
IE
EE

Pr
oo

f

Monetary Cost Optimizations for Hosting
Workflow-as-a-Service in IaaS Clouds

Amelie Chi Zhou, Bingsheng He, and Cheng Liu

Abstract—Recently, we have witnessed workflows from science and other data-intensive applications emerging on

Infrastructure-as-a-Service (IaaS) clouds, and many workflow service providers offering workflow-as-a-service (WaaS). The

major concern of WaaS providers is to minimize the monetary cost of executing workflows in the IaaS clouds. The selection of

virtual machines (instances) types significantly affects the monetary cost and performance of running a workflow. Moreover, IaaS

cloud environment is dynamic, with high performance dynamics caused by the interference from concurrent executions and price

dynamics like spot prices offered by Amazon EC2. Therefore, we argue that WaaS providers should have the notion of offering

probabilistic performance guarantees for individual workflows to explicitly expose the performance and cost dynamics of IaaS

clouds to users. We develop a scheduling system called Dyna to minimize the expected monetary cost given the user-specified

probabilistic deadline guarantees. Dyna includes an A
$
-based instance configuration method for performance dynamics, and a

hybrid instance configuration refinement for using spot instances. Experimental results with three scientific workflow applications

on Amazon EC2 and a cloud simulator demonstrate (1) the ability of Dyna on satisfying the probabilistic deadline guarantees

required by the users; (2) the effectiveness on reducing monetary cost in comparison with the existing approaches.

Index Terms—Cloud computing, cloud dynamics, spot prices, monetary cost optimizations, scientific workflows

Ç

1 INTRODUCTION

CLOUD computing has become a popular computing
infrastructure for many scientific applications. Recently,

we have witnessed many workflows from various scientific
and data-intensive applications deployed and hosted on the
Infrastructure-as-a-Service (IaaS) clouds such as Amazon
EC2 and other cloud providers. In those applications, work-
flows are submitted and executed in the cloud and each
workflow is usually associated with a deadline as perfor-
mance guarantee [1], [2], [3]. This has formed a new soft-
ware-as-a-service model for hosting workflows in the cloud,
and we refer it as Workflow-as-a-Service (WaaS). WaaS pro-
viders charge users based on the execution of their work-
flows and QoS requirements. On the other hand, WaaS
providers rent cloud resources from IaaS clouds, which
induces the monetary cost. Monetary cost is an important
optimization factor for WaaS providers, since it directly
affects the profit ofWaaS providers. In this paper, we investi-
gate whether and howWaaS providers can reduce themone-
tary cost of hosting WaaS while offering performance
guarantees for individual workflows.

Monetary cost optimizations have been classic research
topics in grid and cloud computing environments. Over the
era of grid computing, cost-aware optimization techniques
have been extensively studied. Researchers have addressed
various problems: minimizing cost given the performance

requirements [4], maximizing the performance for given
budgets [5] and scheduling optimizations with both cost
and performance constraints [6]. When it comes to cloud
computing, the pay-as-you-go pricing, virtualization and
elasticity features of cloud computing open up various chal-
lenges and opportunities [1], [7]. Recently, there have been
many studies on monetary cost optimizations with resource
allocations and task scheduling according to the features
of cloud computing (e.g., [1], [2], [7], [8], [9], [10], [11]).
Although the above studies have demonstrated their effec-
tiveness in reducing the monetary cost, all of them assume
static task execution time and consider only fixed pricing
scheme (only on-demand instances in Amazon’s terminol-
ogy). Particularly, they have the following limitations.

First, cloud is by design a shared infrastructure, and the
interference causes significant variations in the performance
even with the same instance type. Previous studies [12], [13]
have demonstrated significant variances on I/O and net-
work performance. The assumption of static task execution
time in the previous studies (e.g., [1], [2], [7], [8], [9], [10])
does not hold in the cloud. Under the static execution time
assumption, the deadline notion is a “deterministic dead-
line”. Due to performance dynamics, a more rigorous notion
of deadline requirement is needed to cope with the dynamic
task execution time.

Second, cloud, which has evolved into an economic
market [14], has dynamic pricing. Amazon EC2 offers
spot instances, whose prices are determined by market
demand and supply. Spot instances have been an effec-
tive means to reduce monetary cost [15], [16], because
the spot price is usually much lower than the price of on-
demand instances of the same type. However, a spot
instance may be terminated at any time when the bidding
price is lower than the spot price (i.e., out-of-bid events).
The usage of spot instances may cause excessive long

� The authors are with the School of Computer Engineering, Nanyang Tech-
nological University, Singapore 637598.
E-mail: {czhou1, LIUC0012}@e.ntu.edu.sg, bshe@ntu.edu.sg.

Manuscript received 14 Aug. 2014; revised 14 Jan. 2015; accepted 12 Feb.
2015. Date of publication 0 . 0000; date of current version 0 . 0000.
Recommended for acceptance by K. Keahey, I. Raicu, K. Chard, B. Nicolae.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2015.2404807

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. X, XXXXX 2015 1

2168-7161� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IE
EE

Pr
oo

f

latency due to failures. Most of the previous studies do
not consider deadline constraints of individual workflows
when using spot instances.

In order to address performance and price dynamics, we
define the notion of probabilistic performance guarantees to
explicitly expose the performance dynamics to users. Each
workflow is associated with a probabilistic deadline
requirement of pr percent. WaaS provider guarantees that
the prth percentile of the workflow’s execution time distri-
bution in the dynamic cloud environment is no longer than
the predefined deadline. The WaaS provider may charge
differently according to the deadline and the probability in
the performance guarantee, and the users can select the suit-
able performance guarantee according to their require-
ments. This is just like many IaaS cloud providers offer
different probabilistic availability guarantees. Under this
notion, we propose a probabilistic scheduling system called
Dyna to minimize the cost of the WaaS provider while satis-
fying the probabilistic performance guarantees of individ-
ual workflows predefined by the user. The system embraces
a series of optimization techniques for monetary cost
optimizations, which are specifically designed for cloud
dynamics. We develop probabilistic models to capture the
performance dynamics in I/O and network of instances in
IaaS clouds. We further propose a hybrid instance configu-
ration approach to adopt both spot and on-demand instan-
ces and to capture the price dynamics in IaaS clouds. The
spot instances are adopted to potentially reduce monetary
cost and on-demand instances are used as the last defense
to meet deadline constraints.

We calibrate the cloud dynamics from a real cloud pro-
vider (Amazon EC2) for the probabilistic models on I/O
and network performance as well as spot prices. We per-
form experiments using three workflow applications on
Amazon EC2 and on a cloud simulator. Our experimental
results demonstrate the following two major results. First,
with the calibrations from Amazon EC2, Dyna can accu-
rately capture the cloud dynamics and guarantee the proba-
bilistic performance requirements predefined by the users.
Second, the hybrid instance configuration approach signifi-
cantly reduces the monetary cost by 15-73 percent over
other state-of-the-art algorithms [1] which only adopt on-
demand instances.

The rest of the paper is organized as follows. We formu-
late our problem and review the related work in Section 2.
We present our detailed system design in Section 3, fol-
lowed by the experimental results in Section 4. Finally, we
conclude this paper in Section 5.

2 BACKGROUND AND RELATED WORK

2.1 Application Scenario

Fig. 1 illustrates our application scenario. In this study, we
consider a typical scenario of offering software-as-a-service
model for workflows on IaaS clouds [1]. We call this model
Workflow-as-a-Service. We consider three parities in this
scenario, namely the workflow application owner, WaaS
provider and IaaS cloud provider. In this hosting, different
application owners submit a number of workflows with dif-
ferent parameters to WaaS and the WaaS provider rent
resources from the cloud provider to serve the applications.

The application owners submit workflows with specified
deadlines for QoS purposes. WaaS providers charge users
according to the execution of workflows and their QoS
requirements. In this proposal, we argue that the WaaS pro-
vider should offer a probabilistic performance guarantee for
users. Particularly, we can offer some fuzzy-style interfaces
for users to specify their probabilistic deadline require-
ments, such as “Low”, “Medium” and “High”, as illustrated
in Fig. 2. Inside Dyna, we translate these requirements into
probabilities of deadline. For example, the user may select
the loose deadline of 4 hours with the probability of 96 per-
cent. Ideally, the WaaS provider tends to charge higher pri-
ces to users when they specify tighter deadline and/or
higher probabilistic deadline guarantee. The design of the
billing scheme for WaaS is beyond the scope of this paper,
and we will explore it as future work.

Different workflow scheduling and resource provi-
sioning algorithms can result in significant differences in
the monetary cost of WaaS providers running the service
on IaaS clouds. Considering the cloud dynamics, our
goal is to provide a probabilistic scheduling system for
WaaS providers, aiming at minimizing the expected
monetary cost while satisfying users’ probabilistic dead-
line requirements.

2.2 Terminology

Instance. An instance is a virtual machine offered by the
cloud provider. Different types of instances can have differ-
ent amount of resources such as CPUs and RAM and differ-
ent capabilities such as CPU speed, I/O speed and network
bandwidth. We model the dynamic I/O and network per-
formances as probabilistic distributions. The details are pre-
sented in Section 3.

We adopt the instance definition of Amazon EC2, where
an instance can be on-demand or spot. Amazon adopts the
hourly billing model, where any partial hour of instance
usage is rounded to 1 hour. Both on-demand and spot
instances can be terminated when users no longer need
them. If an instance is terminated by the user, the user has
to pay for any partial hour (rounded up to one hour). For a

Fig. 1. Application scenario of this study.

Fig. 2. Illustrative user interface.

2 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. X, XXXXX 2015

IE
EE

Pr
oo

f

spot instance, if it is terminated due to an out-of-bid event,
users do not need to pay for any partial hour of usage.

Table 1 shows some statistics of the price history of four
types of spot instances on Amazon in the US East region
during August 2013. We also show the price of the on-
demand instances for those four types. We have the follow-
ing observations: a) The spot instances are usually cheaper
than on-demand instances. There are some “outlier” points
where the maximum spot price is much higher than the on-
demand price. b) Different types have different variations
on the spot price. These observations are consistent with the
previous studies [17], [18].

Task. Tasks can have different characteristics, e.g.,
compute-intensive and I/O-intensive tasks, according to
the dominating part of the total execution time. The exe-
cution time (or response time) of a task is usually esti-
mated using estimation methods such as task profiling
[19]. In this study, we use a simple performance estima-
tion model on predicting the task execution time. Since
scientific workflows are often regular and predictable [1],
[4], this simple approach is sufficiently accurate in prac-
tice. Specifically, given the input data size, the CPU exe-
cution time and output data size of a task, the overall
execution time of the task on a cloud instance can be
estimated with the sum of the CPU, I/O and network
time of running the task on this instance. Note, the CPU
performance is usually rather stable [12]. Since the I/O
and network performance of the cloud are dynamic
(modeled as probabilistic distributions in this paper), the
estimated task execution time is also a probabilistic
distribution.

Job. A job is expressed as a workflow of tasks with prece-
dence constraints. A job has a soft deadline. In this study,
we consider the deadline of a job as a probabilistic require-
ment. Suppose a workflow is specified with a probabilistic
deadline requirement of pr percent. Rather than offering 100
percent deadline guarantee, WaaS provider guarantees that
the prth percentile of the workflow’s execution time distri-
bution in the dynamic cloud environment is no longer than
a predefined deadline constraint. Our definition of probabi-
listic deadline is consistent with previous studies [20] on
defining the QoS in a probabilistic manner.

Instance configuration. The hybrid instance configuration of a
task is defined as a n-dimension vector: h(type1, price1,
isSpot1), (type2, price2, isSpot2), . . . , (typen, pricen, isSpotn)i,
where isSpoti indicates whether the instance is spot (True)
or on-demand (False). If the instance i is a spot instance,
pricei is the specified bidding price, and the on-demand
price otherwise. In our hybrid instance configuration, only
the last dimension of the configuration is on-demand
instance and all previous dimensions are spot instances. We

set the last dimension to on-demand instance to ensure the
deadline of the task.

A hybrid instance configuration indicates a sequence of
instance types that the task is potentially to be executed on.
In the hybrid execution of spot and on-demand instances, a
task is initially assigned to a spot instance of the type indi-
cated by the first dimension of its configuration (if any). If
the task fails on this spot instance, it will be re-assigned to an
instance of the next type indicated by its configuration until
it successfully finishes. Since the last dimension is an on-
demand instance type, the task can always finish the execu-
tion, even when the task fails on all previous spot instances.

2.3 Related Work

There are a lot of works related to our study, and we focus
on the most relevant ones on cost optimizations and cloud
performance dynamics.

Cost-aware optimizations.Workflow scheduling with dead-
line and budget constraints (e.g., [2], [4], [5], [21], [22], [23],
[24], [25], [26]) has been widely studied. Yu et al. [4] pro-
posed deadline assignment for the tasks within a job and
used genetic algorithms to find optimal scheduling plans.
Multi-objective methods such as evolutionary algorithms
[27], [28] have been adopted to study the tradeoff between
monetary cost and performance optimizations for workflow
executions. Those studies only consider a single workflow
with on-demand instances only.Malawski et al. [2] proposed
dynamic scheduling strategies for workflow ensembles. The
previous studies [1], [29], [30], [31] proposed auto-scaling
techniques based on static execution time of individual
tasks. In comparison with the previous works, the unique
feature of Dyna is that it targets at offering probabilistic per-
formance guarantees as QoS, instead of deterministic dead-
lines. Dyna schedules the workflow by explicitly capturing
the performance dynamics (particularly for I/O and net-
work performance) in the cloud. Calheiros and Buyya and
Calheiros [21] proposed an algorithm with task replications
to increase the likelihood of meeting deadlines.

Due to their ability on reducing monetary cost, Amazon
EC2 spot instances have recently received a lot of interests.
Related work can be roughly divided into two categories:
modeling spot prices [17], [18] and leveraging spot instances
[15], [16], [32].

For modeling spot prices, Yehuda et al. [18] conducted
reverse engineering on the spot price and figured out a
model consistent with existing price traces. Javadi et al. [17],
[33] developed statistical models for different spot instance
types. Those models can be adopted to our hybrid execution.

For leveraging spot instances, Yi et al. [15] introduced
some checkpointing mechanisms for reducing cost of spot
instances. Further studies [16] used spot instances with dif-
ferent bidding strategies and incorporating with fault toler-
ance techniques such as checkpointing, task duplication
and migration. Those studies are with spot instance only,
without offering any guarantee on meeting the workflow
deadline like Dyna. Similar to Dyna, Chu and Simmhan [34]
proposed a hybrid method to use both on-demand and spot
instances for minimizing total cost while satisfying deadline
constraint. However, they did not consider the cloud perfor-
mance dynamics.

TABLE 1
Statistics on Spot Prices ($/hour, August 2013, US East Region)

and On-Demand Prices of Amazon EC2

Instance type Average stdev Min Max OnDemand

m1.small 0.048 0.438 0.007 10 0.06
m1.medium 0.246 1.31 0.0001 10 0.12
m1.large 0.069 0.770 0.026 40 0.24
m1.xlarge 0.413 2.22 0.052 20 0.48

ZHOU ET AL.: MONETARY COST OPTIMIZATIONS FOR HOSTINGWORKFLOW-AS-A-SERVICE IN IAAS CLOUDS 3

IE
EE

Pr
oo

f

Cloud performance dynamics. There have been some pro-
posals to reduce the performance interference and unpre-
dictability in the cloud, such as network performance [35]
and I/O performance [36], [37]. This paper offers a probabi-
listic notion to capture the performance and cost dynamics,
and further develop a probabilistic scheduling system to
minimize the monetary cost with the consideration of those
dynamics.

3 SYSTEM DESIGN AND IMPLEMENTATION

We first present an overview of the Dyna system and then
discuss the design details about the optimization techniques
adopted in Dyna.

3.1 System Overview

We propose Dyna, a workflow scheduling system in order
to minimize the monetary cost of executing the workflows
in IaaS clouds. Compared with existing scheduling algo-
rithms or systems [1], Dyna is specifically designed to cap-
ture the cloud performance and price dynamics. The main
components of Dyna are illustrated in Fig. 3.

When a user has specified the probabilistic deadline
requirement for a workflow, WaaS providers schedule the
workflow by choosing the cost-effective instance types for
each task in the workflow. The overall functionality of the
Dyna optimizations is to determine the suitable instance
configuration for each task of a workflow so that the mone-
tary cost is minimized while the probabilistic performance
requirement is satisfied. We formulate the optimization
process as a search problem, and develop a two-step
approach to find the solution efficiently. The instance con-
figurations of the two steps are illustrated in Fig. 3. We first
adopt an A

$
-based instance configuration approach to

select the on-demand instance type for each task of the
workflow, in order to minimize the monetary cost while
satisfying the probabilistic deadline guarantee. Second,
starting from the on-demand instance configuration, we
adopt the hybrid instance configuration refinement to con-
sider using hybrid of both on-demand and spot instances
for executing tasks in order to further reduce cost. After the
two optimization steps, the tasks of the workflow are
scheduled to execute on the cloud according to their hybrid
instance configuration. At runtime, we maintain a pool of
spot instances and on-demand instances, organized in lists

according to different instance types. Instance acquisition/
release operations are performed in an auto-scaling man-
ner. For the instances that do not have any task and are
approaching multiples of full instance hours, we release
them and remove them from the pool. We schedule tasks to
instances in the earliest-deadline-first manner. When a task
with the deadline residual of zero requests an instance and
the task is not consolidated to an existing instance in the
pool, we acquire a new instance from the cloud provider,
and add it into the pool. In our experiment, for example,
Amazon EC2 poses the capacity limitation of 200 instances.
If this cap is met, we cannot acquire new instances until
some instances are released.

The reason that we divide the search process into two
steps is to reduce the solution space. For example, consider
searching the instance configuration for a single task, where
there are n on-demand types and m spot instance types. If
we consider spot and on-demand instances together, the

number of configurations to be searched is n
1

� �� m
1

� �
while

in our divide-and-conquer approach, the complexity is

reduced to n
1

� �þ m
1

� �
. In each search step, we design efficient

techniques to further improve the optimization effective-
ness and efficiency. In the first step, we only consider on-
demand instances and utilize the pruning capability of A

$

search to improve the optimization efficiency. In the second
step, we consider the hybrid of spot and on-demand instan-
ces as the refinement of the instance configuration obtained
from the first step. We give the following example to illus-
trate the feasibility of the two-step optimization.

Example 1. Consider the instance configuration for a single
task. In the A

$
-based instance configuration step, the on-

demand instance configuration found for the task is
hð0; 0:1; FalseÞi. In the refinement step, the on-demand
instance configuration is refined to hð0; 0:01; TrueÞ;
ð0; 0:1; FalseÞi. Assume the expected execution time of
the task on type 0 instance is 1 hour and the spot price is
lower than $0.01 (equals to $0.006) for 50 percent of the
time. The expected monetary cost of executing the task
under the on-demand instance configuration is $0.1 and
under the hybrid instance configuration is only $0.053
($0:006� 50%þ $0:1� 50%). Thus, it is feasible to reduce
the expected monetary cost by instance configuration
refinement in the second step.

In the remainder of this section, we outline the design of
the optimization components, and discuss on the imple-
mentation details.

3.2 A
$
-Based On-Demand Instance Configuration

In this optimization step, we determine an on-demand
instance type for each task in the workflow so that the mon-
etary cost is minimized while the probabilistic performance
guarantee specified by the user is satisfied. We formulate
the process into an A

$
-based search problem. The reason

that we choose A
$
search is to take advantage of its pruning

capability to reduce the large search space while targeting at
a high quality solution. The challenging issues of develop-
ing the A

$
-based on-demand instance configuration

include 1) how to define the state, state transitions and the
search heuristics in A

$
search; and 2) how to perform the

Fig. 3. Overview of the Dyna system.

4 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. X, XXXXX 2015

IE
EE

Pr
oo

f

state evaluation so that the performance dynamics are cap-
tured to satisfy the probabilistic performance guarantee.

3.2.1 A
$
Search Process

The process of A
$
search can be modeled as a search tree. In

the formulated A
$
search, we first need to clarify the defini-

tions of the state and the state transitions in the search tree. A
state is a configuration plan to the workflow, represented as
a multi-dimensional vector. Each dimension of the vector
represents the instance configuration of an on-demand
instance type for each task in the workflow. This configura-
tion is extended to hybrid instance configuration in the
hybrid instance configuration refinement (described in
Section 3.3). For example, as shown in Fig. 4, a search state
for a workflow with three tasks is represented as ðt0; t1; t2Þ,
meaning that task i (0 � i � 2) is configured with on-
demand instance type ti. Starting from the initial state (root
node of the search tree), the search tree is traversed by tran-
sitting from a state to its child states level by level. At level
l, the state transition is to replace the lth dimension in the
state with all equally or more expensive instance types. In
the example of Fig. 4, suppose there are three on-demand
instance types (type 0, 1 and 2 with increasing on-demand
prices). From the initial state (represented as ð0; 0; 0Þ)
where all tasks are assigned to the cheapest instance type
(instance type 0), we move to its child states by iterating the
three available instance types for the first task (i.e., instance
type 0, 1 and 2 and child states ð0; 0; 0Þ, ð1; 0; 0Þ and ð2; 0; 0Þ).

A
$
search adopts several heuristics to enable its pruning

capability. Particularly, A
$
evaluates a state s by combining

two distance metrics gðsÞ and hðsÞ, which are the actual
distance from the initial state to the state s and the estimated
distance from the state s to the goal state, respectively. gðsÞ
and hðsÞ are also referred as g score and h score for s, res-
pectively. We estimate the total search cost for s to be
fðsÞ ¼ gðsÞ þ hðsÞ. In the A

$
-based instance configuration,

we define both gðsÞ and hðsÞ to be the monetary cost of con-
figuration plan s. This is because if the monetary cost of a
state s is higher than the best found result, its successors are
unlikely to be the goal state since they have more expensive
configurations than s. For example, assume state ð1; 1; 0Þ on
the search tree in Fig. 4 has a high search cost, the grey
states on the search tree are pruned since they have higher
monetary cost than state ð1; 1; 0Þ. During the A

$
search, we

maintain two lists, namely the OpenList and ClosedList.
The OpenList contains states that are potential solutions to
the problem and are to be searched later. States already
been searched or with high search cost are added to the
ClosedList and do not need to be considered again during
the A

$
search.

Algorithm 1 shows the optimization process of the
A

$
-based instance configuration algorithm. Iteratively, we

fetch states from the OpenList and add their neighboring
states into the OpenList. Note, we only consider the feasible
states that satisfy the probabilistic deadline guarantee (Line
7-9). estimate performance is used to estimate the feasibility
of states. We maintain the lowest search cost found during
the search process as the upper bound to prune the unuseful
states on the search tree (Line 12-13). Function estimate cost
returns the estimation for the h and g scores of states. When
expanding the OpenList, we only add the neighboring
states with lower search cost than the upper bound (Line
17-23).

Algorithm 1. A
$
-Based Instance Configuration Search

from Initial State S to Goal State D

Require:Max iter: Maximum number of iterations;
deadline; pr: Required probabilistic deadline guarantee

1: ClosedList = empty;
2: OpenList = S;
3: upperBound = 0;
4: g½S� ¼ h½S� ¼ estimate costðSÞ;
5: f ½S� ¼ g½S� + h½S�;
6: while not (OpenList is empty or reachMax iter) do
7: current = the state in OpenList having the lowest f value;
8: percentile = estimate performanceðcurrent; prÞ;
9: if percentile <¼ deadline then
10: g½current� = h½current� = estimate costðcurrentÞ;
11: f ½current� = g½current�+h½current�;
12: if f ½current� < upperBound then
13: upperBound ¼ f ½current�;
14: D = current;
15: Remove current from OpenList;
16: Add current to ClosedList;
17: for each neighbor in neighboring states of current do
18: g½neighbor� = h½neighbor� = estimate costðneighborÞ;
19: f ½neighbor� ¼ g½neighbor� + h½neighbor�;
20: if f ½neighbor� >¼ upperBound or neighbor is in

ClosedList then
21: continue;
22: if neighbor is not in OpenList then
23: Add neighbor to OpenList;
24: ReturnD;

3.2.2 State Evaluation

The core operations of evaluating a state are to estimate
the expected monetary cost (function estimate cost)
and to evaluate the feasibility of a state (function
estimate performance) whether it satisfies the probabilis-
tic performance guarantee. Due to cloud performance
dynamics, we develop probabilistic methods for the
evaluation.

We model the execution time of tasks as probabilistic
distributions. We develop probabilistic distribution mod-
els to describe the performance dynamics of I/O and net-
work. Previous studies [12], [14] show that I/O and
network are the major sources of performance dynamics
in the cloud due to resource sharing while the CPU
performance is rather stable for a given instance type. We
define the probability of the I/O and network bandwidth
equaling to a certain value x on instance type type to

Fig. 4. An example of the configuration plan search tree in our A
$

algorithm.

ZHOU ET AL.: MONETARY COST OPTIMIZATIONS FOR HOSTINGWORKFLOW-AS-A-SERVICE IN IAAS CLOUDS 5

IE
EE

Pr
oo

f

be: PseqBand;typeðseqBand ¼ xÞ, PrndBand;typeðrndBand ¼ xÞ,
PinBand;typeðinBand ¼ xÞ and PoutBand;typeðoutBand ¼ xÞ as
the probabilistic distributions for the sequential I/O, ran-
dom I/O, downloading and uploading network perfor-
mance from/to the persistent storage, respectively. In our
calibrations on Amazon EC2, PrndBand;typeðrndBand ¼ xÞ
conforms to normal distributions and the other three
conform to Gamma distributions (Section 4). Given the
I/O and network performance distributions and the cor-
responding I/O and networking data size, we manage to
model the execution time of a task on different instance
types with probabilistic distribution functions (PDFs). For
example, if the size of the input data on the disk is sin,
the probability of the time on reading the input data
equalling to sin

x is PseqBand;typeðseqBand ¼ xÞ, by assuming

reading the input data is sequential accesses.
Having modeled the execution time of tasks as probabi-

listic distributions, we first introduce the implementation of
function estimate cost. The monetary cost of a state s is esti-
mated to be the sum of the expected monetary cost of each
task running on the type of instance specified in s. Consider
a task with on-demand instance type type and on-demand
price p. We estimate the expected monetary cost of the task
to be pmultiplied by the expected execution time of the task
on the type-type on-demand instance. Here, we have
ignored the rounding monetary cost in the estimation. This
is because in the WaaS environment, this rounding mone-
tary cost is usually amortized among many tasks. Enforcing
the instance hour billing model could severely limit the
optimization space, leading to a suboptimal solution (a con-
figuration plan with suboptimal monetary cost).

Another core evaluation function is estimate
performance. Given a state s and the execution time
distribution of each task under the evaluated state s, we first
calculate the execution time distribution of the entire work-
flow. Since the execution time of a task is now a distribution,
rather than a static value, the execution time on the critical
path is also dynamic. To have a complete evaluation, we
apply a divide-and-conquer approach to get the execution
time distribution of the entire workflow. Particularly, we
decompose the workflow structure into the three kinds of
basic structures, as shown in Fig. 5. Each basic structure has
n tasks (n � 2). The decomposition is straightforward by
identifying the basic structures in a recursive manner from
the starting task(s) of the workflow.

The execution time distribution of each basic structure is
calculated with the execution time distributions of individ-
ual tasks. For example, the execution time distribution
of the structure in Fig. 5b is calculated as MAXðPDF0;

PDF1; . . . ; PDFn�2Þ þ PDFn�1, where PDFi (0 � i � n� 1)
is the probabilistic distribution of the execution time of task
i. The “þ” operation of two probabilistic distributions calcu-
lates the convolution of the two distributions and the MAX
operation finds the distribution of the maximum of two ran-
dom variables modeled by the two distributions. After
obtaining the execution time distribution of the workflow,
we check its percentile at the required probabilistic deadline
guarantee. According to our notion of probabilistic dead-
line, only if the returned percentile is no longer than the
deadline, the evaluated state is feasible.

3.3 Hybrid Instance Configuration Refinement

We consider the adoption of spot instances as a refinement
to the configuration plan obtained from the previous step
(the A

$
-based instance configuration algorithm) to further

reduce monetary cost. The major problem of adopting spot
instances is that, running a task on spot instances may suffer
from the out-of-bid events and fail to meet the deadline
requirements. We propose a simple yet effective hybrid
instance configuration to tackle this issue. The basic idea is,
if the deadline allows, we can try to run a task on a spot
instance first. If the task can finish on the spot instance, the
monetary cost tends to be lower than the monetary cost of
running the task on an on-demand instance. It is possible
that we can try more than one spot instances, if the previous
spot instance fails (as long as it can reduce the monetary
cost and satisfy the probabilistic performance guarantee). If
all spot instances in the hybrid instance configuration fail,
the task is executed on an on-demand instance to ensure the
deadline. When a task finishes the execution on a spot
instance, it is checkpointed, and the checkpoint is stored on
the persistent storage of the cloud (such as Amazon S3).
This is to avoid trigger the re-execution of its precedent
tasks. Dyna performs checkpointing only when the task
ends, which is simple and has much less overhead than the
general checkpointing algorithms [15].

A hybrid instance configuration of a task is represented
as a vector of both spot and on-demand instance types, as
described in Section 2.2. The last dimension in the vector is
the on-demand instance type obtained from the A

$
-based

instance configuration step. The initial hybrid configuration
contains only the on-demand instance type. Starting from
the initial configuration, we repeatedly add spot instances
at the beginning of the hybrid instance configuration to find
better configurations. Ideally, we can add n spot instances
(n is a predefined parameter). A larger n gives higher proba-
bility of benefiting from the spot instances while a smaller n
gives higher probability of meeting deadline requirement
and reduces the optimization overhead. In our experiments,
we find that n ¼ 2 is sufficient for obtaining good optimiza-
tion results. A larger n greatly increases the optimization
overhead with only very small improvement on the optimi-
zation results.

It is a challenging task to develop an efficient and effec-
tive approach for hybrid instance configuration refinement.
First, coupled with the performance dynamics, it is a non-
trivial task to compare whether one hybrid instance config-
uration is better than the other in terms of cost and perfor-
mance. Second, since the cloud provider usually offers
multiple instance types and a wide range of spot prices, we

Fig. 5. Basic workflow structures and their probabilistic distributions of
the execution time, denoting the execution time distribution of Task 0,
1,. . ., n� 1 to be PDF0, PDF1,. . ., PDFn�1, respectively.

6 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. X, XXXXX 2015

IE
EE

Pr
oo

f

are facing a large space for finding the suitable spot instance
type and spot price.

To address those two challenging issues, we develop effi-
cient and effective heuristics to solve the problem. We
describe the details in the remainder of this section. Refining
a hybrid instance configuration Corig of a task to a hybrid
instance configuration Crefined, we need to determine
whether Crefined is better than Corig in terms of monetary
cost and execution time distributions. Particularly, we have
the following two considerations. We accept the refined
configuration Crefined if both of the two considerations are
satisfied.

1) Probabilistic deadline guarantee consideration. Crefined

should not violate the probabilistic deadline guaran-
tee of the entire workflow;

2) Monetary cost reduction. The estimated monetary cost
of Crefined should be less than that of Corig.

Probabilistic deadline guarantee consideration. A naive way
is to first calculate the probabilistic distribution of the entire
workflow’s execution time under the refined configuration
Crefined and then to decide whether the probabilistic dead-
line requirement is met. However, this calculation introdu-
ces large overhead. We implement this process in the Oracle
algorithm presented in Section 4. In Dyna, we propose a
light-weight localized heuristic to reduce the overhead. As
the on-demand configurations (i.e., the initial hybrid
instance configuration) of each task found in the A

$
-based

instance configuration step have already ensured the proba-
bilistic deadline requirement, we only need to make sure
that the refined hybrid instance configuration Crefined of
each task satisfies Crefined � Corig, where � is defined in Def-
inition 1. Fig. 6 illustrates this definition. The integrals are
represented as cumulative distribution functions (CDFs).
With this heuristic, when evaluating the probabilistic dead-
line guarantee consideration for a refined configuration, we
only need to calculate the probabilistic distribution of the
execution time of a task rather than the entire workflow and
thus greatly reduce the optimization overhead.

Definition 1. Given two hybrid instance configurations C1

and C2 of task T , we have C2 � C1 if for 8t, we haveR t
0 PT;C2

ðtime ¼ xÞ dx � R t
0 PT;C1

ðtime ¼ xÞ dx, where PT;C1

and PT;C2
are the PDFs of task T under configuration C1 and

C2, respectively.

In order to compare two hybrid instance configurations
according to Definition 1, we first discuss how to estimate

the execution time distribution of a task given a hybrid
instance configuration. Assume a hybrid instance configura-
tion of task T is Crefined = h(type1, Pb, True), (type2, Po,
False)i. Assume the probabilistic distributions of the execu-
tion time of task T on the spot instance of type1 is PT;type1

and on the on-demand instance of type2 is PT;type2 . The over-

all execution time of task T under Crefined can be divided
into two cases. If the task successfully finishes on the spot
instance (with probability psuc), the overall execution time
equals to the execution time of task T on the spot instance ts
with the following probability

PT;Crefined
ðtime ¼ tsÞ ¼ PT;type1ðtime ¼ tsÞ � psuc: (1)

Otherwise, the overall execution time equals to the time
that task T has run on the spot instance before it fails, tf ,
plus the execution time of task T on the on-demand instance
to, with the following probability

PT;Crefined
ðtime ¼ tf þ toÞ ¼ PT;type1ðtime ¼ tfÞ

� PT;type2ðtime ¼ toÞ
� ð1� psucÞ:

(2)

Now we discuss how to calculate psuc. Since a spot instance
may fail at any time, we define a probabilistic function
ffpðt; pÞ to calculate the probability of a spot instance fails at
time t for the first time when the bidding price is set to p.
Existing studies have demonstrated that the spot prices can
be predicted using statistics models [17] or reverse engi-
neering [18]. We use the recent spot price history as a pre-
diction of the real spot price for ffpðt; pÞ to calculate the
failing probability. We obtain that function with a Monte-
Carlo based approach. Starting from a random point in the
price history, if the price history becomes larger than p at
time t for the first time, we add one to the counter count. We
repeat this process for NUM times (NUM is sufficiently
large) and return count

NUM as the failing probability. Using the

ffp function, we can define psuc as follows

psuc ¼ 1�
Z ts

0

ffpðx; PbÞ dx: (3)

After obtaining the execution time distribution of a task
under the refined hybrid instance configuration Crefined, we
compare it with the configuration Corig according to Defini-
tion 1. If Crefined � Corig is satisfied, the probabilistic dead-
line guarantee consideration is satisfied.

Monetary cost reduction. We estimate the monetary cost of
a hybrid instance configuration of a task as the sum of the
cost spent on the spot instance and the cost on the on-
demand instance. Using Equation (1)-(3), we calculate the
expected monetary cost of configuration Crefined in Equa-
tion (4). Note that, we use the bidding price Pb to app-
roximate the spot price in calculating the cost on spot
instances. This calculation gives an upper bound of the
actual expected monetary cost of the refined configuration
and thus assures the correctness when considering the mon-
etary cost reduction. If the estimated monetary cost of the
refined configuration is lower than the monetary cost of the
original configuration, the monetary cost reduction consid-
eration is satisfied

Fig. 6. The definition of configuration C2 � C1. cdf1 and cdf2 are the
cumulative execution time distribution functions under configuration plan
C1 and C2, respectively.

ZHOU ET AL.: MONETARY COST OPTIMIZATIONS FOR HOSTINGWORKFLOW-AS-A-SERVICE IN IAAS CLOUDS 7

IE
EE

Pr
oo

f

costðCrefinedÞ ¼ psuc � Pb � tsþ
ð1� psucÞ � ðPb � tf þ Po � toÞ:

(4)

Repeatedly, we add spot instances to generate better hybrid
instance configurations for each task in the workflow. Spe-
cifically, for each added spot instance, we decide its type
and associated bidding price that satisfy the probabilistic
deadline guarantee and monetary cost reduction considera-
tions. Due to price dynamics of spot instances, making the
decision is non-trivial. One straightforward way is that, we
consider the cost of all spot instance types and its associated
bidding price. The refined hybrid instance configuration is
chosen as the one that has the smallest expected monetary
cost and satisfies the probabilistic performance guarantee.
However, this method needs to search for a very large solu-
tion space. To reduce the search space, we design a heuristic
as described in Algorithm 2. We notice that, the added spot
instance type should be at least as expensive as (i.e., the
capability should be at least as good as) the on-demand
instance type found in the A

$
search step in order to ensure

the probabilistic deadline guarantee. Thus, instead of
searching all spot instance types, we only need to evaluate
the types that are equally or more expensive than the given
on-demand instance type. For each evaluated spot instance
type, we search the bidding price using the binary search
algorithm described in Algorithm 3.

Algorithm 2. Hybrid Instance Configuration Refinement
for a Task T .

Require: typeo: the on-demand instance type found in the A
$

instance configuration for task T
n: the dimension of the hybrid instance configuration

1: T .configList[n] ¼ typeo;
2: T .prices[n] ¼ on-demand price of typeo;
3: for dim ¼ 1 to n� 1 do
4: T .configList[dim] ¼ �1;
5: T .prices[dim] ¼ 0;
6: for dim ¼ 1 to n� 1 do
7: for types ¼ typeo to the most expensive instance type do
8: Pmax ¼ the on-demand price of instance type types;
9: Pb ¼ binary_search(Pmin, Pmax, types);
10: if Pb ¼¼ �1 then
11: continue;
12: else
13: T .configList[dim] ¼ types;
14: T .prices[dim] ¼ Pb;

The binary search algorithm in Algorithm 3 is illustrated
as follows. If the probabilistic deadline guarantee consider-
ation is not satisfied, it means the searched spot price is too
low and we continue the search in the higher half of the
search space (Line 10-12). If the monetary cost reduction
consideration is not met, it means the searched spot price is
too high and we continue the search in the lower half of the
search space (Line 6-8). If both considerations are satisfied
for a certain bidding price, this price is used as the bidding
price in the hybrid instance configuration. We search for the
bidding price in the range of ½Plow; Phigh�. In our implementa-
tion, Plow is 0:001 and Phigh equals to the on-demand price of
the evaluated spot instance type. Note, the spot instance

with bidding price higher than Phigh does not contribute to
monetary cost reduction.

Algorithm 3. Binary_Search(Plow,Phigh, types) for a Task T .

Require: Plow: the lowest bidding price searched
Phigh: the highest bidding price searched
types: the evaluated spot instance type
Corig: the hybrid configuration before adding the spot
instance of type types
Crefined: the refined hybrid configuration with the spot
instance of type types added

1: if Plow > Phigh then
2: Return -1;
3: Pmid ¼ ðPlow þ PhighÞ=2;
4: originalcost ¼ estimate cost(Corig);
5: Crefined ¼ hðtypes; Pmid; TrueÞ; Corigi;
6: refinedcost ¼ estimate cost(Crefined);
7: if refinedcost > originalcost then
8: Return binary_search(Plow; Pmid; types);
9: else
10: satisfied ¼ estimate performance(Crefined);
11: if not satisfied then
12: Return binary_search(Pmid; Phigh; types);
13: Return Pmid;

4 EVALUATION

In this section, we present the evaluation results of the pro-
posed approach on Amazon EC2 and a cloud simulator.

4.1 Experimental Setup

We have two sets of experiments: firstly calibrating the
cloud dynamics from Amazon EC2 as the input of our opti-
mization system; secondly running scientific workflows on
Amazon EC2 and a cloud simulator with the compared
algorithms for evaluation.

Calibration. We measure the performance of CPU, I/O
and network for four frequently used instance types,
namely m1.small, m1.medium, m1.large and m1.xlarge. We
find that CPU performance is rather stable, which is consis-
tent with the previous studies [12]. Thus, we focus on the
calibration for I/O and network performance. In particular,
we repeat the performance measurement on each kind of
instance for 10;000 times (once every minute in seven days).
When an instance has been acquired for a full hour, it will
be released and a new instance of the same type will be cre-
ated to continue the measurement. The measurement
results are used to model the probabilistic distributions of
I/O and network performance.

We measure both sequential and random I/O perfor-
mance for local disks. The sequential I/O reads performance
is measured with hdparm. The random I/O performance is
measured by generating random I/O reads of 512 bytes
each. Reads and writes have similar performance results,
andwe do not distinguish them in this study.

We measure the uploading and downloading bandwidth
between different types of instances and Amazon S3. The
bandwidth is measured from uploading and downloading
a file to/from S3. The file size is set to 8MB. We also mea-
sured the network bandwidth between two instances using

8 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. X, XXXXX 2015

IE
EE

Pr
oo

f

Iperf [38]. We find that the network bandwidth between
instances of different types is generally lower than that
between instances of the same type and S3.

Workflows. There have been some studies on characteriz-
ing the performance behaviours of scientific workflows [19].
In this paper, we consider three common workflow struc-
tures, namely Ligo, Montage and Epigenomics. The three
workflows have different structures and parallelism.

We create instances of Montage workflows using Mon-
tage source code. The input data is the 2MASS J-band
images covering 8-degree by 8-degree areas retrieved from
the Montage archive. The number of tasks in the workflow
is 10,567. The input data size is 4 GB, where each of the
2,102 tasks on the first level of the workflow structure reads
an input image of 2 MB. Initially, the input data is stored in
Amazon S3 storage. Since Ligo and Epigenomics are not
open-sourced, we construct synthetic Ligo and Epigenomics
workflows using the workflow generator provided by Pega-
sus [39]. We use the DAX files with 1,000 and 997 tasks
(Inspiral_1000.xml and Epigenomics_997.xml [39]) for Ligo
and Epigenomics, respectively. The input data size of Ligo
is 9.3 GB, where each of the 229 tasks on the first level of the
workflow structure reads 40.5 MB of input data on average.
The input data size of Epigenomics is 1.7 GB, where each of
the seven tasks on the first level of the workflow structure
reads 369 MB of DNA sequence data on average.

Implementations. In order to evaluate the effectiveness of
the proposed techniques in Dyna, we have implemented
the following algorithms.

� Static. This approach is the same as the previous
study in [1] which only adopts on-demand instances.
We adopt it as the state-of-the-art comparison. For a
fair comparison, we set the workflow deadline
according to the probabilistic QoS setting used in
Dyna. For example, if the user requires 90 percent of
probabilistic deadline guarantee, the deterministic
deadline used for Static is set to the 90th percentile
of the workflow’s execution time distribution.

� DynaNS. This approach is the same as Dyna except
that DynaNS does not use any spot instances. The
comparison between Dyna and DynaNS is to assess
the impact of spot instances.

� SpotOnly. This approach adopts only spot instances
during execution. It first utilizes the A

$
-based

instance configuration approach to decide the
instance type for each task in the workflow. Then we
set the bidding price of each task to be very high (in
our studies, we set it to be $1, 000) in order to guar-
antee the probabilistic deadline requirement.

� Oracle. We implement the Oracle method to assess
the trade-off between the optimization overhead and
the effectiveness of the optimizations in Dyna. Ora-
cle is different from Dyna in that, Oracle does not
adopt the localized heuristic as Definition 1 (Section
3.3) when evaluating the probabilistic deadline guar-
antee consideration. This is an offline approach,
since the time overhead of getting the solution in
Oracle is prohibitively high.

� MOHEFT. We select a state-of-the-art multi-objec-
tive approach [40] for comparison. According to the

previous study [40], MOHEFT is able to search the
instance configuration space and obtain a set of non-
dominated solutions on the monetary cost and exe-
cution time.

We conduct our experiments on both real clouds and
simulator. These two approaches are complementary,
because some scientific workflows (such as Ligo and Epige-
nomics) are not publicly available. Specifically, when the
workflows (including the input data and executables, etc.)
are publically available, we run them on public clouds. Oth-
erwise, we simulate the execution with synthetic workflows
according to the workflow characteristics from existing
studies [19].

On Amazon EC2, we adopt a popular workflow manage-
ment system (Pegasus [41]) to manage the execution of
workflows. We create an Amazon Machine Image (AMI)
installed with Pegasus and its prerequisites such as DAG-
Man [42] and Condor [43]. We modify the Pegasus (release
4.3.2) scheduler to enable scheduling the tasks onto instan-
ces according to the hybrid instance configurations. A script
written with Amazon EC2 API is developed for acquiring
and releasing instances at runtime.

We develop a simulator based on CloudSim [44]. We
mainly present our new extensions, and more details on
cloud simulations can be found in the original paper [44].
The simulator includes three major components, namely
Cloud, Instance and Workflow. The Cloud component
maintains a pool of resources which supports acquisition
and release of Instance components. It also maintains the I/
O and network performance histograms measured from
Amazon EC2 to simulate cloud dynamics. A spot price trace
obtained from the Amazon EC2 history is also maintained
to simulate the price dynamics. The Instance component
simulates the on-demand and spot instances, with cloud
dynamics from the calibration. We simulate the cloud
dynamics in the granularity of seconds, which means the
average I/O and network performance per second conform
the distributions from calibration. The Workflow compo-
nent manages the workflow structures and the scheduling
of tasks onto the simulated instances.

Experimental settings.We acquire the four measured types
of instances from the US East region using the created AMI.
The hourly costs of the on-demand instance for the four
instance types are shown in Table 1. Those four instances
have also been used in the previous studies [15]. As for the
instance acquisition time (lag), our experiments show that
each on-demand instance acquisition costs 2 minutes and
spot instance acquisition costs 7 minutes on average. This is
consistent with the existing studies [45].

The deadline of workflows is an important factor for the
candidate space of determining the instance configuration.
There are two deadline settings with particular interests:
Dmin and Dmax, the expected execution time of all the tasks
in the critical path of the workflow all on the m1.xlarge and
m1.small instances, respectively. By default, we set the

deadline to be DminþDmax
2 .

We assume there are many workflows submitted by the
users to the WaaS provider. In each experiment, we submit
100 jobs of the same workflow structure to the cloud. We
assume the job arrival conforms to a Poisson distribution.

ZHOU ET AL.: MONETARY COST OPTIMIZATIONS FOR HOSTINGWORKFLOW-AS-A-SERVICE IN IAAS CLOUDS 9

IE
EE

Pr
oo

f

The parameter � in the Poisson distribution affects the
chance for virtual machine reuse. By default, we set � as 0.1.

As for metrics, we study the average monetary cost and
elapsed time for a workflow. All the metrics in the figures in
Section 4.3 and 4.4 are normalized to those of Static. Given the
probabilistic deadline requirement, we run the compared
algorithms multiple times on the cloud and record their
monetary cost and execution time. We consider monetary
cost as the main metric for comparing the optimization
effectiveness of different scheduling algorithms when they
all satisfy the QoS requirements. By default, we set the prob-
abilistic deadline requirement as 96 percent. By default, we
present the results obtained when all parameters are set to
their default setting. In Section 4.4, we experimentally study
the impact of different parameters with sensitivity studies.

4.2 Cloud Dynamics

In this section, we present the performance dynamics
observed on Amazon EC2. The price dynamics have been
presented in Table 1 of Section 2.

Figs. 7 and 8 show the measurements of random I/O per-
formance and downloading network performance from
Amazon S3 of m1.medium instances. We have observed
similar results on other instance types. We make the follow-
ing observations.

First, both I/O and network performances can be mod-
eled with normal or Gamma distributions. We verify the
distributions with null hypothesis, and find that (1) the
sequential I/O performance, and uploading and download-
ing network bandwidth from/to S3 of the four instance
types follow the Gamma distribution; (2) the random I/O

performance distributions on the four instance types follow
the normal distribution. The parameters of those distribu-
tions are presented in Tables 2 and 3. Those results are
mainly based on the measurement on real clouds. It is
the result when different network and disk I/O pattern
interplayed with the shared virtualization environments.
However, we do not know the underlying reason that the
random disk I/O performance follows the normal distribu-
tion and other patterns follow the Gamma distribution.

Second, the I/O and network performance of the same
instance type varies significantly, especially for m1.small
and m1.medium instances. This can be observed from the u

parameter of Gamma distributions or the s parameter of
normal distributions in Tables 2 and 3. Additionally, ran-
dom I/O performance varies more significantly than
sequential I/O performance on the same instance type. The
coefficient of variance of sequential and random I/O perfor-
mance on m1.small are 9 and 33 percent, respectively. That
indicates the necessity of capturing the performance
dynamics into our performance guarantee.

Third, the performance between different instance types
also differ greatly from each other. This can be observed
from the k � u parameter (the expected value) of Gamma dis-
tributions or the m parameter of normal distributions in
Tables 2 and 3. Due to the significant differences among dif-
ferent instance types, we need to carefully select the suitable
instance types so that the monetary cost is minimized.

Finally, we observe that the performance distributions of
the on-demand instance types are the same as or very close
to those of the spot instance types.

4.3 Overall Comparison

In this subsection, we present the overall comparison results
of Dyna and the other compared algorithms on Amazon
EC2 and the cloud simulator under the default settings.
Sensitivity studies are presented in Section 4.4. Note that we
have used the calibrations from Section 4.2 as input to Dyna
for performance and cost estimations.

Fig. 9 shows the average monetary cost per job results of
Static, DynaNS, SpotOnly, Dyna and Oracle methods on the
Montage, Ligo and Epigenomics workloads. The standard

Fig. 7. The histogram and probabilistic distribution of random I/O perfor-
mance on m1.medium instances.

Fig. 8. The histogram and probability distribution of downloading band-
width between m1.medium instances and S3 storage.

TABLE 2
Parameters of I/O Performance Distributions

Instance type Sequential I/O (Gamma) Random I/O (Normal)

m1.small k ¼ 129:3; u ¼ 0:79 m ¼ 150:3; s ¼ 50:0
m1.medium k ¼ 127:1; u ¼ 0:80 m ¼ 128:9; s ¼ 8:4
m1.large k ¼ 376:6; u ¼ 0:28 m ¼ 172:9; s ¼ 34:8
m1.xlarge k ¼ 408:1; u ¼ 0:26 m ¼ 1;034:0; s ¼ 146:4

TABLE 3
Gamma Distribution Parameters on Bandwidth

between an Instance and S3

Instance type Uploading bandwidth Downloading bandwidth

m1.small k ¼ 107:3; u ¼ 0:55 k ¼ 51:8; u ¼ 1:8

m1.medium k ¼ 421:1; u ¼ 0:27 k ¼ 279:9; u ¼ 0:55

m1.large k ¼ 571:4; u ¼ 0:22 k ¼ 6;187:7; u ¼ 0:44

m1.xlarge k ¼ 420:3; u ¼ 0:29 k ¼ 15;313:4; u ¼ 0:23

10 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. X, XXXXX 2015

IE
EE

Pr
oo

f

errors of the monetary cost results of Static, DynaNS, Spo-
tOnly, Dyna and Oracle are 0.01-0.06, 0.02-0.04, 0.40-0.76,
0.01-0.03 and 0.01-0.03, respectively, on the tested work-
loads. The absolute values of the average monetary cost of
Static are $285, $476 and $214 for Montage, Ligo and Epige-
nomics, respectively. Overall, Dyna obtains the smallest
monetary cost among the online approaches in all three
workloads, saving monetary cost over Static, DynaNS and
SpotOnly by 15-73, percent 1-33 percent and 78-85 percent,
respectively. We make the following observations.

First, DynaNS obtains smaller monetary cost than Static,
because the proposed A

$
configuration search technique is

capable of finding cheaper instance configurations and is
suitable for different structures of workflows. This also
shows that performing deadline assignment before instance
configuration in the Static algorithm reduces the optimiza-
tion effectiveness. For example, with the deadline assign-
ment approach, the instance configuration of a task has to
make sure that its execution time is no longer than its
assigned sub-deadline. However, this task can actually
make use of the left-over time from its previous tasks and
be assigned to a cheaper instance type.

Second, Dyna obtains smaller monetary cost than
DynaNS, meaning that the hybrid configuration with both
spot and on-demand instances is effective on reducing
monetary cost, in comparison with the on-demand only
approach. For lower probabilistic deadline guarantees, the
monetary cost saved by Dyna over DynaNS gets higher

because the opportunity for leveraging spot instances gets
higher. Fig. 10 shows the monetary cost results of the com-
pared algorithms when the probabilistic deadline guarantee
is set to 90 percent. In this setting, the monetary cost reduc-
tion of Dyna over DynaNS is even higher than the default
setting, by 28-37 percent.

Third, SpotOnly obtains the highest monetary cost
among all the compared algorithms. This is due to the
dynamic characteristic of spot price. Fig. 11 shows the histo-
gram of the spot price during the month of the experiments.
Although the spot price is lower than the on-demand price
of the same type in most of the time, it can be very high
compared to on-demand price at some time. As shown in
Table 1, the highest spot price for a m1.small instance in
August 2013 is $10 which is more than 160 times higher
than the on-demand price. Nevertheless, this observation
depends on the fluctuation of spot price. The results on
comparing SpotOnly and Dyna can be different if we run
the experiments at other times. We study the sensitivity of
Dyna and SpotOnly to spot price with another spot price
history in Section 4.4.

Fig. 12 shows the average execution time of a workflow
of Static, DynaNS, SpotOnly, Dyna and Oracle methods on
the Montage, Ligo and Epigenomics workloads. The stan-
dard errors of the execution time results of the compared
algorithms are between 0.01-0.06 on the tested workloads.
Static has the smallest average execution time, which are
around 3.4, 6.3 and 2.5 hours for Montage, Ligo and Epige-
nomics, respectively. This is because Static configures each
task in workflows with better and more expensive instance
types. The careful selection of bidding price for each task in
the workflow in Dyna and high bidding prices in SpotOnly
diminish the out-of-bid events during execution. All of

Fig. 9. The normalized average monetary cost optimization results of
compared algorithms on Montage, Ligo and Epigenomics workflows.

Fig. 10. The normalized average monetary cost results of compared
algorithms on Montage, Ligo and Epigenomics workflows when the prob-
abilistic deadline guarantee is 90 percent.

Fig. 11. Histogram of the spot price history in August 2013, US East
Region of Amazon EC2.

Fig. 12. The normalized average execution time optimization results of
compared algorithms on Montage, Ligo and Epigenomics workflows.

ZHOU ET AL.: MONETARY COST OPTIMIZATIONS FOR HOSTINGWORKFLOW-AS-A-SERVICE IN IAAS CLOUDS 11

IE
EE

Pr
oo

f

DynaNS, SpotOnly, Dyna and Oracle are able to guarantee
the probabilistic deadline requirement.

Finally, we analyze the optimization overhead of the
compared algorithms. The optimization overhead results
are shown in Table 4. Note that, for workflows with the
same structure and profile, our system only need to do the
optimization once. Although Oracle obtains smaller mone-
tary cost than Dyna, the optimization overhead of Oracle is
16-44 times as high as that of Dyna. This shows that Dyna is
able to find optimization results close to the optimal results
in much shorter time. Due to the long execution time of the
Oracle optimization, in the rest of the experiments, we do
not evaluate Oracle but only compare Dyna with Static,
DynaNS and SpotOnly.

4.4 Sensitivity Studies

We have conducted sensitivity studies on different work-
flows. Since we observed similar results across workflows,
we focus on Montage workflows in the following. In each
study, we vary one parameter at a time and keep other
parameters in their default settings.

Deadline. Deadline is an important factor for determining
the instance configurations. We evaluate the compared algo-
rithms under deadline requirement varying from 1:5�Dmin

(denoted as “Tight”), 0:5� ðDmin þDmaxÞ (denoted as
“Medium”) to 0:75�Dmax (denoted as “Loose”). All results
are normalized to those of Static when the deadline is
Medium. Fig. 13 shows the average monetary cost per job
and average execution time results. Dyna obtains the small-
est average monetary cost among the compared algorithms
under all tested deadline settings. As the deadline gets
loose, the monetary cost is decreased since more cheaper
instances (on-demand instances) are used for execution. We
break down the number of different types of on-demand
instances when the deadlines are Tight and Loose as shown
in Fig. 14. When the deadline is Loose, more cheap instances
are utilized. Under the same deadline, e.g., Tight, DynaNS
utilizes more cheap instances than Static, which again shows
our A

$
approach is better than the existing heuristics [1] in

the previous study. This trend does not apply to SpotOnly
because the spot price of the m1.medium instance can be
lower than the m1.small instance at some time. We have val-
idated this phenomena with studying the spot price trace.

Probabilistic deadline guarantee. We evaluate the effective-
ness of Dyna on satisfying probabilistic deadline require-
ments when the requirement varies from 90 to 99.9 percent.
Fig. 15 shows the average monetary cost per job and average
execution time results of the compared algorithms. Dyna
achieves the smallest monetary cost for different probabilis-
tic deadline guarantee settings. With a lower probabilistic
deadline requirement, the monetary cost saved by Dyna is
higher. DynaNS, SpotOnly and Dyna can guarantee the
probabilistic deadline requirement under all settings.

Arrival rate. We evaluate the effectiveness of Dyna when
the arrival rate � of workflows varies from 0.1, 0.2, 0.4, 0.6,
0.8, 0.9 to 1.0. All results are normalized to those when
arrival rate is 0.1. Fig. 16 shows the optimized average mon-
etary cost per job. Dyna obtains the smallest average

TABLE 4
Optimization Overhead of the Compared Algorithms on
Montage, Ligo and Epigenomics Workflows (Seconds)

Static DynaNS SpotOnly Dyna Oracle

Montage 1 153 153 163 2,997
Ligo 1 236 236 244 10,452
Epigenomics 1 166 166 175 2,722

Fig. 13. The normalized average monetary cost and average execution
time results of sensitivity studies on deadline.

Fig. 14. Breakdown of the instance types adopted by compared algo-
rithms when the deadlines are Tight and Loose.

Fig. 15. The normalized average monetary cost and average execution
time results of sensitivity studies on the probabilistic deadline guarantees.

Fig. 16. The normalized average monetary cost results of sensitivity
studies on the arrival rate of workflows.

12 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. X, XXXXX 2015

IE
EE

Pr
oo

fmonetary cost under all job arrival rates. As the job arrival
rate increases, the average cost per job is decreasing. This is
because the runtime optimizations that we adopt from the
previous study [1], including consolidation and instance
reuse, can enable resource sharing between workflow jobs.
When the arrival rate increases, there are more jobs arriving
in the WaaS at the same time. The resource utilization of the
WaaS is increased and the partial instance time is better uti-
lized. The dashed lines in Fig. 16 indicates the average mon-
etary cost of the compared algorithms without the runtime
optimizations. For the arrival rates that we have evaluated,
the instance configuration is still essential for the monetary
cost reduction in Dyna, in comparison with runtime consoli-
dations and instance reuse.

Spot price. To study the sensitivity of Dyna and SpotOnly
to the spot price variance, we use simulations to study the
compared algorithms on different spot price histories. Par-
ticularly, we study the compared algorithms with the spot
price history of the Asia Pacific Region in December 2011.
As shown in Table 5, the spot price during this period is
very low and stable, in comparison with the period that we
performed the experiments in August 2013. Thus the spot
instances are less likely to fail during the execution
(the failing probability ffp is rather low). Fig. 17 shows the
obtained monetary cost result. SpotOnly and Dyna obtain
similar monetary cost results, which are much lower than
Static and DynaNS. This demonstrates that Dyna is able to
obtain good monetary cost optimization results for different
spot price distributions.

4.5 Comparison with Multi-Objective Method

Finally, we present the comparison results of Dyna with
MOHEFT [40] on the Epigenomics workflows with simula-
tions. For each solution obtained from MOHEFT, we use its

expected execution time as the deadline constraint for
Dyna, and then we compare the monetary cost between
Dyna and MOHEFT. All other parameters are set as default.
All results are normalized to the lowest monetary cost
obtained by MOHEFT.

Fig. 18 shows the normalized average monetary cost
results of the compared algorithms. In this experiment,
MOHEFT outputs five different solutions. We denote the
average execution time of different MOHEFT solutions to
be t1, t2,. . ., t5. Dyna obtains smaller monetary cost than
MOHEFT due to the utilization of spot instances, and can
ensure the deadline constraint under all settings. Although
MOHEFT optimizes both the monetary cost and execution
time as a multi-objective optimization problem, none of its
solutions dominates the solution of Dyna.

5 CONCLUSIONS

As the popularity of various scientific and data-intensive
applications in the cloud, hosting WaaS in IaaS clouds
becomes emerging. However, the IaaS cloud is a dynamic
environment with performance and price dynamics, which
make the assumption of static task execution time and the
QoS definition of deterministic deadlines undesirable. In
this paper, we propose the notion of probabilistic perfor-
mance guarantees as QoS to explicitly expose the cloud
dynamics to users. We develop a workflow scheduling sys-
tem named Dyna to minimize the monetary cost for the
WaaS provider while satisfying predefined probabilistic
deadline guarantees for individual workflows. We develop
an A

$
search based instance configuration method to

address the performance dynamics, and hybrid instance
configuration of both spot and on-demand instances for
price dynamics. We deploy Dyna on both Amazon EC2 and
simulator and evaluate its effectiveness with three scientific
workflow applications. Our experimental results demon-
strate that Dyna achieves much lower monetary cost than
the state-of-the-art approaches (by 73 percent) while
guaranteeing users’ probabilistic deadline requirements.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their valuable comments. The authors acknowledge the sup-
port from the Singapore National Research Foundation
under its Environmental & Water Technologies Strategic
Research Programme and administered by the Environment
& Water Industry Programme Office (EWI) of the PUB,

TABLE 5
Statistics on Spot Prices ($/hour, December 2011, Asia Pacific

Region) and On-Demand Prices of Amazon EC2

Instance type Average stdev Min Max OnDemand

m1.small 0.041 0.003 0.038 0.05 0.06
m1.medium 0.0676 0.003 0.064 0.08 0.12
m1.large 0.160 0.005 0.152 0.172 0.24
m1.xlarge 0.320 0.009 0.304 0.336 0.48

Fig. 17. The simulation result of the normalized average monetary cost
obtained by the compared algorithms, using the spot price history of the
Asia Pacific Region of Amazon EC2 in December, 2011.

Fig. 18. Simulation results of Dyna and MOHEFT with Epigenomics
workflow.

ZHOU ET AL.: MONETARY COST OPTIMIZATIONS FOR HOSTINGWORKFLOW-AS-A-SERVICE IN IAAS CLOUDS 13

IE
EE

Pr
oo

f

under project 1002-IRIS-09. This work is partly supported
by a MoE AcRF Tier 1 grant (MOE 2014-T1-001-145) in
Singapore. Amelie Chi Zhou is also with Nanyang Environ-
ment and Water Research Institute (NEWRI). Amelie Chi
Zhou is the corresponding author.

REFERENCES

[1] M. Mao and M. Humphrey, “Auto-scaling to minimize cost
and meet application deadlines in cloud workflows,” in Proc.
Int. Conf. High Perform. Comput., Netw. Storage Anal., 2011,
pp. 1–12

[2] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost- and
deadline-constrained provisioning for scientific workflow ensem-
bles in IaaS clouds,” in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage Anal., 2012, pp. 1–11.

[3] A. C. Zhou, B. He, and S. Ibrahim, “A taxonomy and survey on
escience as a service in the cloud,” Arxiv Preprint Arxiv:1407.7360,
2014.

[4] J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling of scien-
tific workflow application on utility grids,” in Proc. 1st Int. Conf.
E-Science Grid Comput., 2005, pp. 8–147.

[5] R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. D. Dikaiakos,
“Scheduling workflows with budget constraints,” in Proc. Core-
GRID, 2007, pp. 189–202.

[6] R. Duan, R. Prodan, and T. Fahringer, “Performance and cost opti-
mization for multiple large-scale grid workflow applications,” in
Proc. ACM/IEEE Conf. Supercomput., 2007.

[7] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, “Deadline-
constrained workflow scheduling algorithms for IaaS clouds,”
Future Generation Comput. Syst., vol. 29, pp. 15–169, 2013.

[8] E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng, “Cost optimized
provisioning of elastic resources for application workflows,”
Future Gen. Comput. Syst., vol. 27, pp. 1011–1026, 2011.

[9] S. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in Proc.
IEEE INFOCOM, 2012, pp. 702–710.

[10] F. Zhang, J. Cao, K. Hwang, and C. Wu, “Ordinal optimized
scheduling of scientific workflows in elastic compute clouds,”
in Proc. IEEE 3rd Int. Conf. Cloud Comput. Technol. Sci., 2011,
pp. 9–17.

[11] A. C. Zhou and B. He, “Simplified resource provisioning for
workflows in IaaS clouds,” in Proc. IEEE 6th Int. Conf. Cloud Com-
put. Technol. Sci., 2014, pp. 650–655.

[12] J. Schad, J. Dittrich, and J.-A. Quian�e-Ruiz, “Runtime measure-
ments in the cloud: observing, analyzing, and reducing variance,”
Proc. VLDB Endowment, vol. 3, pp. 460–471, 2010.

[13] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance analysis of cloud computing services for
many-tasks scientific computing,” IEEE Trans. Parallel Distrib.
Syst., vol. 22, no. 6, pp. 931–945, Jun. 2011.

[14] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou,
“Distributed systems meet economics: pricing in the cloud,” in
Proc. HotCloud, 2010, pp. 1–7.

[15] S. Yi, A. Andrzejak, and D. Kondo, “Monetary cost-aware check-
pointing and migration on amazon cloud spot instances,” IEEE
Trans. Services Comput., vol. 5, no. 4, pp. 512–524, 4th Quarter 2012.

[16] M. Mazzucco and M. Dumas, “Achieving performance and avail-
ability guarantees with spot instances,” in Proc. IEEE 13th Int.
Conf. High Perform. Commun., 2011, pp. 296–303.

[17] B. Javadi, R. Thulasiram, and R. Buyya, “Statistical modeling of
spot instance prices in public cloud environments,” in Proc. IEEE
4th Int. Utility Cloud Comput., 2011, pp. 219–228.

[18] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D.
Tsafrir, “Deconstructing amazon EC2 spot instance pricing,”
in Proc. IEEE 3rd Int. Conf. Cloud Comput. Technol. Sci.,, 2011,
pp. 304–311.

[19] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K.
Vahi, “Characterizing and profiling scientific workflows,” Future
Gen. Comput. Syst., vol. 29, pp. 682–692, 2013.

[20] L. Abeni and G. Buttazzo, “QoS guarantee using probabilistic
deadlines,” in Proc. Euromicro Conf. Real-Time Syst., 1999, pp.
242–249.

[21] R. N. Calheiros and R. Buyya, “Meeting deadlines of scientific
workflows in public clouds with tasks replication,” IEEE Trans.
Parallel Distrib. Syst., 2013, pp. 1786–1796.

[22] H. Kloh, B. Schulze, R. Pinto, and A. Mury, “A bi-criteria schedul-
ing process with CoS support on grids and clouds,” Concurrency
Computat. Pract. Exp., vol. 24, pp. 1443–1460, 2012.

[23] I. M. Sardi~na, C. Boeres, and L. M. De A. Drummond, “An
efficient weighted bi-objective scheduling algorithm for hetero-
geneous systems,” in Proc. Int. Conf. Parallel Process., 2009,
pp. 102–111.

[24] C. Lin and S. Lu, “Scheduling scientific workflows elastically for
cloud computing,” in Proc. IEEE Int. Conf. Cloud Comput., 2011,
pp. 746–747.

[25] S. Di, C.-L. Wang and F. Cappello, “Adaptive algorithm for mini-
mizing cloud task length with prediction errors,” IEEE Trans.
Cloud Comput., vol. 2, no. 2, pp. 194–207, Apr.–Jun. 2014.

[26] M. Rodriguez and R. Buyya, “Deadline based resource provision-
ing and scheduling algorithm for scientific workflows on clouds,”
IEEE Trans. Cloud Comput., vol. 2, no. 2, pp. 222–235, Apr.–Jun.
2014.

[27] D. de Oliveira, V. Viana, E. Ogasawara, K. Ocana, and M. Mattoso,
“Dimensioning the virtual cluster for parallel scientific workflows
in clouds,” in Proc. 4th ACM Workshop Sci. Cloud Comput., 2013,
pp. 5–12.

[28] D. Oliveira, K. A. Oca~na, F. Bai~ao, and M. Mattoso, “A prove-
nance-based adaptive scheduling heuristic for parallel scien-
tific workflows in clouds,” J. Grid Comput., vol. 10, pp. 521–
552, 2012.

[29] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the
cloud using predictive models for workload forecasting,” in Proc.
IEEE Int. Conf. Cloud Comput., 2011, pp. 500–507.

[30] J. Yang, J. Qiu, and Y. Li, “A profile-based approach to just-in-time
scalability for cloud applications,” in Proc. IEEE Int. Conf. Cloud
Comput., 2009, pp. 9–16.

[31] A. C. Zhou and B. He, “Transformation-based monetary cost opti-
mizations for workflows in the cloud,” IEEE Trans. Cloud Comput.,
vol. 2, no. 1, pp. 85–98, Jan.–Mar. 2013.

[32] S. Ostermann and R. Prodan, “Impact of variable priced cloud
resources on scientific workflow scheduling,” in Proc. 18th Int.
Conf. Parallel Process., 2012, pp. 350–362.

[33] B. Javadi, R. K. Thulasiram, and R. Buyya, “Characterizing spot
price dynamics in public cloud environments,” Future Gen. Com-
put. Syst., vol. 29, pp. 988–999, 2013.

[34] H.-Y. Chu and Y. Simmhan, “Cost-efficient and resilient job life-
cycle management on hybrid clouds,” in Proc. IEEE 28th Int. Paral-
lel Distrib. Process. Symp., 2014, pp. 327–336.

[35] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proc. ACM SIGCOMM Conf.,
2011, pp. 242–253.

[36] M. Hovestadt, O. Kao, A. Kliem, and D. Warneke, “Evaluating
adaptive compression to mitigate the effects of shared I/O in
clouds,” in Proc. IEEE Int. Symp. Parallel Distrib. Process. Workshops
Phd Forum, 2011, pp. 1042–1051.

[37] S. Ibrahim, H. Jin, L. Lu, B. He, and S. Wu, “Adaptive disk i/o
scheduling for MapReduce in virtualized environment,” in Proc.
Int. Conf. Parallel Process., 2011, pp. 335–344.

[38] Iperf [Online]. Available: http://iperf.sourceforge.net, Jul. 2014.
[39] Workflow Generator. (2014, Jul.) [Online]. Available: https://

confluence.pegasus.isi.edu/display/pegasus/
WorkflowGenerator

[40] J. J. Durillo, R. Prodan, and H. M. Fard, “MOHEFT: A multi-objec-
tive list-based method for workflow scheduling,” in Proc. IEEE 4th
Int. Conf. Cloud Comput. Technol. Sci., 2012, pp. 185–192.

[41] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G.
Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and
D. S. Katz, “Pegasus: A framework for mapping complex scientific
workflows onto distributed systems,” Sci. Program., vol. 13,
pp. 219–237, 2005.

[42] CondorTeam, DAGMan [Online]. Available: http://cs.wisc.edu/
condor/dagman, Jul. 2014.

[43] M. Litzkow, M. Livny, and M. Mutka, “Condor—A hunter of idle
workstations,” in Proc. 8th Int. Conf. Distrib. Comput. Syst., 1988,
pp. 104–111.

[44] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R.
Buyya, “Cloudsim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms,” Softw. Pract. Exper., vol. 41, pp. 23–50, 2011.

[45] M. Mao and M. Humphrey, “A performance study on the VM
startup time in the cloud,” in Proc. IEEE 5th Int. Conf. Cloud Com-
put., 2012, pp. 423–430.

14 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. X, XXXXX 2015

IE
EE

Pr
oo

f

Amelie Chi Zhou received the bachelor’s and
master’s degrees from Beihang University. She
is currently working toward the PhD degree
at School of Computer Engineering of NTU, Sin-
gapore. Her research interests include cloud
computing and database systems.

Bingsheng He received the bachelor’s degree in
computer science from SJTU, and the PhD
degree in computer science from HKUST. He is
an assistant professor in School of Computer
Engineering of NTU, Singapore. His research
interests include high-performance computing,
cloud computing, and database systems.

Cheng Liu received the bachelor’s and master’s
degrees from USTC. He is currently a research
assistant in School of Computer Engineering of
NTU, Singapore. His areas of expertise include
structured peer-to-peer network and compiler.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHOU ET AL.: MONETARY COST OPTIMIZATIONS FOR HOSTINGWORKFLOW-AS-A-SERVICE IN IAAS CLOUDS 15

