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Abstract—As an emerging hardware, the coupled CPU-GPU
architecture integrates a CPU and a GPU into a single chip, where
the two processors share the same memory space. This special
property opens up new opportunities for building in-memory key-
value store systems, as it eliminates the data transfer costs on
PClI-e bus, and enables fine-grained cooperation between the CPU
and the GPU. In this paper, we propose DIDO, an in-memory
key-value store system with dynamic pipeline executions on the
coupled CPU-GPU architecture, to address the limitations and
drawbacks of state-of-the-art system designs. DIDO is capable of
adapting to different workloads through dynamically adjusting
the pipeline with fine-grained task assignment to the CPU and the
GPU at runtime. By exploiting the hardware features of coupled
CPU-GPU architectures, DIDO achieves this goal with a set of
techniques, including dynamic pipeline partitioning, flexible index
operation assignment, and work stealing. We develop a cost model
guided adaption mechanism to determine the optimal pipeline
configuration. Our experiments have shown the effectiveness
of DIDO in significantly enhancing the system throughput for
diverse workloads.

I. INTRODUCTION

The coupled CPU-GPU architecture is an emerging hybrid
architecture that integrates a CPU and a GPU in the same
chip, e.g., AMD Kaveri APU architecture. In this architecture,
the CPU and the GPU share the same physical memory and
have a unified memory address space. The two processors
become capable of accessing the same data set in the host
memory simultaneously. This eliminates the expensive PCle
data transfer, and dramatically reduces the cost of CPU-
GPU communication. These features make fine-grained CPU-
GPU cooperation feasible, thus new opportunities are opened
up for the design and implementation of data processing
systems. Recently, hybrid CPU-GPU architectures have been
used to improve the throughput and energy efficiency of in-
memory key-value stores (IMKYV), such as Mega-KV [1] and
MemcachedGPU [2]. Because of the effective memory access
latency hiding capability and the massive number of cores in
GPUs, CPU-GPU co-processing becomes an effective way for
building efficient IMKV systems.

The current IMKV systems on CPU-GPU platforms, e.g.,
Mega-KV and MemcachedGPU, are designed for architectures
with discrete GPUs, where the CPU and the GPU are con-
nected via a PCI-e bus. We find that these IMKV designs
are inefficient on the coupled CPU-GPU architecture. Due
to the costly PCI-e data transfer in the discrete CPU-GPU
architecture, the CPU and the GPU in current IMKV systems
form a fixed and static pipeline to co-process key-value queries.
For instance, Mega-KV has three major stages in its pipeline.
By evaluating these systems on the coupled CPU-GPU ar-
chitecture, we find that existing static pipeline designs have
two major inherent limitations, which makes them incapable
of fully utilizing the coupled CPU-GPU architecture.

First, static pipeline designs can result in severe pipeline
imbalance and resource underutilization. IMKVs store a va-
riety of key-value objects, such as user-account status infor-
mation and object metadata of applications [3]. Consequently,
the workload characteristics of IMKVs tend to have very high
variance. For instance, the GET ratio in Facebook ranges
from 18% to 99%, and the value size ranges from one byte
to thousands of bytes [3]. Such highly variable workloads
may result in a significant difference in the execution time
of each pipeline stage. As a result, an IMKV system with a
fixed pipeline partitioning scheme can suffer severe pipeline
imbalance, resulting in suboptimal performance for certain
workloads. On the other hand, in an imbalanced pipeline, the
processor that is in charge of the pipeline stage with a lighter
workload becomes idle when waiting for other stages with
heavier workloads. Both the compute and memory resources
would be underutilized during the idle time.

Second, the static pipeline designs fail to efficiently allocate
workloads to appropriate processors. As throughput-oriented
processors, GPUs are good at processing a large batch of
requests to improve resource utilization. In the static pipeline
design, we find that a large portion of GPU’s execution time is
spent on processing a small amount of index update operations
(i.e., Insert and Delete) with read-intensive workloads, which
makes up almost half of the GPU execution time in Mega-KV.

To address those inefficiencies and limitations, we propose
DIDO, an IMKYV system with dynamic pipeline executions
on coupled CPU-GPU architectures. Unlike the systems on
discrete CPU-GPU architectures, both the CPU and the GPU
in the coupled architecture are able to access all the data
structures and key-value objects, and the cost of data communi-
cation between processors becomes extremely low. DIDO takes
advantage of these features to dynamically adjust the pipeline
partitioning at runtime. With a cost model guided adaption
mechanism, the system delivers high CPU/GPU resource uti-
lization and more balanced pipelines by dynamically adopt-
ing the optimal pipeline partitioning scheme for the current
workload, flexibly assigning index operations to appropriate
processors, and work stealing between the CPU and the GPU.

This paper makes the following main contributions: (1) By
evaluating the existing GPU-based IMKV systems on coupled
CPU-GPU architectures, we have identified the inefficiency of
static pipeline designs in handling diverse workloads and in
taking advantage of the coupled CPU-GPU architecture. (2)
We have proposed DIDO, an in memory key-value store sys-
tem with Dynamic plpeline executions for Diverse wOrkloads.
With a cost model guided adaption mechanism, DIDO is able
to dynamically adapt to different workloads by balancing its
pipeline at runtime. (3) Based on DIDO, we build an IMKV
system on an AMD Kaveri APU for evaluation. Our experi-
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Fig. 1. A10-7850K APU Architecture

ments have shown the effectiveness of the dynamic pipeline
execution in achieving significant performance improvement
over the state-of-the-art system designs on the coupled CPU-
GPU architecture.

The road map of this paper is as follows. Section II
introduces the background and motivation of this research.
Section III lists the major techniques of DIDO and shows its
framework, and the cost model is introduced in Section IV.
The system performance is evaluated in Section V. Section VI
reviews related work, and Section VII concludes the paper.

II. BACKGROUND AND MOTIVATIONS
A. Coupled CPU-GPU Architectures

Heterogeneous CPU-GPU architectures fit for accelerating
applications with different computation needs. In discrete
CPU-GPU architectures, data for GPU processing should be
transferred to the GPU memory via PCle bus, which is con-
sidered as one of the largest overhead for GPU execution [4].
The coupled CPU-GPU architecture integrates a CPU and a
GPU into the same chip, where the two processors are able
to share the same physical memory. As an example, Figure 1
sketches the architecture of the AMD A10-7850K Kaveri APU.
The APU integrates four CPU cores and eight GPU compute
units on a chip. As a significant advancement over previous
products, Kaveri APUs first support heterogeneous Uniform
Memory Access (hUMA). hUMA provides three new fea-
tures, including unified memory address space, GPU-supported
paged virtual memory and cache coherency. Cache coherency
guarantees that the CPU and the GPU can always have an up-
to-date view of data [5]. Therefore, the two processors are now
able to work on the same data at the same time with negligible
costs. This offers a totally different way of building systems,
as the architecture not only removes the need of explicitly
transferring data between the two processors, but also makes
the processors capable of performing fine-grained cooperation.

Although the host memory shared by the integrated GPU
has lower memory bandwidth than that of discrete GPUs,
memory intensive workloads such as in-memory key-value
stores are still able to benefit from the GPU for its massive
number of cores and the capability of hiding memory access
latency. With the advanced memory sharing capability and
high performance-price ratio, we believe the coupled CPU-
GPU architecture is a promising direction for building efficient
IMKYV systems.

B. State-of-the-Art GPU-Accelerated IMKVs

The workflow of query processing on an IMKV node
is as follows. Firstly, packets are processed in the TCP/IP
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stack, then queries in the packet are parsed to extract the
semantic information. Three types of queries, i.e., GET, SET,
and DELETE, serve as the interface between IMKV and
clients. If a GET query is received, the key is looked up in
the index data structure to locate its value, then the value is
sent to the requesting client. In current implementations such
as [1], [6], [7], key comparison is needed, as small and fixed-
length key signatures are stored in the index data structure
to improve performance. If a SET query is received, memory
is allocated for the new key-value object, or an existing key-
value object is evicted to store the new one if the system does
not have enough memory. For a DELETE query, the key-value
object is removed from both the main memory and the index
data structure. For processing queries, three types of index
operations are performed on the index data structure, which are
Search, Insert, and Delete. Search operations are performed for
all GET queries to locate the values, and the index of a new
object is added with an Insert operation. For evicted or deleted
objects, their indexes are removed with Delete operations.

State-of-the-art systems Mega-KV [1] and
MemcachedGPU [2] utilize CPU-GPU heterogeneous
architectures to improve the efficiency of IMKVs. Because
the architecture characteristics of CPUs and GPUs are
different, they are only efficient for performing specific
tasks [8]. Consequently, Mega-KV and MemcachedGPU
both adopt a pipelined model for query co-processing, where
CPUs and GPUs are in charge of different pipeline stages.
Figure 2 shows their pipelines, where the query processing is
partitioned into three main parts: Network Processing, Index
Operation, and Read & Send Value. Both systems adopt static
pipeline designs. Different with Mega-KV, MemcachedGPU
utilizes GPUDirect to directly DMA packets to the GPU
memory, and it has only two pipeline stages. In the following
of this paper, we focus on Mega-KV as the state-of-the-art
system as it achieves the highest throughput.

The main idea of Mega-KV is to utilize GPUs to break
the bottleneck caused by the random memory accesses in
index operations. In Mega-KV, key-value objects are stored
in the host memory, while a cuckoo hash table in the GPU
memory serves as its index data structure. Due to the high PCI-
e data transfer cost, index operations are processed by GPUs,
and tasks such as reading key-value objects are performed on



Network Processing M Index Operation B Read & Send Value |

L

8 B Key, 16 B Key, 32 B Key, 128 B Key,
8 B Value 64 B Value 512B Value 1024 B Value

Execution Time
(microsecond)
N @
o O

o

Fig. 4. Execution Time of Mega-KV Pipeline Stages on Coupled Architec-
tures. (95% GET 5% SET, the key popularity follows a Zipf distribution of
skewness 0.99)

CPUs. Figure 3 shows the architecture of Mega-KV. Mega-
KV implements multiple pipelines to take advantage of the
multicore architecture. In each pipeline, three types of threads
are in charge of three pipeline stages, respectively. Receiver
and Sender threads handle Network Processing and Read &
Send Value, respectively. A Scheduler thread launches GPU
kernels periodically to perform index operations.

C. Evaluations of GPU-based IMKVs on APU

To assess if current IMKV system designs are able to well
utilize coupled CPU-GPU architectures, we evaluate Mega-
KV on an AMD A10-7850K APU. Mega-KV is originally
implemented in CUDA, and we port it to OpenCL 2.0 to run
on the APU. More detailed experimental setup can be found
in Section V. In the following, we present our major findings.

1) Inefficiency in Handling Diverse Workloads: In pro-
duction systems, different applications of IMKVs have huge
variations in terms of GET/SET ratio, request sizes and rates,
and usage patterns. Facebook lists five different Memcached
workloads, where the GET ratio ranges from 18% to 99%;
the value size ranges from one byte to tens of thousands of
bytes; key popularity varies significantly. In the workload that
stores user-account status information (USR), it has very small
value size (2 bytes) [3]. On the other hand, in the workload
which represents general cache usage of multiple applications
(ETC), the value size distributes very widely where the number
of values with sizes under 1,000 bytes is almost the same
with that between 1,000 bytes and 10,000 bytes. Furthermore,
there are traffic spikes in production systems. The spikes are
typically caused by a swift surge in user interest on one topic,
such as major news or media events, or it can be caused by
operational or programmatic causes [3]. For instance, when
machines go down, keys will be redistributed with consistent
hashing [9], which may change the workload characteristics of
other IMKYV nodes.

We firstly evaluate the balance of Mega-KV pipeline with
different workloads. Figure 4 shows the measured execution
time for all the pipeline stages with four data sets. In the
experiments, the maximum execution time of all pipeline
stages is controlled within 300 microseconds with the peri-
odical scheduling technique in Mega-KV. Because the random
memory accesses involved in accessing key-value objects is the
bottleneck of Mega-KV, the execution time of the third stage
(Read & Send Value) equals to 300 microseconds. Ideally, a
balanced pipeline has all the stages with the same execution
time so that all processors can be fully utilized. The execution
time of Network Processing, however, only ranges around 25-
42 microseconds. For the 8-byte-key workload, the execution
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time of Index Operation is 174 microseconds. When the key-
value size grows larger, larger number of memory accesses are
demanded in Read & Send Value. Consequently, fewer queries
can be processed within 300 microseconds. As the size of key-
value objects has no impact on the execution time of Index
Operation, it dramatically drops to 97 microseconds due to
the smaller batch size. In these experiments, the pipeline of
Mega-KV is extremely imbalance for all the workloads.

To understand the impact from the imbalanced pipeline,
we measure the GPU utilization of Mega-KV in Figure 5.
For all the four workloads, the GPU is severely underutilized
due to the imbalanced pipeline. For small key-value sizes, the
GPU utilization reaches up to 51%, but it drops to only 12%
when the key-value size grows larger. There are two main
reasons that result in such low GPU utilization. First, as the
load of other pipeline stage is much heavier than that of Index
Operation, GPUs become idle when waiting for other pipeline
stages. Second, GPUs are of low efficiency when the number
of queries in a batch is small.

2) Inefficiency of GPUs in Processing SET Queries:
Figure 6 depicts the normalized GPU execution time of
Search, Insert, and Delete operations of Mega-KV with a read-
dominant workload. The horizontal axis indicates the batch
size of Insert operations, where there will be the same number
of Delete operations and 19 times Search operations (95:5) in
the batch. This is because, when the system does not have
enough memory, a SET query needs to evict an existing key-
value object to store the new object. Consequently, an Insert
operation and a Delete operation are generated for the new
object and the evicted object, respectively.

As shown in Figure 6, although both the Insert and Delete
operations take less than 5% of the total number of index
operations, they take 26.8% and 20.4% of the overall execution
time on average, respectively. The reason is that GPUs are
extremely inefficient at handling small batch of jobs, as the
large number of cores would become idle. As a result, the
GPU spends as high as 35%-56% of its time in processing
these two types of index operations. However, due to the static
pipeline design of Mega-KV, all index operations have to be
performed by GPUs. Consequently, such static pipeline designs
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cause inevitable performance slowdown on index operations
with different computational requirements.

3) Summary: The main reason for the inefficiency of exist-
ing GPU-based IMKYV system designs on coupled CPU-GPU
architectures is that a fixed pipeline design cannot be optimal
for all workloads. Although Mega-KV is able to immediately
utilize the sharing of the memory space and avoids PCl-e
data transfer in the coupled CPU-GPU architecture, its static
pipeline design still causes pipeline imbalance and severe
resource underutilization for diverse workloads.

As both the CPU and the GPU can directly access the
index data structure and the key-value objects simultaneously,
either of them can be in charge of any tasks in the workflow
of key-value query processing. This can lead to a more
balanced system pipeline if it is adjusted according to the
workload. Still, there are a number of challenges to well utilize
the architecture. First, the pipeline design should be able to
adapt to diverse IMKV workloads. In production systems,
the workload characteristics of every key-value store system
can be of huge difference, let alone they are changing over
time. Second, there lacks an effective mechanism to find the
optimal pipeline configuration for a workload. The key-value
store workload can be different in many terms, including key-
value size, GET/SET ratio, and key popularity. Finding the best
system configuration for a workload needs to consider various
factors in workloads and architectures.

III. DIDO DESIGN

We propose DIDO, an IMKV system with its execution
pipeline dynamically adapted to workloads to achieve high
throughput. In this section, we introduce the framework and
the major techniques adopted by DIDO.

A. DIDO: An Overview

The major design of DIDO is to utilize fine-grained coop-
eration between the CPU and the GPU to dynamically adapt
the pipeline to the workload. Figure 7 sketches the framework
of DIDO. DIDO consists of three major components: Query
Processing Pipeline, Workload Profiler and APU-Aware Cost
Model. Workload Profiler profiles workload characteristics,
and utilizes a Cost Model to guide the selection of the optimal
pipeline partitioning scheme. According to the scheme, DIDO
remaps tasks to the processors to rebuild the pipeline.

The Cost Model and Workload Profiler are designed to
be lightweight in order to reduce runtime overhead. The Cost
Model only requires the Workload Profiler to profile a few
workload characteristics of each batch, including GET/SET
ratio and average key-value size. They can be implemented
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with only a few counters. With the profiled information of
the executed batch, the Cost Model is able to get the optimal
configuration for the coming batch of workload (Section IV).
According to the configuration, DIDO balances its pipeline
with a set of techniques, including dynamic pipeline partition-
ing, flexible index operation assignment, and work stealing.
Workload Profiler profiles the workload characteristics for each
batch of queries. Pipeline adaptation occurs only when the
workload characteristics of the current batch have a substantial
change compared with those of the previous batch. In our
implementation, the upper limit for the alteration of workload
counters is set to 10%. If the change exceeds the upper
limit, DIDO uses the cost model to calculate the new pipeline
configuration for the coming queries.

To allow more flexible and more balanced pipelines, we
partition the workflow of a key-value store system into eight
fine-grained tasks, which are the granularity for pipeline map-
ping. (1) RV: receive packets from network; (2) PP: packet
processing, including TCP/IP processing and query parsing; (3)
MM: memory management, including memory allocation and
eviction; (4) IN: index operations, including Search, Insert, and
Delete; (5) KC: key comparison; (6) RD: read key-value object
in the memory; (7) WR: write response packet; and (8) SD:
send responses to clients. Corresponding to Mega-KV’s design,
our fine-grained tasks (1)RV—(3)MM correspond to Network
Processing of Mega-KV; (5)KC—(8)SD correspond to Read &
Send Value of Mega-KV. It is worth noting that when RD and
WR are assigned to different pipeline stages, the task RD reads
the key-value objects in the memory (random read) and writes
them into a buffer sequentially. As a result, the task WR on the
other stage needs to read the key-value objects in the buffer
to construct responses. This transfers random memory read of
key-value objects into sequential read in the task WR.

DIDO changes its pipeline by assigning the tasks to differ-
ent pipeline stages. As an example, Figure 8 shows a possible
pipeline change in DIDO. The pipeline I adopted by DIDO
only assigns index operations to the GPU. After the workload
changes, such as smaller key-value size or lower GET/SET
ratio, the GPU can be underutilized with the current pipeline.
To address the pipeline imbalance, DIDO is capable of moving
tasks (e.g., KC and RD) to the GPU to form a new pipeline,
which becomes pipeline 2 in the figure.

B. Major Optimization Techniques

DIDO balances its pipeline with three major techniques:
(I) dynamic pipeline partitioning, (II) flexibly assigning index
operations between the CPU and the GPU, and (III) work
stealing. These techniques aim at making a balanced system
pipeline, where dynamic pipeline partitioning adjusts the load
of each pipeline stage; and flexible assigning index operations
to the CPU/GPU can dramatically enhance its utilization. After
the two techniques are applied, the CPU and the GPU are still



able to perform work stealing to further improve the utilization
of the CPU and the GPU.

1) Dynamic Pipeline Partitioning: Static pipeline execu-
tion causes severe resource underutilization and pipeline im-
balance. To adapt to a workload, DIDO dynamically balances
its pipeline by assigning the eight tasks to the CPU or the
GPU. We implement the tasks as independent functions. Tasks
can be placed in the same stage by performing function calls.
When applying a new pipeline, as queries being processed may
have gone through some of the pipeline stages, their following
processing flows should not be changed. Therefore, due to the
batch processing of GPUs, the pipeline configuration is applied
to each batch of queries. In DIDO, we embed the pipeline
information into each batch to make all pipeline stages know
how to process the queries in it. This mechanism ensures that
queries can be handled correctly when the pipeline is changed
at runtime.

We find that the tasks in query processing are not per-
formance independent of each other, where some adjacent
tasks achieve higher performance when they are placed in the
same pipeline stage. We call this phenomenon as task affinity.
Consequently, the overall execution time of a query can be
different after moving a task to another pipeline stage. For
instance, KC and RD have an affinity. KC needs to access key-
value objects to compare the keys, which fetches the objects
into the cache. Therefore, placing RD in the same stage with
KC would be much faster than performing them on different
processors, where the data has to be read into the cache
again with a non-trivial overhead. In DIDO, rask affinity is a
major concern in determining the optimal pipeline partitioning
scheme.

In a traditional pipeline design, pipeline stages should be
balanced for the highest performance, i.e., the execution time
of all pipeline stages should be as close as possible. However,
this assumption applies only if the execution time of a task is
constant when being placed in different pipeline stages, and
it does not hold for the pipeline of a key-value store system
with task affinity. This is because, although moving a task to
another stage may lead to less disparity in the processing time,
the overall throughput may also drop due to the inefficient
placement of tasks. Our cost model takes task affinity between
tasks into consideration, where the overall throughput is the
only criterion for choosing the optimal pipeline partitioning
scheme.

2) Flexible Index Operation Assignment: As shown in
Figure 6, where the 5% Insert and Delete operations take
up to 58% of the overall GPU execution time, GPUs are
inefficient in processing small batches of Insert and Delete
operations. By utilizing the coupled CPU-GPU architecture,
DIDO is capable of making the entire system more efficient
by assigning different index operations to appropriate proces-
sors. As the GET/SET ratio and the load of each pipeline
stage vary with different workloads, a fixed index operation
assignment policy may also result in pipeline imbalance for
certain workloads. We choose to adjust the assignment of index
operations according to the workload at runtime. To facilitate
flexible index operation assignment in DIDO, we treat Search,
Delete, and Insert operations as three independent tasks. Their
assignments in the pipeline are determined together with the
remaining seven tasks, except that they can be placed in

arbitrary orders. According to the cost model in Section IV,
the optimal index operation assignment policy and pipeline
partitioning scheme can be derived for a workload.

When the index data structure is accessed concurrently,
there can be conflicts between the operations. In the current
coupled architecture, although memory sharing occurs at the
granularity of individual load/store into bytes within OpenCL
buffer memory objects, loads and stores may be cached [10].
Built-in atomic operations can be used to provide fine-grained
control over memory consistency, e.g., atomic_store (WRITE),
atomic_load (READ), and atomic_compare_exchange (CAS).
We use atomic_compare_exchange for Insert and Delete op-
erations to avoid write-write conflicts, and Search operations
employ atomic_load to read up-to-date data.

3) Work Stealing: Although the dynamic pipeline partition-
ing and index operation assignment help improve the overall
system throughput, imbalance still happens between the CPU
and the GPU for various reasons, such as the coarse granularity
of the eight tasks as well as errors in the cost model prediction.
We propose to adopt work stealing [11] between the CPU
and the GPU to further improve resource utilization. Work
stealing can be effectively adopted in DIDO for three main
reasons. First, each query is independent of each other, thus
queries can be processed in parallel. Second, the sharing of
the same memory space in the coupled CPU-GPU architecture
makes the overhead of communication and synchronization
between the CPU and the GPU extremely low. Third, as each
pipeline stage processes a batch of queries in parallel, queries
are stored in a buffer and are processed in a FIFO order. The
above system and architecture features facilitate work stealing
between compute units.

Because the threads in a GPU wavefront are always sched-
uled for execution simultaneously, they may process multiple
queries in parallel. With work stealing, there can be a situation
that a wavefront is going to process a set of queries, where
parts of them have been processed by the CPU. Threads in
both the CPU and the GPU have to check if a query has
already been processed or is being processed, and mark the
query for processing if it is not. Instead of stealing one query
at a time, we propose to steal a set of queries to amortize
the synchronization overhead. In DIDO, both the CPU and the
GPU grab a set of queries to process. The best granularity for
the number of queries in a set should be the thread number of
a wavefront, which is 64 in APUs. We implement an array of
tags for the CPU-GPU cooperation, where tag ¢ represents the
state of queries from 64 x i to 64 x (i + 1) — 1 in the batch.
The tags are updated with atomic operations when a processor
is going to grab the corresponding queries for processing.

IV. CosT MODEL

Choosing the optimal system configuration for a workload
is a critical task for DIDO, especially with many options and
tuning parameters. In this section, we develop a cost model
to estimate the execution time of each pipeline stage on the
coupled architecture, and then use the cost model to determine
the best system configuration for a workload.

The evolution of the coupled CPU-GPU architecture brings
new challenges for building a cost model. Different with the
cost models for database operations [12], [13], our model goes



TABLE 1. NOTATIONS IN THE COST MODEL

Notation Description

XPU CPU or GPU

N The number of queries in a batch

F F € {RV, PP, MM, IN, KC, RD, WR, SD}

II},(PU The number of instructions of task F on XPU

T?PU The execution time of task F on XPU

N l{y The number of memory accesses for each query in task F

Ng The number of cache accesses for each query in task F

Lf/lp U The access latency between XPU and memory

LC.P v The access latency between XPU and L2 cache
The task set of a pipeline stage

Tj(PU The execution time of task set A on XPU

TXV The execution time of task set A with work stealing enabled

IPCxpu The peak instruction per cycle on XPU

uﬁg f]N o Performance interference to the XPU with Nc memory accesses
on the CPU and NG memory accesses on the GPU

Trmaz The maximum execution time of all pipeline stages

S The system throughput

beyond existing studies in the following aspects due to the
interplay between dynamic pipeline partitioning and diverse
IMKYV workloads. First, the CPU and the GPU on the coupled
architecture can cause serious performance interference to
each other [14], which makes the performance prediction for
any single compute unit inaccurate. Second, two adjacent
tasks in query processing may have task affinity, where the
performance of the second task can be significantly improved
as the data to be accessed has been read into cache by its
previous task. As a result, depending on whether its previous
task is placed in the same pipeline stage, the execution time
of a task may change dramatically. Third, with work stealing,
the CPU and the GPU cooperate to process the same batch of
queries, where the work partitioning is determined at runtime.
All these factors need to be considered in the cost model.

A. The Abstract Model

In the model, the execution time of a task is estimated to
be the sum of its computation time and memory access time.
The computation time is derived based on the theoretical peak
Instruction Per Cycle (IPC) and the number of instructions.
The estimation of memory time considers task affinity and key
popularity. Table I lists the notations in our cost model.

For the computation time, we count the number of instruc-
tions running on devices with the same method in [12], and
calculate the total computation time of instructions according
to the theoretical peak instructions per cycle (IPC) of the
processor. The memory access time is estimated according to
the cost of memory access and cache access. We estimate the
execution time of task F on XPU with Equation 1.

XPU
I

TXPU _ N
F % (IPCXPU

+ NM x L3PV + NE x LEPYY (1)

If a task set A = {F}, F>, ..., F},} is assigned to a pipeline
stage, its execution time on XPU should be the sum of the
execution time of all the tasks in it. However, its performance
can be interfered by other compute units due to the competition
for shared resources, where GPUs can have a higher impact
to the performance of CPUs [14]. We use a factor puy!'y .
to estimate the performance influence from the other compute
unit, and develop a microbenchmark to measure this factor
for different situations. Basically, we generate No memory
accesses on the CPU and Ng memory accesses on the GPU

to measure the value of u "%, where N¢ and Ng can be

estimated with our approach in Section IV-B. The execution
time of the task set A on XPU is estimated with Equation 2.

n

XPU _ X PU XPU
T = E T, X UNe, Ng

i=1

(Fied) (2

If the GPU that is assigned with task set A becomes the
bottleneck of the system, CPU threads will perform work
stealing after they complete their own tasks. Suppose the CPU
thread needs to process task set B before work stealing, the
processing time of task set A with work stealing can be derived
with Equation 3.

TEPU X (TEPU —TgPU)

T,XVS :TgPU—f—
TEPU+TEPU

3

From Equation 2 and Equation 3, we can estimate the
execution time of each pipeline stage with a batch size of
N. DIDO adopts the periodical scheduling mechanism of
Mega-KV in order to achieve a predictable latency. The
scheduling mechanism limits the maximum execution time of
each pipeline stage to be within a pre-defined time interval
1. According to the required latency, the maximum number of
queries in a batch, N, can be calculated by limiting 77,4, < 1.
Then we calculate the system throughput S with S = N/T,,04
(4). The goal of our cost model is to find the optimal system
configuration that achieves the highest throughput.

B. Adopt the Cost Model in DIDO

We first apply the cost model to the eight fine-grained tasks
by considering the couple CPU-GPU architecture as well as
workload characteristics, followed by the algorithm for finding
the optimal configuration.

Since RV and SD are fixed to run on the CPU, we use
a simple profiling-based approach to estimate their execution
time. Specifically, we use microbenchmarks to measure the
unit cost of each task execution in RV and SD, and then
estimate the total cost to be the unit cost multiplying by the
batch size V.

For the rest six tasks, the estimation is more complicated,
due to the dynamic pipeline partitioning and workload charac-
teristics. In the cost model, values such as N and N& depend
on workload characteristics and implementation details. We
estimate N and N& by either theoretical calculation or
microbenchmarks. In IMKYV systems, two main data structures
are subject to intensive memory accesses in query processing:
the index data structure and key-value objects.

Index Data Structure. DIDO adopts a cuckoo hash table
as its index data structure [15]. For cuckoo hashing with n hash
functions, each Search or Delete operation theoretically takes
an average of (}_1_,4)/n random memory accesses (N} =
(X" i)/n, Ng = 0). Since the amortized cost of an Insert
operation is O(1) [15], we calculate the average number of
accessed buckets for an Insert operation at runtime to estimate
its memory cost.

Key-Value Objects. For an access to a key-value object
of size L, we estimate the memory cost as one memory
access (NM = 1) and [L/C*PU | L2 cache accesses (N& =
[L/CXPU —17), where CXFU is the cache line size of XPU.



This is because current processors are able to prefetch data
into the cache by recognizing the access pattern, which turns
the expensive memory accesses into low-cost cache accesses.
Therefore, besides the first access to an object is taken as a
memory access, the cost of accessing the rest of the object, i.e.,
the access to the following cache lines, is estimated as cache
accesses. NM and N§ can be influenced by two critical factors
from the workload characteristics and the pipeline partitioning
scheme.

The first factor is task affinity. If a task and its affinity task
are placed in the same pipeline stage, the number of memory
accesses and L2 cache accesses are different. For instance, if
KC is placed in the same pipeline stage with RD, the memory
cost of RD is estimated as [ L/CXPU7 L2 cache accesses. This
makes a huge difference for small key-value objects, because
the huge memory access latency would take a large portion
in the overall latency. In Equation 2, all tasks except the first
one in a pipeline stage estimate memory cost by taking rask
affinity into consideration.

The second factor is key popularity. For a skewed key
popularity, we suppose that the CPU cache is able to cache
the most frequently visited key-value objects. According to
the average key-value size and the cache size, the number of
key-value objects that are cached can be calculated. Because
skewed workloads are well modeled by the Zipf distribu-
tion [16], we are also able to calculate the access frequencies
of all keys through Zipf’s Law. Then we estimate the portion
of memory accesses that are turned into cache accesses as
P = ZZL:l fi/ le fj, where f; is the access frequency
of the ith key-value object when sorted by frequency in
descending order, n’ is the number of cached key-value objects,
and n is the total number of key-value objects. Therefore,
NM and N§ should be recalculated as (1 — P) x NM
and P x NM + N¢ in estimating the memory access cost,
respectively.

In Zipf’s Law, the skewness of a workload is needed in
calculating the access frequency of a key. At runtime, we
estimate the skewness with the sampling method in [17], which
calculates the skewness according to the access frequencies of
sampled keys and their mean frequency. As the overhead of
maintaining the frequencies of all accessed keys is huge, we
develop a lightweight mechanism for estimation. A counter
and a timestamp are added to each key-value object, which
are used to count its access frequency and denote a new
sampling procedure, respectively. When accessing a key-value
object, the counter is initialized to 1 if its timestamp does not
match the timestamp of the current sampling procedure, or is
increased by one if matches. Within a sampling time interval,
the total number of accessed objects and their total frequencies
are recorded to calculate the mean frequency. By reading the
frequencies of the accessed objects in the next time interval,
the skewness can be calculated according to [17].

Finding the optimal pipeline configuration. In DIDO,
we search the entire configuration space to obtain the optimal
configuration plan. Since we only have a limited number
of pipeline partitioning schemes for the eight fine-grained
tasks and a limited number of index operation assignment
policies, the cost model estimates the system throughput for
all the configurations and chooses the one with the highest

throughput. The runtime overhead of this cost estimation is
very small, as observed in our experiments.

V.  EXPERIMENT
A. Configurations and Setups

Hardware and Software Configurations. We conduct the
experiments on a PC with an AMD A10-7850K Kaveri APU. It
consists of four 3.7 GHz CPU cores and 8 GPU compute units,
where each GPU compute unit has 64 720MHz shaders. The
processor has an integrated memory controller installed with
4 x 4 GB 1333 MHz DDR3 memory. The peak computing
power of the CPU and the GPU in the APU are 118 GFLOPS
and 737 GFLOPS, respectively. The 3DMark' score of the
APU is 3500, and the CinebenchR152 score of the APU is
318.

An Intel 82599 10 GbE NIC is installed for network
1/0, and IXGBE 4.3.13 is used as the NIC driver. All the
experiments are performed by feeding queries generated from
another machine to the in-memory key-value store via network
with the UDP protocol. To avoid network I/O becoming the
bottleneck in the system, queries and their responses are
batched in an Ethernet frame as many as possible. DIDO is
programmed with OpenCL 2.0. The operating system is 64-bit
Ubuntu Server 15.04 with Linux kernel version 3.19.0-15.

Workloads. We adopt the major workloads of YCSB
benchmark [18]. As YCSB is unable to alter the key and value
size, our benchmark is implemented to be capable of evaluating
workloads with different key-value sizes, key distributions, and
GET/SET ratios.

In the benchmark, there are four data sets with different
key-value sizes: K8) 8 bytes key and 8 bytes value; K16) 16
bytes key and 64 bytes value; K32) 32 bytes key and 256 bytes
value; and K728) 128 bytes key and 1024 bytes value. Those
data sets are commonly used in evaluating IMKYV systems [1],
[7], [6], [19]. The APU we used for evaluation can only
allocate 1,908 MB shared memory between the CPU and the
GPU (can be queried by OpenCL interface clDeviceGetInfo()).
In the experiments, we store as many key-value objects as
possible with an upper limit of the data set size to be 1,908
MB. Therefore, the number of key-value objects stored in
the system varies according to the key-value size. We find
that the shared memory size has little impact to the system
performance when it is far beyond the size of the CPU and the
GPU cache, because almost all data accesses become random
memory accesses.

Two key distributions, uniform and skewed, are evaluated.
The uniform distribution uses the same key popularity for all
queries. The key popularity of the skewed workload follows a
Zipf distribution of skewness 0.99, which is the same with the
YCSB workload.

The queries have varied GET/SET ratio: 50% GET (50%
SET), 95% GET (5% SET), and 100% GET. They correspond
to YCSB workloads A, B, and C, respectively. With four data
sets, two key distributions, and three GET/SET ratios, there
are a total of 24 workloads in the benchmark.

Thttps://www.3dmark.com/
Zhttps://www.maxon.net/en/products/cinebench/
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Fig. 10. Comparison between DIDO and the Optimal Configuration

We use a notation with three components to represent a
workload, which indicate the key-value size, the GET ratio,
and the key distribution, accordingly. For instance, K32-G95-
U means a workload with the K32 data set (32 bytes key
and 256 bytes value), 95% GET(5% SET), and a uniform key
distribution (the skewed distribution is represented by ).

Comparison. We take Mega-KV as a state-of-the-art
IMKYV system for comparison. We use Mega-KV (Discrete) to
represent its original implementation on discrete architectures,
while Mega-KV (Coupled) denotes its OpenCL implementa-
tion on the coupled architectures. Mega-KV (Coupled) also
takes advantage of memory sharing in the APU architecture to
avoid copying data.

Latency. In the experiments, the average system latencies
of DIDO and Mega-KV are always limited within 1,000
microseconds (us) with the periodical scheduling policy [1].
Therefore, DIDO has the same latency as Mega-KV when
comparing their throughput.

B. Evaluation of the Cost Model

The cost model plays a key role in choosing the pipeline
and index operation assignment policy for DIDO. In this
subsection, we first evaluate the accuracy of the cost model
in estimating the performance, then we show the effectiveness
of our cost model in predicting optimal system configurations
for diverse workloads.

We use error rate as the metric to evaluate the accuracy of
the cost model. It is calculated as (Tprpo — Thviodel)/TD1DOS
where Tprpo is the measured throughput of DIDO and
T'vroder 18 the estimated throughput. As shown in Figure 9,
the cost model has a maximum error rate of 14.2% and an
average error rate of 7.7%. Overall, our cost model predicts
the performance well for all workloads.

To verify the decisions made by the cost model, we evaluate
the performance of all possible pipeline mappings and index
operation assignment policies in DIDO. We confirm that the
pipelines and index operation assignment policies chosen by
the cost model are optimal for 17 workloads. For the rest 7
workloads, although DIDO chooses different work partitioning

8 B Key, 16 B Key, 32 B Key, 128 B Key,
8 B Value 64 B Value 256 B Value 1024 B Value
4
o
5 3
3
o}
Q 2
]
1
0 e o o T o o o o o o o o o o o o o
00,50, %0, %0, 0. S b B o e e e % % 1R % W W gy Ty iy iy ey ey
2, % 8, %02, %0, %, % s Wy % 0, %%, % % Oy %6, Gy, G Gy G, %,
e Re 0TS O, By N0 R R R0 By By N B B e, B B, s 0, B
Fig. 11. Throughput Improvement of DIDO over Mega-KV (Coupled)

schemes, the throughput of DIDO is very close to the through-
put of the optimal configurations. Figure 10 compares the
normalized throughput of DIDO and the optimal configurations
for those 7 workloads. Error bars are used to show the range of
system throughput of all the possible pipeline configurations
normalized to that of DIDO, where the upper end of an error
bar shows the highest throughput of the optimal configuration,
and the lower end shows the lowest throughput. We have two
major findings. First, the average throughput of the optimal
configurations is only 6.6% higher than that of DIDO for the
seven workloads. Second, the system can suffer an order of
magnitude lower throughput if a poor configuration is adopted.
This shows the effectiveness of our cost model in choosing
system configurations.

C. Overall Comparison

System Throughput. Figure 11 shows the throughput of
DIDO for 24 workloads and compares it with that of Mega-KV
(Coupled). As shown in the figure, the throughput of DIDO is
up to 3.0 times higher than that of Mega-KV (Coupled). On
average, DIDO is 81% faster than Mega-KV (Coupled) for the
24 workloads.

These experiments show that, for all workloads, DIDO
outperforms Mega-KV (Coupled) by adapting its pipeline to
the workload. To gain a deeper understanding of the throughput
improvement of DIDO, we analyze the factors that make
impacts to the performance improvement of DIDO, including
key-value size, GET/SET ratio and key popularity. We compare
the pipeline configuration of Mega-KV and DIDO. Note, the
pipeline of Mega-KYV is static: [RV, PP, MM]cpu — [INlapu
— [KC, RD, WR, SD]cpu, where IN is processed by the GPU,
and the rest tasks are processed by the CPU.

Impact of Key-Value Size. As shown in the figure, the
performance improvements for the small key-value data sets
are much higher than those of the large key-value data sets.
On average, the throughput improvements for data sets K8 and
K16 are 166% and 95%, while the improvements for K32 and
K128 are 40% and 23%, respectively.

For small key-value data sets, the load of the last pipeline
stage in Mega-KV ([KC, RD, WR, SD]c pr) is extremely heavy
for the large number of memory accesses to key-value objects
involved in RD and WR. Compared with Mega-KV, DIDO
assigns tasks KC and RD to the GPU to balance the pipeline,
which becomes [RV, PP, MM\cpy — [IN, KC, RD]gpy —
[WR, SD]cpy. This pipeline partitioning scheme not only
significantly alleviates the load of the CPU, but also turns the
random memory accesses to key-value objects in the CPU into
sequential memory accesses by the separation of RD and WR.
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The performance improvement is lower for large key-value
data sets, because DIDO adopts the same pipeline partition-
ing scheme as Mega-KV for almost all the large key-value
workloads. The main reason is that the CPU is able to utilize
hardware prefetching to read large objects, which results in
limited benefits of separating RD and WR to turn the memory
accesses into sequential ones.

Impact of GET/SET Ratio. The average throughput im-
provement of DIDO over Mega-KV (Coupled) for 95% GET
(5% SET) workloads is 146%, while that for 100% GET and
50% GET workloads are 71% and 26%, respectively. The
improvements for 95% GET workloads are much higher than
other workloads, because both dynamic pipeline partitioning
and flexible index operation assignment are adopted for them.

For 95% GET workloads, DIDO achieves higher efficiency
by assigning all the Insert and Delete operations to CPUs
for processing. After the index operation assignment policy
is applied, the GPU has resources for being assigned with
more tasks. For instance, DIDO uses the following pipelines
for workloads with small key-value size K8 and KI6: [RV,
PP, MM]CPU — [IN, KC, RD]GPU — [WR, SD]CPU- These
schemes balance the entire pipeline and help to achieve much
higher throughput.

For 100% GET workloads, however, as all the index opera-
tions are Search operations, only dynamic pipeline partitioning
is applied (the chosen pipeline is the same as 95% workloads).
For most 50% GET workloads, only flexible index operation
assignment is adopted, where DIDO assigns Insert and Delete
operations to the CPU. Because there are lots of memory
operations brought by the 50% SET queries, i.e., memory
allocation and key-value object eviction, assigning more tasks
to the GPU would significantly degrade the performance of
the CPU due to the resource competition. Therefore, DIDO
chooses the same pipeline partitioning scheme as Mega-KV
for the 50% GET workloads. Still, the minor performance
improvement over Mega-KV (Coupled) is mainly achieved by
work stealing.

Impact of Key Popularity. The performance improve-
ments for uniform workloads and skewed workloads are 90%
and 71%, respectively. For skewed key distributions, as the
most frequently visited key-value objects are cached by the
CPU, there are a significantly smaller number of random
memory accesses in tasks RD and WR. As a result, the
competition for the shared memory resources is dramatically
alleviated. Therefore, the uniform workloads benefit more
than the skewed workloads on our techniques to balance the
pipeline.

We further study the CPU and GPU utilization of DIDO
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Fig. 14. Performance Improvement By Dynamic Pipeline

in Figure 12. For comparison, the four workloads used for
evaluation are the ones adopted in evaluating Mega-KV (Cou-
pled) in Figure 5. In DIDO, the GPU utilization is significantly
improved to 57% — 89%, which is 1.8 times higher than that
of Mega-KV (Coupled) on average. Moreover, DIDO also
improves the CPU utilization by an average of 43%, reaching
up to 79%. It shows that the dynamic pipeline executions
in DIDO is capable of significantly enhancing the hardware
utilization.

D. Validation of Major Techniques

Different workloads may benefit from different techniques.
In this subsection, we evaluate the three major techniques sep-
arately to show their effectiveness in improving the throughput.

1) Flexible Index Operation Assignment: To evaluate the
effectiveness of flexible index operation assignment, we fix the
pipeline partitioning to the one adopted by Mega-KV: [RV, PP,
MM]cpu — [INlgpu — [KC, RD, WR, SD]¢cpy. Figure 13
shows the speedup achieved by the technique for all 95%
GET and 50% GET workloads. The baseline for comparison
is assigning all index operations to the GPU.

As shown in Figure 13, the throughput is consistently
improved across 14 workloads by an average of 37% (at least
5%). The average performance improvement for 95% GET
workloads reaches 56%, while that for 50% GET workloads is
10%. For 50% GET workloads, the load of task MM becomes
heavier as huge amounts of memory management operations
are generated by the 50% SET queries. As a result, [RV, PP,
MM]cpy becomes the bottleneck of the system after it is
assigned with Insert and Delete operations. Therefore, there
is a disparity between the performance improvement for 95%
GET and 50% GET workloads.

2) Dynamic Pipeline Partitioning: Compared with Mega-
KV, DIDO chooses different pipelines for nine workloads.
Their performance improvements are shown in Figure 14.
For these workloads, the system performance with dynamic
pipeline is an average of 69% higher than that of Mega-KV
(Coupled). All these workloads are read intensive, either with
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100% GET or 95% GET. For 95% GET workloads, the load
of the GPU has been dramatically alleviated after the small
number of Insert and Delete operations are assigned to CPUs.
As a result, the GPU becomes capable of handling more tasks.

For a substantial number of workloads, we find that
assigning KC or RD to the GPU may degrade the overall
throughput even if the GPU is not the bottleneck. Through
detailed experimental analyses, we find that moving KC to
the GPU may even degrade the performance of its previous
pipeline stage on the CPU. There are two main reasons for this
strange phenomenon. One is the fask affinity between KC and
RD, and the other is the performance interference between the
CPU and the GPU. If RD and KC are performed on different
processors, they would compete for memory bandwidth. As a
result, the overall system performance can be degraded due to
the resource competition between the two processors.

3) Work Stealing: After configuring the system with flex-
ible index operation assignment and dynamic pipeline par-
titioning, work stealing is adopted to further improve hard-
ware utilization and system throughput. Figure 15 shows the
throughput improvement brought by work stealing for the 24
workloads. On average, work stealing improves the throughput
of DIDO by 15.7%. For workloads K8-G100-U and K8-G95-
U, GPU is the bottleneck of the system before work stealing
is applied, and CPU cores steal the jobs from the GPU to
balance the pipeline. For the rest 22 workloads, the CPU is
the bottleneck in the system.

For data sets K8 and K16, the average throughput improve-
ments with work stealing are 28% and 16%, respectively, while
the average improvements drop to 12% and 6% for data sets
K32 and KI28. This is because GPU becomes low efficient
for reading or writing large size data. As a result, the benefit
is limited for GPUs to perform tasks such as KC or RD on the
stolen jobs.

E. Comparison with Discrete CPU-GPU Architectures

We compare the performance between DIDO and Mega-
KV (Discrete) in Figure 16. The performance numbers of
Mega-KV (Discrete) are from its original paper [1], whose
platform is equipped with two Intel E5-2650 v2 CPUs and
two Nvidia GeForce GTX 780 GPUs. Since Mega-KV does
not report 50% GET performance, and the value size of 32-
byte key workloads is different, we compare the performance
on all other 12 common workloads.

We make the following points when comparing DIDO and
Mega-KV. DIDO always performs network I/O with the Linux
kernel in its evaluation, which overhead is huge. However,
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for 8-byte key workloads, Mega-KV (Discrete) employs high-
performance DPDK NIC driver for network I/O. For the rest
workloads with other key-value sizes, Mega-KV (Discrete) is
evaluated without network I/0O. The reason that DIDO does not
adopt DPDK is that the Intel-developed DPDK does not sup-
port AMD platforms for the specific Intel instructions involved.
Therefore, we adjust our experiments for DIDO to match
those of Mega-KV. Particularly, for 8-byte key workloads,
both Mega-KV and DIDO perform network I/O. For other
workloads, both Mega-KV and DIDO read packets from local
memory. Thus, after omitting network I/O for those workloads,
the throughput of DIDO in Figure 16 is 3.3-5.4 times higher
than those in Figure 11.

Performance comparison: Due to the superior performance
of the dedicated architecture, Mega-KV (Discrete) achieves
5.8-23.6 times higher throughput than DIDO. But, we argue
that our major contribution is NOT on the absolute per-
formance, but on the proposed techniques to improve the
performance on coupled architectures.

Price-performance ratio comparison: DIDO shows very
high price-performance ratios. Overall, the price of the pro-
cessors in Mega-KV (Discrete) is 25 times higher than that
of DIDO. Figure 17 compares their price-performance ratio,
where DIDO outperforms Mega-KV (Discrete) for all work-
loads by 1.1-4.3 times.

Energy efficiency comparison: We make back-of-envelope
calculation to estimate the power consumption of the proces-
sors in the systems. The Thermal Design Power (TDP) of the
APU is 95W, while that of Intel E5-2650 CPU and Nvidia
GTX 780 GPU are 95W and 250W, respectively. We show the
energy efficiency of DIDO and Mega-KV in Figure 18. For
8-byte key and 128-byte key workloads, the energy efficiency
of Mega-KV (Discrete) is 69%-225% higher than DIDO. For
16-byte key workloads, the energy efficiency of DIDO is 18%-
26% higher than Mega-KV (Discrete). It is still inconclusive
which system is more energy efficient.
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E. Other Evaluations

Impact to System Latency. Previous experiments measure
system throughput by controlling the average system latency
within 1,000 ps. With different system latency requirements,
the throughput of a heterogeneous key-value system may also
be different. In DIDO and other GPU-based IMKVs, the
system latency largely depends on the execution time of the
GPU for each batch. A smaller batch size would lead to a
lower processing time of each pipeline stage, therefore the
overall system latency drops. Moreover, the GPU throughput
would also drop for processing small batches. To show the
performance improvement of DIDO with different system
latencies, we limit the input speed to control the batch size.

We measure the throughput of DIDO and Mega-KV (Dis-
crete) with four representative workloads (K8-G50-U, K16-
G100-S, K32-G95-S, and K32-G50-U) by controlling the
average system latency within 600 wus, 800 ws, and 1,000
ws. The throughput improvements of DIDO are shown in
Figure 19. With 1,000 s system latency, DIDO improves the
system throughput by an average of 20%, and the average
improvements are 26% and 27% for 800 us and 600 us, re-
spectively. This denotes that DIDO is capable of achieving very
good throughput improvement with different system latency
configurations.

Dynamic Pipeline Adaption. We design an experiment to
measure the capability of DIDO in adapting to dyncamically
changing workloads. In the experiment, we choose two typical
workloads, K8-G50-U and K16-G95-S, which are generated
alternately for 3 milliseconds. Figure 20 shows the through-
put of DIDO that is profiled every 0.3 milliseconds. The
pipeline with the highest throughput for K8-G50-U is [RV, PP,
MM]cpy — [UNlgpyu — [KC, RD, WR, SD]c py, while the
optimal pipeline for K16-G95-S is [RV, PP, MM]cpu — [IN,
KC, RD]gpu — [WR, SD]cpy. As is shown in the figure,
the throughput won’t drop immediately when the workload
changes, because there are previous batches of queries in the
pipeline remaining to be processed. After that, the throughput

K16-G95-S K8-G50-U K16-G95-S K8-G50-U

* oy ; | ;

Throughput (MOPS)

0 1.5 3 45 6 7.5 9 105 12 135 15

Time (microsecond)
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drops dramatically due to the mismatch between the pipeline
and the workload. DIDO automatically adjusts its pipeline
according to the new workload, and is able to recover to the
highest throughput with approximately one millisecond.

We develop a stress test to evaluate DIDO with different de-
grees of workload fluctuation. The experiments are performed
by cyclically alternating the workload between K8-G50-U and
K16-G95-S. Figure 21 shows the speedup of DIDO over Mega-
KV (Coupled) with different alternate cycles, from 2 ms to 256
ms. As shown in the figure, the speedup is only 1.58 for the
2 ms cycle, and it rises to 1.79 for cycles more than 64 ms.
Because, as shown in Figure 20, DIDO needs around 1 ms
to adjust its pipeline configurations to recover to the highest
throughput. The recovering time may lead to an impact to
the performance improvement, but its cost becomes negligible
when the fluctuation of the workload is gentle. According to
the previous study in Facebook [3], the workload of IMKVs
will not suffer such frequent and radical changes as in our
experiments. Therefore, the dynamic adaption mechanism in
DIDO is sufficient in enhancing the system throughput of
production systems.

VI. RELATED WORK

Many research have been conducted on building high-
performance IMKVs. Some studies [6], [19], [20] focus on de-
signing efficient index data structures for concurrent access on
multi-core CPUs. For instance, MemC3 [6] and CPHash [20]
develop highly optimized hash tables for multicore CPUs,
and Masstree [19] designs a high-performance trie-like con-
catenation of B+ trees for key-value stores. Work such as
MICA [7] and Pilaf [21] improve key-value store throughput
by optimizing network processing.

There is work that enhances IMKV performance by de-
signing emerging hardware (e.g., [22], [23], [24]). With many
cores and high memory bandwidth, GPUs tend to meet all
the demands for efficient key-value query processing. Mega-
KV [1] and MemcachedGPU [2] exploit heterogeneous CPU-
GPU architectures to build IMKV systems. Mega-KV utilizes



the massive cores, the capability of memory access latency,
and the high memory bandwidth of GPUs to accelerate index
operations. Besides the index operations, MemcachedGPU also
offloads packet processing to GPUs by utilizing GPUDirect
to directly dump packets to the GPU memory. Both of them
are developed on discrete CPU-GPU architectures and adopt
static pipeline execution designs, which fail to take advantage
of couple CPU-GPU architectural features.

A set of research adopts discrete CPU-GPU architectures
in database systems [25], [26], [27]. Coupled CPU-GPU ar-
chitectures have been studied in several data-intensive systems
and applications, including relational database systems [12],
[13], and irregular applications like graphs [28] and MapRe-
duce [29]. Compared with relational database and MapRe-
duce, IMKV systems have several more challenging aspects
including diverse workloads and more flexible pipelines, which
require special design and optimization techniques in this
paper. On the other hand, Hetherington et. al. [30] port the
Memcached implementation to OpenCL to run on an APU.
The CPU and the GPU in their APU have separate memory
spaces, where data has to be transferred via memory copy.
Consequently, the integrated GPU still has to work in the same
way as discrete GPUs.

VII. CONCLUSION

As an emerging architecture, coupled CPU-GPU architec-
tures raise interesting research opportunities and challenges
for building in-memory key-value stores. Our study on state-
of-the-art GPU-based IMKYV systems with diverse workloads
show that their static pipeline execution designs cause severe
resource underutilization and pipeline imbalance on coupled
CPU-GPU architectures. This paper presents the design, im-
plementation and evaluation of DIDO, an in-memory key-value
store system with dynamic pipeline executions to resolve those
limitations. Our experimental results show that 1) with the
guidance of a cost model, DIDO is capable of adapting the
optimal pipeline execution configuration to the workload at
runtime, and 2) DIDO can significantly improve the overall
throughput for different workloads, in comparison with the
state-of-the-art IMKV designs.
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