
Finding Constant From Change: Revisiting Network
Performance Aware Optimizations on IaaS Clouds

Yifan Gong
NEWRI

Interdisciplinary Graduate School
Nanyang Technological University, Singapore

Bingsheng He
School of Computer Engineering

Nanyang Technological University, Singapore

Dan Li
Tsinghua University, China

Abstract—Network performance aware optimizations have
long been an effective approach to optimizing distributed applica-
tions on traditional network environments. However, the assump-
tions of network topology or direct use of several measurements
of pair-wise network performance for optimizations are no longer
valid on IaaS clouds. Virtualization hides network topology from
users, and direct use of network performance measurements may
not represent long-term performance.

To enable existing network performance aware optimizations
on IaaS clouds, we propose to decouple constant component from
dynamic network performance while minimizing the difference by
a mathematical method called RPCA (Robust Principal Compo-
nent Analysis). We use the constant component to guide network
performance aware optimizations and demonstrate the efficiency
of our approach by adopting network aware optimizations for
collective communications of MPI and generic topology mapping
as well as two real-world applications, N-body and conjugate
gradient (CG). Our experiments on Amazon EC2 and simulations
demonstrate significant performance improvement on guiding the
optimizations.

Keywords—Cloud Computing, Network Performance Aware Op-
timization, RPCA

I. INTRODUCTION

Infrastructure-as-a-service (IaaS) clouds have emerged as
a popular computing infrastructure for many distributed appli-
cations. For example, many scientific and data-intensive appli-
cations have been deployed in Amazon EC2, Windows Azure
and Google Compute Engine, including life sciences [26], [29],
physics [31], [32], [28], [40], big data processing [17], [8]
and others listed in Amazon case studies [1]. Compared with
the traditional cluster and grid computing environments, cloud
computing offers on-demand virtual machines in the pay-as-
you-go manner. Every one with a credit card can buy the com-
putational resources and storage from public cloud providers.
Due to the pay-as-you-go nature, performance optimizations
are important in not only improving the productivity but also
reducing the total ownership cost. Network performance is
often a key issue for the overall performance of distributed
applications. Although there have been many research studies
on designing novel network bandwidth allocations (e.g., [43],
[2], [33]) or data center networks [16] for IaaS clouds, little
attention has been paid to how applications can adapt their
optimizations to IaaS clouds. Therefore, this paper revisits the
network performance aware optimizations on IaaS clouds.

Network performance aware optimizations have long been

an effective approach to optimize distributed applications on
traditional network environments (e.g., local clusters and grid-
s [39], [24], [21], [38], [3]). Those optimizations have the
assumptions of the a-priori knowledge of network topology or
direct use of several measurements of network performance.
Essentially, those assumptions rely on estimating or measuring
the all-link network performance in a cluster [19], [3]. Given
the all-link performance, communication links are carefully
selected for minimizing the network transfer time of the appli-
cation. For example, one could select the best performing links
for constructing the communication tree in an MPI collective
operation [3].

When revisiting the network performance aware optimiza-
tions on IaaS clouds, we start with studying the network
performance of a virtual cluster (a set of virtual machines).
Data centers consisting of tens of thousands of commodity
servers are the underlying infrastructure for IaaS clouds. Pre-
vious studies have studied the impact of virtualization [41]
and network interference [4] in IaaS clouds. Machine pairs
can have very different network performance as shown in the
previous studies [14], [2]. That means, link selection continues
to be important in virtual clusters, and network performance
aware optimizations are still important to improve the applica-
tion performance, especially for the communication-intensive
applications. A natural question is whether and how we can
apply existing network performance aware optimizations on
virtual clusters of IaaS clouds.

Unfortunately, we find that the assumptions of existing
network performance aware optimizations are no longer valid
on IaaS clouds. The topology information is unavailable or
inaccurate in virtual clusters. Virtualization hides the network
hardware and topology from users, without exposing the actual
configurations of the underlying hardware. Moreover, due to
the cloud system dynamics such as virtual machine consoli-
dation [37], flexible resource management [25] and dynamic
network flow scheduling [4], the static topology information is
no longer sufficient for representing the network performance.
Some recent studies [9], [10] make optimization decisions
based on only a few ad-hoc measurements on the end-to-
end performance. However, such direct use of measurements
is inherently affected by dynamic network and is inaccurate to
reflect the long-term performance.

To enable existing network performance aware optimiza-
tions on IaaS clouds, we propose to decouple the constant
component from the dynamic network performance while
minimizing the difference between the network performance

SC14, November 16-21, 2014, New Orleans, LA, USA
978-1-4799-5500-8/14/$31.00 c⃝ 2014 IEEE

and the constant component. In our work, we treat the constant
component as the component in the network performance
that lasts for a long period until we observe some significant
changes in the network performance. The difference can also
be considered as error, since we use the constant component
to guide network performance aware optimizations. It is a
non-trivial task to find the constant component from dynamic
network performance.

Interestingly, this problem can be cast into a common prob-
lem in the computer vision, named RPCA (Robust Principal
Component Analysis) [6]. RPCA is to solve the following
problem: for a data matrix, RPCA is used to identify a low-
rank component and a sparse component with minimized
norm, subject to that the sum of the two components are equal
to the data matrix. There are many important applications with
the data that can naturally be modeled as a low-rank plus a
sparse component [6]. Specifically, we develop a novel ap-
proach based on RPCA with special design and optimizations
for practical use on IaaS clouds, and leverage the theoretical
properties of RPCA to find the constant component from the
dynamic network performance. We model each row of the data
matrix to be one snap-shot of all-link performance for the cloud
at a certain point of time, and apply RPCA on that data matrix
to obtain the constant component and error as the low-rank and
sparse components, respectively.

This seemingly simple design of decoupling the constant
component from network performance enables existing or new
network performance aware optimizations in virtual clusters.
Based on the constant component, conventional network per-
formance optimizations become valid, i.e., we can select the
best performing links with the minimized errors. On the other
hand, with the error component, we are able to determine the
effectiveness of network performance aware optimizations in
virtual clusters, e.g., if the error is too large, the network of
the IaaS cloud is too dynamic and network performance aware
optimizations are useless.

We conduct our experiments with two complementary
approaches: one is with the calibration on Amazon EC2 and the
other is with a simulator based on ns-2. The first experiment is
to assess our approach in the public cloud, and the latter one is
for full control of the network traffic on a large-scale cluster.
We assess the impact of network performance aware optimiza-
tions on two kinds of basic applications including collective
communications of MPI (Message Passing Interface) [39] and
the generic topology mapping strategy [19] as well as two
real-world applications, N-body and conjugate gradient (CG).

Our experiments show that our RPCA-based approach can
determine the degree of network dynamics for virtual clusters
in the cloud. We find that the current network of Amazon
EC2 is relatively stable, and network performance aware
optimizations are still important on Amazon EC2. Moreover,
our RPCA-based approach effectively guides the network per-
formance aware optimizations. On Amazon EC2, the proposed
approach significantly improves the performance, reducing the
average elapsed time of broadcast and scatter of MPI and
topology mapping by 20–40% and 8–20% over the baseline
approach and the approach based on direct use of the network
measurements. For N-body and CG, the average improvement
can reach 25% and 31% over the baseline, respectively. In
the simulation on ns-2, we compare with the topology-aware

algorithm [21], [38] and find that our approach obtains 25–
40% performance improvement.

The rest of the paper is organized as follows. We introduce
the preliminary and related work on cloud networks, RPCA
and two examples of network performance aware optimizations
in Section II. We present the problem definition in Section III,
and the RPCA-based approach in Section IV. In Section V,
we show our experimental results. Finally, we conclude this
paper in Section VI.

II. PRELIMINARY AND RELATED WORK

In this section, we briefly introduce the preliminary and
the related work that are closely related to our study.

A. Cloud Network
Previous studies (e.g., [2], [41], [8]) have shown significant

variability between network performance of different machines
in data centers. The network performance variability negatively
impacts application performance, and also makes traditional
network performance aware optimizations (e.g., [19], [3])
infeasible. To avoid re-inventing all those network performance
aware optimizations, this paper develops a new approach to
capture the long-term network performance in cloud, and allow
existing/new optimizations applicable to cloud.

Researchers have developed mechanisms on network band-
width allocation in order to obtain predictable performance
for the user. ElasticSwitch [33], SecondNet [15], Oktopus [2]
and TIVC [43] aim at reserving network bandwidth between
each pair of VMs to offer guaranteed network bandwidth
allocations. Those studies are mainly from the cloud provider’s
perspective, whereas this paper optimizes the network perfor-
mance for virtual clusters created by users, mainly from users’
perspective. Therefore, we do not have the information on
the underlying hardware or topology, or the runtime dynamics
about network transfers and virtualization details.

Network topology inference techniques have been inves-
tigated in the traditional environments [23], [36] and cloud
environment [12]. We refer readers to a survey [7] for more
details on classic techniques for network topology discovery
and inference. The information given by basic diagnostic tools
like traceroute is incomplete in the virtualized cloud.

B. Robust Principal Component Analysis

PCA is arguably the most widely used statistical tool
for data analysis and dimensionality reduction. However, the
accuracy of PCA is prone to noise or gross errors in the
input data. Robust Principal Component Analysis (RPCA) [6]
was proposed to improve the robustness of PCA under noisy
or error measurements. The basic idea is to recover a low-
rank matrix from a series of corrupted measurements and to
minimize the noise component that is assumed to be sparse but
unknown. Suppose A is a data matrix, D is a low-rank matrix
and E is a sparse matrix. RPCA is to solve the following
optimization problem, where ∥E∥0 is the zero norm of E.

minimize rank(D) + λ∥E∥0
subject to A = D + E

RPCA has been widely used in computer vision. It can
be used to solve many important applications like video

surveillance, face recognition and latent semantic indexing [6].
In a video surveillance application, we need to identify the ac-
tivities that occur in the background. Particularly, we consider
each video frame as a row of the data matrix A. RPCA is
used to divide A into two components: D representing the
information of the background and E including the moving
objects which may appear accidentally in each video frame.
D is a low-rank matrix because the background is stable
across the video frames of a reasonably long period. In the
scenario of network performance in the IaaS cloud, we expect
to find the constant component that can represent the long-
term performance in the dynamic network environment. Our
problem has the analogy to RPCA in computer vision.

There are many approaches that have been proposed to
solve this optimization problem (e.g., [5], [20]). We choose
the approach by Ji et al. [20] (their implementation [35]),
which is a polynomial-time algorithm with strong performance
guarantees on the error.

C. Network Performance Aware Optimizations

Network performance optimizations have been a hot re-
search topic in the cluster/grid environments (e.g., [19], [3])
and cloud environments (e.g., [9], [10]). Many of them rely on
the network topology, and some of them assume the a-priori
knowledge of all-link (or pair-wise) network performance in
the (virtual) machines under study. However, without under-
standing and capturing the long-term network performance of
virtual clusters, the existing studies in the cloud [9], [10] sim-
ply adopt the methods in cluster/grid environments according
to several ad-hoc measurements/calibrations.

We use two basic applications – MPI collective opera-
tions [24], [21], [38] and topology mapping [3] as examples to
demonstrate network aware optimizations with the knowledge
of pair-wise network performance.

MPI collective operations. Network performance opti-
mization is very important for the overall performance of
collective communications of MPI [24], [21], [38]. This study
focuses on the four basic collective operations: broadcast,
reduce, gather and scatter. Binomial tree is one of the basic
communication tree structures for collective operations.

Due to the unevenness of pair-wise network bandwidth
among the virtual machines [14], [2], we need to carefully
choose the link in constructing the communication tree in MPI
collective operations. It causes significant performance loss if
the links are wrongly chosen.

Given all pair-wise network performance, the traditional
approach can build an efficient communication tree without
process migration so that the communication links can better
utilize the network bandwidth. In this case, we assume that
each process has been successfully allocated to the right
machine. Given the all-link network performance for a set of
machines, Banikazemi et al. developed a near-optimal greedy
algorithm named Fastest-Node First (FNF) to construct a
binomial tree [3]. The basic idea is described as below. We
assume that each machine has only one process, the root of
the communication tree is fixed and the extension to multiple
processes per machine is straightforward. The algorithm works
in multiple iterations. In each iteration, it maintains two sets
of machines, S and U , to represent the machines that have

(a) A running example of FNF (b) Revised example of FNF
Fig. 1. An example of weight matrix as all-link network performance and
FNF tree structure

been selected in the tree structure and have not been selected,
respectively. Initially, S consists of the root for the binomial
tree and U consists of all the machines under study except
the root. In each iteration, for each machine s in S, we pick
a machine in U having the best network performance with
m, according to the pair-wise network performance. Then,
the resultant machine (denoted as r) is removed from U
immediately and is added to S after this iteration. That creates
an edge in the tree from s to r (meaning that s and r are
the sender and receiver, respectively). When considering a
machine in S, the selection order is according to the order
added into S. The algorithm stops when U becomes empty.

A running example is given in Figure 1(a). On the left,
it is the weight matrix for pair-wise network performance.
A smaller weight indicates a better network performance.
We assume that Machine 1 is the root. In the first iteration,
Machine 1 is the sender and Machine 3 is chosen as the
receiver for its smallest weight. Now, S consists of machines
1 and 3. In the next iteration, we choose Machine 2 to
receive message from Machine 1 and Machine 6 to receive
message from Machine 3. On the right of Figure 1(a) shows
the resultant tree structure by the FNF algorithm. The total
weight of the longest path is five.

Topology Mapping. Assigning a set of tasks to machines
such that the task communication efficiently utilizes the physi-
cal links in the network is called topology mapping [19]. In this
paper, we use the Greedy Heuristic Algorithm approach [19].
Basically, the task with the largest data volume to transfer is
mapped to the machines with the highest total bandwidth of all
its associated links. Therefore, all-link network performance is
important for guiding this mapping.

The algorithm is described as follows. Again, we assume
that each machine has only one process, and the extension
to multiple processes per machine is straightforward. The
algorithm assumes two inputs: (1) a task graph G: a vertex
representing a task and the edge represents data transfer be-
tween two tasks (its weight represents the data volume for the
communication); (2) a machine graph H: a vertex representing
a machine and the edge represents the connectivity between
two machines (its weight represents the network bandwidth of
the two machines).

Given the two directed graphs G and H , the algorithm
determines the mapping between G and H . Now let the weight
of a vertex v in a graph (either G or H) be the sum of the
weights of all edges associated with v. The algorithm starts at
the heaviest vertex v0 in H , chooses the heaviest vertex s0 in
G and maps v0 to s0. Next, the algorithm maps v’s heaviest
neighboring vertices in H to the neighboring vertices in G with

the heaviest connections. The mapping process finishes when
all the vertices in H have their mappings to distinct vertices
in G.

III. PROBLEM DEFINITION

We consider the scenario where users apply network per-
formance aware optimizations to their applications running
in the virtual cluster, built on the IaaS cloud. The unique
cloud network performance features motivate us to understand
the cloud network performance of virtual clusters and to
investigate how to improve the application performance. This
section gives the definitions on our problem.

Network performance. We can measure the performance
of each link, and the all-link network performance for a set
of N virtual machines (or instances). We denote this set of
virtual machines to be a virtual cluster.

We adopt the α-β model [39] to model the network
performance for each link. In the α-β model, each link is
represented with two parameters: the latency (α) and the
bandwidth (β) between the two machines. The transfer time
for sending the data of n bytes is estimated to be α+ n

β . This
model can be used to estimate the transfer time for a message
of arbitrary sizes.

We define the pair-wise network performance with a matrix
(namely performance matrix). Since the network performance
varies, we extend the performance matrix with the time di-
mension. In particular, given two virtual machines i and j,
the network performance parameters of the link from i to j
at time t0 is denoted as αij(t0) and βij(t0). We represent the
network performance of the virtual cluster with two N×N per-
formance matrices: L(t0) = (αij(t0)) and B(t0) = (βij(t0))
(1 ≤ i, j ≤ N). In those matrices, we require all the pair-wise
performance information between any pair of the instances in
the virtual cluster.

We have two major motivations for developing the per-
formance matrices. First, the performance matrices offer a
general performance model which can be used for network
performance aware optimizations of different applications.
Second, individual link performance is significant to the net-
work performance aware optimizations, because they rely on
the comparison of the long-term network performance of all
links. For example, in Figure 1(a), if we change the weight
of the link (Machine 1, Machine 3) to be four, the tree
structure will be largely changed. The new structure is shown
in Figure 1(b) and the total weight of the longest path reaches
seven (instead of five in the original case). This demonstrates
the importance of individual link performance.

Temporal performance matrix. Performance matrix can
only reflect a snapshot of network performance at a certain
point of time. It does not necessarily represent the long-term
network performance. We have performed a detailed study
on the long-term network performance of a virtual machine
pair in Amazon EC2 and made interesting observations. First,
while the network performance from consecutive measure-
ments forms a clear band, it is almost unpredictable at a
single point. This is the combined effect from the constant
and volatility components of the network performance. Second,
we did observe significant network performance changes on

Amazon EC2. Thus, our approach should be designed to
handle this change. Due to the space limitation, we present
the details of our observations in Appendix A of our technical
report [13].

In order to capture the long-term network performance,
we can perform a series of measurements (i.e., performance
matrices). Each measurement on all-link network performance
in the virtual cluster is one row. We arrange the n rows
according to their measurement time and denote the matrix
as NA.

Formally, we define temporal performance matrix (TP-
matrix) on [T0, T1] (T0 < T1) as follows, where T0 ≤ ti ≤ T1,
ti ≤ ti+1, PAti

is the performance matrix of the virtual cluster
at ti. We layout each PAti

into a vector of N2 dimensions by
the row order. Thus, the TP-matrix is a n×N2 matrix.

NA[T0, T1] =

PAt0

PAt1

...
PAtn−1

Problem definition. Consider the scenario of applying

a network performance optimization to a network commu-
nication operation (e.g., a collective operation in an MPI
application) in the virtual cluster from T0 to T1. Moreover,
we consider an offline scenario that we have the a-priori
knowledge of network performance at each moment from
T0 to T1. If we run the network communication operation
at time ti (T0 ≤ ti ≤ T1), we can effectively apply the
network performance optimization according to the pair-wise
network performance PAti

. However, this offline approach
is impossible at practice, since we do not have the a-priori
knowledge on the exact network performance in the future.

Without the a-priori knowledge on the network perfor-
mance, we want to find a constant component from the time-
varying network performance so that the difference between
the network performance and constant component is mini-
mized. The basic idea is, although we cannot predict the exact
network performance of each link, the constant component
represents the long-term performance of each link. According
to the link performance in the constant component, we can
perform the network performance aware optimizations (e.g.,
a link tends to have better performance if it has a better
performance in the constant component). By minimizing the
difference, we can obtain the best total performance of running
at all ti that we can achieve with the constant component.

Similar to the format of temporal performance matrix, we
define two matrices:

• Temporal constant matrix (TC-matrix), where each
row gives the estimated pair-wise network perfor-
mance in the constant component. All rows are the
same, and therefore the rank of the matrix is one. An
example TC-matrix ND is shown below, where all
PDti

are the same.

ND [T0, T1] =

PDt0

PDt1

...
PDtn−1

• Temporal error matrix (TE-matrix), where each row
gives the estimated pair-wise network performance
error. An example TE-matrix NE is shown below.

NE [T0, T1] =

PEt0

PEt1

...
PEtn−1

Let us formulate our problem in an offline setting. Given

the TP-matrix NA on [T0, T1], we define TC-matrix ND

and TE-matrix NE accordingly. Our problem is formulated
as below.

minimize ∥NE∥0
subject to NA = ND +NE ,

and rank(ND) = 1.

We note that, our current problem definition is still impracti-
cal, since it requires the knowledge of entire NA. However,
interestingly, this optimization problem can be cast into the
RPCA problem (as we introduced in Section II). In the next
section, we present an RPCA-based mechanism with a few
calibrations on the virtual cluster, and use them to calculate
the constant component for the network performance during
the calibrations. By then, we need to perform re-calibrations
and re-run the approach.

IV. RPCA-BASED APPROACH

In this section, we present the details on our RPCA-based
approach.

A. Approach Design

Recall that we have given an offline definition on finding
the most effective constant component in Section III. We devel-
op an adaptive approach to incorporate RPCA to approximate
the solution to our problem. We have the following two major
considerations in our design.

First, we need to detect the significant changes in the
network performance of the virtual cluster in an IaaS cloud.
When we say “significant”, we mean that the change is so large
that it affects the constant component. However, an IaaS cloud
user does not have the underlying workloads in the cloud, and
thus cannot accurately determine the significant changes in the
network performance. On the other hand, one may propose
to periodically measure the pair-wise network performance
of the virtual cluster. That approach can be prohibitively
costly, resulting in high overhead. Thus, we use a simple and
lightweight approach on comparing the expected performance
of the network communication operation with the real perfor-
mance. If the real performance is significantly different from
the expected performance, we decide that significant changes
in the network performance of the virtual cluster occur.

Second, during the period that the network performance
does not change significantly (the network performance does
change dynamically though), we can safely use one constant
component in a part of the period to estimate the constant
component of the entire period. Basically, we perform a few
measurements on the link-wise network performance on the
virtual cluster. Using our RPCA-based approach, we obtain

1 1 1 1

2 2

m1 m2 m3 m4

(a)Topology

0 2 6 6

0

0

0

2

2

2

6 6

6 6

6 6

(d)Performance matrixPD

(b)TP-Matrix NA

0 2 6 6 0 0 02 2 26 6 6 6 6 6

0 2 6 6 0 0 02 2 26 6 6 6 6 6

0 2 6 6 0 0 02 2 26 6 6 6 6 6

0 2 6 6 0 0 02 2 26 6 6 6 6 6

0 2 6 6 0 0 02 2 26 6 6 6 6 6

(c)TC-Matrix ND

0 2.1 6 6 0 0 02 2 2.16 6 6 6 6 6.1

0 2 6 6 0 0 02.1 2 2.16.16 6.1 6 6 6.1

0 2 6.1 6 0 0 02 2 26 6 6 6 6.1 6

0 2.1 6 6.1 0 0 02 2 26 6.1 6 6.1 6 6

0 2 6 6 0 0 02.1 2.1 26 6 6.1 6 6 6

Fig. 2. An example of calculating NA = ND +NE with RPCA

the constant component in an offline manner. We then use that
constant component for network performance aware optimiza-
tions until significant changes in the network performance of
the virtual cluster occur.

Algorithm 1 shows the procedure of our RPCA-based
approach on guiding the optimization for a network communi-
cation operation on a virtual cluster C. On the cloud, we first
calibrate a series of performance matrices forming a TP-matrix
NA. NA is the input data matrix A for RPCA. Next, we run
the RPCA approach by Ji et al. [20], and get ND and NE . We
choose Ji et al’s approach for its efficiency and effectiveness
over other approaches [20]. First, ND is the same as matrix
D in RPCA with rank one. All the rows in ND represent
the same comparison among different pair-wise performance,
which are used as inputs to many network performance aware
optimizations. Second, NE is the matrix E in RPCA. It
represents the performance error. We can calculate the norm
of NE to determine the effectiveness of optimizations. The
process of calculating RPCA is very efficient, and the overhead
can be ignored in the experiments.

In the following, we describe the details of these two
aspects.

Guiding performance optimization with ND. With ND,
we can apply traditional network performance aware optimiza-
tion to the network communication operation, for example,
applying the FNF algorithm [3] to construct the binomial
tree. Note, the network communication operation can run on
a virtual cluster C ′, where C ′ ⊆ C, and we can simply
use the pair-wise performance belonging to C ′. In most of
the cases, our model can work well in a long term without
any maintenance. But after a long period, we still need to
recalibrate the matrix and rebuild the model. During this
period, we use the same PDti

in ND for many times until
there is a significant change in the network performance (e.g.,
the virtual machine is migrated to another rack). We detect
the changes on the network performance and re-calibrate the
matrix (Lines 4–9). More details about approach maintenance
will be described in the next sub-section.

Figure 2 illustrates an example of calculating NA =
ND+NE with RPCA. Figure 2(a) shows a simplified topology
of a virtual cluster of four machines. The number labeled

on the edge between two machines represents the network
performance of the link. We next perform five calibrations
and form a TP-matrix (Figure 2(b)). Each row in the TP-
matrix represents a performance matrix obtained from one
calibration. Then, we run RPCA on the TP-matrix, and obtain
a rank-one matrix ND (Figure 2(c)). From ND, we can obtain
a performance matrix in Figure 2(d), which can be used for
optimizations.

Algorithm 1 Overview of our RPCA-based approach
1: Given a virtual cluster C, calibrate the TP-matrix, and let the

matrix be NA;
2: Run the RPCA approach by Ji et al. [20], and get ND and NE .
3: Given ND , we apply some network performance aware opti-

mization algorithms to the network communication operation A
running on a virtual cluster C′, where C′ ⊆ C;

4: Measure the network performance of A and let it be t;
5: Let the expected performance of A be t′;
6: if |t−t′|

t′ ≥ threshold then
7: Go to Line 1; /* update maintenance*/
8: else
9: Go to Line 3; /* use the same ND for later optimizations*/

Determining the effectiveness of optimizations. We aim
to study the relationship between the performance error and
the effectiveness of optimizations. When we view the mea-
surement performance NA as the most effective optimization
solution from off-line, the performance error is the difference
between the most effective solution and our performance
aware optimizations solution which is based on ND. Thus, the
effectiveness of network performance aware optimizations on
IaaS clouds is highly correlated with the performance error,
NE . Thus, we define the relative norm of error matrix NE ,
Norm(NE) =

∥NE∥0

∥NA∥0
(0 ≤ Norm(NE) ≤ 1) to measure the

effectiveness of network performance aware optimizations in
the cloud.

B. Implementation Details

The previous sections have presented that we can use
RPCA to capture the long-term performance of the network in
virtual cluster. However, there are some implementation issues
that are worth discussions.

Model calibration. We need to obtain the parameter αij(t)
and βij(t) in a given interval [T0, T1] and use this data to pre-
dict the network performance in the future. In order to calibrate
the network performance of an instance pair from Instance i
to Instance j, we use the function Pingpong Send Recv in a
benchmark called SKaMPI [34] to send and receive messages
and to measure the elapsed time. The latency αij(t) is the
elapsed time of sending a one-byte message and the bandwidth
βij(t) is calculated from the elapsed time of sending 8MB data.
In our experiment, when the message size is larger than 8 MB,
the results are stable.

We have to calibrate each cell of the performance matrix.
There have been some network coordinate algorithms (e.g.,
[11], [30]) to obtain the all-link network performance with a
smaller number of cell measurements. Those approaches are
not applicable to data center networks, because the triangle
condition is not satisfied [4], [22].

The overhead of calibrating the performance one by one
pair is too high if N is large. In order to reduce the overhead,

at each step we choose N
2 instances to send messages and

the other N
2 to receive. In this way, we could obtain N/2

pairs at a time, and the time consumption is 2×N . While it
significantly reduces the calibration overhead, the concurrent
message transfers may cause interference with each other.
Fortunately, the data center is usually large enough in the scale
of tens of thousands of servers, and the interference of the
virtual cluster (in the scale of hundreds of virtual machines)
should be small. We study the impact of different scale in
Section V.

The number of rows in the TP-matrix is another key tuning
parameter in RPCA. We call this parameter time step. If the
time step is too large (i.e., the TP-matrix consists of too many
rows), the results may be more accurate, but the overhead
is too high. In contrast, if the time step is too small, the
result obtained from RPCA may not fully reflect the long-
term performance. We experimentally evaluate the impact of
different time steps in Section V.

Update maintenance. We use the real performance as
feedbacks for the update maintenance. As Lines 4–9 in Algo-
rithm 1, we monitor the performance of the network communi-
cation operation, and then compare the expected performance
estimated from history. To support different data sizes in the
performance estimation, we use α-β model [39] to estimate
the network performance, with the input of ND. If we find the
difference is more than threshold , we could conjecture that the
network performance has significant changes. Thus, we need
to re-calibrate the TP-matrix and re-run the approach. The pa-
rameter threshold is a key parameter for update maintenance.
We experimentally evaluate its impact in Section V.

V. EVALUATIONS

This section presents our experimental results on evaluating
the proposed model and applications. Overall, there are three
groups of experiments. First, we study the overhead of calibrat-
ing the temporal performance matrix (Section V-B). Second,
we study the performance impact of our RPCA-based approach
in comparison with other baseline and heuristics approach
on real cloud environments (Section V-D). Our experiments
are running on Amazon EC2. Third, we study the impact
of our approach in a large-scale cluster with simulations
(Section V-E).

A. Experimental Setup

We use two complementary evaluation approaches includ-
ing real experiments and simulations. The real experiments
were performed on Amazon EC2 in August 2013, with the
focus on assessing the practical performance impact of our
proposed approach. As for simulations, we use ns-21 to sim-
ulate a cluster. With the network simulations from ns-2, we
are able to define different background traffics, and study the
impact of network interference. Moreover, we can simulate
different network topologies, and compare the topology aware
optimizations with our approach.

Let us present more details about the experimental setup
for each approach.

1http://www.isi.edu/nsnam/ns/

Fig. 3. Tree-structured network topology

Experiments with Amazon EC2. On Amazon EC2, we
consider different scales of virtual cluster in the real cloud
environment. In particular, we consider two virtual clusters:
one with 64 medium instances and the other with 196 medium
instances. By default, we report the results for 196 medium
instances.

For each virtual cluster size, the real experiment takes
around one week, with one experimental run every 30 minutes.
In each run, we run the following experiments one by one:
calibration, MPI and topology mapping applications. For each
application, we run the compared algorithms one by one. The
calibration is to generate the trace for network performance of
virtual cluster. We replay the trace to validate our findings on
Amazon EC2 for more details. The trace essentially forms a
TP-matrix of our experimental period under study. Given the
network performance measurements at a point of time, we use
α-β model [39] to estimate the performance of one application.
We use the trace to study the impact of optimizations and
tunings.

Simulations. Recall that many data centers adopt the tree-
structured network design [22], [4]. As a start, we use the
tree-structured topology to interconnect servers, as illustrated
on Figure 3. Machines are first grouped into racks, and then
racks are connected with higher-level switches. Specifically,
we simulate a cluster of 1024 machines. There are totally 32
racks and each rack contains 32 servers. There are two level
of switches. In the first level, there are 32 switches (one for
each rack). In the second level, only one switch link with the
32 switches in the first level. The bandwidth in the same rack
is 1Gb/s and the bandwidth between different racks is 10Gb/s.
To simulate the shared environment like IaaS clouds, we make
some of the machines keep on sending messages to some
others. We call it background traffic. We first choose the links
and then vary two parameters to control the background traffic:
message size and the distribution of waiting time between
sending the message. For each link, we assume the waiting
time satisfies poisson distribution and the expected value is λ.
We vary these two parameters to study the impact of errors
in our RPCA-based approach (NE). Applications are run in
the simulator, independently with the background traffic. We
measure their performance in the similar way as they run on
the real cloud environment.

Applications. We apply the proposed RPCA-based approach
to two kinds of basic applications – MPI collective operations

and topology mapping. As we introduce in Section II, both
applications have network performance aware optimizations
according to pair-wise network performance in the virtual clus-
ter. In MPI, we study the basic collective operations including
broadcast, reduce, scatter and gather. We obtain similar results
of reduce and gather as broadcast and scatter, respectively.
This is not surprising, because reduce and gather are the dual
operations of broadcast and scatter, respectively. Thus, we
present the results for broadcast and scatter only. We report
the results for the following default setting, unless otherwise
specified. The message size for broadcast and scatter is 8MB.
The impact of message sizes is investigated in Figure 9(c).
The root process is randomly chosen from the virtual cluster.
One MPI process runs on each instance. In topology mapping,
we create the task graph by randomly generating the weight
between 5MB to 10MB. Each task is mapped to one instance.

To further evaluate the impact of our network performance
aware algorithms, we have implemented two real-world appli-
cations namely N-body and conjugate gradient (CG). N-Body
is an astronomy model, aiming at simulating the movement,
position and other attributes of bodies with gravitational forces
exerted on one another. The parameters of N-Body include the
number of steps for the simulation (#Step) and the number of
bodies. We increase the message sizes to assess the impact of
the number of bodies. CG [18] is a commonly used algorithm
for the numerical solution of particular systems of linear equa-
tions. The conjugate gradient method is an iterative method,
with the core operation of sparse matrix vector multiplication
(SpMV). CG converges as more iterations are conducted,
and we set the convergence condition: ∥r∥ ≤ 10−5 × g0
(r is the residual norm and g0 is the initial gradient). In
both applications, we implement the all-to-all communication
with a gather followed by a broadcast, which is also used in
MPICH2 [27]. This simple implementation is sufficient for
us to investigate the impact of network performance aware
optimizations on real-world distributed applications. During
the execution period of both applications, we observed little
changes in the network performance, and the temporal per-
formance matrix is calibrated once for one execution of each
application.

Comparisons. We assess the impact of the network perfor-
mance optimizations by comparing the following four ap-
proaches.

• Baseline. This simulates the scenario of running di-
rectly in the cloud environment, essentially without
network performance aware optimizations. In MPI,
the binomial tree algorithm is used in MPI Bcast
and MPI Scatter. We use the implementations from
MPICH2. In topology mapping, we use the ring map-
ping algorithm, which maps each vertex in the task
graph to a vertex in the machine graph one by one
like a ring.

• Topology. In the ns-2 simulation, we use the topology
information to optimize applications [39], [19], [21],
[38]. This approach is denoted as “Topology-aware”.
In the experiments on Amazon EC2, we do not include
the comparison with this approach, because topology
is not available in Amazon EC2.

• RPCA. We denote the proposed approach to be “RP-

8 16 32 64 128 196

0

100

200

300

400

500

600

700

800

C
al

ib
ra

tin
g

O
ve

rh
ea

d(
s)

Number of Instances

Fig. 4. Overhead of calibrating temporal performance matrix

CA”. The network performance aware optimizations
are guided by the long-term part captured by our
RPCA approach. The traditional network performance
optimizations (FNF for MPI and greedy heuristic
algorithm for topology mapping) are used. We set time
step =10 and threshold = 100% for calibration and
update maintenance.

• Heuristics. We capture the TP-matrix and use the
average value of each column to optimize the appli-
cations. We denote this approach to be “Heuristics”.
“Heuristics” represents the direct use of a few mea-
surements of the network performance.

The choice on “Heuristics” is worth further discussions.
First, we also use other approaches, for example, minimal val-
ue or exponential weighted average. For those approaches, we
obtain similar results to the Heuristics approach. Overall, those
heuristics based approaches only consider the link separately,
whereas RPCA considers the relationship among all the links.
Thus, RPCA is able to obtain more information from the same
measurement. Second, one may consider performing network
performance aware optimizations according to the distribution
for each link. However, in order to get the meaningful distri-
bution, excessive measurements are required and the overhead
is unacceptably high in practice.

B. Calibrating Overhead

Figure 4 shows the overhead for different numbers of
instances for calibrating a single temporal performance matrix
when time step is ten. As the number of instances increases,
the overhead of calibrating temporal performance matrix is
almost linear to the number of instances. When the number is
64, the overhead is less than 4 minutes and when it reaches to
196 instances, the overhead is only about 10 minutes. Given
this calibration overhead, our RPCA approach is more useful
and acceptable.

Moreover, we calculate the runtime cost of running RPCA
analysis. The execution time for running RPCA once is less
than 1 minute in the experiments with 196 instances.

C. Parameter Study

For each experiment, we vary one parameter while keeping
other parameters fixed to their default settings (time step =10
and threshold = 100% for calibration and update mainte-
nance). We have studied all the applications, and focus on
broadcast for a detailed result study.

0 50 100
0

0.2

0.4

0.6

0.8

Time Step

R
el

at
iv

e
D

iff
er

en
ce

 o
f

 L
on

g−
te

rm
 P

er
fo

rm
an

ce

Norm(P
D

)

Fig. 5. The relative difference of long-term performance with different time
steps

50 100 150 200
0

0.25

0.5

0.75

A
v
e
ra

g
e
 E

la
p

s
e
d
 T

im
e

(s
) Average Communication Times

A
v
e
ra

g
e
 m

a
in

te
n
a
n
c
e
 o

v
e
rh

e
a
d
(s

)

Average maintenance overhead per Broadcast

Model maintenance threshold(%)

0.4

0.2

0
50 100 150 200

0

0.5

1
Baseline

Model maintenance threshold(%)

(a) Average Broadcast Time (b) Breakdown

RPCA with update

RPCA without update

A
v
e
ra

g
e
 E

la
p

s
e
d
 T

im
e

(s
)

Fig. 6. The performance comparison with different maintenance threshold

Time Step. We define a function to calculate the accuracy
in different time step. With a specified time step, we can
calculate the performance matrix PD as the predicted long-
term performance, which essentially is a row of the TC-matrix
ND. On the other hand, we use the whole TP-matrix to obtain
the accurate value of the oracle long-term performance P ′

D. We
define the relative difference of long-term performance to be
the accuracy of our prediction, i.e., Norm(PD) =

∥PD−P ′
D∥0

∥P ′
D∥0

.
When the difference is zero, it means the value is 100%
accurate.

Figure 5 shows the relative difference of long-term per-
formance with different time steps in the calibration. As the
time step increases, the relative difference becomes smaller.
A larger time step means larger overhead. Thus, there is a
trade-off between the overhead and accuracy. We select the
maximum time step when the relative difference is within 10%
among different time steps. In this experiment, we find that
the suitable time step is ten, and we use this setting in all the
experiments on Amazon EC2.

Update maintenance threshold . Figure 6(a) shows the
broadcast performance when the threshold varies. Figure 6(b)
shows the breakdown of the average response time: the average
Bcast time for communication time only and the average
update maintenance overhead. In this experiment, we find
when the percentage is less than 20%, the maintenance is
very frequent which leads to large overhead and the average
elapsed time will be so huge. In contrast, when the percentage
is more than about 150%, there will be no re-measurement
of TP-matrix NA and no change for TC-matrix ND. When
the percentage is about 100%, it almost achieves the best

Bcast Scatter Topology Mapping
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 E
la

ps
ed

 T
im

e(
s)

 Baseline
 Heuristics
 RPCA

(a) Overall performance

0 1 2
0

0.2

0.4

0.6

0.8

1

Elapsed Time(s)

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 F

u
n

ct
io

n

Baseline
Heuristics
RPCA

(b) CDF for the elapsed time of broadcast
Fig. 7. Overall performance comparison for the three applications on Amazon
EC2 (all normalized to the average of Baseline)

performance. The overhead is not so large and the performance
improvement is comparable to the best. We have run the
experiments for one week on Amazon EC2, and conducted
three calibrations in total (day 0, day 2 and day 5). The
re-calibration is not so often (less than once for a day) in
our experiment. The overhead for one calibration is only 10
minutes for 196 instances, as shown in Figure 4. This overhead
is usually ignorable for long-running HPC applications.

D. Results with Amazon EC2

We present the following results related to Amazon EC2.
First, we present the overall performance comparison on
running real experiments on Amazon EC2. Second, we present
some detailed studies with replaying the trace of network
performance measurements from Amazon EC2.

1) Results on basic applications: Figure 7(a) shows the
average performance comparison of the broadcast, scatter and
topology mapping on 196 medium instances of Amazon EC2.
The performance is normalized to Baseline. We repeat our
experiments for more than 100 times and show the average
results. Figure 7(b) shows the CDF for the execution time of
broadcast in this experiment.

Overall, RPCA consistently outperforms other comparison
approaches for all applications running on Amazon EC2.
By carefully selecting the links with the best performance
according to the constant component, RPCA improves the
effectiveness of network performance aware optimizations.

We have two major observations. First, both Heuristics and
RPCA significantly outperform Baseline, with the performance
improvement 32–40%. It indicates the importance of the net-
work performance awareness in the cloud environment. With
the knowledge of long-term performance captured by RPCA,
those optimizations can select the suitable links for a better
performance. Second, on Amazon EC2, we analyze the trace
and find that the network performance error is relatively small
(NE = 0.1). Still, RPCA is 8–10% better than Heuristics.
We also observe that as NE becomes higher, RPCA can
outperform Heuristics even more (details are presented in
Section V-D3).

Figure 8 shows the performance improvement of RPCA
over Baseline for different numbers of instances in Amazon
EC2. The improvement on 196 instances is much higher than
that on 64 instances. That is because, when the virtual cluster
is large, its virtual machines may be more likely to be located
in different racks in Amazon data center. We also observed

Bcast Scatter Topology Mapping
0

5

10

15

20

25

30

35

40

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t(%

) 64 Instances
 196 Instances

Fig. 8. Overall performance comparison with baseline for the different
number of instances on Amazon EC2

that the improvement is relatively larger for larger message
sizes. This is consistent with our previous observations that
the contribution of the update maintenance becomes smaller
to the overall execution time. We observe similar results when
comparing RPCA with other comparisons.

2) Results on real-world applications: We study the break-
down of the execution time in the real-world applications.
In particular, we divide the entire application execution time
into two parts: computation and communication. For our
proposed algorithms, we also present the initialization cost
including calibration and RPCA calculation (denoted as “Other
Overheads”). We also note that RPCA calculation contributes
to less than 2% of the total overhead.

Figure 9(a) shows the comparison studies for CG. In this
experiment, we vary the vector size from 1000 to 1024000. We
make two observations. First, the CG performance is network-
bounded, with communication time contributing over 90%
to the total execution time in MPICH2. Second, when the
vector size is small, our algorithm is slower than MPICH2-
based CG, due to the calibrating and calculating overheads.
As the vector size increases, more iterations are required for
convergence, and the network performance aware optimization
reduces the network communication time. The performance
gain compensates the overhead, with 31% and 14% perfor-
mance improvement over baseline and Heuristics. Figures 9(b)
and 9(c) show the performance comparison for N-body. We
firstly fix the message size as 1M bytes and vary #Step from 10
to 2560. Then we fix #Step to be 2560 and vary the message
size from 1K to 1M bytes. As the message size and #Step
increase, the computation and communication play a more
important role and the overhead becomes insignificant. Our
network performance aware algorithms reduce the network
communication time by 36%, and the total execution time by
25% over the baseline approach. The performance improve-
ment over Heuristics approach is around 10%.

3) Detailed Performance Comparison: The network envi-
ronment of Amazon EC2 is dynamic. For repeatable exper-
iments on studying different settings, we use the method of
replaying the trace from the calibrations on network perfor-
mance of a virtual cluster in Amazon EC2, and estimate the
application performance given the pair-wise network perfor-
mance measurement in the trace.

In the following, we first study the accuracy of our trace-
replay approach by comparing the performance distributions
obtained from our trace-replay approach and from measure-
ments. Next, we study the impact of NE by introducing noises

1 2 4 8 16 32 64 128 256 512 1024
0

10

20

30

40

50

60

70

80

El
ap

se
d

Ti
m

e(
m

in
)

Vector Size(x1000)

 RPCA-Other Overhead
 RPCA-Communication Time
 RPCA-Computation Time
 Heuristics-Other Overhead
 Heuristics-Communication Time
 Heuristics-Computation Time
 Baseline-Communication Time
 Baseline-Computation Time

(a) CG

10 20 40 80 160 320 640 1280 2560
0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

El
ap

se
d

Ti
m

e(
m

in
)

#Step

 RPCA-Other Overhead
 RPCA-Communication Time
 RPCA-Computation Time
 Heuristics-Other Overhead
 Heuristics-Communication Time
 Heuristics-Computation Time
 Baseline-Communication Time
 Baseline-Computation Time

(b) N-body(Message Size=1MB)

1 2 4 8 16 32 64 128 256 512 1024
0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

El
ap

se
d

Ti
m

e(
m

in
)

Message Size(KB)

 RPCA-Other Overhead
 RPCA-Communication Time
 RPCA-Computation Time
 Heuristics-Other Overhead
 Heuristics-Communication Time
 Heuristics-Computation Time
 Baseline-Communication Time
 Baseline-Computation Time

(c) N-body(#Step=2560)

Fig. 9. Performance comparison of real-world applications on 196 medium instances: N-Body and CG.

0 0.5 1
0

0.2

0.4

0.6

0.8

Norm(NE)

N
o

rm
a
li
z
e
d

 P
e
rf

o
rm

a
n

c
e
 I
m

p
ro

v
e
m

e
n

t

MPI Bcast

MPI Scatter

TopologyMapping

Amazon EC2

(a) Different applications(RPCA)

0 0.5 1
0

0.2

0.6

0.4

0.8

Norm(NE)N
o

rm
a
li
z
e
d

 P
e
rf

o
rm

a
n

c
e
 I
m

p
ro

v
e
m

e
n

t

RPCA

Heuristics

Amazon EC2Amazon EC2

(b) Different optimizations (broadcast)
Fig. 10. The impact of NE in the virtual cluster

to the network performance and have a detailed study on a case
when Norm(NE)=0.2.

Accuracy of performance estimations. We compare the
estimated performance distribution and the real measurements.
With the performance estimation, our performance estimation
from the trace-replay approach is close to the real measure-
ments in the cloud. The average difference is only 18% and
9% for baseline and RPCA, respectively. Due to the space
limitation, we study the accuracy of our trace-replay approach
in Appendix B of our technical report [13].

Impact of NE . We study the impact of NE of the virtual
cluster. To study more scenarios for NE , we randomly assign
noises to the trace so that NE is generated. For each time
of adding noise, we change the network performance by 1%
(increase or decrease, subject to the predefined NE and current
NE). Then, we run our RPCA-based approach. If the updated
NE reaches the predefined value, we stop. Otherwise, we
repeat the process.

Figure 10(a) shows the expected performance improvement
of our RPCA approach in broadcast, scatter and topology map-
ping when Norm(NE) is varied. The Norm(NE) significant
impacts the effectiveness of the network optimization on the
three applications, compared with Baseline. As Norm(NE)
increases, the performance improvement decreases. When it
is less than 0.1, the improvement can reach to more than
40%. But when it is more than 0.2, the improvement is
less than 20%. On real environment of Amazon EC2, the
network is relatively stable (Norm(NE) is around 0.1), which
is highlighted in Figure 10(a).

Bcast Scatter TM CG N-body
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 E
la

ps
ed

 T
im

e

 Baseline
 Heuristics
 RPCA

(a) Overall performance

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Elapsed Time(s)

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 F

u
n

ct
io

n

Baseline
Heuristics
RPCA

(b) CDF for the elapsed time of broadcast
Fig. 11. Overall performance comparison with Norm(NE)=0.2

Figure 10(b) shows the performance improvement of com-
paring RPCA with Heuristics in broadcast when Norm(NE)
is varied. Overall, both of the approaches can obtain good
performance improvement. Our RPCA approach has better
efficiency of optimization. When Norm(NE) is small, which
means the network is stable, the network interference plays
a less important role. When Norm(NE) is too large, the
network is so dynamic that the network performance aware
optimizations have little impact on the performance. When
Norm(NE) is about 0.2, RPCA can obtain about 20% more
improvement than Heuristics.

A detailed study. We have a detailed study on a case
when Norm(NE)=0.2, which is more dynamic than real
Amazon EC2 environments. Figure 11(a) shows the average
performance comparison, and Figure 11(b) shows the CDF for
the execution time of broadcast in this experiment. The perfor-
mance improvement of Heuristics and RPCA over Baseline on
Amazon EC2 is consistent with our predictions in Figure 10(a)
and 10(b). When Norm(NE) is about 0.2, the improvement
decreases for both of the two approaches. However, our RPCA
approach can obtain better performance improvement than
Heuristics. In this case, RPCA outperforms Baseline by 20–
28%, and outperforms Heuristics by 12–20%.

E. Simulations on Large-scale Cluster

We report our simulation results on the simulated cluster of
1024 machines. In Figure 12(a), we fix the message size in the
background as 100MB and vary the expected value λ from 1 to
30 seconds. The expected value λ represents the frequency of
the network interference. The figure shows that, as λ increases,

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Expected Value of Poisson Distribution(s)

N
o

rm
(N

E
)

(a) Different expected values(λ) of Poisson
Distribution

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Message Size(MB/s)

N
o

rm
(N

E
)

(b) Different message sizes

Fig. 12. The impact of network interference on Norm(NE)

Bcast Scatter TM CG N-body
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 E
la

ps
ed

 T
im

e(
s)

 Baseline
 Topology
 Heuristics
 RPCA

(a) Overall performance comparison

0 1 2
0

0.2

0.4

0.6

0.8

1

Elapsed Time(s)

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 F

u
n

ct
io

n

Baseline
Topology
Heuristics
RPCA

(b) CDF for the elapsed time of broadcast
Fig. 13. Performance Comparison in ns-2-based simulations

Norm(NE) largely reduces and the network becomes more
stable. In Figure 12(b), we fix λ as 5s and vary the message
size from 10MB to 500 MB. The figure shows that there is
an almost linear relationship between the message size in the
background and Norm(NE). From these two experiments,
we observe that Norm(NE) clearly has positive correlations
with the background traffic in the simulated cluster. It can
explain why we perform an experiment on Amazon EC2 for
many times in order to obtain meaningful results. Also, the
performance improvement results on Amazon EC2 are similar
to our simulations when they have the same Norm(NE). It
represents the interference of network performance satisfies
some stable distribution.

Figure 13(a) shows the overall performance comparison
of broadcast, scatter and topology mapping in the simulated
cluster. We use the same execution settings for each application
as those in Amazon EC2. Machines are randomly selected
from the simulated cluster. We simulate the background traffic
so that Norm(NE) = 0.1. We obtain similar comparison
results against Baseline and Heuristics approaches, and focus
on the comparison with the topology-aware algorithm. We find
that the topology-aware and baseline performs very similar,
which indicates that the topology-aware optimization is not
effective in such a dynamic environment. RPCA is 25%-40%
better than Baseline/Topology-aware approaches and 10%-
15% better than Heuristics. Figure 13(b) shows the CDF of
the elapsed time of broadcast. The results are similar to those
on Amazon EC2.

We also vary different NE to study its impact, and observe
similar results as Amazon EC2. For example, as Norm(NE)
increases, the performance improvement of RPCA over other
approaches increases and the traditional optimizations relying
on the topology and direct use of network measurements

are no longer effective in such dynamic environments. When
Norm(NE) is too high (e.g., higher than 0.5), the improve-
ment of network performance aware optimizations becomes
marginal. Compared with traditional optimizations, our RPCA-
based approach accurately predicts this trend with the estima-
tion on Norm(NE).

VI. CONCLUSIONS

This paper revisits network performance aware optimiza-
tions of distributed applications running on virtual clusters in
IaaS cloud. We find that the important assumptions of existing
network performance aware optimizations are no longer valid,
because the network topology information is not available, and
direct use of a few network performance measurements cannot
capture the long-term performance. In this paper, we propose
a novel approach based on RPCA (a well-known problem in
computer vision) to find the constant component from dynamic
network performance while minimizing the difference between
the constant component and network performance. Moreover,
the RPCA-based approach adapts to significant changes in
the network performance. Based on our approach, we are
able to determine the effectiveness of network optimizations
on the applications running in the virtual cluster. In the
experiments, we find that Amazon EC2 has relatively stable
network performance (NE = 0.1), and network performance
aware optimizations are still important on Amazon EC2.
Moreover, our RPCA-based approach is more robust than
other approaches for different degree of network dynamics,
and always outperforms the other comparison approaches.
On Amazon EC2, our RPCA-based approach achieves 20–
40% and 8–20% over the baseline approach and the approach
based on direct use of the ad-hoc measurements, respectively.
In the simulation on ns-2, we compare with the topology-
aware algorithm and find that our approach obtains 25–40%
performance improvement.

As for future work, we plan to investigate the economic
impacts [42] of our approach, and evaluate our approach
with more complicated workloads such as scientific work-
flows [44].

VII. ACKNOWLEDGMENTS

The authors would like to thank our reviews and shepherd,
Dieter Kranzlmueller, Ewa Deelman and Satoshi Sekiguchi,
for their valuable comments. We acknowledge the support
from the Singapore National Research Foundation under it-
s Environmental & Water Technologies Strategic Research
Programme and administered by the Environment & Water
Industry Programme Office (EWI) of the PUB, under project
1002-IRIS-09. Yifan is supported by the scholarship from
NEWRI, IGS(Interdisciplinary Graduate School). Bingsheng
is in part supported by a MoE AcRF Tier 1 (2014-T1-001-
145) of Singapore. Dan’s work is partially supported by the
National Key Basic Research Program of China (973 program)
under Grant 2014CB347800 and the National Natural Science
Foundation of China under Grant No.61170291.

REFERENCES

[1] Amazon Case Studies. http://aws.amazon.com/hpc-applications/.
[2] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards

predictable datacenter networks. In SIGCOMM ’2011.

[3] M. Banikazemi, V. Moorthy, and D. K. Panda. Efficient collective
communication on heterogeneous networks of workstations. In ICPP
’98.

[4] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics
of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pages 267–280. ACM, 2010.

[5] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding
algorithm for matrix completion. SIAM J. on Optimization, 2010.

[6] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component
analysis? J. ACM, 2011.

[7] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu. Network
tomography: recent developments. Statistical Science, 2004.

[8] R. Chen, M. Yang, X. Weng, B. Choi, B. He, and X. Li. Improving large
graph processing on partitioned graphs in the cloud. In Proceedings of
the Third ACM Symposium on Cloud Computing, SoCC ’12, pages 3:1–
3:13, New York, NY, USA, 2012. ACM.

[9] M. Chowdhury and I. Stoica. Coflow: An application layer abstraction
for cluster networking. Technical report, EECS Department, University
of California, Berkeley, 2012.

[10] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica. Managing
data transfers in computer clusters with orchestra. In SIGCOMM ’11.

[11] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a decentralized
network coordinate system. SIGCOMM ’04.

[12] D. B. N. Frejnik, S. Goel, O. Kao, and D. Warneke. Evaluation of
network topology inference in opaque compute clouds through end-to-
end measurements. In IEEE CLOUD, 2011.

[13] Y. Gong, B. He, and D. Li. Finding constant from change: Revisiting
network performance aware optimizations on iaas clouds. Technical
Report 2014-TR-105, Nanyang Technological University, Singapore,
http://pdcc.ntu.edu.sg/xtra/tr/2014-TR-105-RPCA.pdf, 2014.

[14] Y. Gong, B. He, and J. Zhong. Network performance aware MPI
collective communication operations in the cloud. IEEE Transactions
on Parallel and Distributed Systems, 99:1, 2013.

[15] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang. Secondnet: a data center network virtualization architecture
with bandwidth guarantees. In Proceedings of the 6th International
COnference, 2010.

[16] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: a scalable
and fault-tolerant network structure for data centers. SIGCOMM, 2008.

[17] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou. Comet:
batched stream processing for data intensive distributed computing. In
Proceedings of the 1st ACM symposium on Cloud computing, pages
63–74. ACM, 2010.

[18] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for
solving linear systems, volume 49. NBS, 1952.

[19] T. Hoefler and M. Snir. Generic topology mapping strategies for large-
scale parallel architectures. In ICS, 2011.

[20] S. Ji and J. Ye. An accelerated gradient method for trace norm
minimization. In ICML ’09.

[21] K. C. Kandalla, H. Subramoni, A. Vishnu, and D. K. Panda. Designing
topology-aware collective communication algorithms for large scale
infiniband clusters: Case studies with scatter and gather. In 10th
Workshop on Communication Architecture for Clusters, 2010.

[22] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The
nature of data center traffic: measurements & analysis. In Proceed-
ings of the 9th ACM SIGCOMM conference on Internet measurement
conference, pages 202–208. ACM, 2009.

[23] N. T. Karonis, B. Toonen, and I. Foster. Mpich-g2: a grid-enabled
implementation of the message passing interface. J. Parallel Distrib.
Comput, 2003.

[24] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F.
Bhoedjang. Magpie: Mpi’s collective communication operations for
clustered wide area systems. In PPoPP, 1999.

[25] H. Liu and B. He. Reciprocal resource fairness: Towards cooperative
multiple resource fair sharing in iaas clouds. In SC, 2014.

[26] W. Lu, J. Jackson, and R. Barga. Azureblast: a case study of developing
science applications on the cloud. In 1st Workshop on Scientific Cloud
Computing, 2010.

[27] MPICH2. http://www.mcs.anl.gov/research/projects/mpich2/.
[28] J. C. Mudge, P. Chandrasekhar, G. S. Heinson, and S. Thiel. Evolving

inversion methods in geophysics with cloud computing - a case study
of an escience collaboration. In ESCIENCE, 2011.

[29] A. Nagavaram, G. Agrawal, M. A. Freitas, K. H. Telu, G. Mehta, R. G.
Mayani, and E. Deelman. A cloud-based dynamic workflow for mass
spectrometry data analysis. In ESCIENCE, 2011.

[30] T. S. E. Ng and H. Zhang. Towards global network positioning.
In Proceedings of the 1st ACM SIGCOMM Workshop on Internet
Measurement, IMW ’01, pages 25–29, New York, NY, USA, 2001.
ACM.

[31] S. Nunez, B. Bethwaite, J. Brenes, G. Barrantes, J. Castro, E. Malavassi,
and D. Abramson. Ng-tephra: A massively parallel, nimrod/g-enabled
volcanic simulation in the grid and the cloud. In ESCIENCE, 2010.

[32] K. A. Ocaña, D. de Oliveira, J. Dias, E. Ogasawara, and M. Mattoso.
Optimizing phylogenetic analysis using scihmm cloud-based scientific
workflow. In E-Science (e-Science), 2011 IEEE 7th International
Conference on, pages 62–69. IEEE, 2011.

[33] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.
Santos. Elasticswitch: practical work-conserving bandwidth guarantees
for cloud computing. In Proceedings of the ACM SIGCOMM 2013
conference on SIGCOMM, pages 351–362. ACM, 2013.

[34] R. Reussner, P. S, L. Prechelt, and M. Muller. Skampi: A detailed,
accurate mpi benchmark. In In Vassuk Alexandrov and Jack Dongarra,
editors, Recent advances in Parallel Virtual Machine and Message
Passing Interface, 1998.

[35] RPCA Accelerated Proximal Gradient(APG) Method .
http://perception.csl.illinois.edu/matrix-rank/sample code.html.

[36] M.-F. Shih and A. Hero. Hierarchical inference of unicast network
topologies based on end-to-end measurements. Trans. Sig. Proc, 2007.

[37] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consolidation for
cloud computing. In HotPower, 2008.

[38] H. Subramoni, K. Kandalla, J. Vienne, S. Sur, B. Barth, K. Tomko,
R. McLay, K. Schulz, and D. K. Panda. Design and evaluation
of network topology-/speed-aware broadcast algorithms for infiniband
clusters. In IEEE Cluster, 2011.

[39] R. Thakur and R. Rabenseifner. Optimization of collective communi-
cation operations in mpich. International Journal of High Performance
Computing Applications, 2005.

[40] J.-S. Vöckler, G. Juve, E. Deelman, M. Rynge, and B. Berriman. Ex-
periences using cloud computing for a scientific workflow application.
In ScienceCloud, 2011.

[41] G. Wang and T. S. E. Ng. The impact of virtualization on network
performance of amazon ec2 data center. In INFOCOM, 2010.

[42] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou. Distributed
systems meet economics: pricing in the cloud. In Proceedings of the
2nd USENIX conference on Hot topics in cloud computing, pages 6–6.
USENIX Association, 2010.

[43] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The only constant is
change: incorporating time-varying network reservations in data centers.
SIGCOMM, 2012.

[44] A. Zhou and B. He. Transformation-based monetary cost optimizations
for workflows in the cloud. Cloud Computing, IEEE Transactions on,
2(1):85–98, Jan 2014.

