
Monetary Cost Optimizations for MPI-Based HPC
Applications on Amazon Clouds: Checkpoints and

Replicated Execution

Yifan Gong
NEWRI

Interdisciplinary Graduate
School

Nanyang Technological
University, Singapore

Bingsheng He
School of Computer

Engineering
Nanyang Technological
University, Singapore

Amelie Chi Zhou
School of Computer

Engineering
Nanyang Technological
University, Singapore

ABSTRACT
In this paper, we propose monetary cost optimizations for MPI-
based applications with deadline constraints on Amazon EC2. Par-
ticularly, we consider to utilize two kinds of Amazon EC2 instances
(on-demand and spot instances). As a spot instance can fail at
any time due to out-of-bid events, fault tolerant executions are
necessary. Through detailed studies, we have found that two
common fault tolerant mechanisms, i.e., checkpoints and replicated
executions, are complementary for cost-effective MPI executions
on spot instances. We formulate the optimization problem and
propose a novel cost model to minimize the expected monetary
cost. The experimental results with NPB benchmarks on Amazon
EC2 demonstrate that 1) it is feasible to run MPI applications with
performance constraints on spot instances, 2) our proposal achieves
significant monetary cost reduction compared to the state-of-the-
art algorithm and 3) it is necessary to adaptively choose checkpoint
and replication techniques for cost-effective and reliable MPI exe-
cutions on Amazon EC2.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault tolerance

Keywords
Cloud, Monetary Cost, Fault-tolerance, MPI, Spot Instance

1. INTRODUCTION
Recently, we have witnessed many emerging high performance

computing (HPC) applications developed and hosted in the cloud [43,
5, 28, 33]. As those applications are usually long-running jobs and
are costly in the cloud, monetary cost and performance become
important optimization factors [8, 23]. Message Passing Interface
(MPI) is the key programming paradigm for developing HPC ap-
plications [17, 16]. That motivates us to investigate whether and
how we can reduce the monetary cost for MPI-based applications
with performance constraints in the cloud.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC ’15, November 15-20, 2015, Austin, TX, USA
c⃝ 2015 ACM. ISBN 978-1-4503-3723-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2807591.2807612

In cloud computing environments, monetary cost optimizations
have been a hot research topic. Researchers have addressed various
problems in this field: minimizing the cost given performance
requirements [25, 6], optimizing the performance in the given
budgets [9] and scheduling optimizations with both cost and perfor-
mance constraints [29]. However, most of previous studies [26, 42,
15, 34, 47, 48] mainly focus on job/task scheduling for workflows,
rather than MPI applications. On the other hand, previous studies
on MPI-based application optimizations [13, 39] have ignored
many optimization opportunities provided by the cloud, e.g., con-
sidering only on-demand instances for optimizations.

Cloud has evolved into an economic market. Besides charging
the users with a fixed rate for on-demand instances, Amazon EC2
provides spot instances, whose prices are mainly determined by
the supply and demand in the market. We analyze the spot price
history and have the following observations: a) The spot instances
are usually much cheaper than on-demand instances but can also be
much more expensive in some cases. If spot instances are leveraged
properly, they can reduce the monetary cost [40, 6, 9] compared
to solutions with on-demand instances only. b) Different instance
types have different variations on the spot price. c) The spot price
is highly dynamic in both spatial and temporal dimensions. In
the spatial dimension, different instance types and instances of
the same type but in different Amazon EC2 availability zones can
have very different spot prices. In the temporal dimension, even
in the same cloud, spot prices can be unchanged for some time
and changing dramatically for some other time. These observations
are consistent with the previous studies [4, 28]. We present more
details about the spot trace study in Section 2.

Many previous studies [9, 41, 46, 40, 30, 21, 24] have studied
HPC applications on spot instances. Leveraging spot instances ap-
propriately can greatly reduce the monetary cost. However, a spot
instance is terminated whenever the spot price is higher than the
bid price set by users. Such out-of-bid events pose significant chal-
lenges to the cost optimizations of MPI applications with perfor-
mance requirements. In this paper, we investigate the effectiveness
of two common fault-tolerant mechanisms, including checkpoints
and replicated execution, on reducing the monetary cost of MPI
applications given user-defined performance requirements. We find
that these two mechanisms are actually complementary in the spot
market. Checkpoints is useful for reducing the cost of failures
while replicated execution helps to reduce the risk of failures. Due
to the temporal dynamics, failures can occur in MPI executions
in an undetermined manner and checkpoints is necessary. Spatial
redundancy, e.g., selecting instances from different Amazon EC2
zones for replicated execution, can significantly reduce the failure
rate [30]. Combining the two mechanisms together brings great

advantages for dealing with the dynamic spot prices. However,
combining the mechanisms is very challenging due to the large
optimization space.

Combining checkpoints and replicated execution on Amazon
EC2 requires making three key decisions: (D1) what instance
types to choose; (D2) how much to bid for spot instances; (D3)
when to checkpoint. First, Amazon EC2 provides a number of
instance types, each with different prices and capabilities. Selecting
different instance types for MPI applications greatly affects the
performance and monetary cost. Second, setting an appropriate bid
price for a spot instance also has great impact on the performance
and monetary cost of MPI-based applications. Low bid price leads
to low monetary cost but high probability of instance termination,
and hinders the application performance. Third, a good check-
point interval also matters. A short checkpoint interval leads to
large overhead while a long interval results in high recovery time.
Making good decisions for all of the three factors is non-trivial and
requires searching a large optimization space.

Although previous work [30] has already studied the determina-
tion of bid price and checkpoint interval for replicated executions
in multiple Amazon EC2 availability zones, they did not fully
consider the above-mentioned optimization factors. In this paper,
we aim to minimize the monetary cost for MPI-based applications
in Amazon EC2 cloud with performance guarantees. We mathe-
matically formulate this problem in the spot market and propose
a numerical method to generate near optimal solutions. Due to
the large solution space, we propose three techniques to reduce
the optimization overhead. First, we decouple the instance type
selection (D1) from the other two decisions (D2 and D3). Assume
the solution space for the instance type selection and the other
decisions are N and M, respectively. With the divide-and-conquer
technique, we are able to reduce the entire solution space from
N ×M to N + M. Second, we model the correlation between
bid price and checkpoint interval to further reduce the dimension
of the optimization problem. Third, based on the relationship
between spot instance failure rate and bid price, we propose a
logarithmic search method for bid price of spot instances. Our
proposed techniques can greatly reduce optimization overhead,
while preserving the optimality of searched results.

We make the following contributions:

• We mathematically formulate the monetary cost optimization
problem with performance guarantees for MPI applications
in the Amazon EC2 spot market. We are able to find near
optimal solutions for the problem with our proposed numerical
methods.
• According to problem-specific features, we propose several

dimensionality reduction techniques to reduce the optimization
overhead while preserving the solution quality.
• We implement our optimization method on Amazon EC2 based

on OpenMPI [14] using the BLCR library [22]. We evalu-
ate our method on a number of applications, including LU,
BT, SP, FT, IS, BTIO in NPB [2] benchmarks and a real-
world application, LAMMPS [1]. Experimental results indicate
that our proposed method can reduce 20% of total monetary
cost on average (up to 40%) compared to the state-of-the-art
algorithm [30].

The rest of paper is organized as follows. Section 2 gives the
background on Amazon EC2 and the fault-tolerant techniques in
MPI. Section 3 formulates the model to be an optimization prob-
lem, by aiming to compute the optimal bid price and checkpoint
intervals. In Section 4, we present the optimization solution for
this problem. We present our evaluation results in Section 5 and
summarize the related work in Section 6. Section 7 concludes the
paper.

(a) us-east-1a zone (b) us-east-1b zone
Figure 1: Spot price history of Amazon EC2 in three days

0.01 0.06 0.11 0.21
0

5

10

15

20

Fr
eq

ue
nc

y

Spot Price ($)

 Day 1
 Day 2
 Day 3
 Day 4

Figure 2: Histogram of m1.medium spot price in us-east-1a
zone in four consecutive days

2. PRELIMINARY AND BACKGROUND
2.1 Spot Pricing Model

Amazon EC2 provides different types of virtual machines (in-
stances), each with different computational capabilities and prices.
There are multiple pricing models in the cloud, such as on-demand,
spot and reservation. We focus on the on-demand and spot pricing
models in this paper.

Different from the on-demand pricing model where users pay a
fixed price for unit time of instance usage, the spot price changes
along time. To use spot instances, users need to bid the appropriate
price they are willing to pay. The bid price is fixed once the instance
is launched. If the bid price is higher than the spot price, the
instance can be successfully launched and run; otherwise it waits.
Amazon publishers update the spot price periodically and launch
the waiting instances whose bid prices exceed the current spot price
and terminate the instances whose bid prices are lower than that.
We have statistically analyzed the spot price history and found that,
1) the spot price varies in both temporal and spatial dimensions
and it is hard to predict the exact price in the future; 2) however,
the probabilistic distribution of the spot price is stable in a short
time.

Spot price variance. The spot price has shown variances in both
spatial and temporal dimensions. We study the spot price history
of m1.medium and m1.large instance types in two Amazon EC2
availability zones. Figure 1 illustrates the variation of the spot
prices in three days.

Temporal variation. The spot price is not static, but changes
along the time. The change of the spot price can be huge. For
example, in Figure 1(a), the spot price of m1.medium instances in
the us-east-1a zone increases from less than $0.1 to around $10
at the time of 10 hours. More importantly, the variation of the
spot prices is not constant. The spot price can be unchanged for
some time (e.g., spot price of m1.medium in us-east-1a zone during
20 to 40 hours, highlighted with A in Figure 1(a)) and changing
dramatically for some other time (e.g., spot price of m1.medium
in us-east-1a zone during 50 to 60 hours, highlighted with B in
Figure 1(a)). Thus, it is generally difficult or even impossible to
predict the exact spot price, even in the very near future.

Spatial variation. On the spatial dimension, we have the fol-
lowing observations. First, the spot price variations of different
instance types are different. For example, as shown in Figure 1(a),

the spot price of m1.medium changes abruptly during 50 to 60
hours while the price of m1.large is unchanged. We also find
that, the spot price of a more powerful instance can be cheaper
than a less powerful instance type at some time (e.g., m1.large and
m1.medium in Figure 1(a)). Second, the spot price variations of the
same instance type in different availability zones are different. For
example, the spot price of m1.medium instances changes largely
in the us-east-1a zone and is quite low and unchanged in the us-
east-1b zone at all time. It is feasible to use spot instances of
different types or in different availability zones to replicate the MPI
executions.

Stable spot price distribution. Although the spot price is
variant, the probabilistic distribution of the spot price can be stable
in a short time. Figure 2 shows the spot price histogram of
m1.medium instances in the us-east-1a zone in four consecutive
days. The spot price distributions in the four days are very close to
each other. It is feasible and desirable to use the spot price history
to estimate the probabilistic distribution of the spot price in a short
time.

Implications to model design. Those observations have sig-
nificant implications on our model design. First, the temporal
and spatial price variations require special design of fault-tolerant
mechanisms for reliability. This is particularly critical for MPI
applications, where the failure of one MPI process usually cause the
failure of the entire MPI application. We leverage the redundancies
in different instance types and availability zones of Amazon EC2 to
increase the probability of using spot instances to reduce the cost.
Second, the dynamics in spot prices is a norm. It is impractical
or unreliable to predict the exact next spot price. However, the
probabilistic distribution of spot prices is predictable in a short time
and we can use the spot price distribution to estimate the expected
monetary cost.

2.2 Fault Tolerance in MPI
MPI is a de facto standard for distributed and parallel programs

running on computer clusters and supercomputers. There are two
types of commonly adopted techniques for fault tolerance, namely
checkpoints and replicated execution. For checkpoint restart tech-
niques, coordinated checkpointing and uncoordinated checkpoint-
ing are two major classes [11]. When we run an MPI application
on the same spot instance type, the processes are terminated at
the same time and coordinated checkpointing technique is more
efficient. There are two kinds of replicated execution techniques,
namely primary-backup and active replication [20]. In our model,
the client processes do not communicate with the replicas, and the
active replication is more suitable. Due to the space limitation, we
present the details in Appendix A of our technical report [18].

3. PROBLEM FORMULATION
We study the monetary cost optimization problem for MPI-based

applications in the Amazon EC2 cloud, providing performance
guarantees for the applications.We consider the problem in the spot
market to benefit from the low prices of spot instances. In this
section, we first give an overview on the problem model and its
assumptions. We then mathematically formulate the problem as a
constrained optimization problem.

3.1 Model Overview and Assumptions
3.1.1 Model Overview

Consider an MPI-based application with N processes and the
application is associated with a deadline Deadline. The number
of processes N is fixed during the execution. We consider running
the applications with both spot and on-demand instances to reduce
the monetary cost while meeting the performance requirements.

Name Description
Deadline Application deadline defined by users

K Number of circle groups
Pi Bid price for circle group i
Fi Checkpoint interval for circle group i
ti Failure time for circle group i

Mi Number of instances for circle group i
Ti The time to complete MPI execution for circle group i
Si Expected spot price for circle group i
Oi Checkpointing overhead for circle group i
Ri Recovery overhead for circle group i
KD Number of types for on-demand instances
d The dth type of on-demand instance

Md Number of machine for type d of on-demand instance

Td
The time to complete the MPI execution

for type d of on-demand instance
Dd On-demand price for type d of on-demand instance

Table 1: Notations in the model

Circle group. In our model, we define circle groups as inde-
pendent groups of spot instances of the same type and the same
availability zone. Each application independently runs on a circle
group and multiple circle groups can be used as replications for a
single application. In each circle group, we use the checkpointing
mechanism for fault tolerance. We set the checkpoints in each
circle group independently.

Hybrid execution. If an application is completed in any one
of the circle groups, the application is completed and all the other
circle groups are terminated. If all the circle groups are terminated
by the out-of-bid events before the application is completed, we
select the checkpoint which is the nearest to completion and utilize
on-demand instances to recover the application. Assume there are
KD types of on-demand instances and we choose the one with the
lowest expected monetary cost to recover the application.
3.1.2 Assumptions

Without loss of generality, we have the following assumptions
for formulating the problem.

• One MPI process is attached to one core. Based on this assump-
tion, the number of instances in each circle group (denoted as
Mi, i = 1,2, . . . ,K) can be calculated as follows: assume the
instances in circle group j have k cores each, we have M j =

N
k .

• When the number of instances is calculated, users can estimate
the execution time of the application in different circle groups
(denoted as Ti, i = 1,2, . . . ,K). There are a number of profil-
ing tools [32] for this purpose. Note that the execution time
refers to the productive time, excluding any checkpointing or
recovery overhead. More implementation details can be found
in Section 4.4.

• The spot prices in different availability zones are all indepen-
dent. Our observation on history spot price traces confirms
this assumption and the previous studies [30] also have similar
findings. Based on this assumption, we estimate the probability
of failure for all the circle groups as the product of the failure
probability in each circle group.

• The spot price distribution is stable in a short period of time
(shown in Section 2). Based on this assumption, we can design
the bid price and checkpoint interval with spot price history.

3.2 Problem Definition
We formulate the problem as a constrained optimization prob-

lem. Our optimization goal is to minimize the expected monetary
cost of the MPI-based application while meeting the performance
requirement. Table 1 summarizes the key notations in our model.
We have three parameters to optimize: the bid price (P⃗) for each
circle group, the checkpoint interval (F⃗) for each circle group and
the type of on-demand instance (d) for the application. P⃗ is a K

dimension vector, where Pi (i = 1,2, ...K) represent the bid price
for circle group i. Pi ∈[0, Hi] (i = 1,2, ...K), where Hi denotes
the highest spot price in the history of circle group i. If Pi = 0
(∃i ∈[1, K]), we do not use circle group i for replicated execution.
If Pi =Hi (∃i∈[1, K]), circle group i can be terminated in extremely
low probability, which we can ignore. F⃗ is a K dimension vector
as well and Fi (i = 1,2, ...K) represent the checkpoint interval for
circle group i. Fi ∈ (0, Ti] (i = 1,2, ...K), where Ti is the execution
time of the application in circle groups i. If Fi = Ti (∃i∈[1, K]), we
do not use checkpoints for this circle group. d denotes the selected
on-demand instance type for recovering the application from circle
group failures, which is an integer value between 1 and KD. The
problem can be formulated as:

minimize E(Cost(P⃗, F⃗ ,d)) (1)

sub ject to E(Time(P⃗, F⃗ ,d))≤ Deadline

3.2.1 Estimating Expected Monetary Cost
The expected monetary cost E(Cost(P⃗, F⃗ ,d)) is calculated as

below:
E(Cost(P⃗, F⃗ ,d)) = ∑⃗

t

f (P⃗,⃗ t)×Cost(P⃗, F⃗ ,⃗ t,d) (2)

where the failure rate function f (P⃗,⃗ t) denotes the possibility of
failures for all circle groups at time t⃗ when the bid price is set to
P⃗. t⃗ is also a K dimension vector. ti (i = 1,2, ...K) is the failure
time for circle group i. To simplify the problem, we discrete ti
to integers using the floor function. ti = k means circle group
i is terminated between [k,k + 1]. When ti = Ti, it means the
application is completed on circle group i. The failure rate function
is determined by the spot price history. More details can be found
in Section 4.4. As the failures are independent in different circle
groups, we define the failure rate function for each circle group i as
fi(Pi, ti), and the failure rate function f (P⃗,⃗ t) can be represented as:

f (P⃗,⃗ t) =
K

∏
i=1

fi(Pi, ti) (3)

In Formula 2, Cost(P⃗, F⃗ ,⃗ t,d) denotes the total monetary cost of
all circle groups when circle group i (i = 1,2, ...K) is terminated
at time ti (i = 1,2, ...K). This cost can be further divided into two
parts:

Cost(P⃗, F⃗ ,⃗ t,d) =CostS(P⃗, F⃗ ,⃗ t)+CostD(F⃗ ,⃗ t,d) (4)

where CostS(P⃗, F⃗ ,⃗ t) (Formula 5) is the monetary cost for spot
instances (or circle groups) and CostD(F⃗ ,⃗ t,d) (Formula 6) is the
monetary cost for on-demand instances.

To calculate the cost of the spot instances CostS(P⃗, F⃗ ,⃗ t), we first
calculate the expected spot price (denoted as Si). We find the spot
prices lower than the bid price Pi from the spot price history, and
use their mean value as the expected spot price Si for calculation.
In Formula 5, ti +Oi ×⌈ ti

Fi
⌉ denotes the total execution time for

circle group i. ⌈ ti
Fi
⌉ is the number of checkpoint operations and Oi

is the average overhead for each checkpoint.

CostS(P⃗, F⃗ ,⃗ t) =
K

∑
i=1

Si× (ti +Oi×⌈
ti
Fi
⌉)×Mi (5)

To calculate the cost of on-demand instances CostD(F⃗ ,⃗ t,d), we
first calculate the remaining execution time of the application, in
the ratio of the entire execution time of the application (denoted as
Ratio(ti,Fi)). When ti = Ti, the remaining execution time is 0 and
Ratio is equal to 0. When ti is less than the checkpoint interval
Fi, no checkpoint is taken (the first checkpoint is taken at time Fi)
and the remaining execution time is Ti +Fi. When ti is larger than
Fi, the execution time is ti−Fi and the remaining execution time
is Ti− (ti−Fi)+Ri, where Ri is the recovery overhead. The ratio

Figure 3: Overview of the optimization algorithm.

(as in Formula 7) is used to calculate the checkpoint which is the
closest (the minimal value) to finish among all circle groups.

CostD(F⃗ ,⃗ t,d) = min
i∈{1,..., K}

[Ratio(ti,Fi)]×Td ×Dd ×Md (6)

Ratio(ti,Fi) =

{
Ti−max(ti−Fi,0)+Ri

Ti
i f ti < Ti

0 i f ti = Ti
(7)

3.2.2 Estimating Expected Execution Time
The expected execution time can be estimated as follows:

E(Time(P⃗, F⃗ ,d)) = ∑⃗
t

f (P⃗,⃗ t)×Time(F⃗ ,⃗ t,d) (8)

where Time(F⃗ ,⃗ t,d) is the total execution time for the application
when circle group i (i = 1,2, ...K) is terminated at time ti (i =
1,2, ...K). It consists of two parts as shown in Formula 9.

Time(F⃗ ,⃗ t,d) = TimeS(F⃗ ,⃗ t)+TimeD(F⃗ ,⃗ t,d) (9)

where TimeS(F⃗ ,⃗ t) is the total execution time on spot instances
and TimeD(F⃗ ,⃗ t,d) is the execution time on on-demand instances.
We calculate the execution time on spot TimeS(F⃗ ,⃗ t) as shown in
Formula 10. It is equal to the longest execution time for all the
circle groups. The execution time on on-demand instances is shown
in Formula 11. We exploit the checkpoint, which is the closest to
finish (minimal value for Ratio) among all circle groups, to recover
the application.

TimeS(F⃗ ,⃗ t) = max
i∈{1,..., K}

(ti +Oi×⌈
ti
Fi
⌉) (10)

TimeD(F⃗ ,⃗ t,d) = min
i∈{1,..., K}

[Ratio(ti,Fi)]×Td (11)

4. MODEL OPTIMIZATION
In this section, we propose a numerical method to obtain the

optimal solution for the problem (Formula 1). Figure 3 shows
the overview of the proposed optimization method. The algorithm
takes the profiling results of the MPI-based application and spot
price history as input. With the application profiles, we first select
the on-demand instance type with the minimum expected cost.
The selected on-demand instance type is then passed to the two-
level optimization algorithm for deciding the optimal bid price and
checkpointing interval. The two-level optimization method first
reduces the problem dimension by representing the checkpointing
interval F⃗ with the bid price P⃗ and then utilizes a logarithmic
searching method to efficiently search for the optimal bid price.

4.1 On-demand Type Selection
On observing Formula 4 and 6, we can easily find that the

monetary cost of on-demand instances is independent from the
cost of spot instances. Formally, we have that if ∃ P⃗′ and F⃗ ′

such that E(Cost(P⃗′, F⃗ ′,d1)) > E(Cost(P⃗′, F⃗ ′,d2)), then for ∀ P⃗
and F⃗ , E(Cost(P⃗, F⃗ ,d1))> E(Cost(P⃗, F⃗ ,d2)). This means we can
separate the decision of on-demand instance type from the other
parameters in this problem. In this subsection, we introduce the
selection of the most cost-efficient on-demand instance type.

When optimizing the on-demand instance type, we have two
principles in mind. First, the monetary cost induced by the on-
demand instance should be minimized (Formula 12). Second, the
on-demand instance should be able to meet the deadline require-
ment (Formula 13). Since the price of on-demand instances is
fixed, the monetary cost of on-demand instances of type d can be
calculated with the unit price of the instances Dd , the execution
time of the application on the instances Td and the number of
utilized instances Md (see Formula 12).

Formula 12 shows the monetary cost of on-demand instances
of type d. The on-demand instance should be able to meet the
deadline requirement (Formula 13). When evaluating whether the
deadline can be met by an on-demand instance type, we should take
the checkpointing and recovery overhead into consideration. We
define a parameter called Slack, where Slack = Deadline−Deadline′

Deadline .
Deadline′ is the execution time allowed for on-demand instances.
The difference between Deadline and Deadline′ is the time re-
served for checkpointing and recovery.

minimize CostOD(d) = Td ×Dd ×Md (12)
sub ject to Td ≤ Deadline× (1−Slack) (13)

Solving the above optimization problem is straightforward (given
Slack is determined in Section 5). After finding the optimal solu-
tion d∗ to the above problem, we can simplify the problem model
in Formula 1 as below.

minimize E(Cost(P⃗, F⃗)) = E(Cost(P⃗, F⃗ ,d∗)) (14)

sub ject to E(Time(P⃗, F⃗)) = E(Time(P⃗, F⃗ ,d∗))≤ Deadline

We denote the execution time of the application on on-demand
instances of type d∗ as T , the price of d∗ instances as D and the
number of utilized instances as M. With those notations, Formula 6
and 11 can be simplified as below.

CostD(F⃗ ,⃗ t) = min
i∈{1,..., K}

[Ratio(ti,Fi)]×T ×D×M (15)

TimeD(F⃗ ,⃗ t) = min
i∈{1,..., K}

[Ratio(ti,Fi)]×T (16)

4.2 Two-Level Optimization
In the subsection, we propose a two-level optimization algorithm

to optimize the bid price and checkpoint interval parameters. We
first analyze the difficulty of the problem and find that the solution
space is too large to find an optimal solution in reasonable time.
We propose two techniques to reduce the optimization space. First,
we reduce the problem dimension by modeling the correlation
between bid price and checkpoint interval. Second, we develop
a logarithmic search method for bid price to further reduce the
optimization space.

4.2.1 Difficulty Analysis
One straight-forward idea for solving the problem in Formula 14

is to utilize convex optimization method [7]. In order to use the
convex optimization method, it is necessary to prove that the func-
tions E(Cost(P⃗, F⃗)) and E(Time(P⃗, F⃗)) are convex on parameter P⃗
and F⃗ . E(Cost(P⃗, F⃗)) and E(Time(P⃗, F⃗)) are not always convex
because the following two necessary conditions cannot be met.

First, for parameter P⃗ (fixed F⃗), whether E(Cost(P⃗, F⃗)) is con-
vex depends on the function f (P⃗,⃗ t) and Si(Pi) (i = 1,2, ...K) (see
Formula 2, 4 and 5). Those two functions are extracted from the
spot price history and it is not reasonable to have such strong
assumptions for the two functions based on our observations in
Section 2.

Second, for parameter F⃗ , E(Cost(P⃗, F⃗)) is not continuous when
Fi ≤ ti (i = 1,2, . . . ,K and ti = 1,2, . . . ,Ti), because of the ⌈ ti

Fi
⌉

component in the calculation (see Formula 2, 4 and 5). Moreover,
Formula 7 is not derivable when Fi = ti (i = 1,2, . . . ,K and ti =
1,2, . . . ,Ti).

As the convex optimization method is not viable, we consider
exploiting numerical methods to solve this problem. We first
estimate the optimization space that we need to search. Assume the
solution space of the checkpoint interval is T , the solution space of
the bid price is P and the number of available circle groups is K,
then the problem complexity is O((P× T)K). The optimization
space grows exponentially with the increase of K. Due to the large
optimization space, the overhead of finding an optimal solution is
high for a practical MPI solution. We propose two techniques to
reduce the searching space in the following subsections.

4.2.2 Algorithm Details
We propose a two-level optimization algorithm to reduce the

solution space of the optimization problem. In the first level, we
perform dimension reduction by finding the correlation of P⃗ and F⃗
and modeling F⃗ with a function of P⃗. In the second level, we search
for the optimal bid price for parameter P⃗ with a logarithmic search
method.

Prior to presenting the algorithm details, we give an example to
intuitively show how much we can reduce the optimization space.
Assume the number of possible bid prices in the solution space is
100. That is, for each circle group, we consider 100 bid prices
equally distributed from 0 to the highest spot price in the history.
We further assume the solution space for the checkpoint interval
is 10 and there are 4 types of circle groups for users to choose.
According to our analysis in Section 4.2.1, the overall optimization
space for the problem is as large as (100× 10)4 = 1012. With the
proposed dimension reduction technique, we reduce the optimiza-
tion space to 1004 = 108. With the proposed logarithmic search
method, we further reduce the optimization space to (log2 100)4 ≈
2000. Thus, with the two optimizations, our proposal becomes a
practical solution for making timely decisions for MPI applications.

Reducing problem dimension. According to the following
Theorem 1, we can find the correlation between the bid price
parameter P⃗ and checkpoint interval F⃗ and model F⃗ with a vector
function of P⃗, i.e., F⃗ = ϕ⃗(P⃗). Then, we can simplify the optimiza-
tion problem described by Formula 14 to an optimization problem
with a single variable P⃗. The optimal solution (P⃗∗, ϕ⃗(P⃗∗)) to the
simplified problem is also the optimal solution for the original
problem in Formula 14.

THEOREM 1. If we can find a vector function ϕ⃗(P⃗) such that, given
P⃗, we have ∀F⃗, Cost(P⃗, ϕ⃗(P⃗)) 6 Cost(P⃗, F⃗). Then the optimal solution
(P⃗∗, F⃗∗) to function Cost(P⃗, F⃗) satisfies the equation

Cost(P⃗∗, ϕ⃗(P⃗∗)) =Cost(P⃗∗, F⃗∗)

PROOF. As (P⃗∗, F⃗∗) is the optimal solution, we have
Cost(P⃗∗, F⃗∗)6Cost(P⃗∗, ϕ⃗(P⃗∗))

On the other hand, for the given value P⃗∗, we have
∀F⃗ , Cost(P⃗∗, ϕ⃗(P⃗∗))6Cost(P⃗∗, F⃗)

Thus,
Cost(P⃗∗, ϕ⃗(P⃗∗)) =Cost(P⃗∗, F⃗∗)

We first introduce how to find the vector function ϕ⃗ , such that
F⃗ = ϕ⃗(P⃗). Note that, we independently perform checkpointing in
different circle groups. Since the optimal checkpoint interval is
uniquely decided by the bid price in that circle group, we opti-
mize the checkpoint interval for each circle group independently.
Formally, we try to find the function ϕi for circle group i (i =
1,2, . . . ,K), such that Fi = ϕi(Pi).

Given a bid price P′i , the monetary cost optimization problem
in Formula 14 is equivalent to an optimization problem on the
execution time of the MPI application in the circle group. Thus,

0 0.5 1
0

0.2

0.4

0.6

0.8

1

F
ai

lu
re

 R
at

e

Normalized Bid Price

0 0.5 1
0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
ed

 S
p

o
t

P
ri

cef
i
(P

i
,t

i
)

S
i
(P

i
)

(a) m1.small spot instances

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Normalized Bid Price

F
ai

lu
re

 R
at

e

0 0.5 1
0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
ed

 S
p

o
t

P
ri

cef
i
(P

i
,t

i
)

S
i
(P

i
)

(b) c3.xlarge spot instances
Figure 4: Changing trends of the failure rate function fi(Pi, ti)
and the expected spot price Si(Pi) in us-east-1a zone.

we can formulate the checkpoint interval optimization problem as
the problem to minimize the execution time of a MPI application in
a circle group, given a failure rate function fi(P′i , ti). Di et al. [10]
have proposed a mathematical method to solve this problem. In this
paper, we adopt their approach to solve this problem. We briefly
describe the solution here, and more details can be found in their
paper [10]. The optimal checkpoint interval can be estimated as:

ϕi(P′i) =

√
2Oi ·Ti

Ei(P′i)
(17)

where Oi is the checkpoint overhead in circle group i, Ti is the
application execution time and Ei(P′i) denotes the expected number
of failure events occurring during the execution. Note that we
assume no failure occurs on the on-demand instances. Ei(P′i) is
calculated with the given failure rate function as follows.

Ei(P′i) =
Ti

∑
ti=1

fi(P′i , ti) (18)

Based on the technique, we reduce the complexity of searching the
optimal checkpoint interval from O(T) to O(1).

Optimizing bid price: a logarithmic approach. With Formu-
la 17, we now simplify the problem in Formula 14 to an optimiza-
tion problem with a single variable P⃗ as follow:

minimize E(Cost(P⃗, ϕ⃗(F⃗))) (19)

sub ject to E(Time(P⃗, ϕ⃗(F⃗))≤ Deadline

A naive approach is to search the range from 0 to the highest
spot price H in the spot price history trace. That makes an O(HK)
complexity for the searching problem. In order to reduce the
optimization space, we propose a logarithmic searching method.

Our optimization goal is depending on the optimization of two
functions, i.e., the failure rate function fi(Pi, ti) (see Formula 2)
and the expected spot price Si(Pi) (see Formula 5) for each circle
group i (i = 1,2, . . . ,K). Figure 4 shows the changing trends of the
two functions with the increase of bid price, for spot instances of
m1.small and c3.xlarge type in the us-east-1a zone. Both of the
two functions are sensitive to the bid price, but not in a uniform
way. For example, when the bid price of m1.small spot instances
increases from 0 to 0.2, fi(Pi, ti) decreases abruptly by almost 90%.
When the bid price increases from 0.6 to 1, fi(Pi, ti) varies less
than 5%. We have similar observation for other spot instance
types. Those observations show that, the bid prices are not of
equal importance to the optimization goal and it is inefficient and
ineffective to search the entire solution space of bid price with the
same granularity.

We propose a new logarithmic searching method to take advan-
tage of the observations. The basic idea is that we do not search

the entire solution space with the same granularity. Instead, as
the bid price increases, the interval between searched points is
increased. For a given solution space ranging from 0 to H, we
equally divide the space into I (I = 2L) intervals. We only search
the jth point in the range, where j = 2l (l = 1,2, ..,L). For each
searched point P⃗j (P⃗j = {P1j,P2j, . . . ,PKj}), we evaluate it with
Cost(P⃗, ϕ⃗(P⃗)) and Time(P⃗, ϕ⃗(P⃗)) in Formula 19. The bid price
vector with the minimal expected monetary cost while satisfying
the deadline constraint is returned as the optimal solution. With
the logarithmic searching method, we reduce the searching space
to O((log2H)K).
4.3 Update Maintenance

Algorithm 1 Adaptive Optimization Algorithm
Input: K, Ti, Mi, Oi, Ri, KD, Td , Md , Dd and Deadline as defined in Table 1
Trace i: Spot price history of the spot instances in circle group i (i = 1,2, ...K)
1: Select the on-demand instance type d (d ∈ {1,2, ...,KD}) by solving Formula 12;
2: Define the optimization window size Tm;
3: Initialize the execution time Te ← 0, To ← Td , T ← Tm, D← Dd , M ← Md and

Ti← Ti× Tm
To

(i = 1,2, ...K);
4: Set the original start point Start (The beginning of the application);
5: while To>0 do
6: if To< Deadline−Te then
7: /*Deadline could not be satisfied*/
8: Run the application on on-demand instance type d from start point Start

until the application is completed;
9: return
10: else
11: if To>Tm then
12: /*Complete the application for the next interval*/
13: Deadline∗ ← (Deadline−Te)× Tm

To
;

14: else
15: /*Complete the rest of the application*/
16: Deadline∗ ← Deadline−Te, T ← To and Ti← Ti× To

Tm
(i = 1,2, ...K);

17: Calculate Distribution function fi(Pi, ti) and Si(Pi) based on Trace i (i =
1,2, ...K);

18: Compute (P⃗, F⃗) based on two-level optimization algorithm when the
deadline is Deadline∗ (Solve Formula 14);

19: Hybrid run the application based on the configuration from start point
Start until the time interval T is completed;

20: To← To−Tm;
21: Compute the real execution time Te;
22: Checkpointing the final state of the application as the next start point Start

and update the trace information Trace i (i = 1,2, ...K);
23: return

Our algorithm needs to adapt to the variances of spot prices, as
observed in Section 2. Another reason is that the evaluation of
each searched solution has a time complexity of O(T̄ K) (T̄ is the
average execution time), and the optimization overhead tends to be
high when T̄ is large.

In the adaptation, we define an optimization window with size
Tm. Every Tm time, we update the spot price trace with the spot
price history from the previous window and generate the optimal
solution for the optimization problem using our offline optimization
method with the latest spot price history. Algorithm 1 shows the
optimization process of the adaptive method.

Given an optimization window size Tm, we first identify the
residual execution time of the application, which is denoted as
To. In each optimization window, we exploit our two-level op-
timization algorithm to find the optimal configuration (P⃗, F⃗) and
execute the application. At the end of an optimization window,
we update the spot price trace with the spot price history in this
window and update the failure rate function for later optimizations.
One problem in the adaptive method is how to allocate the deadline
for each optimization window. In our algorithm, we calculate the
leftover time in a dynamic manner. Particularly, we first calculate
the leftover time to the deadline (i.e., Deadline− Te) and the
residual execution time of the application (i.e., To). Then we
allocate the deadline to each optimization window according to

the ratio of the two parts (see Line 13 of Algorithm 1). If the
deadline could not be satisfied, we utilize on-demand instances
to execute the rest of the application. With the adaptive method,
the evaluation overhead of each searched solution is reduced to
O(T̄

Tm
·T K

m). And the total overhead for the algorithm is O(T̄
Tm
·T K

m ·
(log2H)K). In the experiments, we explicitly study how Tm affects
the quality of our adaptation. With the suitable parameter settings,
our proposed methods can significantly reduce the optimization
overhead (usually less than 1% of the total execution time).

4.4 Implementation Details
There are some implementation issues that are worth discussion.
Optimizing selection of circle groups. Evaluating each searched

bid price solution with Cost(P⃗, ϕ⃗(P⃗)) and Time(P⃗, ϕ⃗(P⃗)) induces a
time complexity of O(T̄

Tm
·T K

m), where K is the maximum number of
circle groups for consideration. However, in real implementation,
due to the redundancy of spot prices in different circle groups, we
are able to successfully complete an MPI application with only κ
(κ < K) circle groups. Based on this observation, we introduce
a parameter named κ (κ < K). It means that only κ out of K
circle groups are selected for executing the MPI applications. We
traverse all of possible cases each with a specific combination
of κ circle groups and compute optimal (P⃗, F⃗) for each case.
The case with minimal expected monetary cost serves as the final
optimal solution. Based on this method in implementation, we
can reduce the time complexity to O(Cκ

K ·
T̄
Tm
·T κ

m · (log2H)κ). We
experimentally study the impact of κ in Section 5.

Obtaining Failure Rate Function. We define failure rate func-
tion fi(Pi, ti) to be the probability of the spot instances being failed
due to the out-of-bid event at time ti when the bid price is set to Pi
for circle group i (i = 1,2, ...K). When ti is equal to Ti, it means
that the application is completed on circle group i. Otherwise, the
spot instances fail before the completion of the application in circle
group i.

The possibility of failure fi(Pi, ti) for circle group i can be
calculated using the spot price history in histogram-based way. For
each given bid price P′i and execution time t ′i , the algorithm starts
from a random point in the spot price history of the previous two
days. We check whether the spot price firstly becomes larger than
P′i at time t ′i . If so, we add one to the counter count. We repeat the
same process for G times (G is sufficiently large) and finally use
count

G as the failing probability at (P′i , t ′i).
In the experiments, we explicitly study how the accuracy of

failure rate function affects the quality of our decision.
Profiling. We estimate the execution time of MPI applications

on different instance types using TAU (Tuning and Analysis Util-
ities) [36] with the following profile: < #Isr , Datasend , Datarev,
IOseq, IOrnd >. #Isr represents the total number of instructions to
be executed. Datasend and Datarev are the amount of data that need
to send and receive respectively (called by MPI function). IOseq
and IOrnd are the amount of I/O data for sequential and random
accesses respectively to local disk.

We estimate the execution time as the summation of its CPU,
networking and I/O time. In the estimation, the CPU time is deter-
mined by the #Isr of the application as well as the CPU frequency
of the instance that the application is executed on. Similarly, the
networking and I/O time is determined by networking and I/O data
size divided by the network and I/O bandwidth, respectively. The
total execution time is the sum of the three parts.

Checkpointing. We implement our system based on Open-
MPI [14] with BLCR [22]. This checkpoint/restart tool uses a
system-level coordinated non-locking checkpointing strategy for
implementation. The advantage is that BLCR does not require
source code-level modifications and it does not significantly in-

crease the length of runs in which no checkpoints are taken. Anoth-
er problem in the implementation is where to store the checkpoint.
If the checkpoint is stored in local disk, the data may be lost
at any time when the spot instance is terminated. We choose
to use Amazon Simple Storage Service (Amazon S3) to store
the checkpoint for two reasons. First, Amazon S3 gives any
developer access to the same highly reliable and fast data storage
infrastructure. Second, the storage resource is inexpensive. The
monetary cost is about $0.03/GB per month. Compared with the
cost for MPI executions, the cost for storage is ignorable in our
experiments (less than 0.1%).

5. EVALUATIONS
This section presents our experimental results on evaluating the

proposed approach and model. Overall, there are three groups of
experiments. First, we study the impact of different parameters
in our model (Section 5.2). Second, we study the monetary cost
optimization results for different applications in comparison with
the state-of-the-art algorithm [30] and other heuristic approaches
of utilizing on-demand and spot instances on Amazon EC2 (Sec-
tion 5.3). Third, we study the model accuracy and the detailed com-
parison with the approaches designed by individual fault-tolerance
method in simulations (Section 5.4).

5.1 Experimental Setup
Applications. We apply our model to NAS Parallel Bench-

marks (NPB [2]) kernels version 2.4. In order to measure the
monetary cost of MPI-based applications on spot instances, we
choose three types of applications, 1) computation-intensive ap-
plications, including BT (Block Tri-diagonal solver), SP (Scalar
Penta-diagonal solver) and LU (Lower-upper Gauss-Seidel solver);
2) communication-intensive applications, including FT (Fast Fouri-
er Transform) and IS (Integer Sort); 3) IO-intensive application,
BTIO (Block Tri-diagonal solver with IO subtypes). The number
of processes is set to 128. The default problem size is CLASS
D. We run each of the applications multiple times (100 to 200
times) to extend to large scale computing. We further apply our
algorithm to one real-world application, LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator) [1]. It aims at
simulating the movement, position and other attributes of atoms
or molecules with interaction forces exerted on one another.

Comparisons. We execute the applications on on-demand in-
stance with the best performance (minimal execution time) and
denote the method as Baseline. In the experiments, the monetary
cost and execution time are normalized to Baseline. We denote the
monetary cost of Baseline as Baseline Cost and the execution time
of Baseline as Baseline Time. We set tight deadline as 5% larger
than Baseline Time and loose deadline as 50% larger than Baseline
Time.

We denote our proposed optimization algorithm as SOMPI (short
for Spot and On-demand MPI). We evaluate SOMPI in the fol-
lowing aspects, including (1) comparison with the state-of-the-art
algorithm (Section 5.3.1), (2) comparison with simple utilization of
on-demand and spot instances (Section 5.3.2) and (3) comparison
with separate fault-tolerance techniques (Section 5.4.2).

We use two complementary evaluation approaches including real
experiments and simulations.

Experiments on Amazon EC2. The real-world experiments
were performed on Amazon EC2 in August 2014, with the focus
on assessing the practical performance impact of our proposed ap-
proach. With the real experiments, we present the overall monetary
cost comparison on different approaches. On Amazon EC2, we
consider different instance types, including m1.small, m1.medium,
c3.xlarge and cc2.8xlarge, in us-east-1a, us-east-1b and us-east-1c
zones, as the candidates of circle groups. We choose m1.small and

m1.medium for their low price and select c3.xlarge and cc2.8xlarge
(cluster compute instance) for their high computational power. In
our experiments, one process is attached to one core. For each
instance type, the number of instances is determined by the number
of cores in one instance. For example, we utilize 128 m1.small
instances to execute the applications in NPB, because the total
number of processes is 128 and there is only one core in one
m1.small instance. We run each of the applications on Amazon
EC2 for more than 100 times and calculate the expected monetary
costs.

Simulation. As for simulations, we use the real trace of spot
price in us-east-1a, us-east-1b and us-east-1c zones in 2014. With
the simulations, we are able to verify the accuracy and efficiency of
our model in a fully controlled manner.

The spot environment of Amazon EC2 is dynamic. For re-
peatable experiments on studying different settings and traces, we
use the method of replaying the trace from the spot market, and
calculate the monetary cost given the spot price in the trace. We
randomly choose a start point in the trace and compare our bid price
with the spot price along the time. If our bid price is lower than the
spot price at that point, we treat the application as terminated and
plus an overhead of recovery when it is restarted. Otherwise, we
keep on calculating the running time of the application. We repeat
the simulation for one million times and calculate the expected cost.

5.2 Parameter Study
We evaluate different parameters and compare the monetary cost

and execution time, as well as the optimization overhead. We use
simulation to control the same experimental environment. For each
experiment, we vary one parameter while keeping other parameters
fixed to their default settings (slack = 20%, κ = 4 and Tm = 15). In
the following experiments,we use BT as an example and we obtain
similar results for other applications. Due to the space limitation,
we summarize our findings here, and present more details on
parameter study in Appendix B of our technical report [18].

Slack. In order to compare the impact of different slack, we
fix the deadline′ (the deadline for the on-demand execution) as
Baseline Time. We compare the monetary cost and execution time
in different slack.

Based on the comparison, we observe that: (1) When the slack
is smaller than 20%, the monetary cost reduces and the execution
time increases as the slack increases. (2) When the slack is larger
than 20%, the monetary cost does not further reduce when the slack
increases and the longest execution time keeps at 1.16 times of the
Baseline Time. Based on the observations, we select the slack as
20% in our experiments.

κ . In this experiment, we find that when κ is larger than 4, the
monetary cost reduction is very small but the total optimization
overhead for calibration and searching becomes very large. When
κ is 10, the total overhead is 2 times larger than Baseline Time.
However, when κ is equal to 4, the total optimization overhead is
smaller than 1% of Baseline Time. Thus, we choose κ=4 as our
default setting.

Tm. We vary optimization window size Tm and compare the
monetary cost. When Tm is around 15 (hours), the monetary cost
reduction is the lowest. When Tm is too small (less than 10 hours),
the frequent checkpointing and recovery after each interval Tm lead
to extra monetary cost. Furthermore, the large overhead results to
tight deadline to optimize the solution. When Tm is too large (larger
than 20 hours), the dynamics of spot price leads to the change of
the optimal solution.

5.3 Results on Amazon EC2
We present the following results related to Amazon EC2. First,

we present the monetary cost and performance comparison with the

state-of-the-art algorithm [30]. Second, we evaluate the monetary
cost in comparison with the heuristic algorithms of utilizing on-
demand and spot instances. Third, we study the impact of deadline
requirements to the monetary cost optimization in SOMPI. For a
fair comparison, all the results include the optimization overhead.
The optimization overhead is generally smaller than 1% of the total
execution time.
5.3.1 Comparison with state-of-the-art algorithm

In comparison with the state-of-the-art algorithm [30], we eval-
uate the following approaches.
On-demand. We select the type of on-demand instance with
the smallest expected monetary cost, which satisfies the deadline
requirement at the same time. This simulates the monetary cost
optimization with only on-demand instances.
Marathe. Marathe et al. [30] propose to exploit spot instance
in different zones as redundancy to reduce the monetary cost. In
their algorithm, they utilize CC2 instances (cc2.8xlarge) as default
setting. To the best of our knowledge, this approach is the state-
of-the-art monetary cost optimization with spot instances for MPI-
based applications.
Marathe-Opt. We optimize Marathe by selecting the suitable
instance type. We compare different types of spot instance based
on their algorithm and show the results with the minimal monetary
cost.

In the experiments, we first run On-demand, immediately fol-
lowed by Marathe, Marathe-Opt and SOMPI. Each experiment was
ran for 100 times. Figure 5 shows the monetary cost comparison
for three different kinds of applications, including computation-
intensive, communication-intensive and IO-intensive applications,
and a real-world application. Overall, SOMPI outperforms other
comparisons for all applications in both loose and tight deadline.
On average, compared with On-demand, Marathe and Marathe-
Opt, SOMPI reduces the monetary cost by 70%, 48% and 20%,
respectively. We also find that Marathe, Marathe-Opt and SOMPI
are all sensitive to the accuracy of estimated execution time. The
variation of I/O and network performance can affect the accuracy of
the prediction, and further affect the optimization results. We have
studied the impact of inaccurate profiling results and find that our
proposed method can still outperform other algorithms when the
estimated execution time is inaccurate. The results can be found in
our technical report [18]. We propose our major observations for
each type of applications.

Computation-Intensive Applications. We have two major ob-
servations from the monetary cost comparison under different dead-
lines. (1) Under loose deadline, the monetary cost of Marathe is
36% larger than Marathe-Opt. The reason is that cc2.8xlarge is
the most powerful instance with the shortest execution time but
the highest monetary cost for computation-intensive applications.
Marathe-Opt can select other types of spot instance to reduce
the monetary cost. For tight deadline requirement, Marathe and
Marathe-Opt have equal monetary cost, because both Marathe and
Marathe-Opt select the most powerful instance type (cc2.8xlarge)
to meet the deadline requirement. (2) SOMPI can reduce 8%-
25% of monetary cost for Marathe-Opt in different deadline re-
quirements. There are two reasons. First, SOMPI can select
different instance types to run the applications, but Marathe-Opt
can only select one instance type for replicated execution. From
more candidates, SOMPI can select the suitable instance type with
lower spot price for different cases. Second, SOMPI sets the bid
price and checkpoint intervals by solving an optimization problem,
which can further reduce the monetary cost.

Communication-Intensive Applications. We have the follow-
ing observations. (1) The best instance type to execute communication-
intensive applications is cc2.8xlarge. The reason is that for cc2.8xlarge

BT LU SP
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 Loose Deadline

N
or

m
al

iz
ed

 M
on

et
or

y
C

os
t

 On-demand
 Marathe
 Marathe-Opt
 SOMPI

BT LU SP
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 Tight Deadline

N
or

m
al

iz
ed

 M
on

et
or

y
C

os
t

 On-demand
 Marathe
 Marathe-Opt
 SOMPI

(a) Computation-intensive Applications

FT IS
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 Loose Deadline

N
or

m
al

iz
ed

 M
on

et
or

y
C

os
t

 On-demand
 Marathe
 Marathe-Opt
 SOMPI

FT IS
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 Tight Deadline

N
or

m
al

iz
ed

 M
on

et
or

y
C

os
t

 On-demand
 Marathe
 Marathe-Opt
 SOMPI

(b) Communication-intensive Applications

BTIO
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

 Loose Deadline

N
or

m
al

iz
ed

 M
on

et
or

y
C

os
t

 On-demand
 Marathe
 Marathe-Opt
 SOMPI

BTIO
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

 Tight Deadline

N
or

m
al

iz
ed

 M
on

et
or

y
C

os
t

 On-demand
 Marathe
 Marathe-Opt
 SOMPI

(c) IO-intensive Application

p=32 p=64 p=128
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Loose Deadline

N
or

m
al

iz
ed

 M
on

et
or

y
C

os
t

 On-demand
 Matathe
 Marathe-Opt
 SOMPI

p=32 p=64 p=128
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tight Deadline

N
or

m
al

iz
ed

 M
on

et
or

y
C

os
t

 On-demand
 Matathe
 Marathe-Opt
 SOMPI

(d) Real-world Application (LAMMPS)
Figure 5: Monetary cost comparison in different deadline

instance, the network is much better than the network of m1.small,
m1.medium and c3.xlarge. On another hand, many processes in
cc2.8xlarge are running in the same instance and they utilize shared
memory instead of exchanging message through the network. (2)
The monetary cost of all the approaches is less than Baseline Cost
in both loose and tight deadline requirement, but the cost reduc-
tion is less than the reduction for running computation-intensive
applications. The reason is that for communication-intensive ap-
plications, cc2.8xlarge instances lead to the minimal monetary cost
with the shortest execution time. But for computation-intensive
applications, the selection of less powerful instance type (e.g.
m1.small or m1.medium) can further reduce the monetary cost.
In this case, we can make a trade-off between performance and
monetary cost. (3) Monetary cost reduction for SOMPI between
tight and loose deadline requirement is 5% (from 35% to 40%),
which is much smaller than the span for executing computation-
intensive applications (30%, from 40% to 70%). It indicates that
the monetary cost optimization for communication-intensive appli-
cations is not sensitive to the deadline requirements. (4) Marathe
and Marathe-Opt have equal monetary costs in both tight and loose
deadline requirements. The reason is that for communication-
intensive applications, both of the two the approaches select the
most powerful instance type (cc2.8xlarge) to meet the deadline
requirement.

IO-Intensive Application. We have two observations for IO-

intensive application. (1) Compared with cc2.8xlarge, m1.small
and m1.medium have lower costs and higher performance for IO-
intensive applications. The reason is that when running the same
application for different types of instance, the number of cc2.8xlarge
instances is much smaller than the number of m1.small and m1.medium
instances. In this case, the degree of IO parallelism is much smaller
than the other three types. (2) The monetary cost of Marathe is
higher than Baseline Cost and On-demand, because Marathe only
selects cc2.8xlarge instance, which is not efficient for IO-intensive
applications.

Real-world Application. In executing the real-world appli-
cation, LAMMPS, we fix the problem size and vary the number
of processes. We have three observations. (1) When the number
of processes is 32, the monetary cost reduction is sensitive to the
deadline requirements. Compared with Baseline Cost, SOMPI
reduces 75% and 45% of total costs in loose and tight deadline
requirements, respectively. (2) When the number of processes
is 128, the monetary cost reduction is similar in both loose and
tight deadline requirements. Compared with Baseline Cost, the
span of improvement for SOMPI between tight and loose deadline
requirements is 3% (from 57% to 60%). (3) In loose deadline,
as the number of processes increases, the reduction of monetary
cost for On-demand, Marathe-Opt and SOMPI is decreasing. But
for Marathe, the reduction of monetary cost is similar in different
number of processes.

The reason for these observations is that as the total number
of atoms/molecules is fixed, when the number of processes is
small, the number of atoms/molecules for each process is large,
which leads to high computation requirement. The application is
computation-intensive and On-demand, Marathe-Opt and SOMPI
select powerless instance (e.g. m1.small, m1.medium) to reduce
monetary cost. As the number of processes increases, the com-
munication proportion is increasing. When the number of pro-
cesses is large, the number of atoms/molecules for each process is
small and the number of atoms/molecules in different processes,
which need to exchange information (e.g. speed, position), is
large. The application becomes communication-intensive. On-
demand, Marathe-Opt and SOMPI select more powerful instance
(cc2.8xlarge) and the reduction of monetary cost is less. Marathe
only selects cc2.8xlarge to execute the application and the reduc-
tion of monetary cost is similar.

Deadline
PPPPPAlg

App Comp.Intensive Comm.Intensive IO Intensive
BT LU SP FT IS BTIO

Loose Marathe-Opt 1.39 1.40 1.34 1.17 1.23 1.25
SOMPI 1.42 1.38 1.35 1.18 1.22 1.27

Tight Marathe-Opt 1.05 1.04 1.05 1.03 1.04 1.03
SOMPI 1.04 1.05 1.03 1.03 1.04 1.04

Table 2: Normalized Execution time comparison for Marathe-
Opt and SOMPI

Overall Performance Comparison. In comparison with the
state-of-the-art algorithm, we further study the performance in
different deadline requirements. Table 2 shows the normalized
execution time comparison for Marathe-Opt and SOMPI. We have
the following observations. (1) Marathe-Opt and SOMPI have sim-
ilar execution time in both loose and tight deadline requirements.
(2) In loose deadline, the execution time of all the applications
is much less than the deadline. The performance decreasement
of communication-intensive applications is less than computation-
intensive and IO-intensive applications. (3) In tight deadline, the
execution time of all the applications is very near to the deadline.
5.3.2 Comparison with heuristic algorithms

In comparison with simple utilization of on-demand and spot
instances, we evaluate the following approaches.

On-demand. We defined this approach in Section 5.3.1.
Spot-Inf. We choose a simple strategy to use spot instances to run
our MPI applications. In this approach, we first fix the bid price
as infinite (in our experiment we use $999 dollars) so that the spot
instance can be terminated in extremely low probability, which we
can ignore. Then we choose the type of spot instances with minimal
monetary cost to run the application.
Spot-Avg. In this approach, for each type of spot instances, we fix
the bid price as the average price in the price history.

Figure 6 shows the evaluation results in loose and tight dead-
line requirements. In this experiment, we evaluate three types of
applications, including computation-intensive application (denoted
as Computation), communication-intensive application (denoted as
Communication) and IO-intensive application (denoted as IO). We
show the average evaluation results for each category.

We have the following observations. (1) Both Spot-Inf and
Spot-Avg outperforms On-demand for all applications in different
deadline requirements. It shows the importance of utilizing spot
instance and indicates that spot instance can reduce the monetary
cost even without any complex fault-tolerance techniques. (2)
Compared with Spot-Inf and Spot-Avg, SOMPI reduces 28%, 38%
of total costs in loose deadline requirement and 20%, 22% of total
costs in tight deadline requirement. It indicates that combining
the two fault-tolerance mechanisms, checkpointing and replication,
together brings great advantages for dealing with the dynamic spot
prices. (3) The variance for Spot-Inf is much larger than SOMPI.
The reason is that the spot price is dynamic. When the price
becomes much larger than on-demand instance, the infinite bidding
strategy could not save the money. For SOMPI, the suitable setting
of bid price with checkpointing and replicated execution techniques
can avoid the worst case and reduce the variance.
5.3.3 Detailed study for SOMPI

Computation Communication IO
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

 Loose Deadline

N
or

m
al

iz
ed

 M
on

et
or

y
C

os
t

 On-demand
 Spot-Inf
 Spot-Avg
 SOMPI

Computation Communication IO
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

 Tight Deadline

N
or

m
al

iz
ed

 M
on

et
or

y
C

os
t

 On-demand
 Spot-Inf
 Spot-Avg
 SOMPI

Figure 6: Monetary cost comparison with heuristic algorithms

In this section, we study the relationship between the deadline
requirement and the monetary cost. Figure 7 shows the monetary
cost when we vary the deadline requirements. The value of x-axis
denotes how much larger than Baseline Time (Deadline subtracts
Baseline Time). The loose and tight deadline requirements in the
previous experiment are 0.5 and 0.05, respectively. We select
BT, FT and BTIO as examples and we obtain similar results for
other applications. We propose our major observations for each
application.

BT. As the deadline increases, the monetary cost can reduce to
about 70% off. When the deadline is equal to Baseline Time, the
monetary cost can reduce to about 10%. When the deadline is
small, we can only choose the type of on-demand instance with the
smallest execution time and highest monetary cost (cc2.8xlarge).
As the deadline increases, we can select the other types with longer
execution time and lower monetary cost. The points for selecting
the new type of on-demand instance is denoted by the arrows
in Figure 7(a). In our experiment, we first utilize the type of
cc8.xlarge on-demand instance to guarantee the completion of the
application. As the deadline becomes larger, we can orderly select
c3.xlarge, m1.medium and m1.small.

FT. The monetary cost can reduce to about 50% off at most.
For communication-intensive applications, cc2.8xlarge is the most
suitable type with smallest monetary cost and minimum execution
time. When the deadline requirement extends to about 10% larger
than Baseline Time, the monetary cost reduction reaches to maxi-
mum value.

BTIO. The cost can reduce to more than 60% off, compared
with Baseline Cost. As the deadline increases to about 10% larger
than Baseline Time (denoted by the arrow in Figure 7(c)), we
select m1.small instead of m1.medium in order to further reduce
the monetary cost. When the deadline requirement extends to
about 20% larger than Baseline Time, the monetary cost reduction
reaches to maximum value.
5.4 Results with Simulation
5.4.1 Failure Rate Function and Model Accuracy

Due to the space limitation, we summarize our findings here, and
present the details on the accuracy of failure rate function and our
model in Appendix B of our technical report [18].

Accuracy of Failure Rate Function. We verify the accuracy
of the failure rate function f (P⃗,⃗ t). In the first step, we randomly
choose the history of the spot price in the threshold for four days
from the trace. We treat the data of the first 3 days as the training
data and calculate the failure rate function based on it. Then we use
the data of the last day as the testing data and recalculate the failure
rate function. After that, we compare the difference between the
two failure rate functions. In the final step, we repeat the previous
steps for several times and compute the average difference. We
define the real value of the failure rate function as A and the value
estimated from the training data as A′. The relative difference is
defined as |A−A′|

|A| . In our experiments, we observe that the failure
rate function is sufficiently accurate. About 90% of the relative
difference is less than 3% and 98% is less than 5%.

Accuracy of Model. We use the simulation to verify whether
Formula 1 can represent the expected monetary cost in our model.
In this experiment, we design the simulation based on the trace.
More details have been introduced in section 5.1. We use the Monte
Carlo method to calculate the expected cost and compare with the
calculation by Formula 1. We still calculate the relative difference
in the simulation. In our experiments, we observe that 20% of the
relative difference is less than 5% and 40% is between 5% and 10%.
The largest relative difference is only 15%.
5.4.2 Comparison with individual fault-tolerance

mechanisms
In the experiments, we compare the approaches of executing

the applications without any fault-tolerance techniques (denoted
as All-Unable), without replicated executions (denoted as w/o-
RP), without checkpointing (denoted as w/o-CK), without update
maintenance technique (denoted as w/o-MT) and SOMPI.

Figure 8 shows the evaluation results in loose and tight deadline
requirements. We have the following observations. (1) Compared
with All-Unable, w/o-RP and w/o-CK outperform less than 5%
in different deadline requirements. It indicates that single fault-
tolerance mechanism does not efficiently reduce the monetary cost.
(2) Compared with w/o-RP and w/o-CK, SOMPI outperforms more
than 25% on average. It indicates the necessary of combining the
two fault-tolerance mechanisms. The reason is that the optimizing
solution space of SOMPI is much larger than the solution spaces of
All-Unable, w/o-RP and w/o-CK. (3) The monetary cost of SOMPI
is about 15% less than the monetary cost of w/o-MT. Furthermore,
the variance of SOMPI is much less than w/o-MT. It indicates
that SOMPI can reduce both the monetary cost and the variance
efficiently. The reason is that our algorithm consider the dynamic of
spot price and update our design when the distribution is changed.

m1.small

m1.medium

c3.xlarge

cc2.8xlarge

Tight Deadline Loose Deadline

Deadline Baseline Time

N
o

rm
a

li
ze

d
 M

o
n

e
ta

ry
 C

o
st

0 0.5 1
0

1

0.2

0.4

0.6

0.8

(a) Computation-intensive (BT)

cc2.8xlarge

Tight Deadline Loose Deadline

N
o

rm
a

li
ze

d
 M

o
n

e
ta

ry
 C

o
st

0 0.5 1
0

1

0.2

0.4

0.6

0.8

Deadline Baseline Time

(b) Communication-intensive (FT)

m1.medium

Tight Deadline Loose Deadline

m1.small

N
o

rm
a

li
ze

d
 M

o
n

e
ta

ry
 C

o
st

0 0.5 1
0

1

0.2

0.4

0.6

0.8

Deadline Baseline Time

(c) IO-intensive (BTIO)

Figure 7: Monetary cost in different Deadline: BT, FT and BTIO

Computation Communication IO
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 Loose Deadline

N
or

m
al

iz
ed

 M
on

et
or

y
C

os
t

 All-Unable
 w/o-RP
 w/o-CK
 w/o-MT
 SOMPI

Computation Communication IO
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 Tight Deadline

N
or

m
al

iz
ed

 M
on

et
or

y
C

os
t

 All-Unable
 w/o-RP
 w/o-CK
 w/o-MT
 SOMPI

Figure 8: Monetary cost comparison with fault-tolerance
mechanisms

6. RELATED WORK
Cost-aware optimizations have generated fruitful research results

for decades in various areas such as grid computing [12, 27],
databeases [19] and Internet [3]. The pay-as-you-go scheme of
cloud computing attracts many interests in optimizing the monetary
cost for various applications in the cloud. The resource provision-
ing problem has been tackled with many different methods such
as control theory [49], machine learning [45] and models [35].
Zhan et al. [44] propose a cost-aware cooperative resource pro-
visioning solution for heterogeneous workloads in data centers.
For scheduling problem, workflow scheduling with deadline and
budget constraints [26, 42, 15, 34] has been widely studied. Yu et
al. [42] proposed a cost-based workflow scheduling algorithm that
minimizes execution cost while meeting the deadline for delivering
results.

The importance of spot instances on cost optimizations has at-
tracted many research interests on studying the spot price and
utilizing it for cost efficiency. Song et al. [37] proposed a bidding
strategy to maximize the revenue of cloud brokers on utilizing spot
instances for computation. Mazzucco et al. [31] also designed a
bidding policy and resource allocation policies to maximize the
revenue of SaaS providers. But they only consider optimizing the
monetary cost but ignore the reliability. Guo et al. [21] discussed
bidding policy of spot instance for highly available services. He et
al. [24] proposed to cut the cost of hosting online Services with spot
instance. But none of them focuses on MPI-based applications.
Taifi et al. [38] introduced a formal model to guide the design of
checkpoint for MPI-based applications. But they only considered
checkpointing technique. Marathe et al. [30] exploit replicated
executions for cost-effective, time-constrained execution of HPC
applications on Amazon EC2. It is the most related work with
ours. Our work has three major differences from theirs. First, they
propose to deploy redundancy in independent availability zones
with the same type. In our work, we can exploit different instance
types to further reduce monetary cost. Second, we carefully study
the setting of the bid price and checkpoint intervals and propose a
cost model to show how they affect the monetary cost of execution
MPI applications. Third, we study the distribution of spot price
and consider how to adapt the replicated execution and checkpoint

to the changed distribution on spot prices.
7. CONCLUSION

Amazon EC2 spot instances give us a chance to reduce monetary
costs of HPC applications compared with on-demand instances
only. In our work, we formulate a monetary cost optimization prob-
lem for MPI applications and leverage both spot and on-demand
instances to guarantee the deadline constraint. We developed a cost
model guided approach to combine checkpoint and replication in an
adaptive manner. We implement our model on Amazon EC2 and
evaluate its efficiency with NPB benchmarks and one real-world
application, LAMMPS. Our experimental results show that 1) due
to the dynamics of spot price, it is necessary to adaptively choosing
checkpoint and replication techniques and 2) our approach can
reduce the monetary cost than the state-of-the-art algorithm [30]
by 20% on average (up to 40%) while satisfying the deadline
requirement.
8. ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their valuable comments. We acknowledge the support from the
Singapore National Research Foundation under its Environmental
& Water Technologies Strategic Research Programme and admin-
istered by the Environment & Water Industry Programme Office
(EWI) of the PUB, under project 1002-IRIS-09. Yifan and Amelie
are supported by the scholarship from NEWRI, IGS(Interdisciplinary
Graduate School). Bingsheng is in part supported by a MoE AcRF
Tier 1 (2014-T1-001-145) of Singapore.

9. REFERENCES
[1] Lammps molecular dynamics simulator. Technical report,

http://lammps.sandia.gov/.
[2] The nas parallel benchmarks.

http://www.nas.nasa.gov/publications/npb.html.
[3] M. Adler, J.-Y. Cai, J. K. Shapiro, and D. Towsley.

Estimation of congestion price using probabilistic packet
marking. In INFOCOM’03, 2003.

[4] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and
D. Tsafrir. Deconstructing Amazon EC2 Spot Instance
Pricing. ACM TEAC, 2013.

[5] Amazon Case Studies.
http://aws.amazon.com/hpc-applications/.

[6] A. Andrzejak, D. Kondo, and S. Yi. Decision model for cloud
computing under sla constraints. In MASCOTS’10, 2010.

[7] S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge university press, 2009.

[8] R. Chen, M. Yang, X. Weng, B. Choi, B. He, and X. Li.
Improving large graph processing on partitioned graphs in
the cloud. In SoCC’12, 2012.

[9] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder,
A. Tantawi, and C. Krintz. See spot run: using spot instances
for mapreduce workflows. In HotCloud’10, 2010.

[10] S. Di, Y. Robert, F. Vivien, D. Kondo, C.-L. Wang, and
F. Cappello. Optimization of cloud task processing with
checkpoint-restart mechanism. In SC’13, 2013.

[11] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A
survey of rollback-recovery protocols in message-passing
systems. ACM CSUR, 2002.

[12] C. Ernemann, V. Hamscher, and R. Yahyapour. Economic
scheduling in grid computing. In JSSPP’02, 2002.

[13] C. Evangelinos and C. Hill. Cloud computing for parallel
scientific hpc applications: Feasibility of running coupled
atmosphere-ocean climate models on Amazons EC2. In
CCA’08, 2008.

[14] E. Gabriel and et al. Open mpi: Goals, concept, and design
of a next generation mpi implementation. In PVM/MPI’04,
2004.

[15] S. K. Garg, R. Buyya, and H. J. Siegel. Time and cost
trade-off management for scheduling parallel applications on
utility grids. Elsevier FGCS, 2010.

[16] Y. Gong, B. He, and D. Li. Finding constant from change:
Revisiting network performance aware optimizations on iaas
clouds. In SC’14, 2014.

[17] Y. Gong, B. He, and J. Zhong. Network performance aware
MPI collective communication operations in the cloud. IEEE
TPDS, 2013.

[18] Y. Gong, A. C. Zhou, and B. He. Monetary cost
optimizations for mpi-based hpc applications on amazon
clouds: Checkpoints and replicated execution. Technical
Report 2015-TR-222, Nanyang Technological University,
Singapore, http://www3.ntu.edu.sg/home/bshe/2015-TR-
222-SOMPI.pdf.

[19] J. Gray and G. Graefe. The five-minute rule ten years later,
and other computer storage rules of thumb. ACM Sigmod
Record, 1997.

[20] R. Guerraoui and A. Schiper. Fault-tolerance by replication
in distributed systems. In Reliable Software Technologies
Ada-Europe’96, 1996.

[21] W. Guo, K. Chen, Y. Wu, and W. Zheng. Bidding for highly
available services with low price in spot instance market. In
HPDC’15, 2015.

[22] P. H. Hargrove and J. C. Duell. Berkeley lab
checkpoint/restart (blcr) for linux clusters. In JPCS’06, 2006.

[23] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and
L. Zhou. Comet: batched stream processing for data
intensive distributed computing. In SoCC’10, 2010.

[24] X. He, P. Shenoy, R. Sitaraman, and D. Irwin. Cutting the
cost of hosting online services using cloud spot markets. In
HPDC’15, 2015.

[25] H. Huang, L. Wang, B. C. Tak, L. Wang, and C. Tang. Cap3:
A cloud auto-provisioning framework for parallel processing
using on-demand and spot instances. In CLOUD’13, 2013.

[26] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. Ioannidis.
Schedule optimization for data processing flows on the
cloud. In SIGMOD’11, 2011.

[27] Y. C. Lee, A. Y. Zomaya, and M. Yousif. Reliable workflow
execution in distributed systems for cost efficiency. In
GRID’10, 2010.

[28] W. Lu, J. Jackson, and R. Barga. Azureblast: a case study of
developing science applications on the cloud. In HPDC’10,
2010.

[29] M. Malawski and et al. Cost- and deadline-constrained
provisioning for scientific workflow ensembles in iaas
clouds. In SC’12, 2012.

[30] A. Marathe, R. Harris, D. Lowenthal, B. R. de Supinski,
B. Rountree, and M. Schulz. Exploiting redundancy for
cost-effective, time-constrained execution of HPC
applications on Amazon EC2. In HPDC’14, 2014.

[31] M. Mazzucco and M. Dumas. Achieving performance and
availability guarantees with spot instances. In HPCC’11,
2011.

[32] S. Moore, D. Cronk, K. S. London, and J. Dongarra. Review
of Performance Analysis Tools for MPI Parallel Programs. In
PVM/MPI’01, 2001.

[33] S. Núnez, B. Bethwaite, J. Brenes, G. Barrantes, J. Castro,
E. Malavassi, and D. Abramson. Ng-tephra: A massively
parallel, nimrod/g-enabled volcanic simulation in the grid
and the cloud. In e-Science’10, 2010.

[34] R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. D. Dikaiakos.
Scheduling workflows with budget constraints. In Integrated
Research in GRID Computing’07. 2007.

[35] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware
elasticity provisioning system for the cloud. In ICDCS’11,
2011.

[36] S. S. Shende and A. D. Malony. The tau parallel performance
system. SAGE IJHPCA, 2006.

[37] Y. Song, M. Zafer, and K.-W. Lee. Optimal bidding in spot
instance market. In INFOCOM’12, 2012.

[38] M. Taifi, J. Y. Shi, and A. Khreishah. Spotmpi: A framework
for auction-based HPC computing using Amazon spot
instances. In ICA3PP’11, 2011.

[39] J. Wu, J. Liu, P. Wyckoff, and D. Panda. Impact of
on-demand connection management in mpi over via. In
CLUSTER’02, 2002.

[40] S. Yi, A. Andrzejak, and D. Kondo. Monetary cost-aware
checkpointing and migration on amazon cloud spot
instances. IEEE TSC, 2012.

[41] S. Yi, D. Kondo, and A. Andrzejak. Reducing costs of spot
instances via checkpointing in the amazon elastic compute
cloud. In CLOUD’10, 2010.

[42] J. Yu, R. Buyya, and C. K. Tham. Cost-based scheduling of
scientific workflow applications on utility grids. In
e-Science’05, 2005.

[43] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen. Cloud versus
in-house cluster: evaluating amazon cluster compute
instances for running mpi applications. In SC’11, 2011.

[44] J. Zhan, L. Wang, X. Li, W. Shi, C. Weng, W. Zhang, and
X. Zang. Cost-aware cooperative resource provisioning for
heterogeneous workloads in data centers. IEEE TC, 2013.

[45] Q. Zhang, L. Cherkasova, and E. Smirni. A regression-based
analytic model for dynamic resource provisioning of
multi-tier applications. In ICAC’07, 2007.

[46] Q. Zhang, Q. Zhu, and R. Boutaba. Dynamic resource
allocation for spot markets in cloud computing
environments. In UCC’11, 2011.

[47] A. C. Zhou and B. He. Transformation-based monetary cost
optimizations for workflows in the cloud. IEEE TCC, 2014.

[48] A. C. Zhou, B. He, X. Cheng, and C. T. Lau. A declarative
optimization engine for resource provisioning of scientific
workflows in iaas clouds. In HPDC’15, 2015.

[49] Q. Zhu and G. Agrawal. Resource provisioning with budget
constraints for adaptive applications in cloud environments.
In HPDC’10, 2010.

