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VMbuddies: Coordinating Live Migration of 
Multi-Tier Applications in Cloud Environments 

Haikun Liu, and Bingsheng He 

Abstract—Enabled by virtualization technologies, various multi-tier applications (such as Web applications) are hosted by 

virtual machines (VMs) in cloud data centers. Live migration of multi-tier applications across geographically distributed data 

centers is important for load management, power saving, routine server maintenance and quality-of-service. Different from a 

single-VM migration, VMs in a multi-tier application are closely correlated, which results in a correlated VM migrations problem. 

Current live migration algorithms for single-VM cause significant application performance degradation because intermediate 

data exchange between different VMs suffers relatively low bandwidth and high latency across distributed data centers. In this 

paper, we design and implement a coordination system called VMbuddies for correlated VM migrations in the cloud. Particularly, 

we propose an adaptive network bandwidth allocation algorithm to minimize the migration cost in terms of migration completion 

time, network traffic and migration downtime. Experiments using a public benchmark show that VMbuddies significantly reduces 

the performance degradation and migration cost of multi-tier applications. 

Index Terms— Cloud, Live migration, Multi-tier application, Virtual machine 

——————————      —————————— 

1 INTRODUCTION

nternet applications have been prosperous in the era of 
cloud computing, which are usually hosted in virtual 

machines in geographically distributed data centers. Live 
migration of Internet applications across data centers is 
important for different scenarios including load manage-
ment, power saving, routine server maintenance and quali-
ty-of-service [8][11][38][42]. Additionally, Internet applica-
tions tend to have dynamically varying workloads that 
contain long-term variations such as time-of-day effects in 
different regions. It is desirable to move the interac-
tive/web application to the data center that has better net-
work performance to users for lower response time [41]. 
Also, workloads can be migrated across different data cen-
ters to exploit time-varying electricity pricing [32]. The re-
cent advance of VM live migration techniques [10][30] is 
able to relocate a single VM across data centers with ac-
ceptable migration cost [34][38]. Typical Internet applica-
tions employ a multi-tier architecture, with each tier 
providing certain functionality. Specific to multi-tier appli-
cations, we need to migrate several tightly-coupled VMs in 
multi-tiers, instead of a single VM. Previous studies have 
demonstrated the potential performance penalty of multi-
tier applications during migration [17][23]. In this paper, 
we investigate whether and how we can reduce the migra-
tion cost without suffering application performance degra-
dation.  

A typical multi-tier web application consists of three ti-
ers: presentation layer (Web tier), business logic layer (App 
tier) and data access layer (DB tier) [18]. Different layers 
usually run on different VMs and have different memory 

access patterns. VMs are correlated because only when all 
VMs of the multi-tiers are migrated to another data center, 
they can completely and efficiently serve requests in that 
data center. We call this problem correlated VM migrations. 
Correlated VM migrations can cause significant perfor-
mance penalty to multi-tier applications. Consider the fol-
lowing scenario: if the middle tier is first migrated, then the 
other two tiers must redirect the communication and data 
access traffic to another data center and wait for the pro-
cessing results to be sent back. Moreover, because the mul-
ti-tier application and migration processes share the same 
link for data transferring, given the data-intensive nature of 
multi-tier applications and limited network bandwidth 
between two data centers, network bandwidth contention 
may cause significant performance degradation for both 
applications and VM migrations.  

While live migration of VMs provides the ability to re-
locate running VMs from one physical host to another 
without perceivable service downtime [10][30], the state-of-
the-art VM migration techniques mainly target a single VM 
(either within a data center [10][16][24][30] or across differ-
ent cloud data centers [8][38][42]). These techniques cannot 
fundamentally solve the correlated VM migrations prob-
lem. We need effective and efficient mechanisms to coordi-
nate correlated VM migrations across distributed data cen-
ters. 

Ideally, the coordination system should avoid splitting 
multiple tiers between data centers so that the perfor-
mance penalty of VM migrations on the multi-tier appli-
cation is minimized. Meanwhile, we should diminish the 
VM migration cost in terms of migration completion time, 
network traffic and migration downtime. To achieve these 
goals, we need to address the following technical challeng-
es. First, migration completion time of different VMs may 
vary significantly due to VM configurations and workload 
characteristics in different tiers. It is challenging to orches-
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trate their migration progress and complete the migrations 
simultaneously. Second, network bandwidth is the critical 
resource of VM migration across data centers. So far there 
is little work on progress management for correlated VM 
migrations so that the total migration cost is minimized. 
The last challenge is how to implement a coordination sys-
tem in existing virtualization platforms such as Xen and 
demonstrate its practical value. 

To address the aforementioned challenges, we propose 
a coordination system called VMbuddies to solve the corre-
lated VM migrations problem for multi-tier applications. 
VMbuddies embraces a synchronization protocol to ensure 
that all VMs complete their migrations simultaneously, 
avoiding intermediate data exchange across distributed 
data centers. In order to reduce the migration cost, we de-
velop network bandwidth allocation algorithms according 
to memory access patterns of different workloads. For VMs 
with stable memory access pattern, we propose an analyti-
cal cost model of pre-copying algorithm that is widely used 
for live VM migrations in common virtualization platforms 
such as VMware, Xen, KVM and Hyper-V. Based on the 
cost model, we formulate the bandwidth allocation as a 
distributed constraint optimization problem and give an 
optimal solution so that the total migration cost is mini-
mized. We further develop an adaptive bandwidth alloca-
tion algorithm for VMs with dynamic memory access pat-
terns. With the synchronization protocol and bandwidth 
allocation mechanisms, we design and implement a proto-
type called VMbuddies in Xen.  

We investigate the effectiveness and efficiency of 
VMbuddies by using a public multi-tier application 
benchmark RUBBoS [1]. The experiments are conducted 
with two complementary approaches: real private data 
centers and simulated Wide Area Network (WAN). The 
evaluation compares a number of metrics (such as migra-
tion completion time, network traffic, migration downtime 
and application performance degradation) with several 
alternative approaches. The results show VMbuddies can 
significantly reduce the performance degradation of multi-
tier applications during migrations, while only experienc-
ing slight overhead of synchronization cost in terms of mi-
gration completion time and network traffic. Particularly, 
in comparison with Xen, VMbuddies achieves lower aver-
age response time by 77% and higher throughput by 18%, 
and reduces total migration cost by 36% on average.  

The rest of this paper is organized as follows. Section 2 
gives a brief introduction to our groundwork and formu-
lates the correlated VM migration problem. Section 3 pre-
sents the synchronization protocol and bandwidth alloca-
tion algorithms. Section 4 describes the implementation 
details of VMbuddies. We present the evaluation method-
ologies and experimental results in Section 5. We review 
the related work in Section 6 and conclude in Section 7. 

2 CORRELATED VM MIGRATION PROBLEM 

This section introduces the background of single-VM mi-
gration techniques and correlated VM migrations.  

Single-VM migration. Live migration of VMs has been 
an effective approach to manage workloads in a non-

disruptive manner. Among different implementations of 
VM live migration, pre-copying algorithm [10][30] is the 
most popular and widely used in today’s virtualization 
platforms. Thus, this paper focuses on pre-copying algo-
rithm in Xen, and the methodology in our paper can be 
extended to other VM migration techniques.  

The basic workflow of pre-copying algorithm in Xen is 
described as follows. As shown in Fig. 1, memory pre-
copying is conducted in several iterative rounds. The 
VM’s physical memory is first transferred from host A to 
host B, while the source VM continues running in host A. 
Pages dirtied in each round must be iteratively re-sent in 
the next round to ensure memory consistency. That is, the 
data to be transmitted in each round are dirty pages gen-
erated in the previous round. After several rounds of pre-
copying, a stop-and-copy phase is performed to transmit 
the remaining dirty pages while the source VM temporar-
ily stops execution. When the final data transferring is 
done, the VM on host B resumes and takes over the VM 
on host A. 

There are a number of factors affecting the migration 
cost in terms of migration downtime, migration comple-
tion time and total network traffic. The major factors in-
clude the size of VM memory, memory dirtying rate, 
network transmission rate and configuration of migration 
algorithm (e.g., conditions for starting the stop-and-copy 
phase). Among these factors, the size of VM memory and 
the memory dirtying rate are mostly determined by the 
VM and workloads. That means, they usually cannot be 
controlled by migration algorithms. Thus, this paper fo-
cuses on the optimizations on the latter two factors: net-
work transmission rate and configuration of migration 
algorithms. We note that CPU resource show moderate 
performance impact on VM migrations. Previous study 
demonstrated that the migration process only takes 
around 30% of one CPU to attain the maximum network 
throughput over the gigabit link [30]. Based on this ob-
servation, we think network bandwidth is usually more 
important than CPU resource, especially for VM migra-
tion in WAN environments. Moreover, this paper focuses 
on the algorithms of network bandwidth allocation for 
VM migration, so we assume the CPU resource is always 
sufficient for migration processes.  

Correlated VM migrations. The objective of this paper 
is to solve the correlated VM migrations problem raised 
in multi-tier applications. As illustrated in Fig. 2, a multi-
tier web application is migrated from DC 1 to DC 2. Each 
tier is running on multiple VMs, and thus the VMs across 
different tiers are correlated with data dependency. Net-
work bandwidth is a critical resource across distributed 
data centers. It is usually much smaller than the network 
bandwidth within a data center. Previous studies (e.g., 
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Fig.1. Live migration algorithm performs pre-copying in iterative 
rounds. 
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[38]) assumed that the network bandwidth between two 
data center was 465 Mbps. Without loss of generality, we 
assume that the peak network bandwidth between DC 1 
and DC 2 reserved for the migration processes is B. As 
discussed in Introduction, the application traffic and mi-
gration traffic share the same links between two data cen-
ters. The bandwidth contention between them may result 
in significant performance degradation in both applica-
tion and VM migration. That motivates us to develop 
VMbuddies to coordinate the VM migration of multi-tier 
applications, and let the inter-cloud network bandwidth 
to be exclusively used by the migration traffic. 

3 SYSTEM DESIGN 

In this section, we first present the synchronization proto-
col for coordinating live migration of VMs in a multi-tier 
application. Next, we present bandwidth allocation algo-
rithms to reduce the migration cost of all VMs. Particularly, 
we first consider the scenario where the memory dirtying 
rate is stable in the entire VM migration. We start with a 
cost model in estimating the migration completion time of 
all VMs, and develop an optimal bandwidth allocation 
algorithm to minimize the migration completion time. 
With this optimal algorithm as a building block, we identi-
fy the stable phases in memory dirtying rate, and develop 
an adaptive algorithm for bandwidth allocation in 
VMbuddies. In the adaptive algorithm, the bandwidth al-
location for each stable phase can use the optimal algo-
rithm developed in the scenario for stable memory dirtying 
rates.   

3.1 Synchronization Protocol 

To avoid inter-data center network traffic between corre-
lated VMs, we develop a synchronization protocol to or-
chestrate all VMs to proceed the stop-and-copy phase at 
the same time.  

As shown in Fig. 3, each VM migration may reach its 
stop-and-copy phase at different points of time (called 
pseudo-synchropoint). The pseudo-synchropoint depends on 
the termination conditions of pre-copying algorithm. In our 
synchronization protocol, we postpone the stop-and-copy 
phase until all VMs reach the stop-and-copy phase (called 
synchropoint). However, all VMs are still running during 
the synchronization, and the dirtied memory pages still 
need to be transmitted to the destinations. We call this 
phase “wait-and-copy”. The bandwidth consumed in this 
phase is determined by the memory dirtying rates of the 

VMs. Algorithm 1 shows the pseudo code of the synchro-
nization protocol for correlated VM migrations. The syn-
chronization protocol relies on an arbitrator for control. 
The arbitrator implements a message-passing mechanism 
for controlling the VM migrations. When a VM reaches the 
pseudo-synchropoint, it should immediately send a mes-
sage “reach_pseudo-synchropoint” to the arbitrator, and then 
proceed the “wait-and-copy” phase until it receives the 
“start_stop-and-copy” message from the arbitrator. The arbi-
trator uses a variable p to record the number of VMs that 
have reached the pseudo-synchropoint. Once all VMs have 
reached the synchropoint, the arbitrator broadcasts a mes-
sage “start_sotp-and-copy” to all VMs. To handle the poten-
tial migration failures, we adopt a simple approach for 
fault tolerance. We view the coordinated migration pro-
cesses as a transaction in a batch. In case of failures, all cor-
related VM should resume at their original host, aborting 
the migration. More advanced fail-tolerant VM migration 
techniques will be studied in our future work. 

The synchronization protocol allows different resource 
allocations and VM scheduling mechanisms. Without an 
effective arbitration of resource allocation and scheduling, 
the synchronization may cause significant migration cost 
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Fig.2. Performance penalty due to live migration of a multi-tier web 
application across distributed data centers. 
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Fig.3. Synchronization of live migration of multi-tier applications. 

Algorithm 1: Synchronization protocol for correlated 
VMs live migration  
1. let m be the number of VMs to be migrated 

2. let  p ← 0     /*the number of VMs that reach the pseudo-
synchropoint */ 
 

3. Begin Migrate (VM[i]) 

4.        while VM[i] does not reach the pseudo-synchropoint    do 

5.                 pre-copy the memory of VM[i]; 

6.            endwhile 

7.        send message “reach_pseudo-synchropoint” to arbitrator; 

8.        proceed “wait-and-copy” phase; 

9.      if receive message “start_stop-and-copy”  then 

10.           proceed “stop-and-copy” phase; 

11.      endif 

12. End Migrate 

     

13. Begin Arbitrator( ) 

14.  if receive message “reach_pseudo-synchropoint” form VM[i] then 

15.           p ←  p+1;        

16.            if p == m     then           /*All VMs reach the synchropoint */ 

17.                 for i=1 to m do  

18.                      send message “start_stop-and-copy” to VM[i]; 

19.                 endfor 

20.            endif 

21.       endif 

22. End Arbitrator  
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and performance degradation. To address this challenging 
problem, we investigate different bandwidth allocation 
algorithms to minimize migration cost of correlated VMs.  

3.2 A Naive Bandwidth Allocation 

The synchronization protocol guarantees that all the cor-
related VM migrations start the stop-and-copy phase at the 
same time. A naive bandwidth allocation method is 
scheduling the VM migrations one by one. Each VM mi-
gration gains the majority of the network bandwidth for 
the best migration performance. As shown in Fig. 4, a VM 
starts live migration only when another VM has reached 
the pseudo-synchropoint. However, when the VM reach-
es the pseudo-synchropoint, it should proceed the “wait-
and-copy” phase to postpone the stop-and-copy phase. 
This stage still consumes a portion of bandwidth (deter-
mined by its memory dirtying rate) to re-send the dirty 
pages. Clearly, the order of VM migrations affects the 
bandwidth allocation. To reduce the synchronization cost, 
an intuitive scheduling is to start VM migrations in the 
ascending order of their memory dirtying rates. The VM 
with the largest memory dirtying rate should be migrated 
last. Thus, we call this scheduling algorithm Largest 
memory Load VM Last (LLL).  

LLL is simple but cannot effectively use the network 
bandwidth. The VMs in the wait-and-copy phase still con-
sume network bandwidth, causing excessive network 
traffic between data centers. This overhead is exaggerated 
when the number of correlated VMs increases, and for the 
memory-intensive workloads like multi-tier applications. 
To address the overhead caused in the wait-and-copy 
phase, we propose a parallel VM migration scheduler and 
adaptive bandwidth allocation algorithms for all the VM 
migrations, as described in the next sub-sections. 

3.3 Optimal Bandwidth Allocation for Static 
Workloads 

Unlike LLL, VMbuddies performs VM migrations in mul-
tiple tiers simulataneously, and smartly decide the band-
width among VMs. A primary goal of VMbuddies is to 
determine how much network bandwidth should be allo-
cated to each migration process to minimize total migra-
tion cost of multi-tier applications. We first consider a sce-
nario that the memory access pattern of each VM is stable 
(i.e., memory dirty rate is stable and can be modeled as a 
constant), and then extend this algorithm to dynamic 
workloads.  

3.3.1 Modeling Static Workloads Migration 
Our model on static workload migration uses a single 

VM as the building block. In the following, we present an 
analytical model of pre-copying algorithm to estimate the 
migration cost of a single VM. Table 1 summarizes the 

parameters and notations used throughout this paper. As-
sume the pre-copying algorithm proceeds in n (n  N) 
rounds. Let vi (0 ≤ i ≤ n) denote the data volume transmit-
ted at each pre-copying round, and ti (0 ≤ i ≤ n) denote the 
elapsed time at each round. v0  equals the VM memory size 
M. t0 represents the time consumed for transferring the VM 
memory image and ti (1 ≤ i ≤ n) is the time of transferring 
the dirty pages generated during previous rounds.  The 
data transmitted in round i is calculated in Eq. (1).  
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The elapsed time at round i is calculated in Eq. (2). 
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Then the total network traffic during the migration can be 
summed up in Eq. (4). 
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Consequently, the migration completion time can be 
summed up in Eq. (5). 
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The migration completion time is the duration that has 
negative effect on application performance. It is a key per-
formance metric of migration cost, especially for multi-tier 
applications migrating in cloud environments. 

To evaluate the convergence rate of VM migration algo-
rithm, we calculate the total number of rounds by the ine-
quality 𝑣 ≤ 𝑉   . It is the condition to terminate the itera-
tive pre-copying and to start the stop-and-copy phase. Fur-
thermore, it should not be larger than the pre-defined pa-
rameter N. As a result, the number of pre-copying itera-
tions becomes: 

min log log ,  thdV d
n N

M r

  
   

  

.                (6) 
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Fig.4. LLL scheduling of multiple VM migrations. 

TABLE 1 
PARAMETERS FOR VM LIVE MIGRATION MODELING 

Symbol Description

M Size of VM memory image.

V Total network traffic during migration.

T Migration completion time.

r Network transmission rate during migration.

d Memory dirtying rate during migration.

B
Maximum network bandwidth reserved for VMs 
migration traffic.

Vthd
Threshold of the remaining dirty memory that should 
be transferred during the stop-and-copy phase.

The pre-defined maximum number of rounds for 
iterative pre-copying in migration algorithm.

The Writable Working Set (WWS) of applications.

N

W
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For a given VM, M and Vthd (determined by migration 
algorithms) can be viewed as constants. Consequently, the 
iterative pre-copying would converge faster if d/r is smaller. 
We therefore define d/r as the convergence coefficient of VM 
live migration. 

The above analysis assumes that the memory dirtying 
rate is smaller than the memory transmission rate on av-
erage. However, in practice, there are still scenarios that 
the memory dirtied at a higher speed than the network 
transfer. One observation is that, the memory dirtied in 
each round should never exceed the applications’ writa-
ble working set (WWS) [10]. In this case, the pre-copying 
terminates once the number of iterations exceeds N or the 
network traffic exceeds the VM memory size by a factor 
of  (by default, the factor is 3 in Xen migration algo-
rithm). Finally, in case where 𝑑/𝑟 > 1, the total network 
traffic and migration completion time should be estimated 
by Eq. (7) and Eq. (8), respectively. 

min{ * ,  }V M N W M W    ,                 (7) 

min{ * ,  }/T M N W M W r    ,             (8) 

where 𝛼𝑊  is the amount of dirty memory to be trans-
ferred in each round of pre-copying, and  (0 <  < 1) is a 
coefficient of proportionality that can be learnt by linear 
regression technique [26]. 𝑀 +𝑁 ∗ 𝛼𝑊  denotes the total 
memory transferred in maximum number of rounds, and 
𝛽𝑀 +𝑊 denotes the total memory transferred if migration 
traffic exceeds  times of the VM memory size. As the 
average memory dirtying rate d and 𝑊  are both deter-
mined by the applications and can be measured in a long 
time window before VM migrations, we only need to de-
termine the network transmission rate (i.e., parameter r), 
which can be referred to Eq. (5) or Eq. (8). 

With the cost model of a single VM migration, we for-
mulate the problem of correlated VM migrations in cloud 
environments. Assume the multi-tier application is com-
prised of m VMs. We should orchestrate the VM migra-
tions to minimize the maximum migration completion time 
of all the VMs by allocating appropriate network band-
width to each migration process. As the network band-
width between geographically distributed data centers is 
shared and limited resource, this issue can be abstracted as 
a distributed constrain optimization problem (DCOP), as 
shown in Eqs. (9). Note, we instantiate the parameter T, V, 
M, d, r for VM k to be Tk, Vk, Mk , dk, and rk, respectively. 
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In case where 𝑑 ≥ 𝑟 , 𝑇 = 𝑓(𝑟 ) in Eqs. (9) should be re-
placed by Eq. (8). 

3.3.2 Problem Solving 

DCOP is originally a problem in which a group of agents 
must distributedly choose values for a set of variables so 
that the cost of a set of constraints over the variables is ei-
ther minimized or maximized. It is known that DCOPs are 
NP-hard problems [44]. There are no polynomial-time al-

gorithms to solve this NP-hard problem. However, observ-
ing that the polynomial in Eqs. (9) is a monotonic function 
of r, we can simplify the problem by Theorem 1. 

Theorem 1. When a set of VMs are migrated concurrently, if 
there exists an optimal bandwidth allocation to minimize the 
maximum migration completion time of the VMs, then the 
bandwidth resource should be fully used, i.e., ∑ 𝑟 

 
   = 𝐵, 

and all VMs have equivalent migration completion time, i.e., 
∀i, j, ∃ 𝑇 = 𝑇 . 

Proof (sketch). Assume live migration of each VM is per-
formed by a migration daemon concurrently. Given an 
arbitrary bandwidth allocation for these processes with 
constraint ∑ 𝑟 

 
   = 𝐵, the migration completion time 

of each VM can be figured out by 𝑇 = 𝑓(𝑟 ), which is a 
monotonically decreasing function that T always de-
creases as r increases in the open interval (0, B). In case 
there is a difference of migration completion time be-
tween two arbitrary VMs, we deprive the migration 
daemon with a shorter completion time some band-
width and re-allocate it to the migration daemon with 
a longer completion time. By iteratively using the step-
by-step approximation method to adjust bandwidth 
resource for each migration process, all VMs should 
have the same migration completion time finally.  

Insight: Based on Theorem 1, the synchronization cost 
between different VMs is avoided as all VMs finish their 
migration at the same time. Our objective min(max(T1, 
T2,…Tm)) can be transformed to a problem of solving multi-

variate polynomial equations over a finite field as Eqs.(10).  
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In case where 𝑑 ≥ 𝑟 , the 𝑇 = 𝑓(𝑟 ) in Eqs. (10) should be 
replaced by Eq. (8). We note that if the above equations can 
be solved, the objective 𝑚𝑖𝑛 (∑ 𝑉 )

 
    is also satisfied be-

cause the bandwidth resource is fully utilized and the mi-
gration completion time is minimized. However, Eqs. (10) 
are still hard to solve because 𝑇 = 𝑓(𝑟 ) is a polynomial 
with high order. Fortunately, as 𝑇 = 𝑓(𝑟 ) is a monoton-
ically decreasing function in the field (0, B), there exists 
only one solution to satisfy the above equations. As 
∑ 𝑟 
 
   = 𝐵 is a multivariate linear equation, if we search 

the solution by changing the multi-variate 𝑟 , there should 
be numberless combinations that need to verify equations 
𝑇 = 𝑇 = ⋯ = 𝑇 . In contrast, observing that 𝑇 = 𝑓(𝑟 ) 
contains only one variate and their curves are monotonic 
and similar, we design a work backward strategy to solve 
Eqs. (10). That is, we tentatively search the solution set of 
equations 𝑇 = 𝑇 = ⋯ = 𝑇  to satisfy ∑ 𝑟 

 
   = 𝐵.  

We propose a quasi-secant method [2] to approximate 
the Eq. ∑ 𝑟 

 
   = 𝐵 iteratively, as shown in Fig. 5 and Al-

gorithm 2. The solution consists of three steps. First, we 
figure out the minimum of 𝑓(𝑟 ) in the field (0, B], denoted 
by S = min{𝑓(𝑟 ), 𝑓(𝑟 ), …, 𝑓(𝑟 )}. Second, we use horizon-
tal lines Ti = S + i (i > 0) to sweep the curves 𝑇 = 𝑓(𝑟 ) , 
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where 𝜆  is the step size to increase the horizontal line Ti. 
Let 𝑟   denotes the root of 𝑓(𝑟 ) = 𝑆 + 𝜆   in the iteration i. 
We use Newton's method [31] to approximate the root of 
these equations one by one and get a solution set, for ex-
ample  𝑅 = (𝑟  , 𝑟  , 𝑟  ). Third, we check whether the so-
lution 𝑅   satisfies  ∑ 𝑟  

 
   = 𝐵  by calculating the error  

𝑑 = |∑ 𝑟  
 
   − B| . The iterations will be terminated when 

the error 𝑑 ≤ 𝛿 , where 𝛿  is a very small constant. The 
problem is how to determine the step size 𝜆  to speed up 
the roots searching.  

We illustrate the iterative approximating process by a 
sketch diagram in Fig. 5. Take  𝑇 = 𝑓(𝑟 ) as an example, 
the line T0 and T1 sweeping it gets two points (𝑟  , 𝑇

 ) and 
( 𝑟  , 𝑇

 ), respectively. Suppose the final solution of 
𝑇∗ = 𝑓(𝑟 )  is 𝑟 

∗, the line passing through these two con-
secutive points intersecting the vertical line  𝑟 = 𝑟 

∗ deter-
mines  𝜆 . Then the next root 𝑟   can be solved. Without 
lose of generality, 𝜆  can be deduced from the proportional 
relationship of three consecultive roots, as shown in Eq. 
(11): 
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we define ∆𝜆 = 𝜆   − 𝜆 , and then we have: 
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By iteratively changing the step size in Algorithm 2, it 
should approximate the target solution finally. As the con-
vergence order of quasi-secant method is the golden ratio 
(1.618), Algorithm 2 converges fast in practice. Actually, 

there are C 
 =

 (   )

 
 equations in Eqs. (10). However, step 

(2) in Algorithm 2 only needs to solve m equations in each 

round of iteration. The computation cost is linearly propor-
tional to the number of VMs to be migrated. In this way, 
Algorithm 2 simplifies the problem complexity of root 
finding. In our experiments, the proposed approach is able 
to solve more than 10 high orders equations within one 
second, which is sufficient for typical multiple tier applica-
tions in practice. In constrast, a general solve method pro-
vided by MATLab cannot give out the solution in 12 hours. 

3.4 Adaptive Bandwidth Allocation for Dynamic 
Workloads 

The model and algorithm discussed in the preceding Sub-
section assume that the memory dirtying rates are steady 
for all VMs. However, in practice, multi-tier applications 
can be service-oriented and dynamic (e.g., due to the daily 
or seasonal changes). The memory access pattern of dif-
ferent applications may vary in response to the load 
change of the service requests.  

We design our bandwidth allocation algorithm adapt-
ing to the temporal changes of page dirtying rates. Partic-
ularly, we rely on the prediction on the page dirtying rate 
in a short-term period (namely window). We identify the 
relatively stable periods (namely phases), and view the 
bandwidth allocation problem for each phase as an in-
stance of optimal bandwidth allocation problem in the 
scenario of stable page dirtying rate. That means, we can 
leverage the model and the optimal algorithm in the pre-
vious subsection to achieve local optimum in each phase.  

Prior to starting VM migrations, we first measure the 
page dirtying rate of each VM during a long-term run. 
We then model memory access pattern of each VM based 
on the profiling runs. The modelling methodology is or-
thogonal to this paper. There are a number of existing 
learning methods and models [13][39], which have 
demonstrated high accuracy and efficiency. For modela-
ble workload such as on-off memory access patterns, as 
shown in Fig.6 (a), we formulate the page dirtying rate 
into phases [39]. We first divide the workload curves into 
several small splines evenly, and then combine two suc-
cessive splines iteratively if their difference is smaller 
than a pre-defined threshold. We recognize a significant 
pulse as a new phase if its successive spline has slight 
variation. As shown in Fig. 6(a), the migration daemon 
orchestrates live migration of correlated VMs using the 
optimal bandwidth allocation algorithm in each stable 
phase. The migration daemons track the pages dirtied 
and analyze the phase change according to the historical 

Algorithm 2: Optimal bandwidth allocation for static 
workloads 
(1) S ← min(𝑓(𝑟 ), 𝑓(𝑟 ), …, 𝑓(𝑟 )),  𝑖   , 𝜆   , 𝜆   ,   is 

a random number bigger than 0, so ∆𝜆 =  ;  

(2) Let 𝑓(𝑟 )  𝑆 + 𝜆 , (1 ≤  ≤ 𝑚), solve these equations and 

find out a solution set 𝑅 = (𝑟  , 𝑟  , ⋯ , 𝑟  ); 

(3) Verify whether the solution satisfy equation ∑ 𝑟  
 
   = 𝐵 by 

calculating the distance  𝑑 = |𝑟  + 𝑟  +⋯+ 𝑟  − B| , 

if  𝑑 > 𝛿 , then 𝑖  𝑖 + 1 , 𝜆    𝜆 + ∆𝜆 , where ∆𝜆 =

𝑑 ∗ ∆𝜆   (𝑑   − 𝑑 ),⁄  (𝑖 >  ), go to (2); otherwise, Ri is the 

target solution and the searching terminates. 

(4) Allocate the bandwidth 𝑟   for live migration of VM-k. 
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Fig. 5. A quasi-secant method to solve the multivariate polynomial 
equations. 
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Fig. 6. Bandwidth allocation according to workload patterns: (a) 
model on-off workloads in several stable phases of page dirtying 
rate; (b) model irregular workloads in fix-sized time windows 
through average page dirtying rate. 
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statistics. Once a significant change of page dirtying rate 
is detected, they immediately report to the arbitrator for 
bandwidth re-allocation in response to the phase changes. 
The remaining data to be transferred also should be re-
ported to the arbitrator for decision making. For simplici-
ty, the bandwidth allocation takes effect at the new round 
of VM migration. At last, the synchronization protocol 
described in Subsection 3.1 is used to achieve the ultimate 
synchronization of correlated VM migrations. 

We also need to handle the scenarios where some 
workloads may not show distinct phase changes, as 
shown in Fig.6 (b). We can only measure the average 
memory dirtying rate in each time window, and thus the 
adaptive bandwidth allocations is sensitive to the sizes of 
time window. A smaller window means higher accuracy 
of memory dirtying rate prediction, but causes higher 
overhead due to the computation of bandwidth re-
allocation. We need to carefully determine the size of 
windows to make tradeoff between predication accuracy 
and computation overhead. We experimentally study its 
impact in the evaluation (Subsection 5.5).  In this scenario, 
the arbitrator periodically performs bandwidth realloca-
tion in the end of each time window, so the migration 
daemons only need to sum up the pages to be transferred 
in next time window, including the remaining pages in 
current round of pre-copying and new pages dirtied in 
current window. The arbitrator again leverages the opti-
mal algorithm described in the previous subsection to 
allocate bandwidth to each migration deamon. 

4 IMPLEMENTATION  

In this section, we present the details of design and imple-
mentation on VMbuddies. We design and implement 
VMbuddies based on Xen 4.1 platform. We conjecture that 
the techniques and optimizations proposed in this paper 
are also applicable for other virtualization platforms. Our 
implementation carefully considers efficiency and trans-
parency of correlated VM migrations across data centers.  

4.1 System Architecture 

Fig. 7 shows the system architecture of VMbuddies. The 
system is composed of two major modules, namely migra-
tion daemon and arbitrator. The migration daemon in do-
main 0 consists of several components such as dirty 
memory tracker, data transmission rate controller, syn-
chronization protocol, and some migration optimizations. 

The arbitrator consists of VM memory information collec-
tor, migration cost prediction model, bandwidth allocator, 
and VM migration scheduling components. When a multi-
tier application needs to be migrated, the arbitrator needs 
to conduct the following actions for bandwidth allocations: 
1) activates the dirty memory tracker in each migration 
daemon, 2) collects the page dirtying information of each 
VM, 3) performs workload predictions and calculates the 
memory dirtying rate, 4) estimates the migration cost, and 
5) finally allocates the network bandwidth to each migra-
tion process. These actions are implemented with message-
passing mechanisms among the arbitrator and other com-
ponents in VMbuddies. Next, the VMs are migrated at the 
speed of the allocated bandwidth in multiple phases, ac-
cording to Section 3.4. In the following, we first present 
two migration optimizations and then describe some other 
implementation details.  

4.2 Optimizations of VM Live Migration 

Although there is a lot of existing migration optimiza-
tions for cost reduction, we choose the most effective and 
simple ones for our scenario: multi-tier applications migra-
tion in WAN environments. Particularly, we highlight two 
techniques -- ballooning to evict unused pages from VMs’ 
memory image, and an intelligent pre-copying termina-
tion to adjust the number of iterations in the pre-copying 
algorithm. 

Ballooning. It is desirable to flush non-essential data 
out of memory, and to transfer only a smaller working set 
during migration. VMbuddies leverages ballooning 
mechanism [16][36] to reduce memory volume trans-
ferred during VMs live migration. We first profile a VM’s 
memory usage to detect its memory footprint, and then 
the size of free memory can be determined. The balloon 
driver then requests the size of free memory from the 
guest OS kernel and returns it to the underlying hypervi-
sor. In this way, ballooning mechanism deflates a VM’s 
memory size by evicting free pages from the VM’s 
memory image. This is extremely useful for VMs with 
large memory size and small application working set.  

Intelligent pre-copying termination. Multi-tier appli-
cations can have very different memory and computation 
characteristics. Instead of using static conditions on pre-
copying terminations as modeled in Section 3, VMbud-
dies terminates the pre-copying phase intelligently when 
the pre-copying iterations cannot reduce the migration 
downtime. Current Xen terminates the iterative pre-
copying till either (1) the remaining dirty memory be-
comes smaller than 50 pages; or (2) the number of itera-
tions exceeds 30 times; or (3) the network traffic exceeds 
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Fig.7. Block diagram of system architecture. 
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Fig. 8. Dirty pages generated in each round of pre-copying. 
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the VM memory size by a factor of 3. However, our exper-
iments on multi-tier applications indicate that the first con-
dition is seldom satisfied, and the migration algorithm of-
ten performs many unnecessary iterations. Fig. 8 shows the 
number of dirty pages generated in the each round of itera-
tive pre-copying when we migrate a 3-tier web benchmark 
RUBBoS over a link with 400Mbps bandwidth. The migra-
tions of application-tier and DB-tier terminate the pre-
copying phase according to conditions (2) and (3), respec-
tively. However, only the first several rounds of pre-
copying results in reduction of memory remaining to be 
sent in the next round. This indicates that the migration 
algorithm should intelligently determine the time to stop 
pre-copying to avoid unnecessary iterations.  

VMbuddies leverages a heuristic to terminate iterative 
pre-copying. We observe that memory dirties approxi-
mately as fast as it can be transferred after a number of 
iterations. To detect this point, we monitor the number of 
pages sent and dirtied in each round until the difference 
between them becomes very small. At this time, the migra-
tion daemon should immediately notify the arbitrator that 
the VM reaches the pseudo-synchropoint. This simple op-
timization can significantly reduce the migration comple-
tion time and network traffic, with up to 45% reduction of 
migration cost on average in our experiments. 

4.3 VM Grouping 

Today’s enterprise multi-tier applications are usually 
comprised of multiple VMs in each tier. Fig. 9(a) shows a 
web application with 2/3/4 configuration (i.e., 2, 3 and 4 
VMs for Web tier, Application tier and database tier, re-
spectively). If these VMs are migrated concurrently, the 
performance of VM migrations would be significantly 
degraded due to network bandwidth contention. To ad-
dress this scalability problem, we propose VM grouping 
mechanism to lower the parallelism degree of multiple 
VM migrations. The other consideration is the layout of 
VMs. The topology of a multi-tier application (such as 
tree or directed acyclic graph) usually affects the decision 
making of grouping and ordering correlated VM migra-
tions. Overall, we consider the following two scenarios. 

First, we consider a scenario where multiple VMs in 
each tier have the same function, and thus the multiple 
replicas are used for load balancing and fault tolerance, as 
shown in Fig. 9(a). Actually, if we keep at least one VM of 
each tier in both source data center and destination data 
center, then the service is available at both sides after a re-
configuration of connection management. A feasible 

grouping scheme is shown in Fig. 9(a). If the VMs in 
Group 1 are the first to be migrated concurrently, then the 
VMs in Group 2 must be migrated in the end. This guar-
antees that at least one minimal organism can serve the 
requests at both sides without inter-datacenter communi-
cation. The other VMs excluded from these two groups 
can be migrated one by one to fully use the bandwidth 
resource.  

Second, we consider a scenario where the applications 
show complicated topologies such as tree or directed acy-
clic graph (DAG), and multiple VMs have different func-
tions, as shown in Fig. 9(b). In this case, we need to mini-
mize the inter-datacenter network traffic. We model the 
application’s dependencies as a graph, where VMs are 
vertices and data flows as edges. The problem can be 
formulated as a uniform graph partitioning problem. We 
need to find the minimum cuts of the graph so that 
the cut sets have the smallest number of edges (un-
weighted case) or smallest sum of weights. We choose the 
most commonly used Fiduccia-Mattheyses algorithm [15] 
to solve this multilevel graph partitioning problem due to 
its high efficiency. For example, a 3-way partitioning can 
split the DAG in Fig. 9(b) into three subgraphs. We note 
that such processing can be done prior to VM migrations 
so that no computation overhead is imposed on the mi-
gration daemons and applications. 

4.4 Other Implementation Details 

There are still many other implementation details about 
VMbuddies, including memory dirtying rate measure-
ment, network bandwidth controller, disk migration, and 
network connections maintance. We provide these details 
in the Appendix of the supplementary file. 

5 EVALUATIONS 

In this section, we evaluate application performance deg-
radation and VM migrations cost in terms of the following 
metrics: 
(1) Service level degradation: the response time and 

throughput of multi-tier applications during migration.  
(2) Migration completion time: the elapsed time from 

starting the first VM migration to the time that all VMs 
finish migration. 

(3) Network traffic: the total data volume transmitted 
during the VM migrations. 

(4) Migration downtime: it is the duration that the ser-
vices of multi-tier applications are entirely unavailable. 

5.1 Experimental Setup 

Testbeds: We evaluate VMbuddies in both real WAN and 
in-lab testbeds. We deploy our prototype in data centers 
at Nanyang Technological University (NTU) and National 
University of Singapore (NUS). Our measurement has 
showed a stable throughput of 40 Mbps and a round trip 
latency of 20ms between the two sites connected via VPN. 
At both sites, we have HP Z400 workstations equipped 
with Intel Xeon W3680 3.33GHz 6 processors, 12GB DDR3 
memory, one 500GB 7200rpm SATA hard disk, and 1Gbit 
Ethernet interface. The host machines are with 64-bit Fe-
dora 16 Linux distribution and the hypervisor is Xen 4.1 
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Fig.9. Grouping VMs of different tiers to lower the parallelism de-
gree of VM migrations in the cloud. 
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with Linux 3.1 kernel. The hosts are allocated with 2 CPU 
and 4 GB memory to insure that the resource for migra-
tion daemons is sufficient. The VMs run in para-
virtualization mode, with the OSes having the same dis-
tribution of Linux as the hosts. By default, all VMs are 
configured to use 1 CPU and 1GB RAM. This allows us to 
easily simulate the overloaded scenario in the benchmark. 
Because the real WAN testbed cannot cover all test cases 
due to the limited bandwidth, we also simulate a WAN 
testbed in our lab by using the Linux traffic shaping inter-
face, which can freely control the bandwidth, latency and 
package loss experienced in WAN environments. 

Workload: We use a common multi-tier web bench-
mark RUBBoS (Rice University Bulletin Board System) [1] 
to investigate the performance of VMbuddies. RUBBoS 
simulates an online news forum like slashdot.org. It is a 
typical open-sourced benchmark that is widely used in 
academic communities. We can freely modify the work-
load generator and report more statistical information as 
we need. We deployed the benchmark in a 3-tier architec-
ture using Apache 2.2, Tomcat 7.0, and MySQL 5.5. We 
deploy the benchmark with VMs in m/n/o configuration 
for the three tiers, however, we only need to focus on the 
results of 1/1/1 configuration. This is because the result 
is representative for a general m/n/o configuration 
through VM grouping. In our experiments, each tier runs 
within a single VM. To generate workload in the servers, 
some other servers are used to run client workload gener-
ators at our lab. We simulate three typical workload pat-
terns [3]:  
 Static and Light Workload (S&L): 200 concurrent 

users access the website in a stable arriving rate, as 
shown in Fig.10 (a).  

 Dynamic and Heavy Workload (D&H): 500 and 1000 
concurrent users alternately access the website for 30 
seconds so as to simulate a cyclical on-off workload 
pattern, as shown in Fig.10(b).  

 Light workload with Symmetric Waves pattern 
(L&SW): This workload pattern consists of four-

minute windows. In each window, we first increase 
the concurrent users from 10 to 350 evenly, and then 
we decrease the users inversely. We repeat such 
windows to simulate a wave workload in which the 
memory dirtying rate changes slowly over time, as 
shown in Fig.10 (c). The workload shows almost 
equivalent average memory dirtying rate compared 
to the S&L. This pattern simulates the workload fluc-
tuations in real world (e.g., due to daily changes).  

Methodology: We evaluate the migration performance 
of RUBBoS by comparing the following approaches: 
 No Synchronization (NS): The multiple VMs are 

migrated sequentially using default Xen migration 
algorithm without synchronization. This is the base-
line approach.  

 Migration Optimizations (MO): The multiple VMs 
are migrated one by one without synchronization, 
using optimized Xen migration algorithm (Section 
4.2). 

 Largest memory Load VM Last scheduling (LLL): 
the simple scheduling of VM migrations based on 
synchronization protocol (Section 3.2). 

 Optimal Bandwidth Allocation (OBA) in Section 3.3 
and 3.4.  

 LLL+MO, OBA+MO: the multiple VMs are migrat-
ed using MO combining with LLL and OBA algo-
rithm, respectively. OBA+MO is the algorithm imple-
mented in VMbuddies. 

We choose NS as the baseline because it has no syn-
chronization costs and the migration performance is the 
best so that we can clearly study synchronization over-
heads caused by LLL and OBA. When the VMs are mi-
grated in WAN testbeds, we first replicate the VMs’ disk 
images to the destination before the memory migration 
begins. The results reported below are the average of the 
three trials (except failed migrations) and refer to the cost 
of memory migration and disk synchronization during 
VM live migrations. 

5.2 Memory Dirty Rate and WWS Measurement 

The shadow model of Xen allows us to track the number 
of dirty pages within any time window. We conducted an 
experiment to measure the memory dirtying rate of each 
tier when RUBBoS runs D&H, S&L and L&SW workloads. 
For each VM, we read the dirty bitmap and then clean it 
every one second. Fig. 10 plots the number of dirty pages 
generated by three workloads in different time windows. 
The x-axis shows elapsed time and the y-axis measures 
the number of pages dirtied within one second. The 
memory dirtying rate of each tier retains at relative low 
level of fluctuation for S&L workload. In contrast, the 
fluctuation is significant in terms of phase changes as the 

  TABLE 2 
    MEASUREMENT OF WRITABLE WORKING SET 

Workloads 
Writable Working Set (MB) 

Web-VM App-VM DB-VM 

S&L 63 96 502 

D&H 166 212 818 

L&SW 92 134 616 
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Fig.10. The number of dirty pages observed for three types of 
RUBBoS workload. 
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load changes for D&H workload. Moreover, the phase 
changes well align with each tier when workload changes. 
This result justifies our design on characterizing the 
memory access pattern of each VM by observing average 
memory dirtying rates periodically. Also, VMs in differ-
ent tiers demonstrate different memory dirty rates, indi-
cating different requirements of network bandwidth dur-
ing migration. 

To measure the VMs’ Writable Working Set (WWS), 
we first clean the dirty bitmap and then sample it every 
one second periodically. Note that the dirty bitmap was 
never cleaned so that the sampled number of each peek 
was the accumulation of dirty pages from the beginning 
of the test. If the page numbers in two consecutive peek 
are equal, this indicates that the writable working set be-
comes stable. Table 2 also shows the writable working set 
of different tiers of S&L, D&H and L&SW workloads in 
four minutes. Note that WWS denotes active memory 
pages in a VM so it is usually smaller than the VM’s 
working set. The size of writable working set implies the 
opportunity of network traffic reduction by using 
memory ballooning.  

5.3 Service Level Degradation 

We first consider a hot spot mitigation scenario where the 
RUBBoS application with D&H workload must be mi-
grated from an overloaded data center at NTU to another 
at NUS. We place the application to light-load servers and 
quadrupled each VM’s CPU and main memory allocation 
once the VMs resume at the new data center.  

Fig. 11 shows how the performance of RUBBoS web 
site is affected when the VMs were migrated. For MO 
(without synchronization), during the pre-copying phase 
of web-tier, the VM is still running at the source data cen-
ter, and a slight performance degradation is observed. 
However, once the Web-VM is moved to the destination 
data center and App-VM migration begins, the average 
response time significantly increases to 2.2 seconds com-
pared to the prior 0.49 second. This degradation aggra-
vates during the migration of DB-VM. The average re-
sponse time raises 4.8X to 2.85 seconds, and the average 
throughput drops from 155 req/sec to 126 req/sec, nearly 
18% throughput loss. The reason behind this observation 
is that the co-located service is decoupled in two data 
centers during the migrations, and the migration process 
also contends against the application for network band-
width.  In contrast, VMbuddies guarantee the correlated 
VMs always stay in the same data center, no matter be-
fore migration or after migration. The application only 
suffers 30% increase of response time and 1% loss of 
throughput due to VM migration overhead. VMbuddies 
reduces the average response time by 77% and improve 
18% throughput compared to MO. When the VM migra-
tions complete, the average response time drops to 0.13 
second and the average throughput raises to 175 req/sec 
in both MO and VMbuddies because the capacity of the 
VMs increases by a factor of 4.  

As VMbuddies is designed to mitigate application per-
formance degradation caused by splitting VMs between 
data centers, it’s entential to measure the synchronized 
and unsynchronized periods during VM migrations. As 
shown in Fig. 12, although sequential migration ap-
proaches including NS and MO show relatively shorter 
migration completion time, they suffer long-term unsyn-
chrionized periods when App-VM and Web-VM are mi-
grated. The application performance is significantly de-
graded during this period, as shown in Fig.11. In contrast, 
LLL, OBA and their optimizations can guarantee the ap-
plication performance through synchronization protocol 
during VM migrations, at the cost of reasonable increase 
of migration completion times. Compared to NS, 
VMbuddies (OBA+MO) reduces the migration comple-
tion time from 1478 seconds to 880 seconds, a 40% reduc-
tion of time that the appliction suffer from service level 
degradation during VM migrations.  

5.4 Migration Cost 

As a result of the performance penalty during the migra-
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Fig.11. The performance of RUBBoS application using D&H work-
load when it is migrated in a real WAN testbed. 
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Fig.12. The synchronized and unsynchronized time measured when 
the D&H workload is migrated in a real WAN testbed. 
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Fig.13. The migration completion time of D&H, S&L and L&SW work-
loads over networks with 40 and 400 Mbit/sec bandwidth. 
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tion, it is important to minimize the migration completion 
time in order to reduce this period of lower performance. 
Fig. 13 shows the migration completion times of D&H 
and S&L workloads using different migration approaches 
in real WAN and in-lab testbeds. The maximum available 
network throughput in the in-lab testbed is 400 Mbit/sec, 
representing a high-speed network. Fig. 14 shows the 
corresponding network traffic generated during the mi-
grations and Fig. 15 shows the total migration downtime.  

We have the following observations: (1) OBA causes 
less synchronization cost than LLL. Specifically for D&H 
workload on high-speed network, OBA can reduce 18% 
total migration completion time and 16% network traffic 
compared to LLL. It nearly avoid application perfor-
mance degradation during migration while only experi-
encing 10% increase of migration completion time com-
pared to NS; (2) By using MO strategies, all migration 
approaches show significant reduction of migration com-
pletion time and network traffic. The reduction is more 
significant for memory intensive workloads or low-speed 
network environments. For D&H workload on the real 
WAN testbed, it can reduce the migration cost by 47%. In 
summary, VMbuddies reduces the migration cost by 36% 
on average compared to NS. (3) For the same migration 
approach, S&L workload shows much less migration cost 
than D&H workload in both high-speed and low-speed 
networks. The reason is that higher memory dirtying rate 
in D&H results in much more data to be sent in each 
round of pre-copying; (4) Although the average memory 
dirtying rate of L&SW workload is almost equal to that of 
S&L, L&SW shows a little higher migration costs and 
higher standard deviations than S&L due to errors of 
workload pattern predictions and overhead of frequent 
bandwidth re-allocation. (5) LLL algorithm always causes 
higher migration cost than OBA algorithms as it causes 
higher synchronization cost for the Web-VM and App-
VM migrations, as shown in Table 3; (6) The lower speed 
network implies more network traffic, as shown in Fig. 13. 
As a result, the reduction of migration completion time is 
not linearly proportional to the increase of network 
bandwidth; (7) All migration approaches show slight dif-
ference of total migration downtime between each other. 
Although VMbuddies leads to less than 4% increases of 
total migration downtime compared to NS, it avoids the 
significant application performance degradation during 
live migration of correlated VMs.  

We further examine the log of live migration in NS and 

VMbuddies. In NS, the live migration of DB-VM always 
generates more than 3 GB network traffic for D&H work-
loads whether it is migrated over 40 Mbps or 400 Mbps 
networks. The reason is that the migration process always 
terminates the pre-copying phase only when the network 
traffic already exceeds 3 times of its memory size. Similar-
ly, the migration process of App-VM terminates the pre-
copying always after 30 rounds, but most of iterations are 
unnecessary, simply causing more network traffic and 
migration time. In VMbuddies, all VMs accelerate the 
progress of live migration through our intelligently ter-
minating the iterative pre-copying. For S&L workload 
migrated over the network with 400 Mbps bandwidth, we 
find that NS works well because the memory dirtied in 
these VMs relatively slowly. In this case, the ballooning 
mechanism takes effect on the migration cost reduction 
because the VM shows smaller working set when it expe-
riences light memory load. 

5.5 Algorithms Accuracy and Runtime Overhead 

We study the workload modeling errors and algorithm 
overhead by comparing L&SW with S&L, as shown in 
Fig.16. We use S&L as a baseline and illustrate the nor-
malized migration cost of L&SW, both are measured in 
the real WAN environment using “OBA + MO” approach. 
L&SW show reasonable higher migration cost than S&L 
due to runtime overhead and model errors. When the 
time window of memory dirtying rate prediction increas-
es, the frequency of bandwidth re-allocation decreases 
and thus the migration completion time is reduced. The 
network traffic is not sensitive to the changes of time 
window because live migration of VMs usually last long 
in WANs and positive/negative predication errors coun-
teract each other. However, migration downtime show 
larger standard deviations when the time window in-
creases. This is because the stop-and-copy phases are per-
formed at different time windows and a larger window 
implies higher prediction error.  

We further study the runtime overhead of Algorithm 2 
on a host machine configured with 2 CPU and 4 GB 
memory. We exponentially increase the number of VMs 
from 3 to 96, i.e., number of equations to be solved. Fig. 17 
shows that the compute cost of Algorithm2 is linearly 
proportional to the number of VMs. This demonstrates 
that VMbuddies cause acceptable runtime overhead. In 
practice, we never need to solve a large number of equa-
tions because our VM grouping scheme guarantees only a 
small set of VMs is migrated concurrently.  
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Fig.14. Network traffic of migrating D&H, S&L and L&SW workloads 
over networks with 40 and 400 Mbit/sec bandwidth. 
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Fig.15. Total migration downtime of migrating D&H, S&L and L&SW 
workloads over networks with 40 and 400 Mbit/sec bandwidth. 
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In the end, we summarize the evaluation results of dif-
ferent migration approaches. MO always shows the low-
est cost of VM migrations, however, it cost significant 
application performance degradation due to splitting 
VMs in different data centers. LLL and VMbuddies 
(OBA+MO) both can significantly reduce application per-
formance degradation through our synchronization pro-
tocol. However, LLL results in much more synchroniza-
tion cost than that of VMbuddies. VMbuddies guarantee 
the application performance during migration, at the cost 
of slight increase of migration cost. 

6 RELATED WORK  

We present the related work in the following three cate-
gories: single-VM migrations, multiple VM migrations 
and multi-tier application migration in the cloud. 

Single-VM Live migration over LANs or WANs: 
There have been many approaches proposed for VM live 
migration, such as pre-copying [10][30], post-copying [16], 
full-system log/replay [24]. Additionally, there have been 
a number of optimizations to further reduce the overhead 
of pre-copying algorithm, including memory compres-
sion [20], page de-duplication [12] [14] [38], partial migra-
tion [5], parallelizing migration[33], shared storage accel-
erating [22] and others [19]. Those optimizations are also 
applicable to VMbuddies. Unlike VM migrations in LANs 
where the disk is shared and network connections are 
sustained, the disk and network connections need special 
care in WANs. For disks, block-level disk pre-copying 
and write throttling mechanisms was proposed to mi-
grate the persistent storage [8][42]. Mashtizadeh et al. 
evaluated snapshotting, dirty block tracking and IO mir-
roring for storage migration supported by VMware ESX 
[29]. For network connections, VPN [38], IP tunneling and 
dynDNS [8] were proposed to guarantee the network 
switching transparent to VM applications. VM Turntable 
demonstrated VM live migration over WAN using dedi-
cated optical links for Grid computing [34]. CloudNet 
built a private network using MPLS-based VPN for VM 
live WAN migration [38]. Xen-Blanket provided an ab-
stract layer on top of Xen to support VM live migration 
across multiple cloud providers [37]. These works all fo-
cused on migrating a single VM in LANs or over WANs. 
None has considered the problem of correlated VM mi-
gration in multi-tiered applications across distributed 
data centers.  

Multi-VM Migration: There have been limited pro-
posals on reducing the cost of multiple concurrent VM 
migrations. Deshpande et al. investigated live gang mi-
gration of VMs in LAN environments [14]. They pro-
posed page and sub-page level memory de-duplication 
among co-located VMs and compression strategies to op-
timize memory migration of multiple VMs. As the net-
work bandwidth is sufficiently high in LANs, their work 
did not consider the correlated VM migration problem. 
Al-Kiswany et al. were also motivated by data de-
duplication, and proposed VMFlocks to optimize cross-
datacenter transfer and instantiation of disk images of 
multiple correlated VMs [4]. Their work focused on ex-
ploiting the similarity among the VM images and didn’t 
consider the memory live migration. These works are 
orthogonal to the theme of this paper. They focus on re-
ducing the data transfer by de-duplication or fine-grained 
data sharing. In contrast, VMbuddies employ network 
bandwidth allocation strategies to coordinate the corre-
lated VM migrations so that the total synchronization cost 
is minimized.  

 Multi-tier Application Migration in the Cloud: A 
number of studies had investigated the live migration per-
formance of multi-tier applications for both intra- and in-
ter-datacenter scenarios. Voorsluys et al. [35] evaluated the 
performance degradation of 2-tier Web 2.0 applications 
running within VMs. The similar evaluations were con-
ducted in [17][23]. Their experimental results all showed 
significant performance degradation in terms of request 
response time, even when the multi-tier applications are 
migrated in the same data center. While those studies had 
given preliminary results on the performance problem of 
correlated VM migrations in a multi-tier application, they 
had not formulated or solved the problem. Recently, Zheng 
et al. proposed Pacer [43], a progress management system 
for VM migration in the cloud. Pacer controls VM migra-
tion completion time based on analytic models of progress 
prediction and online adaptation. Pacer is perhaps the 
most similar work with VMbuddies. However, Pacer fo-
cuses on progress management of single-VM migration, 
and the evaluation result on correlated VM migrations is 
very limited. This paper concentrates on the correlated VM 
migration problem. We formulate it as a DCOP problem, 
and propose an efficient algorithm to solve it.  The evalua-
tion studies provide more insight on live migration of 
complex applications. 

7 CONCLUSION 

As more and more multi-tier applications are hosted in 
virtualization environments across geographically dis-
tributed data centers, the efficiency of live migration of 
VMs in a multi-tier application becomes important. In this 
paper, we formulate the VMs live migration of multi-tier 
applications as a correlated VM migrations problem, and 
identify the low efficiency of the basic approach in cur-
rent virtualization platforms such as Xen. Therefore, we 
propose a coordination system called VMbuddies for cor-
related VM migrations. To minimize the migration cost, 
VMbuddies coordinates VM migrations with a synchro-
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nization protocol and an optimal network bandwidth 
allocation algorithm. Experiments using a public bench-
mark show that VMbuddies achieves lower average re-
sponse time by 77% and higher throughput by 18%, and 
reduces average total migration cost by 36% in comparison 
with Xen.  

We also note that the performance models of VM live 
migration would facilitate data center administrators in 
many scenarios, such as, scheduling long-term VM migra-
tion with deadline constraints, making tradeoffs amongst 
different migration performance metrics through network 
resource control, making decision for grouping and or-
dering correlated VMs to reduce migration cost. In our 
future work, we plan to explore VMBuddies for more 
complicated scenarioes, such as workflow [40], MapRe-
duce and MPI applications that have tree or directed acy-
clic graph (DAG) topologies. 
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