
Efficient Query Processing on Many-core Architectures: A
Case Study with Intel Xeon Phi Processor

Xuntao Cheng1, Bingsheng He1, Mian Lu2, Chiew Tong Lau1, Huynh Phung Huynh3 and Rick Siow Mong Goh3

1Nanyang Technological University, Singapore 2Huawei International Pte. Ltd. 3IHPC, A*STAR, Singapore

ABSTRACT
Recently, Intel Xeon Phi is emerging as a many-core pro-
cessor with up to 61 x86 cores. In this demonstration, we
present PhiDB, an OLAP query processor with simultaneous
multi-threading (SMT) capabilities on Xeon Phi as a case
study for parallel database performance on future many-
core processors. With the trend towards many-core archi-
tectures, query operator optimizations, and efficient query
scheduling on such many-core architectures remain as chal-
lenging issues. This motivates us to redesign and evaluate
query processors. In PhiDB, we apply Xeon Phi aware opti-
mizations on query operators to exploit hardware features of
Xeon Phi, and design a heuristic algorithm to schedule the
concurrent execution of query operators for better perfor-
mance, to demonstrate the performance impact of Xeon Phi
aware optimizations. We have also developed a user inter-
face for users to explore the underlying performance impacts
of hardware-conscious optimizations and scheduling plans.

1. INTRODUCTION
Computer architectures have been evolving from multi-

core processors to many-core processors with emerging archi-
tectural features. This calls for systematic rethinking on how
to design and optimize database systems in the many-core
era. Recently, Intel Xeon Phi is emerging as a many-core
processor based on the Many Integrated Core architectures.
Compared with other many-core processors (e.g., GPUs),
Intel Xeon Phi is based on x86 CPUs. This allows easy de-
ployments of conventional CPU-based programs on them.
However, unlike conventional CPUs, it has some unique fea-
tures such as 512-bit SIMD intrinsics and up to 61 x86 cores
with SMT capabilities. These emerging architectural fea-
tures offer exciting research opportunities to study parallel
database performance on many-core processors.

Query processors have been utilizing the parallelism en-
abled by multi-cores to deliver high performance in query
processing. With the trend towards many-core processors,
we are facing with even more CPU cores. A naive schedul-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2899407

ing is very likely to cause performance penalties and resource
over-provisioning which eventually offsets the benefits of us-
ing more cores. Thus, it is necessary to systematically study
query scheduling on many-core architectures.

To study efficient query processing on such a kind of many-
core processors, we identify and apply Xeon Phi aware opti-
mizations on query operators and achieve significant perfor-
mance improvement. Based on these operators, we further
design PhiDB by exploiting the hardware features of Xeon
Phi such as SIMD intrinsics and prefetching. However, cur-
rent query processors usually execute a single operator at
a time. Such “operator-at-a-time” execution can underuti-
lize the hardware resource of Xeon Phi. Thus, we design
a scheduling algorithm to co-schedule query operators in a
way that eligible operators are executed concurrently. We
visualize performance impacts of architecture aware opti-
mizations and scheduling plans by showing the execution
diagram of all operators. With visualizations, users can ob-
serve the deployment and runtime statistics of query opera-
tors on Xeon Phi and the performance impact of the query
scheduling optimization. Users can also enable or disable
individual optimization techniques to compare their effec-
tiveness. This visualization can further help developers to
identify performance bottlenecks.

Our preliminary results demonstrate that the Xeon Phi
aware optimizations improve the performance of query oper-
ator by 14-33%, compared with the baseline where no such
architecture specific optimizations are applied. Our opti-
mized query scheduler further improves the performance by
about 30% taking advantage of concurrent execution of op-
erators, compared with executing all the operators one at a
time. Our study indicates that architecture aware optimiza-
tions are important for the database performance. Careful
optimizations and redesign from the level of query opera-
tor to query optimization and scheduling are required for
databases on future many-core processors.

2. PRELIMINARIES

2.1 Intel Xeon Phi Many-core Processor
We present PhiDB on a Xeon Phi 5110P processor fea-

turing 60 Intel x86 in-order cores. All these cores share
the same main memory in the Symmetric Multi-Processing
(SMP) fashion. Up to 4 hardware threads are supported
on each core. Thus, there are totally 240 threads. Each
core has its L1 and L2 caches. All L2 caches are connected
through a high-speed shared bus fabric. To hide the mem-
ory access overhead, Xeon Phi features hardware prefetchers

at each L2 cache and supports software prefetching at both
caches. Each core has a dedicated pipeline for 512-bit SIMD
intrinsics. The next generation of Xeon Phi, as announced
by Intel, is going to be available as a stand-alone processor
with more cache, a total 16GB of main memory and higher
processing power.

2.2 Related Work
Intel Xeon Phi has been widely used for high performance

computing, scientific computing and MapReduce [6, 9, 12].
Many research efforts have been attracted to accelerate query
processing on Xeon Phi taking advantage of its hardware
characteristics. A Xeon Phi coprocessor has up to 61 x86
cores and supports 512-bit Single Instruction Multiple Data
(SIMD) instructions. Utilizing such many cores and the ad-
vanced SIMD capability is important for database process-
ing on Xeon Phi.

Optimizing and deploying databases on multi-core and
many-core processors have always been a challenging task.
Balkesen et al. studied main-memory hash joins exten-
sively on multi-core CPUs considering a rich set of algo-
rithmic alternatives and optimization techniques [1, 2]. We
adopt their optimizations on hash join in the implementa-
tion of PhiDB. Optimizing database processing using SIMD
has been a hot research topic. Chhugani et al. revisited
the implementation of sort on multi-core CPUs utilizing
SIMD intrinsics and achieved significant performance im-
provement [3]. Willhalm et al. accelerated full table scans
in column-store data warehouse systems utilizing SIMD in-
trinsics’ direct access to the main memory [13]. Feng et
al. designed a set of bit-parallel algorithms for aggregations
taking advantage of this intra-cycle parallelisms of CPUs
[4]. Our previous work utilized the 512-bit SIMD for key
hashing calculations, memory gather/scatter and the ma-
terialization of matched tuples resulting in significant per-
formance improvement [8]. Hou et al. proposed a frame-
work for the automatic SIMDization of parallel sorting which
generates high-performance code for sort given any sorting
network and SIMD instruction sets [7]. Polychroniou et
al. presented the vectorized designs and implementations
of database operators using many advanced SIMD opera-
tions such as gather/scatter intrinsics available on Xeon Phi
[11]. We follow this trend of designing and implementing
database operators using SIMD intrinsics in PhiDB.

3. DESIGN AND IMPLEMENTATION
In this section, we present the details of the design and

implementation of PhiDB.

3.1 System overview
Figure 1 provides the system overview of PhiDB. It has

5 main components: Query Parser, Query Optimizer,
Query Execution Scheduler, Thread Pool and Query
Processing Engine. The query parser translates input
queries into the logical query plan. The query optimizer
tunes the concurrency level (the number of threads used)
for each operator according to which operators are further
divided into jobs. A job is to be executed by a single thread
and it contains necessary information such as the assigned
partition of input relations for the execution. The optimizer
also decides which pairs of operators are to be executed con-
currently and generates the final optimized scheduling plan.
The query execution scheduler maintains a queue of oper-

PhiDB

Parser

Plan Generator

Concurrency Control Module

Query Execution
Scheduler

Thread Pool

Xeon Phi Aware Optimized
Operators

Access Methods

Storage

Selection

Aggre-
gation

Sort

Join

Table
Scan B+-tree

Relations
(column-store)

Query Processing Engine

SQL Queries

Parsed Queries

Query Plan

Results

Query Optimizer

Figure 1: System overview of PhiDB

ators according to such plan. In the thread pool, a thread
pulls this queue for the next job when it becomes free and
it executes the query engine to process each job. When
all jobs of an operator are finished, the last thread serv-
ing that operator checks the DAG and pushes all operators
with all their inputs ready into the queue. The query en-
gine is divided into three layers: operators, access methods
and the storage. All operators and access methods are op-
timized in a hardware-conscious way as introduced in Sec-
tion 3.3. We start with EaseDB [5], a query processor on
multi-core CPUs, and further enhance it with more recent
query processing algorithms such as hash joins [1, 8]. We
choose EaseDB because its cache-oblivious designs of data
structures and operators, which optimizes the performance
of relational query processing on all levels of a memory hier-
archy, allow us to focus on the impacts of Xeon Phi-specific
optimizations, rather than the memory hierarchy.

3.2 Preliminary Implementation
In this section, we introduce our preliminary implementa-

tion of key components in PhiDB.
Scheduling Optimization. We propose to execute mul-

tiple independent operators concurrently to accelerate query
processing, because a single operator suffers from severe re-
source underutilization in our observations. Our proposed
scheduling optimization examines ready-to-execute opera-
tors and co-schedule pairs of them for concurrent executions.
However, to achieve the optimal optimization scheduling
of query operators on many-core architectures is an NP-
hard problem. Thus, we apply two heuristics to control
the concurrency of query operators and optimize the query
plan. Firstly, we concurrently execute memory-intensive and
compute-intensive operators such as a selection and a join
to alleviate the burden of the shared bus among cores. Sec-
ondly, we execute operators with small inputs first. These
operators usually require fewer threads for their best per-
formance, which brings more opportunities for concurrent
executions.

Thread Pool. It is crucial to exploit the Thread Level
Parallelism (TLP) on Xeon Phi where a lot of threads are
about to be running together. We implement a decentralized
thread pool consisting of multiple software threads. Each
software thread is pinned to a corresponding hardware con-
text. Because there are 240 hardware contexts on Xeon Phi
in total, we have 240 software threads in the pool. It is de-
centralized in the way that each thread pulls for new jobs
autonomously when it becomes free rather than waiting for a

centralized scheduler to assign jobs to them. This is to avoid
the overhead caused by scheduling over so many threads.
When a job is pulled from the queue in the query execution
scheduler, the thread calls the query engine to process it.

Query Engine. The query engine defines a set of op-
timized operators. For selection and aggregation, we take
advantage of Xeon Phi’s dual pipeline to use both the wide
SIMD intrinsics and conventional scalar instructions to re-
duce memory stalls caused by memory accesses. For sort,
we implement a bitonic sort and merge network because its
fixed network topology and parallelism are ideal for SIMD
intrinsics [3]. For joins, we adopt our implementations of
both partitioned and non-partitioned hash joins as well as
sort-merge joins in previous work [8].

3.3 Xeon Phi Aware Optimizations
Query operators defined in the query engine are optimized

with Xeon Phi aware optimizations. The major techniques
are SIMD vectorization, prefetching and huge pages.

SIMD Vectorization. Xeon Phi supports 512-bit SIMD
intrinsics, which are important for programs to achieve high
performance. On Xeon Phi, SIMD intrinsics are executed
on a dedicated pipeline. Although cores on Xeon Phi are
all in-order processors, after the issue of a SIMD intrinsic to
its pipeline, the core pipeline is not stalled and proceeds to
other instructions allowing SIMD intrinsics to overlap with
others. Meanwhile, these SIMD intrinsics have rich func-
tionalities. They can be utilized for parallel computations,
complex bit operations and memory load/store which makes
the use of SIMD has a large performance impact as shown
in Section 4.2.

Prefetching. Xeon Phi supports both software and hard-
ware prefetching. The software prefetcher at the L1 cache
can guide the hardware prefetcher at the L2 cache to prefetch
data more timely and avoid many unnecessary memory ac-
cesses [10]. This forms a two-level coordinated prefetching.
For each operator, we manually tune the prefetching dis-
tance and have achieved a reasonable speedup.

Huge Page. Xeon Phi’s TLB can be configured into both
4KB or 2MB. The 2MB configuration is usually addressed
as the huge page. By configuring the TLB into 2MB, it
can map up to 256MB of memory, which decreases page
faults significantly on Xeon Phi. In our implementation, all
memories are allocated in huge pages.

As a detailed example, we present the application of these
three techniques in the hash join operator [8]. Key hashing
is an important part for hash join. We use SIMD intrinsics
to calculate the hashing of multiple keys in parallel. Since
SIMD intrinsics are executed by dedicated pipelines other
than the core pipelines, we further use SIMD intrinsics to
conduct memory accesses including gather/scatter of keys
and results materializations to reduce memory stalls. In
both the build and the probe phase, we prefetch keys to
accelerate the gather and the key hashing process. Gather
is a very expensive memory operation. By determining the
suitable prefetching distance, the memory access latency is
largely hidden and its overhead is significantly reduced. Fi-
nally, we configure the TLB into 2MB and allocate memories
in huge pages.

4. PLAN FOR DEMONSTRATION
In this section, we briefly present our setup and plan for

the demonstration.

4.1 System Setup
We conduct our demonstration on a server equipped a

Xeon Phi co-processor 5110P. PhiDB is a native application
that runs entirely on the Xeon Phi. This means that all data
are stored and processed on Xeon Phi. Other parts of the
machine are not involved in the query processing. We adopt
TPC-H queries as our evaluation benchmark for PhiDB. In-
put tables are generated by the TPC-H data generator with
a scale factor of 5. We limit the scale factor to 5, because
the main memory on Xeon Phi is not big enough for tables
of larger scale factors.

Figure 2: Screenshot of the GUI when executing Q9 in
PhiDB with the query scheduling optimization enabled

Figure 3: Screenshot of the GUI when executing Q9 without
the query scheduling optimization

4.2 Visualization
The Graphics User Interface (GUI) is shown in Figure

2. At the left-hand side, users can add SQL queries for
execution and choose to enable or disable Xeon Phi aware
optimizations. If the “Query Scheduling” optimization is
disabled, each operator uses the entire 240 threads, and es-
sentially operators are executed one after another. Oth-
erwise, operators may be executed concurrently for better
performance. In the “Execution Diagram”, the x-axis on
top indicates the 240 threads on Xeon Phi and the y-axis at
the left-hand side shows the execution time. We use differ-
ent colors to represent the execution of different operators.
From the diagram, we demonstrate the execution of each
job, concurrently executed operators and idle states (spaces
in the white color) caused by dependencies or stalls.

As a case study, the screenshots of execution diagram
of Q9 with and without PhiDB’s query optimization are

Optimization combinations
None S P P+S H H+S H+P H+P+SN

or
m

al
iz

ed
 e

xe
cu

tio
n

tim
e

0

0.2

0.4

0.6

0.8

1 S: SIMD
P: Prefetching
H: Huge pages

Figure 4: Performance impact of optimization combinations
on Q9

shown in Figures 2 and 3 respectively. The same opera-
tors in both diagrams are colored in the same scheme. Q9
with PhiDB’s query optimization is about 30% faster than
that without it. Figure 3 shows that some operators con-
sume more time when using 240 threads, which is an ex-
ample of performance degradation caused by resource over-
provisioning. Some are slower than those concurrent execu-
tions in Figure 2, which demonstrates the benefits of tunned
concurrency among query operators.

4.3 Demonstration Objectives
This demonstration has two major goals.
Firstly, we aim to show the impact of Xeon Phi aware

optimizations when one or more optimizations are enabled
or disabled. We demonstrate the performance impact of
the query optimization and runtime statistics with the GUI
when executing TPC-H queries. The screenshots in Fig-
ures 2 and 3 are examples of the second objective. Now,
we present one case study for the first objective. In Fig-
ure 4, we summarize the performance impact of optimiza-
tion combinations. “S”, “P” and “H” denote SIMD intrinsics,
prefetching and huge pages enabled respectively (disabled
otherwise). The execution time is normalized by that of
“None” when all optimizations are disabled. SIMD intrin-
sics bring the highest performance improvement followed by
prefetching and huge pages. In the demo, we show multiple
screenshots similar to Figures 2 and 3, and present perfor-
mance differences and their causes to the audience.

Secondly, we plan to demonstrate how to use this GUI to
spot performance bottlenecks and assist the decision-making
process for optimizations. For example, if we investigate Fig-
ure 3 carefully, we identify the performance problem that, at
any time, Xeon Phi runs the workload with the same mem-
ory and computational characteristics (represented with the
same color), and this execution cannot fully utilize the mem-
ory and computation resources. In the demonstration, we
will also demonstrate the query plan and “where does time
go” of evaluating a query.

5. SUMMARY
PhiDB demonstrates the preliminary design, implemen-

tation, and evaluation of databases on Intel Xeon Phi. We
show that taking advantage of the hardware features is es-
sential to the query processing performance. As the proces-
sors evolve from multi-core to many-core, we believe that a
careful redesign and implementation of query processors be-
come more and more desirable on future many-core proces-
sors. More work should be done along the direction. We will

revisit different database system design such as row stores
vs. column stores.

Acknowledgment
This work is supported by a Ministry of Education (MoE)
AcRF Tier 2 grant (MOE2012-T2-2-067) and is supported
in part by Interactive and Digital Media Programme Of-
fice (IDMPO), National Research Foundation (NRF) hosted
at Media Development Authority (MDA) under Grant No.:
MDA/IDM/2012/8/8-2 VOL 01 in Singapore.

6. REFERENCES
[1] C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu.

Multi-core, main-memory joins: Sort vs. hash
revisited. VLDB, 7(1), 2013.

[2] C. Balkesen, J. Teubner, G. Alonso, and M. Ozsu.
Main-memory hash joins on modern processor
architectures. TKDE, 2014.

[3] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy,
M. Hagog, Y.-K. Chen, A. Baransi, S. Kumar, and
P. Dubey. Efficient implementation of sorting on
multi-core simd cpu architecture. VLDB, 1(2), 2008.

[4] Z. Feng and E. Lo. Accelerating aggregation using
intra-cycle parallelism. In ICDE. IEEE, 2015.

[5] B. He, Y. Li, Q. Luo, and D. Yang. Easedb: a
cache-oblivious in-memory query processor. In
SIGMOD. ACM, 2007.

[6] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy,
A. Kobotov, R. Dubtsov, G. Henry, A. G. Shet,
G. Chrysos, and P. Dubey. Design and
implementation of the linpack benchmark for single
and multi-node systems based on intel R© xeon phi
coprocessor. In IPDPS. IEEE, 2013.

[7] K. Hou, H. Wang, and W.-c. Feng. Aspas: A
framework for automatic simdization of parallel
sorting on x86-based many-core processors. In
Proceedings of the 29th ACM on International
Conference on Supercomputing. ACM, 2015.

[8] S. Jha, B. He, M. Lu, X. Cheng, and P. H. Huynh.
Improving main memory hash joins on intel xeon phi
processors: An experimental approach. VLDB, 8(6),
2015.

[9] M. Lu, L. Zhang, H. P. Huynh, Z. Ong, Y. Liang,
B. He, R. S. M. Goh, and R. Huynh. Optimizing the
mapreduce framework on intel xeon phi coprocessor.
In Big Data. IEEE, 2013.

[10] S. Mehta, Z. Fang, A. Zhai, and P.-C. Yew.
Multi-stage coordinated prefetching for present-day
processors. In SC. ACM, 2014.

[11] O. Polychroniou, A. Raghavan, and K. A. Ross.
Rethinking simd vectorization for in-memory
databases. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data.
ACM, 2015.

[12] E. Saule, K. Kaya, and Ü. V. Çatalyürek. Performance
evaluation of sparse matrix multiplication kernels on
intel xeon phi. In PPAM. Springer, 2014.

[13] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner,
A. Zeier, and J. Schaffner. Simd-scan: ultra fast
in-memory table scan using on-chip vector processing
units. VLDB, 2(1), 2009.

