
1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2316152, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-2013-12-1167 1

VMbuddies: Coordinating Live Migration of
Multi-Tier Applications in Cloud Environments

Haikun Liu, and Bingsheng He

Abstract—Enabled by virtualization technologies, various multi-tier applications (such as Web applications) are hosted by

virtual machines (VMs) in cloud data centers. Live migration of multi-tier applications across geographically distributed data

centers is important for load management, power saving, routine server maintenance and quality-of-service. Different from a

single-VM migration, VMs in a multi-tier application are closely correlated, which results in a correlated VM migrations problem.

Current live migration algorithms for single-VM cause significant application performance degradation because intermediate

data exchange between different VMs suffers relatively low bandwidth and high latency across distributed data centers. In this

paper, we design and implement a coordination system called VMbuddies for correlated VM migrations in the cloud. Particularly,

we propose an adaptive network bandwidth allocation algorithm to minimize the migration cost in terms of migration completion

time, network traffic and migration downtime. Experiments using a public benchmark show that VMbuddies significantly reduces

the performance degradation and migration cost of multi-tier applications.

Index Terms— Cloud, Live migration, Multi-tier application, Virtual machine

—————————— ——————————

1 INTRODUCTION

nternet applications have been prosperous in the era of
cloud computing, which are usually hosted in virtual

machines in geographically distributed data centers. Live
migration of Internet applications across data centers is
important for different scenarios including load manage-
ment, power saving, routine server maintenance and quali-
ty-of-service [8][11][38][42]. Additionally, Internet applica-
tions tend to have dynamically varying workloads that
contain long-term variations such as time-of-day effects in
different regions. It is desirable to move the interac-
tive/web application to the data center that has better net-
work performance to users for lower response time [41].
Also, workloads can be migrated across different data cen-
ters to exploit time-varying electricity pricing [32]. The re-
cent advance of VM live migration techniques [10][30] is
able to relocate a single VM across data centers with ac-
ceptable migration cost [34][38]. Typical Internet applica-
tions employ a multi-tier architecture, with each tier
providing certain functionality. Specific to multi-tier appli-
cations, we need to migrate several tightly-coupled VMs in
multi-tiers, instead of a single VM. Previous studies have
demonstrated the potential performance penalty of multi-
tier applications during migration [17][23]. In this paper,
we investigate whether and how we can reduce the migra-
tion cost without suffering application performance degra-
dation.

A typical multi-tier web application consists of three ti-
ers: presentation layer (Web tier), business logic layer (App
tier) and data access layer (DB tier) [18]. Different layers
usually run on different VMs and have different memory

access patterns. VMs are correlated because only when all
VMs of the multi-tiers are migrated to another data center,
they can completely and efficiently serve requests in that
data center. We call this problem correlated VM migrations.
Correlated VM migrations can cause significant perfor-
mance penalty to multi-tier applications. Consider the fol-
lowing scenario: if the middle tier is first migrated, then the
other two tiers must redirect the communication and data
access traffic to another data center and wait for the pro-
cessing results to be sent back. Moreover, because the mul-
ti-tier application and migration processes share the same
link for data transferring, given the data-intensive nature of
multi-tier applications and limited network bandwidth
between two data centers, network bandwidth contention
may cause significant performance degradation for both
applications and VM migrations.

While live migration of VMs provides the ability to re-
locate running VMs from one physical host to another
without perceivable service downtime [10][30], the state-of-
the-art VM migration techniques mainly target a single VM
(either within a data center [10][16][24][30] or across differ-
ent cloud data centers [8][38][42]). These techniques cannot
fundamentally solve the correlated VM migrations prob-
lem. We need effective and efficient mechanisms to coordi-
nate correlated VM migrations across distributed data cen-
ters.

Ideally, the coordination system should avoid splitting
multiple tiers between data centers so that the perfor-
mance penalty of VM migrations on the multi-tier appli-
cation is minimized. Meanwhile, we should diminish the
VM migration cost in terms of migration completion time,
network traffic and migration downtime. To achieve these
goals, we need to address the following technical challeng-
es. First, migration completion time of different VMs may
vary significantly due to VM configurations and workload
characteristics in different tiers. It is challenging to orches-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 H. Liu is with North China Electricity Power University, Baoding,
071003, China, and Nanyang Technological University, 635798,
Singapore. E-mail: haikunliu@gmail.com.

 B. He is with Nanyang Technological University, 635798, Singapore,
Email: he.bingsheng@gmail.com

Manuscript received December 7, 2013.

I

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2316152, IEEE Transactions on Parallel and Distributed Systems

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-2013-12-1167

trate their migration progress and complete the migrations
simultaneously. Second, network bandwidth is the critical
resource of VM migration across data centers. So far there
is little work on progress management for correlated VM
migrations so that the total migration cost is minimized.
The last challenge is how to implement a coordination sys-
tem in existing virtualization platforms such as Xen and
demonstrate its practical value.

To address the aforementioned challenges, we propose
a coordination system called VMbuddies to solve the corre-
lated VM migrations problem for multi-tier applications.
VMbuddies embraces a synchronization protocol to ensure
that all VMs complete their migrations simultaneously,
avoiding intermediate data exchange across distributed
data centers. In order to reduce the migration cost, we de-
velop network bandwidth allocation algorithms according
to memory access patterns of different workloads. For VMs
with stable memory access pattern, we propose an analyti-
cal cost model of pre-copying algorithm that is widely used
for live VM migrations in common virtualization platforms
such as VMware, Xen, KVM and Hyper-V. Based on the
cost model, we formulate the bandwidth allocation as a
distributed constraint optimization problem and give an
optimal solution so that the total migration cost is mini-
mized. We further develop an adaptive bandwidth alloca-
tion algorithm for VMs with dynamic memory access pat-
terns. With the synchronization protocol and bandwidth
allocation mechanisms, we design and implement a proto-
type called VMbuddies in Xen.

We investigate the effectiveness and efficiency of
VMbuddies by using a public multi-tier application
benchmark RUBBoS [1]. The experiments are conducted
with two complementary approaches: real private data
centers and simulated Wide Area Network (WAN). The
evaluation compares a number of metrics (such as migra-
tion completion time, network traffic, migration downtime
and application performance degradation) with several
alternative approaches. The results show VMbuddies can
significantly reduce the performance degradation of multi-
tier applications during migrations, while only experienc-
ing slight overhead of synchronization cost in terms of mi-
gration completion time and network traffic. Particularly,
in comparison with Xen, VMbuddies achieves lower aver-
age response time by 77% and higher throughput by 18%,
and reduces total migration cost by 36% on average.

The rest of this paper is organized as follows. Section 2
gives a brief introduction to our groundwork and formu-
lates the correlated VM migration problem. Section 3 pre-
sents the synchronization protocol and bandwidth alloca-
tion algorithms. Section 4 describes the implementation
details of VMbuddies. We present the evaluation method-
ologies and experimental results in Section 5. We review
the related work in Section 6 and conclude in Section 7.

2 CORRELATED VM MIGRATION PROBLEM

This section introduces the background of single-VM mi-
gration techniques and correlated VM migrations.

Single-VM migration. Live migration of VMs has been
an effective approach to manage workloads in a non-

disruptive manner. Among different implementations of
VM live migration, pre-copying algorithm [10][30] is the
most popular and widely used in today’s virtualization
platforms. Thus, this paper focuses on pre-copying algo-
rithm in Xen, and the methodology in our paper can be
extended to other VM migration techniques.

The basic workflow of pre-copying algorithm in Xen is
described as follows. As shown in Fig. 1, memory pre-
copying is conducted in several iterative rounds. The
VM’s physical memory is first transferred from host A to
host B, while the source VM continues running in host A.
Pages dirtied in each round must be iteratively re-sent in
the next round to ensure memory consistency. That is, the
data to be transmitted in each round are dirty pages gen-
erated in the previous round. After several rounds of pre-
copying, a stop-and-copy phase is performed to transmit
the remaining dirty pages while the source VM temporar-
ily stops execution. When the final data transferring is
done, the VM on host B resumes and takes over the VM
on host A.

There are a number of factors affecting the migration
cost in terms of migration downtime, migration comple-
tion time and total network traffic. The major factors in-
clude the size of VM memory, memory dirtying rate,
network transmission rate and configuration of migration
algorithm (e.g., conditions for starting the stop-and-copy
phase). Among these factors, the size of VM memory and
the memory dirtying rate are mostly determined by the
VM and workloads. That means, they usually cannot be
controlled by migration algorithms. Thus, this paper fo-
cuses on the optimizations on the latter two factors: net-
work transmission rate and configuration of migration
algorithms. We note that CPU resource show moderate
performance impact on VM migrations. Previous study
demonstrated that the migration process only takes
around 30% of one CPU to attain the maximum network
throughput over the gigabit link [30]. Based on this ob-
servation, we think network bandwidth is usually more
important than CPU resource, especially for VM migra-
tion in WAN environments. Moreover, this paper focuses
on the algorithms of network bandwidth allocation for
VM migration, so we assume the CPU resource is always
sufficient for migration processes.

Correlated VM migrations. The objective of this paper
is to solve the correlated VM migrations problem raised
in multi-tier applications. As illustrated in Fig. 2, a multi-
tier web application is migrated from DC 1 to DC 2. Each
tier is running on multiple VMs, and thus the VMs across
different tiers are correlated with data dependency. Net-
work bandwidth is a critical resource across distributed
data centers. It is usually much smaller than the network
bandwidth within a data center. Previous studies (e.g.,

Memory image

round 1

…

stop-

and-copy

Memory image

t1t0

round 1

2

2

3

t2

3
tn

n

n resume

transmitting dirty pages
source host A

target host B
…

…

…

Fig.1. Live migration algorithm performs pre-copying in iterative
rounds.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2316152, IEEE Transactions on Parallel and Distributed Systems

LIU ET AL.: VMBUDDIES: COORDINATING LIVE MIGRATION OF MULTI-TIER APPLICATIONS IN CLOUD ENVIRONMENTS 3

[38]) assumed that the network bandwidth between two
data center was 465 Mbps. Without loss of generality, we
assume that the peak network bandwidth between DC 1
and DC 2 reserved for the migration processes is B. As
discussed in Introduction, the application traffic and mi-
gration traffic share the same links between two data cen-
ters. The bandwidth contention between them may result
in significant performance degradation in both applica-
tion and VM migration. That motivates us to develop
VMbuddies to coordinate the VM migration of multi-tier
applications, and let the inter-cloud network bandwidth
to be exclusively used by the migration traffic.

3 SYSTEM DESIGN

In this section, we first present the synchronization proto-
col for coordinating live migration of VMs in a multi-tier
application. Next, we present bandwidth allocation algo-
rithms to reduce the migration cost of all VMs. Particularly,
we first consider the scenario where the memory dirtying
rate is stable in the entire VM migration. We start with a
cost model in estimating the migration completion time of
all VMs, and develop an optimal bandwidth allocation
algorithm to minimize the migration completion time.
With this optimal algorithm as a building block, we identi-
fy the stable phases in memory dirtying rate, and develop
an adaptive algorithm for bandwidth allocation in
VMbuddies. In the adaptive algorithm, the bandwidth al-
location for each stable phase can use the optimal algo-
rithm developed in the scenario for stable memory dirtying
rates.

3.1 Synchronization Protocol

To avoid inter-data center network traffic between corre-
lated VMs, we develop a synchronization protocol to or-
chestrate all VMs to proceed the stop-and-copy phase at
the same time.

As shown in Fig. 3, each VM migration may reach its
stop-and-copy phase at different points of time (called
pseudo-synchropoint). The pseudo-synchropoint depends on
the termination conditions of pre-copying algorithm. In our
synchronization protocol, we postpone the stop-and-copy
phase until all VMs reach the stop-and-copy phase (called
synchropoint). However, all VMs are still running during
the synchronization, and the dirtied memory pages still
need to be transmitted to the destinations. We call this
phase “wait-and-copy”. The bandwidth consumed in this
phase is determined by the memory dirtying rates of the

VMs. Algorithm 1 shows the pseudo code of the synchro-
nization protocol for correlated VM migrations. The syn-
chronization protocol relies on an arbitrator for control.
The arbitrator implements a message-passing mechanism
for controlling the VM migrations. When a VM reaches the
pseudo-synchropoint, it should immediately send a mes-
sage “reach_pseudo-synchropoint” to the arbitrator, and then
proceed the “wait-and-copy” phase until it receives the
“start_stop-and-copy” message from the arbitrator. The arbi-
trator uses a variable p to record the number of VMs that
have reached the pseudo-synchropoint. Once all VMs have
reached the synchropoint, the arbitrator broadcasts a mes-
sage “start_sotp-and-copy” to all VMs. To handle the poten-
tial migration failures, we adopt a simple approach for
fault tolerance. We view the coordinated migration pro-
cesses as a transaction in a batch. In case of failures, all cor-
related VM should resume at their original host, aborting
the migration. More advanced fail-tolerant VM migration
techniques will be studied in our future work.

The synchronization protocol allows different resource
allocations and VM scheduling mechanisms. Without an
effective arbitration of resource allocation and scheduling,
the synchronization may cause significant migration cost

Web

tier

Application

tier

Database

tier

Migration

trafficresponse

request
client

DC 1 DC 2

Performance

degradation?
Communication

traffic

Communication

traffic

Fig.2. Performance penalty due to live migration of a multi-tier web
application across distributed data centers.

Web VM

App VM

DB VM

start_stop

-and-copy

pseudo-synchropoint

synchropoint wait-and-copy

Arbitrator ④

①

②

③

reach_pseudo-

synchropoint

Fig.3. Synchronization of live migration of multi-tier applications.

Algorithm 1: Synchronization protocol for correlated
VMs live migration
1. let m be the number of VMs to be migrated

2. let p ← 0 /*the number of VMs that reach the pseudo-
synchropoint */

3. Begin Migrate (VM[i])

4. while VM[i] does not reach the pseudo-synchropoint do

5. pre-copy the memory of VM[i];

6. endwhile

7. send message “reach_pseudo-synchropoint” to arbitrator;

8. proceed “wait-and-copy” phase;

9. if receive message “start_stop-and-copy” then

10. proceed “stop-and-copy” phase;

11. endif

12. End Migrate

13. Begin Arbitrator()

14. if receive message “reach_pseudo-synchropoint” form VM[i] then

15. p ← p+1;

16. if p == m then /*All VMs reach the synchropoint */

17. for i=1 to m do

18. send message “start_stop-and-copy” to VM[i];

19. endfor

20. endif

21. endif

22. End Arbitrator

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2316152, IEEE Transactions on Parallel and Distributed Systems

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-2013-12-1167

and performance degradation. To address this challenging
problem, we investigate different bandwidth allocation
algorithms to minimize migration cost of correlated VMs.

3.2 A Naive Bandwidth Allocation

The synchronization protocol guarantees that all the cor-
related VM migrations start the stop-and-copy phase at the
same time. A naive bandwidth allocation method is
scheduling the VM migrations one by one. Each VM mi-
gration gains the majority of the network bandwidth for
the best migration performance. As shown in Fig. 4, a VM
starts live migration only when another VM has reached
the pseudo-synchropoint. However, when the VM reach-
es the pseudo-synchropoint, it should proceed the “wait-
and-copy” phase to postpone the stop-and-copy phase.
This stage still consumes a portion of bandwidth (deter-
mined by its memory dirtying rate) to re-send the dirty
pages. Clearly, the order of VM migrations affects the
bandwidth allocation. To reduce the synchronization cost,
an intuitive scheduling is to start VM migrations in the
ascending order of their memory dirtying rates. The VM
with the largest memory dirtying rate should be migrated
last. Thus, we call this scheduling algorithm Largest
memory Load VM Last (LLL).

LLL is simple but cannot effectively use the network
bandwidth. The VMs in the wait-and-copy phase still con-
sume network bandwidth, causing excessive network
traffic between data centers. This overhead is exaggerated
when the number of correlated VMs increases, and for the
memory-intensive workloads like multi-tier applications.
To address the overhead caused in the wait-and-copy
phase, we propose a parallel VM migration scheduler and
adaptive bandwidth allocation algorithms for all the VM
migrations, as described in the next sub-sections.

3.3 Optimal Bandwidth Allocation for Static
Workloads

Unlike LLL, VMbuddies performs VM migrations in mul-
tiple tiers simulataneously, and smartly decide the band-
width among VMs. A primary goal of VMbuddies is to
determine how much network bandwidth should be allo-
cated to each migration process to minimize total migra-
tion cost of multi-tier applications. We first consider a sce-
nario that the memory access pattern of each VM is stable
(i.e., memory dirty rate is stable and can be modeled as a
constant), and then extend this algorithm to dynamic
workloads.

3.3.1 Modeling Static Workloads Migration
Our model on static workload migration uses a single

VM as the building block. In the following, we present an
analytical model of pre-copying algorithm to estimate the
migration cost of a single VM. Table 1 summarizes the

parameters and notations used throughout this paper. As-
sume the pre-copying algorithm proceeds in n (n N)
rounds. Let vi (0 ≤ i ≤ n) denote the data volume transmit-
ted at each pre-copying round, and ti (0 ≤ i ≤ n) denote the
elapsed time at each round. v0 equals the VM memory size
M. t0 represents the time consumed for transferring the VM
memory image and ti (1 ≤ i ≤ n) is the time of transferring
the dirty pages generated during previous rounds. The
data transmitted in round i is calculated in Eq. (1).

1

, if 0;

, otherwise.
i

i

M i
v

d t

 (1)

The elapsed time at round i is calculated in Eq. (2).

1i
i

d t
t

r

 . (2)

We can derive the expressions of 𝑣 and 𝑡 step by step as

follows. (1)𝑣 = 𝑀 , 𝑡 =

; (2) 𝑣 = 𝑑 ∗ 𝑡 =

, 𝑡 =

=

; (3) 𝑣 = 𝑑 ∗ 𝑡 =

, 𝑡 =

=

; and finally we get

1*

i

i i i

M d
v d t

r

 ,

1

i

i i

M d
t

r

 . (3)

Then the total network traffic during the migration can be
summed up in Eq. (4).

0 0

in n

i i
i i

d
V v M

r

 . (4)

Consequently, the migration completion time can be
summed up in Eq. (5).

0 0

in n

i i
i i

M d
T t

r r

 . (5)

The migration completion time is the duration that has
negative effect on application performance. It is a key per-
formance metric of migration cost, especially for multi-tier
applications migrating in cloud environments.

To evaluate the convergence rate of VM migration algo-
rithm, we calculate the total number of rounds by the ine-
quality 𝑣 ≤ 𝑉 . It is the condition to terminate the itera-
tive pre-copying and to start the stop-and-copy phase. Fur-
thermore, it should not be larger than the pre-defined pa-
rameter N. As a result, the number of pre-copying itera-
tions becomes:

min log log , thdV d
n N

M r

. (6)

T1

T2

T3

Stop-and-copy

Fig.4. LLL scheduling of multiple VM migrations.

TABLE 1
PARAMETERS FOR VM LIVE MIGRATION MODELING

Symbol Description

M Size of VM memory image.

V Total network traffic during migration.

T Migration completion time.

r Network transmission rate during migration.

d Memory dirtying rate during migration.

B
Maximum network bandwidth reserved for VMs
migration traffic.

Vthd
Threshold of the remaining dirty memory that should
be transferred during the stop-and-copy phase.

The pre-defined maximum number of rounds for
iterative pre-copying in migration algorithm.

The Writable Working Set (WWS) of applications.

N

W

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2316152, IEEE Transactions on Parallel and Distributed Systems

LIU ET AL.: VMBUDDIES: COORDINATING LIVE MIGRATION OF MULTI-TIER APPLICATIONS IN CLOUD ENVIRONMENTS 5

For a given VM, M and Vthd (determined by migration
algorithms) can be viewed as constants. Consequently, the
iterative pre-copying would converge faster if d/r is smaller.
We therefore define d/r as the convergence coefficient of VM
live migration.

The above analysis assumes that the memory dirtying
rate is smaller than the memory transmission rate on av-
erage. However, in practice, there are still scenarios that
the memory dirtied at a higher speed than the network
transfer. One observation is that, the memory dirtied in
each round should never exceed the applications’ writa-
ble working set (WWS) [10]. In this case, the pre-copying
terminates once the number of iterations exceeds N or the
network traffic exceeds the VM memory size by a factor
of (by default, the factor is 3 in Xen migration algo-
rithm). Finally, in case where 𝑑/𝑟 > 1, the total network
traffic and migration completion time should be estimated
by Eq. (7) and Eq. (8), respectively.

min{ * , }V M N W M W , (7)

min{ * , }/T M N W M W r , (8)

where 𝛼𝑊 is the amount of dirty memory to be trans-
ferred in each round of pre-copying, and (0 < < 1) is a
coefficient of proportionality that can be learnt by linear
regression technique [26]. 𝑀 +𝑁 ∗ 𝛼𝑊 denotes the total
memory transferred in maximum number of rounds, and
𝛽𝑀 +𝑊 denotes the total memory transferred if migration
traffic exceeds times of the VM memory size. As the
average memory dirtying rate d and 𝑊 are both deter-
mined by the applications and can be measured in a long
time window before VM migrations, we only need to de-
termine the network transmission rate (i.e., parameter r),
which can be referred to Eq. (5) or Eq. (8).

With the cost model of a single VM migration, we for-
mulate the problem of correlated VM migrations in cloud
environments. Assume the multi-tier application is com-
prised of m VMs. We should orchestrate the VM migra-
tions to minimize the maximum migration completion time
of all the VMs by allocating appropriate network band-
width to each migration process. As the network band-
width between geographically distributed data centers is
shared and limited resource, this issue can be abstracted as
a distributed constrain optimization problem (DCOP), as
shown in Eqs. (9). Note, we instantiate the parameter T, V,
M, d, r for VM k to be Tk, Vk, Mk , dk, and rk, respectively.

1 2

0 0

1

min{max{ , , , }}

()

. .,

. .,

m

in n
k k

k k i i
i ik k

m

kk

k k

T T T

M d
T f r t

r r

s t r B

s t d r B

 . (9)

In case where 𝑑 ≥ 𝑟 , 𝑇 = 𝑓(𝑟) in Eqs. (9) should be re-
placed by Eq. (8).

3.3.2 Problem Solving

DCOP is originally a problem in which a group of agents
must distributedly choose values for a set of variables so
that the cost of a set of constraints over the variables is ei-
ther minimized or maximized. It is known that DCOPs are
NP-hard problems [44]. There are no polynomial-time al-

gorithms to solve this NP-hard problem. However, observ-
ing that the polynomial in Eqs. (9) is a monotonic function
of r, we can simplify the problem by Theorem 1.

Theorem 1. When a set of VMs are migrated concurrently, if
there exists an optimal bandwidth allocation to minimize the
maximum migration completion time of the VMs, then the
bandwidth resource should be fully used, i.e., ∑ 𝑟

 = 𝐵,

and all VMs have equivalent migration completion time, i.e.,
∀i, j, ∃ 𝑇 = 𝑇 .

Proof (sketch). Assume live migration of each VM is per-
formed by a migration daemon concurrently. Given an
arbitrary bandwidth allocation for these processes with
constraint ∑ 𝑟

 = 𝐵, the migration completion time

of each VM can be figured out by 𝑇 = 𝑓(𝑟), which is a
monotonically decreasing function that T always de-
creases as r increases in the open interval (0, B). In case
there is a difference of migration completion time be-
tween two arbitrary VMs, we deprive the migration
daemon with a shorter completion time some band-
width and re-allocate it to the migration daemon with
a longer completion time. By iteratively using the step-
by-step approximation method to adjust bandwidth
resource for each migration process, all VMs should
have the same migration completion time finally.

Insight: Based on Theorem 1, the synchronization cost
between different VMs is avoided as all VMs finish their
migration at the same time. Our objective min(max(T1,
T2,…Tm)) can be transformed to a problem of solving multi-

variate polynomial equations over a finite field as Eqs.(10).

1 2

0 0

1

()

. .,

. .,

m

in n
k k

k k i i
i ik k

m

kk

k k

T T T

M d
T f r t

r r

s t r B

s t d r B

 . (10)

In case where 𝑑 ≥ 𝑟 , the 𝑇 = 𝑓(𝑟) in Eqs. (10) should be
replaced by Eq. (8). We note that if the above equations can
be solved, the objective 𝑚𝑖𝑛 (∑ 𝑉)

 is also satisfied be-

cause the bandwidth resource is fully utilized and the mi-
gration completion time is minimized. However, Eqs. (10)
are still hard to solve because 𝑇 = 𝑓(𝑟) is a polynomial
with high order. Fortunately, as 𝑇 = 𝑓(𝑟) is a monoton-
ically decreasing function in the field (0, B), there exists
only one solution to satisfy the above equations. As
∑ 𝑟

 = 𝐵 is a multivariate linear equation, if we search

the solution by changing the multi-variate 𝑟 , there should
be numberless combinations that need to verify equations
𝑇 = 𝑇 = ⋯ = 𝑇 . In contrast, observing that 𝑇 = 𝑓(𝑟)
contains only one variate and their curves are monotonic
and similar, we design a work backward strategy to solve
Eqs. (10). That is, we tentatively search the solution set of
equations 𝑇 = 𝑇 = ⋯ = 𝑇 to satisfy ∑ 𝑟

 = 𝐵.

We propose a quasi-secant method [2] to approximate
the Eq. ∑ 𝑟

 = 𝐵 iteratively, as shown in Fig. 5 and Al-

gorithm 2. The solution consists of three steps. First, we
figure out the minimum of 𝑓(𝑟) in the field (0, B], denoted
by S = min{𝑓(𝑟), 𝑓(𝑟), …, 𝑓(𝑟)}. Second, we use horizon-
tal lines Ti = S + i (i > 0) to sweep the curves 𝑇 = 𝑓(𝑟) ,

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2316152, IEEE Transactions on Parallel and Distributed Systems

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-2013-12-1167

where 𝜆 is the step size to increase the horizontal line Ti.
Let 𝑟 denotes the root of 𝑓(𝑟) = 𝑆 + 𝜆 in the iteration i.
We use Newton's method [31] to approximate the root of
these equations one by one and get a solution set, for ex-
ample 𝑅 = (𝑟 , 𝑟 , 𝑟). Third, we check whether the so-
lution 𝑅 satisfies ∑ 𝑟

 = 𝐵 by calculating the error

𝑑 = |∑ 𝑟

 − B| . The iterations will be terminated when

the error 𝑑 ≤ 𝛿 , where 𝛿 is a very small constant. The
problem is how to determine the step size 𝜆 to speed up
the roots searching.

We illustrate the iterative approximating process by a
sketch diagram in Fig. 5. Take 𝑇 = 𝑓(𝑟) as an example,
the line T0 and T1 sweeping it gets two points (𝑟 , 𝑇

) and
(𝑟 , 𝑇

), respectively. Suppose the final solution of
𝑇∗ = 𝑓(𝑟) is 𝑟

∗, the line passing through these two con-
secutive points intersecting the vertical line 𝑟 = 𝑟

∗ deter-
mines 𝜆 . Then the next root 𝑟 can be solved. Without
lose of generality, 𝜆 can be deduced from the proportional
relationship of three consecultive roots, as shown in Eq.
(11):

1
1

1

()i i i
i i

i i

d

d d

, (11)

we define ∆𝜆 = 𝜆 − 𝜆 , and then we have:

1

1

i i
i

i i

d

d d

. (12)

By iteratively changing the step size in Algorithm 2, it
should approximate the target solution finally. As the con-
vergence order of quasi-secant method is the golden ratio
(1.618), Algorithm 2 converges fast in practice. Actually,

there are C
 =

 ()

 equations in Eqs. (10). However, step

(2) in Algorithm 2 only needs to solve m equations in each

round of iteration. The computation cost is linearly propor-
tional to the number of VMs to be migrated. In this way,
Algorithm 2 simplifies the problem complexity of root
finding. In our experiments, the proposed approach is able
to solve more than 10 high orders equations within one
second, which is sufficient for typical multiple tier applica-
tions in practice. In constrast, a general solve method pro-
vided by MATLab cannot give out the solution in 12 hours.

3.4 Adaptive Bandwidth Allocation for Dynamic
Workloads

The model and algorithm discussed in the preceding Sub-
section assume that the memory dirtying rates are steady
for all VMs. However, in practice, multi-tier applications
can be service-oriented and dynamic (e.g., due to the daily
or seasonal changes). The memory access pattern of dif-
ferent applications may vary in response to the load
change of the service requests.

We design our bandwidth allocation algorithm adapt-
ing to the temporal changes of page dirtying rates. Partic-
ularly, we rely on the prediction on the page dirtying rate
in a short-term period (namely window). We identify the
relatively stable periods (namely phases), and view the
bandwidth allocation problem for each phase as an in-
stance of optimal bandwidth allocation problem in the
scenario of stable page dirtying rate. That means, we can
leverage the model and the optimal algorithm in the pre-
vious subsection to achieve local optimum in each phase.

Prior to starting VM migrations, we first measure the
page dirtying rate of each VM during a long-term run.
We then model memory access pattern of each VM based
on the profiling runs. The modelling methodology is or-
thogonal to this paper. There are a number of existing
learning methods and models [13][39], which have
demonstrated high accuracy and efficiency. For modela-
ble workload such as on-off memory access patterns, as
shown in Fig.6 (a), we formulate the page dirtying rate
into phases [39]. We first divide the workload curves into
several small splines evenly, and then combine two suc-
cessive splines iteratively if their difference is smaller
than a pre-defined threshold. We recognize a significant
pulse as a new phase if its successive spline has slight
variation. As shown in Fig. 6(a), the migration daemon
orchestrates live migration of correlated VMs using the
optimal bandwidth allocation algorithm in each stable
phase. The migration daemons track the pages dirtied
and analyze the phase change according to the historical

Algorithm 2: Optimal bandwidth allocation for static
workloads
(1) S ← min(𝑓(𝑟), 𝑓(𝑟), …, 𝑓(𝑟)), 𝑖 , 𝜆 , 𝜆 , is

a random number bigger than 0, so ∆𝜆 = ;

(2) Let 𝑓(𝑟) 𝑆 + 𝜆 , (1 ≤ ≤ 𝑚), solve these equations and

find out a solution set 𝑅 = (𝑟 , 𝑟 , ⋯ , 𝑟);

(3) Verify whether the solution satisfy equation ∑ 𝑟

 = 𝐵 by

calculating the distance 𝑑 = |𝑟 + 𝑟 +⋯+ 𝑟 − B| ,

if 𝑑 > 𝛿 , then 𝑖 𝑖 + 1 , 𝜆 𝜆 + ∆𝜆 , where ∆𝜆 =

𝑑 ∗ ∆𝜆 (𝑑 − 𝑑),⁄ (𝑖 >), go to (2); otherwise, Ri is the

target solution and the searching terminates.

(4) Allocate the bandwidth 𝑟 for live migration of VM-k.

T
*

T
3
=S+

r
32

r
*

3

T
2
=S+

T
1
=S+

T
0
=S+

r
30

T
1
=f(r

1
) T

2
=f(r

2
) T

3
=f(r

3
)

T

r

r
31

Fig. 5. A quasi-secant method to solve the multivariate polynomial
equations.

1

P1

VM-1

VM-2

VM-3

Workload

1 2

1

2 3

2

4

3

P2 P3 P4

n

n

n

Pn W1W2 W3 Wn

1VM-1

VM-2

VM-3

1 2

1

2 3

2

4

3 n

n

n

(a) On-Off workload (b) Irregular workload

W4 W5

Fig. 6. Bandwidth allocation according to workload patterns: (a)
model on-off workloads in several stable phases of page dirtying
rate; (b) model irregular workloads in fix-sized time windows
through average page dirtying rate.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2316152, IEEE Transactions on Parallel and Distributed Systems

LIU ET AL.: VMBUDDIES: COORDINATING LIVE MIGRATION OF MULTI-TIER APPLICATIONS IN CLOUD ENVIRONMENTS 7

statistics. Once a significant change of page dirtying rate
is detected, they immediately report to the arbitrator for
bandwidth re-allocation in response to the phase changes.
The remaining data to be transferred also should be re-
ported to the arbitrator for decision making. For simplici-
ty, the bandwidth allocation takes effect at the new round
of VM migration. At last, the synchronization protocol
described in Subsection 3.1 is used to achieve the ultimate
synchronization of correlated VM migrations.

We also need to handle the scenarios where some
workloads may not show distinct phase changes, as
shown in Fig.6 (b). We can only measure the average
memory dirtying rate in each time window, and thus the
adaptive bandwidth allocations is sensitive to the sizes of
time window. A smaller window means higher accuracy
of memory dirtying rate prediction, but causes higher
overhead due to the computation of bandwidth re-
allocation. We need to carefully determine the size of
windows to make tradeoff between predication accuracy
and computation overhead. We experimentally study its
impact in the evaluation (Subsection 5.5). In this scenario,
the arbitrator periodically performs bandwidth realloca-
tion in the end of each time window, so the migration
daemons only need to sum up the pages to be transferred
in next time window, including the remaining pages in
current round of pre-copying and new pages dirtied in
current window. The arbitrator again leverages the opti-
mal algorithm described in the previous subsection to
allocate bandwidth to each migration deamon.

4 IMPLEMENTATION

In this section, we present the details of design and imple-
mentation on VMbuddies. We design and implement
VMbuddies based on Xen 4.1 platform. We conjecture that
the techniques and optimizations proposed in this paper
are also applicable for other virtualization platforms. Our
implementation carefully considers efficiency and trans-
parency of correlated VM migrations across data centers.

4.1 System Architecture

Fig. 7 shows the system architecture of VMbuddies. The
system is composed of two major modules, namely migra-
tion daemon and arbitrator. The migration daemon in do-
main 0 consists of several components such as dirty
memory tracker, data transmission rate controller, syn-
chronization protocol, and some migration optimizations.

The arbitrator consists of VM memory information collec-
tor, migration cost prediction model, bandwidth allocator,
and VM migration scheduling components. When a multi-
tier application needs to be migrated, the arbitrator needs
to conduct the following actions for bandwidth allocations:
1) activates the dirty memory tracker in each migration
daemon, 2) collects the page dirtying information of each
VM, 3) performs workload predictions and calculates the
memory dirtying rate, 4) estimates the migration cost, and
5) finally allocates the network bandwidth to each migra-
tion process. These actions are implemented with message-
passing mechanisms among the arbitrator and other com-
ponents in VMbuddies. Next, the VMs are migrated at the
speed of the allocated bandwidth in multiple phases, ac-
cording to Section 3.4. In the following, we first present
two migration optimizations and then describe some other
implementation details.

4.2 Optimizations of VM Live Migration

Although there is a lot of existing migration optimiza-
tions for cost reduction, we choose the most effective and
simple ones for our scenario: multi-tier applications migra-
tion in WAN environments. Particularly, we highlight two
techniques -- ballooning to evict unused pages from VMs’
memory image, and an intelligent pre-copying termina-
tion to adjust the number of iterations in the pre-copying
algorithm.

Ballooning. It is desirable to flush non-essential data
out of memory, and to transfer only a smaller working set
during migration. VMbuddies leverages ballooning
mechanism [16][36] to reduce memory volume trans-
ferred during VMs live migration. We first profile a VM’s
memory usage to detect its memory footprint, and then
the size of free memory can be determined. The balloon
driver then requests the size of free memory from the
guest OS kernel and returns it to the underlying hypervi-
sor. In this way, ballooning mechanism deflates a VM’s
memory size by evicting free pages from the VM’s
memory image. This is extremely useful for VMs with
large memory size and small application working set.

Intelligent pre-copying termination. Multi-tier appli-
cations can have very different memory and computation
characteristics. Instead of using static conditions on pre-
copying terminations as modeled in Section 3, VMbud-
dies terminates the pre-copying phase intelligently when
the pre-copying iterations cannot reduce the migration
downtime. Current Xen terminates the iterative pre-
copying till either (1) the remaining dirty memory be-
comes smaller than 50 pages; or (2) the number of itera-
tions exceeds 30 times; or (3) the network traffic exceeds

VM workload
modeling

migration cost
prediction

bandwidth
allocator

Dom 0

VM

VM

VMM

...

migration
optimizations

data transmit
rate controller

synchronizati
on protocol

VM

VM migration
scheduling

Arbitrator

dirty memory
tracker

VM

Other VMs

dom 0

migration
daemon

Fig.7. Block diagram of system architecture.

0 3 6 9 12 15 18 21 24 27 30
10k

20k

30k

40k

50k

60k

N
u

m
b

e
r

o
f

d
ir
ty

 p
a

g
e

s

Rounds of iterative pre-copying

 App-VM

0 2 4 6 8 10 12 14 16
80k

100k

120k

140k

160k

180k

N

u
m

b
e
r

o
f

d
ir
ty

 p
a
g
e
s

Rounds of iterative pre-copying

 DB-VM

Fig. 8. Dirty pages generated in each round of pre-copying.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2316152, IEEE Transactions on Parallel and Distributed Systems

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-2013-12-1167

the VM memory size by a factor of 3. However, our exper-
iments on multi-tier applications indicate that the first con-
dition is seldom satisfied, and the migration algorithm of-
ten performs many unnecessary iterations. Fig. 8 shows the
number of dirty pages generated in the each round of itera-
tive pre-copying when we migrate a 3-tier web benchmark
RUBBoS over a link with 400Mbps bandwidth. The migra-
tions of application-tier and DB-tier terminate the pre-
copying phase according to conditions (2) and (3), respec-
tively. However, only the first several rounds of pre-
copying results in reduction of memory remaining to be
sent in the next round. This indicates that the migration
algorithm should intelligently determine the time to stop
pre-copying to avoid unnecessary iterations.

VMbuddies leverages a heuristic to terminate iterative
pre-copying. We observe that memory dirties approxi-
mately as fast as it can be transferred after a number of
iterations. To detect this point, we monitor the number of
pages sent and dirtied in each round until the difference
between them becomes very small. At this time, the migra-
tion daemon should immediately notify the arbitrator that
the VM reaches the pseudo-synchropoint. This simple op-
timization can significantly reduce the migration comple-
tion time and network traffic, with up to 45% reduction of
migration cost on average in our experiments.

4.3 VM Grouping

Today’s enterprise multi-tier applications are usually
comprised of multiple VMs in each tier. Fig. 9(a) shows a
web application with 2/3/4 configuration (i.e., 2, 3 and 4
VMs for Web tier, Application tier and database tier, re-
spectively). If these VMs are migrated concurrently, the
performance of VM migrations would be significantly
degraded due to network bandwidth contention. To ad-
dress this scalability problem, we propose VM grouping
mechanism to lower the parallelism degree of multiple
VM migrations. The other consideration is the layout of
VMs. The topology of a multi-tier application (such as
tree or directed acyclic graph) usually affects the decision
making of grouping and ordering correlated VM migra-
tions. Overall, we consider the following two scenarios.

First, we consider a scenario where multiple VMs in
each tier have the same function, and thus the multiple
replicas are used for load balancing and fault tolerance, as
shown in Fig. 9(a). Actually, if we keep at least one VM of
each tier in both source data center and destination data
center, then the service is available at both sides after a re-
configuration of connection management. A feasible

grouping scheme is shown in Fig. 9(a). If the VMs in
Group 1 are the first to be migrated concurrently, then the
VMs in Group 2 must be migrated in the end. This guar-
antees that at least one minimal organism can serve the
requests at both sides without inter-datacenter communi-
cation. The other VMs excluded from these two groups
can be migrated one by one to fully use the bandwidth
resource.

Second, we consider a scenario where the applications
show complicated topologies such as tree or directed acy-
clic graph (DAG), and multiple VMs have different func-
tions, as shown in Fig. 9(b). In this case, we need to mini-
mize the inter-datacenter network traffic. We model the
application’s dependencies as a graph, where VMs are
vertices and data flows as edges. The problem can be
formulated as a uniform graph partitioning problem. We
need to find the minimum cuts of the graph so that
the cut sets have the smallest number of edges (un-
weighted case) or smallest sum of weights. We choose the
most commonly used Fiduccia-Mattheyses algorithm [15]
to solve this multilevel graph partitioning problem due to
its high efficiency. For example, a 3-way partitioning can
split the DAG in Fig. 9(b) into three subgraphs. We note
that such processing can be done prior to VM migrations
so that no computation overhead is imposed on the mi-
gration daemons and applications.

4.4 Other Implementation Details

There are still many other implementation details about
VMbuddies, including memory dirtying rate measure-
ment, network bandwidth controller, disk migration, and
network connections maintance. We provide these details
in the Appendix of the supplementary file.

5 EVALUATIONS

In this section, we evaluate application performance deg-
radation and VM migrations cost in terms of the following
metrics:
(1) Service level degradation: the response time and

throughput of multi-tier applications during migration.
(2) Migration completion time: the elapsed time from

starting the first VM migration to the time that all VMs
finish migration.

(3) Network traffic: the total data volume transmitted
during the VM migrations.

(4) Migration downtime: it is the duration that the ser-
vices of multi-tier applications are entirely unavailable.

5.1 Experimental Setup

Testbeds: We evaluate VMbuddies in both real WAN and
in-lab testbeds. We deploy our prototype in data centers
at Nanyang Technological University (NTU) and National
University of Singapore (NUS). Our measurement has
showed a stable throughput of 40 Mbps and a round trip
latency of 20ms between the two sites connected via VPN.
At both sites, we have HP Z400 workstations equipped
with Intel Xeon W3680 3.33GHz 6 processors, 12GB DDR3
memory, one 500GB 7200rpm SATA hard disk, and 1Gbit
Ethernet interface. The host machines are with 64-bit Fe-
dora 16 Linux distribution and the hypervisor is Xen 4.1

Web tier

App tier

DB tier

VM1

VM5VM4VM3

VM2

VM7 VM9VM8VM6

Group 1 Group 2

VM1

VM5VM4VM3

VM2

VM7 VM9VM8VM6

(a) Duplicated VMs in each tier and bidi-

rectional communication between two tiers

(b) VMs with topology of

directed acyclic graph

Group 1 Group 3

Group 2

Fig.9. Grouping VMs of different tiers to lower the parallelism de-
gree of VM migrations in the cloud.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2316152, IEEE Transactions on Parallel and Distributed Systems

LIU ET AL.: VMBUDDIES: COORDINATING LIVE MIGRATION OF MULTI-TIER APPLICATIONS IN CLOUD ENVIRONMENTS 9

with Linux 3.1 kernel. The hosts are allocated with 2 CPU
and 4 GB memory to insure that the resource for migra-
tion daemons is sufficient. The VMs run in para-
virtualization mode, with the OSes having the same dis-
tribution of Linux as the hosts. By default, all VMs are
configured to use 1 CPU and 1GB RAM. This allows us to
easily simulate the overloaded scenario in the benchmark.
Because the real WAN testbed cannot cover all test cases
due to the limited bandwidth, we also simulate a WAN
testbed in our lab by using the Linux traffic shaping inter-
face, which can freely control the bandwidth, latency and
package loss experienced in WAN environments.

Workload: We use a common multi-tier web bench-
mark RUBBoS (Rice University Bulletin Board System) [1]
to investigate the performance of VMbuddies. RUBBoS
simulates an online news forum like slashdot.org. It is a
typical open-sourced benchmark that is widely used in
academic communities. We can freely modify the work-
load generator and report more statistical information as
we need. We deployed the benchmark in a 3-tier architec-
ture using Apache 2.2, Tomcat 7.0, and MySQL 5.5. We
deploy the benchmark with VMs in m/n/o configuration
for the three tiers, however, we only need to focus on the
results of 1/1/1 configuration. This is because the result
is representative for a general m/n/o configuration
through VM grouping. In our experiments, each tier runs
within a single VM. To generate workload in the servers,
some other servers are used to run client workload gener-
ators at our lab. We simulate three typical workload pat-
terns [3]:
 Static and Light Workload (S&L): 200 concurrent

users access the website in a stable arriving rate, as
shown in Fig.10 (a).

 Dynamic and Heavy Workload (D&H): 500 and 1000
concurrent users alternately access the website for 30
seconds so as to simulate a cyclical on-off workload
pattern, as shown in Fig.10(b).

 Light workload with Symmetric Waves pattern
(L&SW): This workload pattern consists of four-

minute windows. In each window, we first increase
the concurrent users from 10 to 350 evenly, and then
we decrease the users inversely. We repeat such
windows to simulate a wave workload in which the
memory dirtying rate changes slowly over time, as
shown in Fig.10 (c). The workload shows almost
equivalent average memory dirtying rate compared
to the S&L. This pattern simulates the workload fluc-
tuations in real world (e.g., due to daily changes).

Methodology: We evaluate the migration performance
of RUBBoS by comparing the following approaches:
 No Synchronization (NS): The multiple VMs are

migrated sequentially using default Xen migration
algorithm without synchronization. This is the base-
line approach.

 Migration Optimizations (MO): The multiple VMs
are migrated one by one without synchronization,
using optimized Xen migration algorithm (Section
4.2).

 Largest memory Load VM Last scheduling (LLL):
the simple scheduling of VM migrations based on
synchronization protocol (Section 3.2).

 Optimal Bandwidth Allocation (OBA) in Section 3.3
and 3.4.

 LLL+MO, OBA+MO: the multiple VMs are migrat-
ed using MO combining with LLL and OBA algo-
rithm, respectively. OBA+MO is the algorithm imple-
mented in VMbuddies.

We choose NS as the baseline because it has no syn-
chronization costs and the migration performance is the
best so that we can clearly study synchronization over-
heads caused by LLL and OBA. When the VMs are mi-
grated in WAN testbeds, we first replicate the VMs’ disk
images to the destination before the memory migration
begins. The results reported below are the average of the
three trials (except failed migrations) and refer to the cost
of memory migration and disk synchronization during
VM live migrations.

5.2 Memory Dirty Rate and WWS Measurement

The shadow model of Xen allows us to track the number
of dirty pages within any time window. We conducted an
experiment to measure the memory dirtying rate of each
tier when RUBBoS runs D&H, S&L and L&SW workloads.
For each VM, we read the dirty bitmap and then clean it
every one second. Fig. 10 plots the number of dirty pages
generated by three workloads in different time windows.
The x-axis shows elapsed time and the y-axis measures
the number of pages dirtied within one second. The
memory dirtying rate of each tier retains at relative low
level of fluctuation for S&L workload. In contrast, the
fluctuation is significant in terms of phase changes as the

 TABLE 2
 MEASUREMENT OF WRITABLE WORKING SET

Workloads
Writable Working Set (MB)

Web-VM App-VM DB-VM

S&L 63 96 502

D&H 166 212 818

L&SW 92 134 616
0 20 40 60 80 100 120

0

2k

4k

6k

8k

10k

(a) Static and light workload

D
ir
ty

 p
a

g
e

s
 (

4
K

B
/p

a
g

e
)

Elapsed time (1 second)

 Web-VM

 App-VM

 DB-VM

0 20 40 60 80 100 120

0

10k

20k

30k

40k

50k

60k

 (b) Dynamic and heavy workload

D
ir
ty

 p
a
g
e
s
 (

4
K

B
/p

a
g
e
)

Elapsed time (1 second)

 Web-VM App-VM

 DB-VM

0 120 240 360 480 600 720 840 960

0

3k

6k

9k

12k

15k

18k

Elapsed time(1 second)

D
ir
ty

 p
a
g
e
s
 (

4
K

B
/p

a
g
e
)

 Web-VM App-VM DB-VM

(c) Light workload with symmetric waves

Fig.10. The number of dirty pages observed for three types of
RUBBoS workload.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2316152, IEEE Transactions on Parallel and Distributed Systems

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-2013-12-1167

load changes for D&H workload. Moreover, the phase
changes well align with each tier when workload changes.
This result justifies our design on characterizing the
memory access pattern of each VM by observing average
memory dirtying rates periodically. Also, VMs in differ-
ent tiers demonstrate different memory dirty rates, indi-
cating different requirements of network bandwidth dur-
ing migration.

To measure the VMs’ Writable Working Set (WWS),
we first clean the dirty bitmap and then sample it every
one second periodically. Note that the dirty bitmap was
never cleaned so that the sampled number of each peek
was the accumulation of dirty pages from the beginning
of the test. If the page numbers in two consecutive peek
are equal, this indicates that the writable working set be-
comes stable. Table 2 also shows the writable working set
of different tiers of S&L, D&H and L&SW workloads in
four minutes. Note that WWS denotes active memory
pages in a VM so it is usually smaller than the VM’s
working set. The size of writable working set implies the
opportunity of network traffic reduction by using
memory ballooning.

5.3 Service Level Degradation

We first consider a hot spot mitigation scenario where the
RUBBoS application with D&H workload must be mi-
grated from an overloaded data center at NTU to another
at NUS. We place the application to light-load servers and
quadrupled each VM’s CPU and main memory allocation
once the VMs resume at the new data center.

Fig. 11 shows how the performance of RUBBoS web
site is affected when the VMs were migrated. For MO
(without synchronization), during the pre-copying phase
of web-tier, the VM is still running at the source data cen-
ter, and a slight performance degradation is observed.
However, once the Web-VM is moved to the destination
data center and App-VM migration begins, the average
response time significantly increases to 2.2 seconds com-
pared to the prior 0.49 second. This degradation aggra-
vates during the migration of DB-VM. The average re-
sponse time raises 4.8X to 2.85 seconds, and the average
throughput drops from 155 req/sec to 126 req/sec, nearly
18% throughput loss. The reason behind this observation
is that the co-located service is decoupled in two data
centers during the migrations, and the migration process
also contends against the application for network band-
width. In contrast, VMbuddies guarantee the correlated
VMs always stay in the same data center, no matter be-
fore migration or after migration. The application only
suffers 30% increase of response time and 1% loss of
throughput due to VM migration overhead. VMbuddies
reduces the average response time by 77% and improve
18% throughput compared to MO. When the VM migra-
tions complete, the average response time drops to 0.13
second and the average throughput raises to 175 req/sec
in both MO and VMbuddies because the capacity of the
VMs increases by a factor of 4.

As VMbuddies is designed to mitigate application per-
formance degradation caused by splitting VMs between
data centers, it’s entential to measure the synchronized
and unsynchronized periods during VM migrations. As
shown in Fig. 12, although sequential migration ap-
proaches including NS and MO show relatively shorter
migration completion time, they suffer long-term unsyn-
chrionized periods when App-VM and Web-VM are mi-
grated. The application performance is significantly de-
graded during this period, as shown in Fig.11. In contrast,
LLL, OBA and their optimizations can guarantee the ap-
plication performance through synchronization protocol
during VM migrations, at the cost of reasonable increase
of migration completion times. Compared to NS,
VMbuddies (OBA+MO) reduces the migration comple-
tion time from 1478 seconds to 880 seconds, a 40% reduc-
tion of time that the appliction suffer from service level
degradation during VM migrations.

5.4 Migration Cost

As a result of the performance penalty during the migra-

0 50 100 150 200 250 300 350 400 450 500 550 600

0

2

4

6

8

10

12

14

16

18

20

after

migration
before

migration

DB-VM

pre-copying

A
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t

im
e
 (

s
e
c
o
n
d
s
)

Elapsed time (3 seconds)

 MO Resp. time VMbuddies Resp. time

 MO Throughput VMbuddies Throughput

Web-VM

pre-copying

App-VM

pre-copying

stop-and-copy

0

30

60

90

120

150

180

210

 A
v
e
ra

g
e
 t

h
ro

u
g
h
p
u
t

(r
e
q
u
e
s
t/

s
e
c
s
)

Fig.11. The performance of RUBBoS application using D&H work-
load when it is migrated in a real WAN testbed.

NS MO LLL LLL+MO OBA OBA+MO
0

400

800

1200

1600

2000

2400

M
ig

ra
ti
o
n
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
s
)

 Unsynchronized time

 Synchronized time

Fig.12. The synchronized and unsynchronized time measured when
the D&H workload is migrated in a real WAN testbed.

0

400

800

1200

1600

2000

2400

LSWSL

M
ig

ra
ti
o
n
 c

o
m

p
le

ti
o
n
 t

im
e
 (

s
e
c
s
)

(a) 40 Mbit/sec Bandwidth

 NS MO

 LLL LLL+MO

 OBA OBA+MO

DH

0

40

80

120

160

200

LSW

M
ig

ra
ti
o

n
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
e

c
s
)

(b) 400 Mbit/sec Bandwidth

 NS MO

 LLL LLL+MO

 OBA OBA+MO

DH SL

Fig.13. The migration completion time of D&H, S&L and L&SW work-
loads over networks with 40 and 400 Mbit/sec bandwidth.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2316152, IEEE Transactions on Parallel and Distributed Systems

LIU ET AL.: VMBUDDIES: COORDINATING LIVE MIGRATION OF MULTI-TIER APPLICATIONS IN CLOUD ENVIRONMENTS 11

tion, it is important to minimize the migration completion
time in order to reduce this period of lower performance.
Fig. 13 shows the migration completion times of D&H
and S&L workloads using different migration approaches
in real WAN and in-lab testbeds. The maximum available
network throughput in the in-lab testbed is 400 Mbit/sec,
representing a high-speed network. Fig. 14 shows the
corresponding network traffic generated during the mi-
grations and Fig. 15 shows the total migration downtime.

We have the following observations: (1) OBA causes
less synchronization cost than LLL. Specifically for D&H
workload on high-speed network, OBA can reduce 18%
total migration completion time and 16% network traffic
compared to LLL. It nearly avoid application perfor-
mance degradation during migration while only experi-
encing 10% increase of migration completion time com-
pared to NS; (2) By using MO strategies, all migration
approaches show significant reduction of migration com-
pletion time and network traffic. The reduction is more
significant for memory intensive workloads or low-speed
network environments. For D&H workload on the real
WAN testbed, it can reduce the migration cost by 47%. In
summary, VMbuddies reduces the migration cost by 36%
on average compared to NS. (3) For the same migration
approach, S&L workload shows much less migration cost
than D&H workload in both high-speed and low-speed
networks. The reason is that higher memory dirtying rate
in D&H results in much more data to be sent in each
round of pre-copying; (4) Although the average memory
dirtying rate of L&SW workload is almost equal to that of
S&L, L&SW shows a little higher migration costs and
higher standard deviations than S&L due to errors of
workload pattern predictions and overhead of frequent
bandwidth re-allocation. (5) LLL algorithm always causes
higher migration cost than OBA algorithms as it causes
higher synchronization cost for the Web-VM and App-
VM migrations, as shown in Table 3; (6) The lower speed
network implies more network traffic, as shown in Fig. 13.
As a result, the reduction of migration completion time is
not linearly proportional to the increase of network
bandwidth; (7) All migration approaches show slight dif-
ference of total migration downtime between each other.
Although VMbuddies leads to less than 4% increases of
total migration downtime compared to NS, it avoids the
significant application performance degradation during
live migration of correlated VMs.

We further examine the log of live migration in NS and

VMbuddies. In NS, the live migration of DB-VM always
generates more than 3 GB network traffic for D&H work-
loads whether it is migrated over 40 Mbps or 400 Mbps
networks. The reason is that the migration process always
terminates the pre-copying phase only when the network
traffic already exceeds 3 times of its memory size. Similar-
ly, the migration process of App-VM terminates the pre-
copying always after 30 rounds, but most of iterations are
unnecessary, simply causing more network traffic and
migration time. In VMbuddies, all VMs accelerate the
progress of live migration through our intelligently ter-
minating the iterative pre-copying. For S&L workload
migrated over the network with 400 Mbps bandwidth, we
find that NS works well because the memory dirtied in
these VMs relatively slowly. In this case, the ballooning
mechanism takes effect on the migration cost reduction
because the VM shows smaller working set when it expe-
riences light memory load.

5.5 Algorithms Accuracy and Runtime Overhead

We study the workload modeling errors and algorithm
overhead by comparing L&SW with S&L, as shown in
Fig.16. We use S&L as a baseline and illustrate the nor-
malized migration cost of L&SW, both are measured in
the real WAN environment using “OBA + MO” approach.
L&SW show reasonable higher migration cost than S&L
due to runtime overhead and model errors. When the
time window of memory dirtying rate prediction increas-
es, the frequency of bandwidth re-allocation decreases
and thus the migration completion time is reduced. The
network traffic is not sensitive to the changes of time
window because live migration of VMs usually last long
in WANs and positive/negative predication errors coun-
teract each other. However, migration downtime show
larger standard deviations when the time window in-
creases. This is because the stop-and-copy phases are per-
formed at different time windows and a larger window
implies higher prediction error.

We further study the runtime overhead of Algorithm 2
on a host machine configured with 2 CPU and 4 GB
memory. We exponentially increase the number of VMs
from 3 to 96, i.e., number of equations to be solved. Fig. 17
shows that the compute cost of Algorithm2 is linearly
proportional to the number of VMs. This demonstrates
that VMbuddies cause acceptable runtime overhead. In
practice, we never need to solve a large number of equa-
tions because our VM grouping scheme guarantees only a
small set of VMs is migrated concurrently.

0

2

4

6

8

10

12

L&SW

(a) 40 Mbit/sec Bandwidth

N
e

tw
o

rk
 t

ra
ff

ic
 (

G
B

)

 NS MO

 LLL LLL+MO

 OBA OBA+MO

DH SL

0

2

4

6

8

10

12

LSW

(b) 400 Mbit/sec Bandwidth

 NS MO

 LLL LLL+MO

 OBA OBA+MO

N
e

tw
o

rk
 t

ra
ff

ic
 (

G
B

)

DH SL

Fig.14. Network traffic of migrating D&H, S&L and L&SW workloads
over networks with 40 and 400 Mbit/sec bandwidth.

0

40

80

120

160

200

L&SWM
ig

ra
ti
o

n
 d

o
w

n
ti
m

e
 (

s
e
c
s
)

(a) 40 Mbit/sec Bandwidth

 NS MO

 LLL LLL+MO

 OBA OBA+MO

DH SL

0

2

4

6

8

10

12

LSW

(b) 400 Mbit/sec Bandwidth

m
ig

ra
ti
o

n
 d

o
w

n
ti
m

e
 (

s
e

c
s
) NS MO

 LLL LLL+MO

 OBA OBA+MO

DH SL

Fig.15. Total migration downtime of migrating D&H, S&L and L&SW
workloads over networks with 40 and 400 Mbit/sec bandwidth.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2316152, IEEE Transactions on Parallel and Distributed Systems

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-2013-12-1167

In the end, we summarize the evaluation results of dif-
ferent migration approaches. MO always shows the low-
est cost of VM migrations, however, it cost significant
application performance degradation due to splitting
VMs in different data centers. LLL and VMbuddies
(OBA+MO) both can significantly reduce application per-
formance degradation through our synchronization pro-
tocol. However, LLL results in much more synchroniza-
tion cost than that of VMbuddies. VMbuddies guarantee
the application performance during migration, at the cost
of slight increase of migration cost.

6 RELATED WORK

We present the related work in the following three cate-
gories: single-VM migrations, multiple VM migrations
and multi-tier application migration in the cloud.

Single-VM Live migration over LANs or WANs:
There have been many approaches proposed for VM live
migration, such as pre-copying [10][30], post-copying [16],
full-system log/replay [24]. Additionally, there have been
a number of optimizations to further reduce the overhead
of pre-copying algorithm, including memory compres-
sion [20], page de-duplication [12] [14] [38], partial migra-
tion [5], parallelizing migration[33], shared storage accel-
erating [22] and others [19]. Those optimizations are also
applicable to VMbuddies. Unlike VM migrations in LANs
where the disk is shared and network connections are
sustained, the disk and network connections need special
care in WANs. For disks, block-level disk pre-copying
and write throttling mechanisms was proposed to mi-
grate the persistent storage [8][42]. Mashtizadeh et al.
evaluated snapshotting, dirty block tracking and IO mir-
roring for storage migration supported by VMware ESX
[29]. For network connections, VPN [38], IP tunneling and
dynDNS [8] were proposed to guarantee the network
switching transparent to VM applications. VM Turntable
demonstrated VM live migration over WAN using dedi-
cated optical links for Grid computing [34]. CloudNet
built a private network using MPLS-based VPN for VM
live WAN migration [38]. Xen-Blanket provided an ab-
stract layer on top of Xen to support VM live migration
across multiple cloud providers [37]. These works all fo-
cused on migrating a single VM in LANs or over WANs.
None has considered the problem of correlated VM mi-
gration in multi-tiered applications across distributed
data centers.

Multi-VM Migration: There have been limited pro-
posals on reducing the cost of multiple concurrent VM
migrations. Deshpande et al. investigated live gang mi-
gration of VMs in LAN environments [14]. They pro-
posed page and sub-page level memory de-duplication
among co-located VMs and compression strategies to op-
timize memory migration of multiple VMs. As the net-
work bandwidth is sufficiently high in LANs, their work
did not consider the correlated VM migration problem.
Al-Kiswany et al. were also motivated by data de-
duplication, and proposed VMFlocks to optimize cross-
datacenter transfer and instantiation of disk images of
multiple correlated VMs [4]. Their work focused on ex-
ploiting the similarity among the VM images and didn’t
consider the memory live migration. These works are
orthogonal to the theme of this paper. They focus on re-
ducing the data transfer by de-duplication or fine-grained
data sharing. In contrast, VMbuddies employ network
bandwidth allocation strategies to coordinate the corre-
lated VM migrations so that the total synchronization cost
is minimized.

 Multi-tier Application Migration in the Cloud: A
number of studies had investigated the live migration per-
formance of multi-tier applications for both intra- and in-
ter-datacenter scenarios. Voorsluys et al. [35] evaluated the
performance degradation of 2-tier Web 2.0 applications
running within VMs. The similar evaluations were con-
ducted in [17][23]. Their experimental results all showed
significant performance degradation in terms of request
response time, even when the multi-tier applications are
migrated in the same data center. While those studies had
given preliminary results on the performance problem of
correlated VM migrations in a multi-tier application, they
had not formulated or solved the problem. Recently, Zheng
et al. proposed Pacer [43], a progress management system
for VM migration in the cloud. Pacer controls VM migra-
tion completion time based on analytic models of progress
prediction and online adaptation. Pacer is perhaps the
most similar work with VMbuddies. However, Pacer fo-
cuses on progress management of single-VM migration,
and the evaluation result on correlated VM migrations is
very limited. This paper concentrates on the correlated VM
migration problem. We formulate it as a DCOP problem,
and propose an efficient algorithm to solve it. The evalua-
tion studies provide more insight on live migration of
complex applications.

7 CONCLUSION

As more and more multi-tier applications are hosted in
virtualization environments across geographically dis-
tributed data centers, the efficiency of live migration of
VMs in a multi-tier application becomes important. In this
paper, we formulate the VMs live migration of multi-tier
applications as a correlated VM migrations problem, and
identify the low efficiency of the basic approach in cur-
rent virtualization platforms such as Xen. Therefore, we
propose a coordination system called VMbuddies for cor-
related VM migrations. To minimize the migration cost,
VMbuddies coordinates VM migrations with a synchro-

0.0

0.5

1.0

1.5

2.0

10

N
o
rm

a
liz

e
d
 m

ig
ra

ti
o
n
 c

o
s
t

Time windows (seconds)

 Baseline(S&L)

 Migration completion time

 Network traffic

 Migration downtime

5 30 60 120 240

0 12 24 36 48 60 72 84 96
0
1
2
3
4
5
6
7
8
9

10

 T
im

e
 o

f
e
q
u
a
ti
o
n
s
 s

o
lv

in
g
 (

s
e
c
s
)

Number of VMs

Fig.16. The normalized migration
cost of L&SW compared to S&L.

Fig.17. The compute over-
head of Algorithm 2

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2316152, IEEE Transactions on Parallel and Distributed Systems

LIU ET AL.: VMBUDDIES: COORDINATING LIVE MIGRATION OF MULTI-TIER APPLICATIONS IN CLOUD ENVIRONMENTS 13

nization protocol and an optimal network bandwidth
allocation algorithm. Experiments using a public bench-
mark show that VMbuddies achieves lower average re-
sponse time by 77% and higher throughput by 18%, and
reduces average total migration cost by 36% in comparison
with Xen.

We also note that the performance models of VM live
migration would facilitate data center administrators in
many scenarios, such as, scheduling long-term VM migra-
tion with deadline constraints, making tradeoffs amongst
different migration performance metrics through network
resource control, making decision for grouping and or-
dering correlated VMs to reduce migration cost. In our
future work, we plan to explore VMBuddies for more
complicated scenarioes, such as workflow [40], MapRe-
duce and MPI applications that have tree or directed acy-
clic graph (DAG) topologies.

ACKNOWLEDGMENT

This work is supported by the Singapore National Re-
search Foundation under its Environmental & Water
Technologies Strategic Research Programmes and admin-
istered by the Environment & Water Industry Programme
Office (EWI), under project 1002-IRIS-09. The work of
Haikun Liu was done when he visited Nanyang Techno-
logical University.

REFERENCES

[1] http://jmob.ow2.org/rubbos.html

[2] http://math.fullerton.edu/mathews/n2003/SecantMethodMod.ht

ml

[3] http://watdenkt.veenhof.nu/2010/07/13/workload-patterns-for-

cloud-computing/

[4] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu,

“VMFlock: Virtual Machine Co-migration for the Cloud,” Proc.

ACM Symp. High Performance Parallel and Distributed Computing

(HPDC'11), pp.159-170, Jun. 2011

[5] N. Bila, E. Lara, K. Joshi, H. A. Lagar-Cavilla, M. Hiltunen, and

M. Satyanarayanan, “Jettison: Efficient Idle Desktop Consolida-

tion with Partial VM Migration,” Proc. ACM European Conference

on Computer Systems (EuroSys’12), pp. 211-224, Apr. 2012

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtu-

alization,” Proc. ACM Symp. Operating Systems Principles

(SOSP’03), pp.164-177, Oct. 2003

[7] J. Billaud, and A. Gulati, “hClock: Hierarchical QoS for Packet

Scheduling in a Hypervisor,” Proc. ACM European Conference on

Computer Systems (EuroSys’13), pp.309-322, Apr. 2013

[8] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schioeberg,

“Live Wide-Area Migration of Virtual Machines Including Lo-

cal Persistent State,” Proc. Third Conf. Virtual Execution Environ-

ments (VEE’07), pp.169-179, Jun. 2007

[9] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena and

G. O'Shea, “Chatty Tenants and the Cloud Network Sharing

Problem,” Proc. 10th USENIX Symp. Networked Systems Design and

Implementation (NSDI'13), pp.171-184, Apr. 2013

[10] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I.

Pratt, and A. Warfield, “Live Migration of Virtual Machines,”

Proc. Second Symp. Networked Systems Design and Implementation

(NSDI’05), pp. 273-286, May 2005

[11] C. Chen, B. He and X. Tang, “Green-aware Workload Scheduling

in Geographically Distributed Data Centers,” Proc. IEEE 4th Cloud

Computing Technology and Science (CloudCom’12), pp.82-89, 2012

[12] J. Chiang, H. Li, T. Chiueh, “Introspection-based Memory De-

duplication and Migration,” Proc. ACM International Conference on

Virtual Execution Environments(VEE'13), pp. 51-61, Mar. 2013

[13] G. Daniel, R. Jerry, C. Ludmila and K. Alfons, “Workload Analy-

sis and Demand Prediction of Enterprise Data Center Applica-

tions,” Proc. IEEE 10th Symp. on Workload Characterization

(IISWC'07), pp.171-180, Sep. 2007

[14] U. Deshpande, X. Wang, and K. Gopalan, “Live Gang Migration

of Virtual Machines,” Proc. international Symp. High Performance

Distributed Computing (HPDC’11), pp. 135-146, Jun. 2011

[15] C. M. Fiduccia, R. M. Mattheyses, “A Linear-time Heuristic for

Improving Network Partitions,” Proceedings of the 19th Design

Automation Conference (DAC '82), pp. 175-181, Jun. 1982

[16] M. Hines and K. Gopalan, “Post-Copy Based Live Virtual Ma-

chine Migration Using Adaptive Pre-Paging And Dynamic Self-

Ballooning,” Proc. ACM Conf. Virtual Execution Environments

(VEE’09), pp.51-60, Mar. 2009

[17] H. Hlavacs and T. Treutner, “Predicting Web Service Levels dur-

ing VM Live Migrations,” Proc. DMTF Workshop on Systems and

Virtualization Management (SVM’11), pp.1-10, Oct. 2011

[18] D. Huang, B. He and C. Miao, “A Survey of Resource Manage-

ment in Multi-Tier Web Applications”, to appear in IEEE Com-

munications Surveys and Tutorials, 2014

[19] K. Z. Ibrahim, S. Hofmeyr, C. Iancu, and E. Roman, “Optimized

Pre-copy Live Migration for Memory Intensive Applications,”

Proc. International Conf. High Performance Computing, Networking,

Storage and Analysis (SC’11), Nov. 2011

[20] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual machine

migration with adaptive memory compression,” Proc. IEEE Conf.

Cluster Computing (Cluster'09), pp. 13-22, Aug. 2009

[21] V. Jeyakumar, M. Alizadeh, D. Mazi`eres, B. Prabhakar, C. Kim,

and A. Greenberg, “EyeQ: Practical Network Performance Isola-

tion at the Edge,” Proc. 10th USENIX Symp. Networked Systems De-

sign and Implementation (NSDI’13), pp.297-311, Apr. 2013

[22] C. Jo, E. Gustafsson, J. Son, and B. Egger, “Efficient Live Migra-

tion of Virtual Machines Using Shared Storage,” Proc. ACM Conf.

Virtual Execution Environments(VEE'13), pp. 41-50, Mar. 2013

[23] S. Kikuchi and Y. Matsumoto, “Impact of Live Migration on Mul-

ti-tier Application Performance in Clouds,” Proc. IEEE Fifth Conf.

Cloud Computing (Cloud’12), pp. 261-268, Jun. 2012

[24] H. Liu, H. Jin, X. Liao, L. Hu and C. Yu, “Live Migration of Virtu-

al Machine Based on Full System Trace and Replay,” Proc. 18th

International Symp. High Performance Distributed Computing

(HPDC'09), pp.101-110, Jun. 2009

[25] H. Liu, H. Jin, X. Liao, C.Yu, and C. Xu, “Live Virtual Machine

Migration via Asynchronous Replication and State Synchroniza-

tion,” IEEE Transaction on Parallel and Distributed System, vol. 22,

no. 12, pp.1986-1999, Dec. 2011

[26] H. Liu, C. Xu, H. Jin, J. Gong, X. Liao, “Performance and Energy

Modeling for Live Migration of Virtual Machine,” Proc. ACM In-

ternational Symp. High Performance Parallel and Distributed Compu-

ting (HPDC'11), pp.171-182, Jun. 2011

[27] K. Z. Meth and J. Satran, “Design of the iSCSI Protocol,” Proc.

IEEE Symp. Mass Storage Systems (MSS’03), pp.116-122, Apr. 2003

http://watdenkt.veenhof.nu/2010/07/13/workload-patterns-for-cloud-computing/
http://watdenkt.veenhof.nu/2010/07/13/workload-patterns-for-cloud-computing/

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2316152, IEEE Transactions on Parallel and Distributed Systems

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, TPDS-2013-12-1167

[28] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Pod-

dar, and A. Iyer, “Remedy: Network-aware Steady State VM

Management for Data Centers,” Proc. 11th IFIP Conf. Networking,

pp. 190-204, May 2012

[29] A. Mashtizadeh, E. Celebi, T. Garfinkel, and M. Cai, “The Design

and Evolution of Live Storage Migration in VMware ESX,” Proc.

USENIX Ann. Technical Conf. (USENIX'11), pp.1-14, Jun. 2011

[30] M. Nelson, B. H. Lim, and G. Hutchins. “Fast Transparent Migra-

tion for Virtual Machines,” Proc. USENIX Ann. Technical Conf.

(USENIX’05), pp.391-394, Apr. 2005

[31] W. H. Press, S. A. Teukolsky, W.T. Vetterling, and B. P. Flannery,

"Chapter 9. Root Finding and Nonlinear Sets of Equations Im-

portance Sampling", Numerical Recipes: The Art of Scientific Compu-

ting (3rd ed.), New York: Cambridge University Press, 2007

[32] A. Qureshi, R. Weber, H. Balakrishnan, et al, “Cutting the Electric

Bill for Internet-scale Systems,” Proc. ACM Conf. Data Communica-

tion (SIGCOMM’09), pp.123-134, Aug. 2009

[33] X. Song, J. Shi, R. Liu, J. Yang, and H. Chen, “Parallelizing Live

Migration of Virtual Machines,” Proc. ACM International Conf. Vir-

tual Execution Environments(VEE'13), pp. 85-95, Mar. 2013

[34] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat, J.

Mambretti, I. Monga, B. van Oudenaarde, S. Raghunath, and P.

Wang, “Seamless Live Migration of Virtual Machines Over the

MAN/WAN,” Future Generations Computer Systems, vol. 22, no.

8, pp. 901-907, Oct. 2006

[35] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of

Virtual Machine Live Migration in Clouds: A Performance

Evaluation,” Proc. International Conf. Cloud Computing (Lecture

Notes in Computer Science), pp.254-265, Dec. 2009

[36] C. A. Waldspurger, “Memory Resource Management in

VMware ESX Server,” Proc. 5th Symp. Operating Systems Design

and Implementation (OSDI’02), pp.181-194, Dec. 2002

[37] D. Williams, H. Jamjoom, and H. Weatherspoon, “The Xen-

Blanket: Virtualize Once, Run Everywhere,” Proc. 7th ACM Euro-

pean Conf. Computer Systems (EuroSys’12), pp. 113-126, Apr. 2012

[38] T. Wood, P. Shenoy, K. K. Ramakrishnan, and J. V. Merwe,

“CloudNet: Dynamic Pooling of Cloud Resources by Live WAN

Migration of Virtual Machines,” Proc. 7th International Conf. Vir-

tual Execution Environments (VEE’11), pp.121-132, Mar. 2011

[39] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only Constant is

Change: Incorporating Time-varying Network Reservations in

Data Centers,” Proc. ACM Conf. Data Communication

(SIGCOMM’12), pp.199-210, Aug. 2012

[40] A. Zhou and B. He, “Transformation-based Monetary Cost Op-

timizations for Workflows in the Cloud,” to appear in IEEE

Transactions on Cloud Computing, 2014

[41] H. Zheng and X. Tang, “On Server Provisioning for Distributed

Interactive Applications,” Proc. 33rd International Conf. Distributed

Computing Systems (ICDCS’13), pp. 500-509, Jul. 2013

[42] J. Zheng, T. S. Eugene Ng, K. Sripanidkulchai, “Workload-Aware

Live Storage Migration for Clouds,” Proc. 7th International Conf.

Virtual Execution Environments (VEE’11), pp.133-144, Mar. 2011

[43] J. Zheng, T. S. Eugene Ng, K. Sripanidkulchai and Z. Liu, “Pac-

er: A Progress Management System for Live Virtual Machine

Migration in Cloud Computing,” to appear in Transactions on

Network and Service Management, 2014

[44] R. Zivan and H. Peled, “Max/Min-sum Distributed Constraint

Optimization through Value Propagation on an Alternating

DAG,” Proc. 11th International Conf. Autonomous Agents and Multi-

agent Systems(AAMAS’12), pp. 265-272, Jun. 2012

 Dr. Haikun Liu is currently a re-
search fellow at School of Computer
Engineering, Nanyang Technologi-
cal University. He got the Ph.D.
degree in Huazhong University of
Science & Technology (2007-2012).
His current research interests in-
clude virtualization technologies,
cloud computing, and distributed
systems.

 Bingsheng He received the bache-
lor degree in computer science from
Shanghai Jiao Tong University
(1999-2003), and the PhD degree in
computer science in Hong Kong
University of Science and Technol-
ogy (2003-2008). He is an assistant
professor in Division of Networks
and Distributed Systems, School of
Computer Engineering of Nanyang

Technological University, Singapore. His research inter-
ests are high performance computing, cloud computing,
and database systems. He has been awarded with the
IBM Ph.D. fellowship (2007-2008) and with NVIDIA Aca-
demic Partnership (2010-2011).

