20%, respectively. For static memory
allocation, the response time of TPC-C transactions and
the VM’s major page faults significantly increased at 642
seconds when the 512MB memory is used up. For bal-
looning-based dynamic memory allocation, the bursty
increase of response time and major page fault occurred
at 986 seconds when the memory requirement exceeded
the VM memory cap. In contrast, in U-tube, memory un-
der-allocation never occur because hotplug is not con-
strained to the VM’s memory cap. The VMs’ memory uti-
lization is relatively high but is below the threshold for
memory extension. Otherwise, some VMs would be mi-
grated to other host to release the memory pressure.

Table 1 shows the statistics of TPC-C performance and
VM density in a fully-utilized host using different
memory allocation strategies. Compared to the balloon-
based dynamic allocation, hotplug is able to reduce the
total mean response time by 92% and increase the
throughput by 93%. Especially, both hotplug-based and
balloon-based memory overcommitment can expand the
host capacity by 35% when the VMs’ memory is over-
allocated at the beginning. Then the VM density is con-
tinuously decreasing with the increase of memory re-
quired by the VM workloads, and finally the minimum
VM density of hotplug is less than balloon because much
more memory is allocated to each VM. This reveals that
hotplug shows more applicability in memory extension
than balloon.

For SPEC CINT2006 and DaCapo, we also observed
that memory hotplug always perform better than balloon-

TABLE 1
TPC-C PERFORMANCE AND VM DENSITY

Mean Resp. Time(secs) Throughput

(trans/min)

Static

Hotplug

Balloon

7.36 176.4

0.43 434.3

5.28 224.6

Total Mem Util ≥ 90%

9.42

9.68

—

Mem alloc

policy

VM density

（min, max)

(23, 23)

(13, 31)

(16, 31)

0 400 800 1200 1600 2000 2400

0

5

10

15

20

25

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
s
)

Elapsed time (secs)

 static

 dynamic(hotplug)

 dynamic(balloon)

memory utilization

Fig. 8. The mean response time of TPC-C transactions varies with

memory utilization using static and hotplug-based, balloon-based

dynamic memory allocation.

0 400 800 1200 1600 2000 2400 2800
0

100k

200k

300k

400k

500k

600k

N
u

m
b

e
r

o
f

m
a

jo
r

p
a

g
e

 f
a

u
lt
s

memory under-allocated

Elapsed time(secs)

 static

 dynamic (hotplug)

 dynamic (balloon)

Fig. 9. The number of major page faults generated when TPC-C is

running with static and hotplug-based, balloon-based dynamic

memory allocation.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

ing and static memory allocation policies. Here, we only
show the normalized performance and major page faults
of typical applications in Fig. 10 and Fig.11, respectively.
For the selected applications, bzip2, gcc (both in SPEC
CINT2006 suite) and h2 (DaCapo) are memory-intensive,
and hmmer (SPEC CINT2006) shows small working set
and is not sensitive to memory allocation. The perfor-
mance of bzip2, gcc, h2, and hmmer were measured in exe-
cution time, and TPC-C was measured in mean response
time. For memory-intensive applications such as bzip2,
hotplugging and ballooning reduce the application execu-
tion time by 18% and 10% compared to static memory
allocation, respectively. Correspondingly, hotplug and
ballooning can significantly reduce the number of major
page faults by 84.1% and 65.5%, respectively. The other
memory over-allocated applications such as hmmer show
1~4% increase of execution time due to the cost of
memory usage monitoring and re-allocation. For DaCapo,
memory hotplug can reduce the execution time of h2 pro-
gram even by 85%. Correspondingly, the number of ma-
jor page faults can be significantly reduced by up to 99%.
However, for ballooning, the VM’s memory cap causes a
large number of major page faults during h2’s execution.
As too much time was wasted for handling major page
faults, the performance of h2 significantly degraded by
using static and balloon-based memory allocation.

4.5 Summary of Comparison

Finally, we give a summary of the detailed comparison

between hotplugging and ballooning, as shown in Table 2.
A definite advantage of ballooning is that it can directly
use the native MMU of the guest OS, and thus facilitate
the ballooning implementation. However, memory ex-
pansion cannot go beyond a guest OS’s memory cap con-
figured at booting time. The memory cap poses a signifi-
cant limitation in VMs capacity extension. Furthermore,
the ballooning relies on the buddy system of guest MMU,
and thus fragments the pseudo-physical memory map of
the guest OS when it inflates. In contrast, memory hot-
plug can add/remove whole sections at a time, avoiding
memory fragmentation of VMs. The significant advantage
of hotplug is that it is able to expand a VM’s capacity be-
yond its memory cap in the fly. The better scalability of
hotplugging always means better application perfor-
mance. However, the overhead of coarse-grained section
control is usually higher than ballooning.

4.6 Fairness of Dynamic Memory Balancing

We compare the policy of dynamic memory balancing
(Subsection 3.4) with VMware memory management.
VMware EXS server uses proportional-share algorithm
combining with idle memory tax mechanism to allocate
memory to each VM [32]. In the cloud environment, this
is related to economic fairness [35], which is important for
the monetary cost and performance of multi-tenant sys-
tems. To present the actions of memory dynamic alloca-
tion more clearly, we only co-locate two VMs on a single
host. One runs DaCapo and another runs TPC-C. Both
VMs are configured with 1GB RAM. The other RAM are
allocated to domain 0 and can not be deprived by the two
VMs. Such setting implies that the two VMs can share
2GB RAM at most. In our experiment, we set the tax rate
as 75% and start reclaiming memory when the percentage
of free memory drops below 10%.

Fig. 12 shows the memory utilization of two VMs us-
ing two different policies. For U-tube, as shown in Fig. 12
(a), the two VM show almost the same memory utiliza-
tion all the time. The policy is similar to the principle of
U-tube in which liquid can always balance in two col-
umns automatically. For the policy of VMware, the two
VM shows significant difference of memory utilization.
When memory utilization of the VM running DaCapo
reaches 90%, idle memory is reclaimed from the VM run-

TABLE 2
SUMMARY OF COMPARISON BETWEEN MEMORY HOTPLUG

AND BALLOONING

 Memory hotplug Ballooning

Implementation Complicated Easy

Dependence
hotplug driver
of guest OSes

MMU of guest
OSes

Constraints No Memory cap

Performance
overhead

Fine-grained
control is lower

Coarse-grained
control is lower

Memory frag-
mentation

Mitigate Exacerbate

VM performance
improvement

Best Moderate

bzip2 gcc hmmer h2 TPC-C
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o

rm
a

liz
e

d
 t

im
e

 static

 dynamic(hotplug)

 dynamic(balloon)

Fig. 10. Application performance improved by hotplug-based and

balloon-based dynamic memory allocation.

bzip2 gcc hmmer h2 TPC-C
0%

20%

40%

60%

80%

100%

120%

140%

M
a

jo
r

p
a

g
e

 f
a

u
lt
s
 (

%
)

 static

 dynamic(hotplug)

 dynamic(balloon)

Fig. 11. The major page faults reduced by hotplug-based and bal-

loon-based dynamic memory allocation.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

AUTHOR ET AL.: TITLE 11

ning TPC-C and reallocated to the under-allocated one.
This operation is performed many times during the exe-
cution of eclipse and h2, and thus significantly increase the
application execution time. Unlike the post-adjustment
mechanisms, U-tube avoid the memory under-allocations
and improve the application performance. Moreover, U-
tube is also immune to the prediction error of memory
requirements.

We evaluate the above two polices in terms of fairness,
which is defined as the Min-Max Ratio (MMR) of memory
utilization between the two applications, namely
Umin/Umax. As shown in Fig.13, the gray line shows the
fairness of memory allocation using policy of VMware.
The MMR significantly fluctuates with the variation of
memory load. In contrast, the results of U-tube are more
stable and all approximates to one. There are only num-
bers of pulses when the working set of applications sig-
nificantly changes. In summary, the memory allocation
policy of VMware achieves 61% fairness on average,
while U-tube can achieve even up to 90% fairness on av-
erage.

5 RELATED WORK

There are many works focusing on memory dynamic
management in virtualization environments, such as page
sharing, memory mapped I/O [21] [40], ballooning [7] [14]
[32], hotplug [27]. One of the most important techniques
is ballooning. It is widely used by many hypervisors for
dynamic memory management [7][32].

There are several works on dynamic memory alloca-
tion using ballooning mechanism [31][38][39]. Memory

Balancer (MEB) [39] is a system designed for dynamic
memory management based on ballooning. MEB moni-
tors the memory usage of each virtual machine, predicts
its memory need using Least Recently Used (LRU) histo-
gram, and periodically adjusts a VM’s memory using bal-
looning mechanism. MEB tracks normal memory accesses
by revoking user access permission and trapping them
into VMM as page faults, and constructs a LRU histogram
to predict memory need of each VM. Although this ap-
proach provides a reasonably accurate prediction, it caus-
es considerable performance penalty due to the costly
memory access tracking. Xiao, et al. proposed a more effi-
cient approach to memory demand prediction by leverag-
ing an exponentially weighted moving average (EWMA)
scheme [38]. Bayllocator [31] employed Bayesian net-
works to predict memory requirements, and provided
proactive dynamic memory allocation based on balloon-
ing. These works primarily focused on memory demand
prediction. They are orthogonal to the theme of this paper,
but can be complementary to our work.

Another important concept of ballooning is memory
overcommitment. It can significantly increase the number
of VMs that can be hosted in a single physical server.
Ginkgo [11] is a memory overcommitment framework
that leverages ballooning mechanism to dynamically ad-
just memory capacity of each VM in cloud computing
environment. A feedback control method for dynamic
memory allocation was proposed in [17], which also em-
ployed ballooning mechanism for VM memory resizing.
In comparison with the feedback strategy, U-tube uses a
dynamic memory balancing algorithm to pre-allocate
memory to a VM that has potential memory requirements,
and thus avoids application performance degradation.

Although ballooning can improve VMs’ memory us-
age through dynamic allocation, it may impact the per-
formance of applications which manage their own
memory, such as databases and Java runtimes. Salomie, et
al. motivated by this problem and proposed an applica-
tion-level ballooning mechanism for server memory over-
commitment [30].

The following introduces other dynamic memory
management techniques that are different from balloon-
ing. Transcendent Memory [24] provides sharable
memory pools among different VMs to manage the phys-
ical memory. The hypervisor collects idle memory from
different VMs and manages it as one or more physical
memory pools. A guest OS can indirectly access this
memory with a well-defined API which imposes a care-
fully-crafted set of rules and restrictions. From the per-
spective of a guest OS, a memory pool appears to be a fast
RAM disk with nondeterministic and varying size. A
guest OS may use a memory pool as an extension to its
memory, thus reduce disk I/O and improve performance.
However, the management of memory pools is very
complicated. SwapBypass [21] is somewhat similar to
transcendent memory. It is a proof-of-concept symbiotic
service implemented in Palacios VMM. SwapBypass im-
poses SymCall to re-consider swap decisions made by a
symbiotic Linux guest, adapting to guest memory pres-
sure. Although a page in the VM may be swapped out

0 100 200 300 400 500 600 700
0%

20%

40%

60%

80%

100%

M
e

m
o

ry
 U

ti
liz

a
ti
o

n
 (

1
0

0
%

)

Elapsed time(secs)

 DaCapo TPC-C

(a) Policy of U-tube

eclipse, h2

0 100 200 300 400 500 600 700 800

0%

20%

40%

60%

80%

100%

M
e

m
o

ry
 U

ti
liz

a
ti
o

n
 (

1
0

0
%

)

Elapsed time (seconds)

 DaCapo TPC-C

(b) Policy of VMware

eclipse, h2

Fig. 12. Memory utilization of two co-located VMs running DaCapo

and TPC-C. Sub-figure (a) and (b) use memory management poli-

cies of U-tube and VMware, respectively.

0 100 200 300 400 500 600 700 800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

F
a

ir
n

e
s
s
 o

f
m

e
m

o
ry

 a
llo

c
a

ti
o

n

Elapsed time (seconds)

 Policy of U-tube

 Policy of VMware

Fig. 13. The fairness of memory allocation achieved by memory

management policies of U-tube and VMware.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

when the guest is experiencing high memory pressure,
SwapBypass can still keep the page in memory and mark
it available in the shadow page table. In this way, Swap-
Bypass allows a guest to access the swapped pages at
main memory speeds and use more physical memory
than it was initially allocated. Overdriver [33] was pro-
posed to expand VM memory capacity through both VM
live migration and network memory techniques, but in-
troduced much performance overhead in terms of net-
work traffic and latency. These works all impose indirect
memory accessing mechanisms to expand VMs’ memory
capacity, and thus introduce an additional latency com-
pared to native memory accessing. In contrast, the
memory added by hotplugging can be directly accessed
by guest OSes, and thus does not cause performance deg-
radation.

This paper mainly focuses on the comparison within a
single machine. Recently, resource management on multi-
tier applications are emerging in the cloud environment
[16][20]. It is out of the scope of this paper to revisit dif-
ferent memory management techniques in those envi-
ronments.

6 CONCLUSION

In virtualization environments, it remains challenging to
effectively manage the main memory resource. Dynamic
memory allocation mechanisms such as ballooning and
hotplug were proposed to handle the dynamics of
memory demands. However, so far there is no quantita-
tive comparsion between these two mechanisms. In this
paper, we first develop a runtime system called U-tube,
which can adopt hotplug or ballooning for dynamic
memory allocation freely. We then propose dynamic
memory balancing and memory overcommitment algo-
rithms to manage memory resource for VMs dynamically.
Finally, we make a quantitative and comparative compar-
ison between hotplug and ballooning in terms of imple-
mentation details, performance overhead, memory frag-
mentation level, performance speedup of applications.
This study can benefit system administrators to better
understand strengths and weaknesses of the two ap-
proaches, and thus make better decisions on the alterna-
tives in different scenarios.

There are a number of extensions for U-tube in the fu-
ture. First, it is interesting to study U-tube in NUMA en-
vironments, such as the issues of memory locality and
load balancing. Second, releasing the constraint of
memory cap may introduce security concerns because a
malicious VM may continuously request memory and
finally exhaust all memory resource on a host. This is a
general security issue and there are numbers of works on
memory leak detection [10][37]. It could be interesting to
address this issue through memory allocation policies,
such as max-min fairness. Third, the memory hotplug
technique provides an opportunity for rank-aware RAM
power saving [34].

ACKNOWLEDGMENT

This work is supported by NSFC under grants No.

61300040, 61272408, 61322210, the Fundamental Research
Funds for the Central Universities under grant No.
13MS87, and a startup grant from Nanyang Technological
University (NTU), Singapore. The work was partly done
when Haikun was visiting NTU. The source code of U-
tube can be found from sourceforge website
(https://sourceforge.net/p/liquidmem).

REFERENCES

[1] http://www.tpc.org/tpcc.

[2] http://www.spec.org/cpu2006/CINT2006/

[3] https://lkml.org/lkml/2011/3/28/108

[4] http://www.petri.co.il/vsphere-hot-add-memory-and-cpu.htm

[5] R. Azimi, L. Soares, M. Stumm, T. Walsh, and A. D. Brown,

“PATH: Page Access Tracking to Improve Memory Manage-

ment,” Proc. International Symp. Memory Management (ISMM’07),

pp.31-42, Oct. 2007

[6] S. M. Blackburn, R. Garner, C. Hoffman, et al., “The DaCapo

Benchmarks: Java Benchmarking Development and Analysis,”

Proc.ACM Conf. Object-Oriented Programing, Systems, Languages,

and Applications (OOPSLA’06), pp.169-190, Oct. 2006

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of Vir-

tualization,” Proc. ACM Symp. on Operating Systems Principles

(SOSP’03), pp.164-177, Oct. 2003

[8] K. Colbert and R.Venkatasubramanian, “Understanding Host &

Guest Memory Usage and Related Memory Management Con-

cepts,” VMWORLD 2007

[9] R. Chandra, S. Devine, A. Gupta, and M. Rosenblum, “Schedul-

ing and Page Migration for Multiprocessor Compute Serv-

ers,“ Proc. ACM Conf. Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS’94), pp.12-24, Oct. 1994

[10] S. Cherem, L. Princehouse and R. Rugina, “Practical Memory

Leak Detection using Guarded Value-Flow Analysis”, Proc.

ACM International Conf. Programming Language Design and Im-

plementation (PLDI’07), pp. 480-491, Jun. 2007

[11] A. Gordon, M. R Hines, D. D Silva, M. Ben-Yehuda, M. Silva

and G. Lizarraga, “Ginkgo: Automated, Application-Driven

Memory Overcommitment for Cloud Computing,” RESoLVE:

Runtime Environments/Systems, Layering, and Virtualized Envi-

ronments Workshop, 2011.

[12] A. Gulati, A. Merchant and P.J. Varman, “mClock: Handling

Throughput Variability for Hypervisor IO Scheduling,” Proc.

USENIX Symp. Operating System Design and Implementation

(OSDI’10), pp. 437-450, Oct. 2010

[13] M. Gorman and P. Healy, “Measuring the Impact of the Linux

Memory Manager,” Libre Software Meeting (LIBRE’05), 2005

[14] M. Hines and K. Gopalan, “Post-Copy Based Live Virtual

Machine Migration Using Adaptive Pre-Paging and Dynamic

Self-Ballooning,” Proc. ACM International Conf. Virtual Execution

Environments (VEE ‘09), pp.51-56, Mar. 2009

[15] D. Hansen, M. Kravetz, B. Christiansen and M. Tolentino,

“Hotplug Memory and the Linux VM”, Proc. Linux Symposium,

pp. 278-294, Jul. 2004

[16] D. Huang, B. He, C. Miao, “A Survey of Resource Management

in Multi-Tier Web Applications,” IEEE Communications Sur-

veys & Tutorials, vol.PP, no.99, pp.1-17, 2014

[17] J. Heo, X. Zhu, P. Padala, and Z. Wang, “Memory Overbooking

and Dynamic Control of Xen Virtual Machines in Consolidated

Environments,” Proc. IFIP/IEEE Symp. Integrated Management

(IM'09), pp.630-637, Jun. 2009

[18] M. Kesavan, A. Gavrilovska and K. Schwan, “Differential virtu-

al time (DVT): Rethinking I/O Service Differentiation for Virtual

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

AUTHOR ET AL.: TITLE 13

Machines,” Proc.ACM Symp. Cloud Computing (SoCC’10), pp.27-

38, Jun. 2010

[19] D. Le, H. Wang, “An Effective Memory Optimization for Virtu-

al Machine-Based Systems,” IEEE Trans. Parallell and Distributed

Systems, vol. 22, no. 10, pp. 1705-1713, Oct. 2011

[20] H. Liu, B. He, “VMbuddies: Coordinating Live Migration of

Multi-Tier Applications in Cloud Environments,” IEEE Trans.

Parallell and Distributed Systems, 99(PrePrints):1, Apr. 2014.

[21] J. Lange and P. A. Dinda, “SymCall: Symbiotic Virtualization

Through VMM-to-guest Upcalls,” Proc. ACM International Conf.

Virtual Execution Environments (VEE’11), pp.193-204, Mar. 2011

[22] D. Magenheimer, Memory Overcommit… without the Com-

mitment, Xen Summit 2008, Jun. 2008

[23] S. T. Jones, A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau,

“Geiger: Monitoring the Buffer Cache in a Virtual Machine En-

vironment,” Proc. International Conf. Architectural Support for

Programming Languages and Operating Systems (ASPLOS’ 06),

pp.14-24, Oct. 2006

[24] D. Magenheimer, “Transcendent Memory on Xen,” Xen Summit

2009

[25] J. K. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Lev-

erich, D. Mazi`eres, S. Mitra, A. Narayanan, M. Rosenblum, S.

M. Rumble, E. Stratmann, and R. Stutsman, “The Case for

RAMClouds: Scalable High-performance Storage Entirely in

DRAM,” ACM SIGOPS Operating Systems Review, vol.43, no.4,

pp.92-105, Dec. 2009

[26] A. Shinnar, D. Cunningham, B. Herta, and V. Saraswat, “M3R:

Increased Performance for In-Memory Hadoop Jobs,” Proc.

VLDB Endowment, vol.5, no.12, pp.1736-1747, Aug. 2012

[27] S. S. Pinter, Y.Aridor, S. Shultz and S. Guenender, “Improving

Machine Virtualization with 'Hotplug Memory',” Proc. 17th

IEEE International Symp. Computer Architecture and High Perfor-

mance Computing (SBAC-PAD'05), pp.168-175, Oct. 2005

[28] J. Schopp, D. Hansen, M. Kravetz, H. Takahashi, I. Toshihiro, Y.

Goto, K. Hiroyuki, M. Tolentino and B. Picco, “Memory Hot-

plug Redux,” Proc. Linux Symp., pp.151-174, Jul. 2005

[29] J. Schopp, K. Fraser and M. J. Silbermann, “Resizing Memory

with Balloons and Hotplug,” Proc. Linux Symp., pp.305-311, Jul.

2006

[30] T. I. Salomie, G. Alonso, T. Roscoe and K. Elphinstone, “Appli-

cation Level Ballooning for Efficient Server Consolidation,”

Proc. ACM European Conf. Computer Systems (EuroSys’13), pp.

337-350, Apr. 2013

[31] E. Tasoulas and H. Haugerund, “Bayllocator: A Proactive Sys-

tem to Predict Server Utilization and Dynamically Allocate

Memory Resources using Bayesian Networks and Ballooning”,

Proc. USENIX Large Installation System Administration Conf. (LI-

SA’12), pp.111-121, Dec. 2012

[32] C. A. Waldspurger, “Memory Resource Management in

VMware ESX Server,” Proc. Symp. Operating Systems Design and

Implementation (OSDI’02), pp.181-194, Dec. 2002

[33] D. Williams, H. Weatherspoon, H. Jamjoom, and Y. H. Liu,

“Overdriver: Handling Memory Overload in an Oversub-

scribed Cloud,” Proc ACM International Conf. Virtual Execution

Environments (VEE’11), pp.205-216, Mar. 2011

[34] D. Wu, B. He, X. Tang, J. Xu, and M. Guo, “RAMZzz: Rank-

Aware DRAM Power Management with Dynamic Migrations

and Demotions,” Proc. ACM/IEEE SuperComputing (SC’12), Nov.

2012

[35] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou. “Dis-

tributed Systems Meet Economics: Pricing in the Cloud,” USE-

NIX Workshop on Hot Topics in Cloud Computing (HotCloud '10),

Jun. 2010

[36] C. Xu, S. Gamage, P. N. Rao, A. K. lou, R. R. Kompella and D.

Xu, “vSlicer: Latency-Aware Virtual Machine Scheduling via

Differentiated-Frequency CPU Slicing,” Proc. ACM Symp. High-

Performance Parallel and Distributed Computing (HPDC'12), pp.3-

14, Jun. 2012

[37] Y. Xie and A. Aiken, “Context- and Path-sensitive Memory

Leak Detection”, ACM SIGSOFT Software Engineering Notes,

vol.30, no.5, pp.115-125, Sep. 2005

[38] Z. Xiao, W. Song, and Q. Chen, “Dynamic Resource Allocation

using Virtual Machines for Cloud Computing Environment,”
IEEE Trans. Parallell and Distributed Systems, vol. 24, no. 6, pp.

1107 - 1117, Jun. 2013

[39] W. Zhao and Z. Wang, “Dynamic Memory Balancing for Virtu-

al Machines,” Proc. ACM International Conf. Virtual Execution

Environments (VEE’09), pp.21-30, Mar. 2009

[40] J. Zhu, Z. Jiang, Z. Xiao, and X. Li ,“Optimizing the Perfor-

mance of Virtual Machine Synchronization for Fault Tolerance,”

IEEE Transactions on Computers, vol.60, no. 12, pp. 1718-1729,

Dec. 2011

Haikun Liu is currently a research
fellow at School of Computer Engi-
neering, Nanyang Technological
University. He received the Ph.D.
degree in Huazhong University of
Science and Technology. He was the
recipient of outstanding doctoral
dissertation award in Hubei prov-
ince, China. His current research

interests include virtualization technologies, cloud com-
puting, and distributed systems.

 Hai Jin is a Cheung Kung Scholars
Chair Professor of computer sci-
ence and engineering at Huazhong
University of Science and Technol-
ogy (HUST) in China. He is now
Dean of the School of Computer
Science and Technology at HUST.
Jin received his PhD in computer
engineering from HUST in 1994. In
1996, he was awarded a German

Academic Exchange Service fellowship to visit the Tech-
nical University of Chemnitz in Germany. Jin worked at
The University of Hong Kong between 1998 and 2000,
and as a visiting scholar at the University of Southern
California between 1999 and 2000. He was awarded Ex-
cellent Youth Award from the National Science Founda-
tion of China in 2001. Jin is the chief scientist of Chi-
naGrid, the largest grid computing project in China, and
the chief scientist of National 973 Basic Research Program
Project of Virtualization Technology of Computing Sys-
tem. Jin is a senior member of the IEEE and a member of
the ACM. Jin is the member of Grid Forum Steering
Group (GFSG). He has co-authored 15 books and pub-
lished over 400 research papers. His research interests
include computer architecture, virtualization technology,
cluster computing and grid computing, peer-to-peer
computing, network storage, and network security. Jin is
named the steering committee chair of several Interna-
tional Conferences, such as GPC, APSCC, FCST, and Chi-

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2320915, IEEE Transactions on Parallel and Distributed Systems

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

naGrid. Jin is a member of the steering committee of
CCGrid, NPC, GCC, ATC, and UIC.

Xiaofei Liao received his Ph.D. de-
gree in computer science and engi-
neering from Huazhong University
of Science and Technology (HUST),
China, in 2005. He is now a profes-
sor in the school of Computer Sci-
ence and Engineering at HUST. He
has served as a reviewer for many
conferences and journal papers. His
research interests are in the areas of

system software, P2P system, cluster computing and
streaming services. He is a member of the IEEE and the
IEEE Computer society.

 Wei Deng received PhD degree in
Huazhong University of Science and
Technology. He was the recipient of
Best Paper Nominee from IEEE
CloudCom 2012, the scholar travel
grant of ICDCS 2013, and the Mir-
crosoft Fellowship Nominee. His re-
search interests focus on
cloud computing, datacenter net-

working, green computing, smart grids, modeling and
optimization.

Bingsheng He received the bachelor
degree in computer science from
Shanghai Jiao Tong University
(1999-2003), and the PhD degree in
computer science in Hong Kong
University of Science and Technolo-
gy (2003-2008). He is an assistant
professor in Division of Networks
and Distributed Systems, School of
Computer Engineering of Nanyang

Technological University, Singapore. His research inter-
ests are high performance computing, cloud computing,
and database systems. He has been awarded with the
IBM Ph.D. fellowship (2007-2008) and with NVIDIA Aca-
demic Partnership (2010-2011).

Cheng-Zhong Xu received his Ph.D.
degree from the University of Hong
Kong in 1993. He is currently a ten-
ured professor of Wayne State Uni-
versity and the Director of the Insti-
tute of Advanced Computing and
Data Engineering of Shenzhen Insti-
tute of Advanced Technology of Chi-
nese Academy of Sciences. His re-

search interest is in parallel and distributed systems and
cloud computing. He has published more than 200 papers
in journals and conferences. He was the Best Paper Nom-
inee of 2013 IEEE High Performance Computer Architec-
ture (HPCA), and the Best Paper Nominee of 2013 ACM

High Performance Distributed Computing (HPDC). He
serves on a number of journal editorial boards, including
IEEE Transactions on Computers, IEEE Transactions on
Parallel and Distributed Systems, IEEE Transactions on
Cloud Computing, Journal of Parallel and Distributed
Computing and China Science Information Sciences. He
was a recipient of the Faculty Research Award, Career
Development Chair Award, and the President’s Award
for Excellence in Teaching of WSU. He was also a recipi-
ent of the “Outstanding Oversea Scholar” award of NSFC.
For more information, visit
http://www.ece.eng.wayne.edu/~czxu.

http://www.ece.eng.wayne.edu/~czxu/

