
71

Library-Based Placement and Routing in FPGAs with Support
of Partial Reconfiguration

FUBING MAO, Nanyang Technological University
YI-CHUNG CHEN, University of Manchester
WEI ZHANG, Hong Kong University of Science and Technology
HAI (HELEN) LI, University of Pittsburgh
BINGSHENG HE, Nanyang Technological University

While traditional Field-Programmable Gate Array design flow usually employs fine-grained tile-based place-
ment, modular placement is increasingly required to speed up the large-scale placement and save the synthe-
sis time. Moreover, the commonly used modules can be pre-synthesized and stored in the library for design
reuse to significantly save the design, verification time, and development cost. Previous work mainly focuses
on modular floorplanning without module placement information. In this article, we propose a library-based
placement and routing flow that best utilizes the pre-placed and routed modules from the library to sig-
nificantly save the execution time while achieving the minimal area-delay product. The flow supports the
static and reconfigurable modules at the same time. The modular information is represented in the B*-Tree
structure, and the B*-Tree operations are amended together with Simulated Annealing to enable a fast
search of the placement space. Different width-height ratios of the modules are exploited to achieve area-
delay product optimization. Partial reconfiguration-aware routing using pin-to-wire abutment is proposed
to connect the modules after placement. Our placer can reduce the compilation time by 65% on average
with 17% area and 8.2% delay overhead compared with the fine-grained results of Versatile Place and Route
through the reuse of module information in the library for the base architecture. For other architectures,
the area increase ranges from 8.32% to 25.79%, the delay varies from −13.66% to 19.79%, and the runtime
improves by 43.31% to 77.2%.

CCS Concepts: � Hardware → Placement; Wire routing; Software tools for EDA;

Additional Key Words and Phrases: FPGA, partial reconfiguration, B*-tree, placement, routing

ACM Reference Format:
Fubing Mao, Yi-Chung Chen, Wei Zhang, Hai (Helen) Li, and Bingsheng He. 2016. Library-based placement
and routing in FPGAs with support of partial reconfiguration. ACM Trans. Des. Autom. Electron. Syst. 21,
4, Article 71 (May 2016), 26 pages.
DOI: http://dx.doi.org/10.1145/2901295

This work was partly supported by a MoE AcRF Tier 2 Grant No. MOE2012-T2-1-126 in Singapore and by
Grant No. R9336 from Hong Kong SAR.
Authors’ addresses: F. Mao and B. He, N4-B2b-05, HESL Lab, School of Computer Science and Engineering,
Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; emails: fmao001@e.ntu.edu.sg,
bshe@ntu.edu.sg; W. Zhang, Room 2419, Department of Electronic and Computer Engineering, Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; email: wei.zhang@ust.hk; Y.-C.
Chen, School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK; email:
yi-chung.chen@manchester.ac.uk; H. Li, Department of Electrical and Computer Engineering, University of
Pittsburgh, Benedum Hall, 3700 O’Hara St, Pittsburgh, Pennsylvania, USA; email: hal66@pitt.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1084-4309/2016/05-ART71 $15.00
DOI: http://dx.doi.org/10.1145/2901295

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

http://dx.doi.org/10.1145/2901295
http://dx.doi.org/10.1145/2901295

71:2 F. Mao et al.

1. INTRODUCTION

With the technology advancement, both the semiconductor industry and the design
community face the great challenge where the design effort is continuously increasing
[Castro-lpez et al. 2006]. The rapidly growing design complexity and short time-to-
market pressure make the problem even worse [Castro-lpez et al. 2006]. Library-based
design is a promising solution to address this challenge as it facilitates design reuse.
Design reuse is an approach that utilizes a previously successful design in a new
design project to reduce the design, verification cycle, and risk [Castro-lpez et al.
2006; Xiu 2007]. It also reduces design cost since the reused components have been
prepared and verified [Castro-lpez et al. 2006; Xiu 2007]. Library-based design has
been studied in previous work. Wang and Leeser [2010] present a floating-point library
to support floating-point computation in general formats and enable a higher level
of parallelism. Sklyarov et al. [2003] reuse hardware components of the library in
Field-Programmable Gate Array (FPGA) design for improving the verification of the
digital circuits implemented on FPGA. In Lavin et al. [2011], hard macros (already
placed and routed) are reused to reduce the compilation time. Intellectual Property
(IP) reuse is one type of design reuse and it helps to address the gap between the
capacity for design complex systems and productivity [Gajski 1999]. IP modules are
used for improving productivity in Zergainoh et al. [2005]. In Hekmatpour et al.
[2005], a methodology is described for IP design and integration. The above-mentioned
studies mainly consider library-based design for the design of application-specific
circuits or to reduce compilation time for FPGA design flow based on hard macros
consisting of synthesized, placed, and routed circuits.

In recent years, FPGA has attracted attention as accelerators in computing systems
due to its high performance, low power, high design flexibility, and low cost [Telle et al.
2004; Stitt et al. 2004; Vereen, L. 2004]. FPGAs are widely used in various fields to
accelerate the intensively critical computations [Cong et al. 2011]. To implement a
design in FPGA, placement and routing are important stages that significantly affect
the performance of the design. In traditional design flow, fine-grained tile-based place-
ment is performed to achieve the optimal solution. However, it usually requires a long
searching time. Especially for a large-scale design, the runtime of tile-based placement
can be hours or days [Sankar and Rose 1999; Gort and Anderson 2014]. Hierarchical
or modular floorplanning is hence proposed to speed up the process [Areibi et al. 2007;
Samaranayake et al. 2009]. The requirement for modular floorplanning and placement
also arises from the support for dynamic partial reconfiguration (PR) in FPGA. This
operation requires the separation of PR logic, that is, the logic reconfigured during
operation, and static logic, that is, the logic kept unchanged during operation. Thus,
decomposing the circuit into logic modules is a well-adopted method to differentiate the
reconfigurable logic and static logic [Xilinx 2012; Altera 2010]. The final and most im-
portant advantage of the module-based placement is that it can enable module reuse,
and the commonly used modules with pre-placement and routing can be stored in a
library for later reuse to save significant development effort, like IP cores.

In this article, in order to take advantage of design reuse in FPGA, we propose a
library-based flow to improve the efficiency of placement and routing. The pre-placed
modules in the library are used to significantly save placement time. Moreover, with
accurate pre-placement module information, it can better direct the global placement of
the modules in the whole design. A B*tree-based placer (BMP) is introduced to perform
a fast modular placement on both fine-grained and coarse-grained FPGA resources
considering both module sizes and aspect ratios. Reconfigurable modules with multiple
contexts are well supported during the placement. Finally, we propose a pin-to-wire
abutment routing interface to connect the modules in the reconfigurable and static
regions which does not require the macro or proxy logic which are usually needed in
current tools [Xilinx. 2011b; Carver et al. 2009; Athanas et al. 2007].

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

Library-Based Placement and Routing in FPGAs with Support of Partial Reconfiguration 71:3

The proposed flow has been integrated into the Versatile Place and Route (VPR) [Rose
et al. 2012] to substitute the original placer and router. Experiments demonstrate im-
provement on execution time with acceptable area and delay overhead compared with
the results of tile-based VPR. The results show that BMP has around 17% overhead in
area and 8.2% overhead in delay. The execution time is significantly improved by 65%
for the basic architecture. For other architectures, the area increase ranges from 8.32%
to 25.79%, the delay varies from −13.66% to 19.79%, and the runtime improves by
43.31% to 77.2%. We also perform thorough design space explorations to analyze and
optimize the parameters of BMP. Our main contributions can be summarized as follows:

—We propose a library-based placement and routing flow to facilitate design reuse
and improve the placement quality. The multi-context reconfigurable module is well
supported during the placement and routing.

—We utilize B*-tree representation to enable a fast modular placement on both fine-
grained and coarse-grained fabric considering different module ratios.

—We introduce the detailed pin-to-wire routing interface to support the PR-aware
routing.

The rest of the article is organized as follows. Section 2 reviews the previous work
related to module-based design flow. Section 3 introduces the overview of our proposed
placement and routing flow. Section 4 discusses the methodology for module library
construction prepared for the later placement and routing. The detailed placement
steps are introduced in Section 5, and Section 6 describes the PR-aware routing in-
terface design. Section 7 describes the local placement and local routing for multiple
contexts in the PR region. Section 8 discusses the experimental results and parameter
optimizations through design space exploration. Finally, we conclude with our remarks
in Section 9.

2. RELATED WORK

2.1. Tile-Based Placement

Conventional place and route tools for FPGA are based on fine-grained homogeneous
units to map the logic functions. Verilog-to-Routing (VTR) [Rose et al. 2012] gave a
complete flow from hardware description language (HDL) to physical mapping on FP-
GAs of various hardware architectures, where VPR was used inside to perform the
tile-based placement and routing. Later work extended the fine-grained placement to
heterogeneous FPGAs. For example, Jamieson et al. [2013] introduced the genetic al-
gorithm for solving the heterogeneous FPGA placement. Selvakkumaran et al. [2004]
proposed a multilevel multi-resource partitioning algorithm for heterogeneous FPGA
placement. Hu [2006] employed a multi-layer density system for the heterogeneous
FPGA placement. Gort and Anderson [2012] proposed an analytical placer for hetero-
geneous FPGAs. However, as mentioned, the tile-based placement faces the challenges
of a long runtime for large-scale designs.

2.2. Module-Based Floorplanning and Placement

Module-based floorplanning has been proposed in recent years to ease the mapping of
large-scale designs in modern FPGAs. Cheng and Wong [2006] proposed a floorplan-
ning algorithm for a heterogeneous resource. They first found a position for the specific
slicing structure and then used simulated annealing to tune towards a better solution.
Yuan et al. [2005] proposed an approach, named the “less flexibility first” algorithm, to
find locations of different modules and used a metric to estimate the solution priority.
Banerjee et al. [2009] used a three-phase deterministic approach to get a unified
floorplan topology and then used the bipartitioning method to find the final positions
for the heterogeneous blocks. Liu et al. [2011] proposed a high utilization method for

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

71:4 F. Mao et al.

heterogeneous FPGAs. They used the non-slicing structure to optimize the wirelength
first and then used the min-cost-max-flow algorithm to assign the positions to Con-
figurable Logic Blocks (CLBs). Finally, they assigned positions to the Random Access
Memory (RAMs) and Digital Signal Processing (DSPs). Chen et al. [2014] proposed a
packing and analytical placement flow for heterogeneous FPGAs from floorplanning to
detailed placement. They used look-ahead legalization to allocate positions to different
resources.

In order to support partial reconfiguration, commercial FPGA mapping flow has in-
cluded PR-aware placement. However, it needed manual specification, which was an
error-prone and tedious process. Xilinx Early-Access (EA) PR design flow [Xilinx 2012;
He et al. 2012; Xilinx. 2011a] was commonly used in the PR designs, which required
that PR regions were manually defined in terms of shape, size, and physical location. In
order to reduce the manual efforts for searching in a large design space, various works
proposed automatic floorplanning for PR modules. In an earlier work [Bazargan et al.
2000], each PR module was modeled as a fixed-size block and the PR floorplanning
was formulated as a three-dimensional template placement problem. However, this as-
sumption was difficult to apply in practical applications. Later studies like Yousuf and
Gordon-Ross [2010] and Beckhoff et al. [2013] developed automatic flow for PR floor-
planning based on the Xilinx process and a special bus was needed to connect modules
and support the runtime reconfiguration. Carver et al. [2009] developed an automated
simulated annealing-based bus macro placement tool and evaluated the tool using tim-
ing results generated by the Xilinx PAR (place and route) utility. The dimensions of
the partial reconfigurable region were fixed and the PR region was manually placed,
and then the bus macro was automatically placed around the reconfigurable region.
Banerjee et al. [2011] extended the floorplanning algorithm in Cheng and Wong [2006]
to consider the PR floorplanning in heterogeneous resources. In that work, a global floor-
plan generation approach was introduced to obtain shared positions for common mod-
ules across sub-task instances. Singhal and Bozorgzadeh [2006] proposed a multi-layer
floorplanner that combined the multiple reconfigurable design’s floorplanning and max-
imized the reuse of common components to reduce the reconfiguration overhead. These
two works focused more on the maximization of resource reuse among multiple designs.
Vipin and Fahmy [2011] proposed an efficient mapping method that performed the
floorplanning optimization of reconfigurable modules from the high-level estimation.

There was also work proposed to perform simultaneously floorplanning and place-
ment or a direct global placement. Montone et al. [2010] introduced a mapping flow,
which partitioned the scheduled task graph into reconfigurable regions and then per-
formed floorplanning and placement of reconfigurable regions in heterogeneous re-
configurable FPGAs targeting the wirelength minimization. Most recently, He et al.
[2012] proposed a fine-grained placement for PR FPGA. Compared with these studies,
our work focused more on the efficient reuse of pre-placed modules in the library to
significantly save execution time. In addition, our placement introduced B*-tree rep-
resentation to represent module information and speed up the searching speed while
considering different ratios of modules during placement to achieve the area-delay
product optimization.

2.3. PR-Aware Routing

The routing interface design is a major step for supporting the PR operation and used
for connecting the static logic and reconfiguration logic. In Xilinx FPGAs, bus macros
were predefined and used for connecting the static and reconfigurable modules [Shah
and Rose 2012; Claus et al. 2007]. The bus macros were double-lines or hex-lines in the
early generation of Virtex II or Virtex II-Pro devices, while a Look-Up-Table- (LUT)
based bus macro was used in recent devices, such as Virtex-4, Virtex-5, and Spartan-
III. Claus et al. [2007] used a bus macro generated based on Xilinx Design Language

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

Library-Based Placement and Routing in FPGAs with Support of Partial Reconfiguration 71:5

Fig. 1. Mapping flow for library-based design.

(XDL) for connecting the static and reconfigurable parts. Koch et al. [2008] proposed
a tool called “ReCoBus-Builder” to enable communication between the static and
reconfigurable modules through a fixed bus infrastructure or dedicated point-to-point
links with other parts of the system. Athanas et al. [2007] used a wrapper structure
to connect different regions and each reconfigurable module was encased in a wrapper
structure before placement and routing. The wrapper structure had anchor points
that existed at pre-defined locations for the module’s ports. Xilinx PR design flow
[Xilinx. 2011b] used “proxy” logic to solve the boundary crossing connection problem.
The “proxy” logic was a one-input LUT that had a fixed placement in a reconfigurable
region. It must be the same for every reconfigurable module. It involved logic overhead
for implementing the “proxy” logic and extra delay for passing the “proxy” logic. Koch
et al. [2010] used the pre-assigned route for connecting different regions and eliminat-
ing “proxy” logic. However, it imposed constraints on the communication between static
systems and PR regions that may increase the design complexity and narrow its range
of usage. Shah and Rose [2012] explored the pin-to-wire connections and measured
the difficulty to form such type connections. However, it was not used in the PR system
and it did not describe the interface design when there were more than two PR regions.
We adopted the pin-to-wire concept and proposed a detailed pin-to-wire interface to
support PR-aware routing without the requirement of the bus macro or “proxy” logic.

3. LIBRARY-BASED MAPPING FLOW

The mapping flow we propose to solve the library-based placement is shown in
Figure 1. The flow is composed of four main stages: information collection of indi-
vidual sub-function modules, netlist combination, module-based placement, PR-aware
routing targeting delay and area optimization, and local placement and local routing
for PR regions. First, we assume that logic modules have been decomposed from the
main logic function by designers. The first stage gathers the information on area, de-
lay, connection ports, netlist, and so on, of the modules from the library storing the
information of modules. If the module is not available in the library yet, then our flow
can run a trial round to generate the corresponding information from the HDL files
of the modules. Since different ratios may be suitable for different designs, the trial
round will generate the module placement and routing for k different ratios that re-
sult in minimal area-delay product. If the module is a reconfigurable module, then the
area and delay for multiple contexts are considered where each context is a configura-
tion. Then the logic modules are combined to form the netlist for the whole function
in the second stage. In the third step, a B*-tree-based placer (BMP) is introduced to
place the static and reconfigurable modules simultaneously in heterogeneous FPGA
resources. BMP introduces B*-tree representation described in Section 5 [Chen and
Chang 2006] to model a floorplan and enables corresponding operations for fast search
of the optimal solution. The cost function of total delay and area is used to guide the
simulated annealing-based search algorithm [Chen and Chang 2006]. Note that differ-
ent ratios may occupy different placement resources that affect the placement result
significantly, especially considering the special resource and position constraint, that

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

71:6 F. Mao et al.

Fig. 2. Library-based structure.

is, modules with memory blocks must be placed in special positions. During the place-
ment, not only the module size and delay but also the aspect ratio (width/height) are
considered to achieve the area-delay product optimization, which creates a large solu-
tion space. After placement, the PR-aware routing is performed to connect the modules
with restricted routing outside the PR region to prevent resource interference during
the PR procedure. The last stage of the flow is specifically for PR modules. It performs
local placement and routing for each context inside the module.

For designing a new function, the designer only needs to list modules in use and pro-
vide the connection port name and top module Input/Output (IO) information. Then, to
finish the design, only module-based placement and routing are needed. Figure 2 shows
an example for the library-based design. There are totally four functions (modules), A,
B, C, and D, where B and C are reconfigurable modules with multiple contexts. The
designer can specify the module list, such as A1, B1, C1, and D1, as initial modules and
connections in the top netlist. Then modules are fetched from the library and combined
into a complete function netlist. After modular placement and routing, the netlist is
implemented. For reconfigurable modules B and C, the implementation supports other
contexts to substitute B1 and C1 during operation.

4. MODULE LIBRARY CONSTRUCTION

As shown in the overall mapping flow, we need to prepare the modules and store the
information of all the modules in the module library when needed. VTR [Rose et al.
2012] can be used to synthesize each module from verilog file to layout. The synthesized
modules stored in a library may contain both fine-grained and coarse-grained resources.
We need to consider the following several aspects for constructing a module library.
First, we need to determine the delay, area, and pinlist for the reconfigurable modules
with multiple contexts. Second, we need to choose the k ratios of modules to achieve a
good area-delay tradeoff. Third, we need to support the delay estimation for the module
with a specific ratio, that is, a user-specific ratio that is not available in the current
library, since the modules are only synthesized with the proper k ratios. In the next
subsections, we discuss each of the aspect in detail.

4.1. Synthesis of Reconfigurable Modules

Since the reconfigurable modules have multiple contexts for different functions, the
synthesis flow needs to run for each context of the reconfigurable function. The area
and delay of the module are determined by the maximum one across all the contexts.
However, since the routing between the modules may go through the static region
and cannot be reconfigured, the pinlist of the module needs to satisfy the input/output
requirement of all the contexts. Hence, the pinlist of the module is the combination of
IOs of all the contexts. For example, Figure 3 shows the two contexts of a reconfigurable
module. Since the context in (a) has a larger area than the context in (b), the module
size and delay are determined according to the context in (a). However, for the pinlist
of the module, we need to find out all the unique IO nets. For example, assume that two

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

Library-Based Placement and Routing in FPGAs with Support of Partial Reconfiguration 71:7

Fig. 3. Two contexts of a reconfigurable module.

Fig. 4. Relation between shapes and delay for the MCNC20 benchmark.

Fig. 5. Relation between shapes and area for the MCNC20 benchmark.

contexts, context R1 and context R2, share the IO nets of netA and netB, but context
R2 has a unique IO net of netC. In order to enable the context switch between R1 and
R2, all the required IO nets, netA, netB, and netC, need to be routed and connected.
Hence, the total pinlist of the reconfigurable module is the combination of unique IOs
of the two contexts, which is {PadA, PadB, PadC}. Then the local placement and routing
of the contexts inside the module are based on the pin arrangement of the module.

4.2. Module Ratio Selection

We observe that the shape of a module shows impact on delay and area. Figures 4
and 5 demonstrate simulation results of delay and area of Microelectronics Center of

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

71:8 F. Mao et al.

Fig. 6. Module of various shapes and delay.

North Carolina (MCNC) benchmarks [Minkovich K. 2007] for various aspect ratios,
respectively. Legends shown in the figures are aspect ratios, width over height, of
the shapes. Note that here we assume the basic reconfigurable unit is one CLB
without lost of generality. The parameter for the aspect ratio can be set to other
number without affecting the placement method. It can be seen from the figure
that, among different ratios, the delay has at most 38% difference for the same
benchmark. Figure 6(a) and (b) demonstrate placement results of an example module
rng5 in the shapes of square and rectangle, respectively. The corresponding delays
are 2.56ns and 2.05ns. The module of the square shape has extra 25% delay compared
to the rectangular one. The module rng5 is a simple logic that only needs fewer
tiles for the logic function, thus, a shape with a low aspect ratio makes the input
signal pass through logic to output in a shorter path, incurring shorter delay. The
area of the benchmarks has less variation than delay for different aspect ratios
because each benchmark has fixed numbers of tiles in usage. Area differences among
various ratios are from the wasted area of empty tiles included in the rectangular
shape.

There are several types of resources in FPGA and different resources in a module
must be placed in their corresponding positions. Figure 7 shows the impact of ratio
change to a module with heterogeneous resources. For example, a logic has three
memory blocks and six CLBs. When the ratio is 1/4, we can place it into region A.
When we change the ratio to 4/1, the new space with the same area is invalid, since
it does not have enough resource (RAMs) for fitting the logic. Thus, empty region B
cannot be used for the module. Hence, for heterogeneous modules, we need to check
not only the space size but also the type of resource. In other words, we must place the
module in a valid position that makes use of the resource efficiently and results in a
shorter delay.

To indicate the delay and area for each module with different aspect ratios, we
introduce a parameter τ which is area × delay of a shape of the module. Shapes of
each module are sorted in the ascending order of τ in a list for reference in the later
placement stage.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

Library-Based Placement and Routing in FPGAs with Support of Partial Reconfiguration 71:9

Fig. 7. Coarse-grained module with different ratios.

Fig. 8. Module delay estimation for a specific ratio.

4.3. Delay Estimation Model for the Modules with Specific Ratios

Constructing an efficient module library is a challenging problem because it is difficult
and impractical to collect the implementations of a PR logic with all the possible ratios
in the module library. We currently store the implementations of the modules with
the best k τ in the module library. However, sometimes the user may want to try
other ratios during the module placement without pre-synthesized module layout. To
enable this flexibility, we propose an approach for estimating the module delay based
on the available module information for the specific ratios that do not exist in the
current library. We use piecewise linear interpolation to estimate module delay and
give an effective and fast feedback to the user for the search of optimal placement.
We first sort the module in the ascending order of its aspect ratios. Then we create
a linear interpolation function between each adjacent points. Thus each ratio can use
a corresponding function to get its estimated delay value. The more the aspect ratio
points exist in the current library, the more accuracy the approximate approach can
achieve. We adopt this estimation approach because modules for two adjacent points
usually have a similar structure that may reflect the delay information more accurately
than the wirelength estimation due to the routing impact. Moreover, it saves effort
in identifying the critical path. An example of module delay estimation is shown in
Figure 8. We assume that we have four ratios for a module in the library. The ratios
are 0.2, 0.4, 0.6, and 0.8. We need to estimate the module delay with ratio A = 0.5.
Thus we can use the yellow line to approximate its delay. The function for the yellow
line is y = 5x and the delay is 2.5 for point A. We also apply this approach in our flow.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

71:10 F. Mao et al.

Assume k = 5, so we have five ratios for each module stored in the library and the ratios
are 0.2, 0.6, 1.0, 1.6, and 5.0. We need to estimate the module delay with ratios 0.4,
0.8, 1.2, and 2.5. During placement, we use the delay estimation approach to estimate
these specific ratios. The experiments show that our estimation method can achieve
93% accuracy on average on the critical path of the final routing results. Some previous
studies [Nayak et al. 2002; Mak et al. 2007; Hung et al. 2009] report that their delay
estimation approaches for FPGA have an approximate error rate of 13%, which shows
that our approach is feasible.

5. LIBRARY-BASED PLACEMENT

With the combined netlist, the modules picked up from the library are placed into
the underlying reconfigurable fabric in the placement stage. In this section, we first
introduce the problem formulation for the library-based placement and then focus on
the discussion of the detailed placement steps.

5.1. Problem Formulation

The problem of library-based placement can be formulated as follows. Given a set of n
rectangular modules B = {b1, b2, . . . , bn} stored in the library, where each module has
a width and height denoted by wi and hi, 1 ≤ i ≤ n, respectively. The aspect ratio of
module bi is defined by wi/hi. A placement p = {(xi, yi)}(1 ≤ i ≤ n) with modules is
an assignment of the rectangular modules b′

is such that no two rectangular modules
overlap and the bottom-left corner coordinate of module bi is assigned to (xi, yi). The
objective is to optimize the area utilization, wirelength, and delay.

5.2. B*-Tree Representation

In order to enable a fast search of optimal placement in the solution space, we use
B*-Tree to represent the module placement. Here we introduce the background for
the B*-Tree representation. B*-tree is an ordered binary tree structure proposed in
modern floorplanning of ASIC designs [Chen and Chang 2006]. Compared to other data
structures, B*-Tree provides faster searching and area estimation, convenient handling
of constraints, and linear time transformation between the tree and placement. The
solution space of the B*-tree algorithm is O(n!22n/n1.5) [Chen and Chang 2006], where
n is the number of modules.

To build a B*-Tree, the bottom-left corner of the placement is taken as the root. The
B*-tree representation of the placement is built in a recursive fashion from the root.
The subtree is first constructed at the left-hand side and is then built in the same
manner at the right-hand side. Each node ni in a B*-tree denotes a module and the
root of a B*-tree corresponds to the module on the bottom-left corner. The left child ne
of the node ni denotes the module be which is the lowest adjacent unvisited module on
the right-hand side of bi, that is, xe = xi +wi. The right child of nr of the node ni denotes
module br, which is the lowest unvisited module above and adjacent to module bi and
its x-coordinate equal to that of bi, that is, xr = xi. And also b′

rs y-coordinate is smaller
than that of the top boundary of the module on the left-hand side and adjacent to bi, if
any. An example of the mapping graph for B*-tree and placement is shown in Figure 9.

5.3. B*-Tree Based Module Placement

As discussed in the last section, given a non-overlapping placement, modules are repre-
sented as the nodes of a B*-Tree, which provides a fast searching and area estimation
with linear time transformation between the tree and placement. Simulated Annealing
(SA) is performed to search for the efficient placement based on the B*-Tree. Without
loss of generality, we assume that the SA algorithm begins with a randomly generated

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

Library-Based Placement and Routing in FPGAs with Support of Partial Reconfiguration 71:11

Fig. 9. A placement and corresponding B*-tree representation.

Fig. 10. Module rotation and wirelength estimation. (a) Rotation of a module. (b) Red line shows wirelength
estimation from two modules.

placement of modules. Then in each iteration, the B*-tree-based operation is performed
to explore the solution space as follows:

—OP1 loads module with shape of 1/(aspect ratio).
It is similar to rotate node/block by 90◦ in the B*-Tree as shown in Figure 10(a).
Theoretically, the delay and the area of individual module with aspect ratio and
(aspect ratio)−1 are the same. However, it affects the total placement results.

—OP2 moves module to an empty place.
It is to delete a node and move it to another empty place.

—OP3 swaps two modules.
It swaps two nodes in the B*-Tree.

—OP4 loads a different aspect ratio of the module.
It is modified from the original B*-Tree operation of resizing a soft block. For place-
ment on FPGA, resizing of modules cannot be of arbitrary size but is equivalent to
applying different aspect ratios to the module.

When placing the modules with heterogeneous resources, position constraints need
to be imposed on the operations. For example, the module with memory blocks must be
placed in a valid position. Moreover, for the module with heterogeneous resources, the
hardware fabric can have different positions inside the module for the same module
ratio. For example, the column of memory blocks can be on the left or right of the CLB
column. To simplify the design, currently we assume that the shift of the resource
position inside the module will not change the module delay. The assumption is similar
to the previous studies [Xilinx. 2011a; Beckhoff et al. 2013; Xu et al. 2014]. Figure 11
illustrates an example for the placement of heterogeneous modules. Here each module
represents a static region or reconfigurable region. Figure 11(a) is the coarse-grained

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

71:12 F. Mao et al.

Fig. 11. Coarse-grained module placement results.

module placement generated by BMP. After we obtain this placement result, we then
map it to the FPGA architecture and meet the position constraint. Figure 11(b) shows
the final placement result. Note that the validation of a heterogeneous module has
been discussed when creating the module.

In the implementation, to simplify the operation, we combine OP1 and OP4 together.
The proposed BMP tool chooses a portion of the modules with smaller τ from the list
to optimize the placement and the portion represents the percentage of the number of
ratios for each module. Currently, we set the portion to be 0.5 to save runtime while still
obtaining good placement quality. The portion can be set to any value between 0 and 1
according to the system requirement. Simulated annealing is performed together with
the B*-Tree operation to explore the solution space. In each iteration, the options OP2,
OP3, and OP1+OP4 are randomly selected by the tool. Different weights are given to
the operations to control the probability of choosing each operation, which are explored
in the experiments,

Costsystem = α
A
A∗ + (1 − α)

(
(β)

DT

D∗
T

+ (1 − β)
DM

D∗
M

)
. (1)

After each operation, we map the placement result generated by BMP to the FPGA
architecture and evaluate its quality. The cost function [Wang and Wong 1991] is
calculated as shown in Equation (1). Here A and A∗ represent the current total and
average area, respectively. DM and DT are the current total module delay and total
track delay (wirelength). D∗

M and D∗
T are the average module delay and track delay.

We divide the current results by the average value to normalize the results. The α is
a parameter to bias the cost function to area or delay. The β is a proposed value to
balance the weight between the inter- and intra-delay. Both parameters are explored
in Section 8. The delay of each module is already obtained from the library. Thus, we
only need to calculate the wirelength for the nets among the modules. The track delay
(wirelength) is calculated by port-to-port wirelength between two modules [Kennings
and Markov 2000] as shown in Figure 10(b). With the pre-placement modules, we can
get the exact location of the IOs of the modules and, hence, a more accurate wirelength
can be obtained compared to the previous simple Manhattan distance between the
center points of the modules. If the module needs to connect with the IO pads of
the circuit, then the delay is similarly estimated, assuming the module connects with
the available IO pads determined by the minimum total wirelength.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

Library-Based Placement and Routing in FPGAs with Support of Partial Reconfiguration 71:13

Fig. 12. Normal routing in VPR and PR-aware routing.

Fig. 13. Four types of connections of nets.

6. PR-AWARE ROUTING

After getting the placement results, routing is performed to connect the modules. We
propose a PR-aware router to consider the routing restriction for PR regions without
adding extra logic. An example of the PR-aware routing and normal routing in the VPR
is shown in Figure 12. Figure 12(a) shows that path A from b1 to b2 connects directly
(in red). However, path B cannot go through PR region R1 (green bounding box) shown
in Figure 12(b), and it finds another way, as shown in the red path. Next, we investigate
different routing cases and propose a corresponding interface design.

First, we divide nets into four types based on the source and sink locations of nets
since the source and sink locations of a net determine whether the net can go through
the PR region. Figure 13 shows an example for different types of connections existing
in the PR-aware routing. The FPGA contains 6 × 6 CLBs. We assume that it has two
PR regions and some static regions. The regions with green CLBs (left-top region R1)
and yellow CLBs (right-bottom region R2) are the only two PR regions while the orange
CLBs are the static region. The CLBs in white are not used and other colored CLBs
indicate that they are currently used. There are four types of nets connecting the static
or reconfigurable modules. We describe their routing rules as follows.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

71:14 F. Mao et al.

Fig. 14. Defining interface according to different types of nets.

—Type 1: If the source and sink are in two PR regions A and B, respectively, then the
net routing can go through regions A and B and the static regions but not other PR
regions.

—Type 2: If the source and sink are all in the same PR region A, then the net routing
is limited within region A.

—Type 3: If the source is in PR region A and the sink in static region C, then the net
routing can go through A and all the static regions.

—Type 4: If the source and sink are all in the static regions, then the net routing can
go through all static regions.

The PR-aware global routing also determines the virtual pins (tracks) needed for
connecting the PR modules and static region for supporting PR and we call these
pin-to-wire connections [Shah and Rose 2012]. We describe the detailed pin-to-wire
interface design in the next section.

6.1. Pin-to-Wire Routing Interface Design

We adopt the pin-to-wire connection framework and define the detailed interface to
support PR. The pin-to-wire connections entail creating connections from output pins
of logic blocks to specific wire segments in the network or from specific wire segments
to input pins [Shah and Rose 2012]. We define virtual pins (tracks or wire segments)
to connect the PR regions and static regions. The PR regions are connected to tracks
as its virtual IOs and the virtual IOs are fixed during the PR operation to avoid the
interference with the static routing. In this way, the PR regions are connected to the
static regions without using the proxy logic.

We first set up a PR-aware global routing for the whole design that contains all the
modules (static and PR modules). After the initial PR-aware global routing, we can
identify the tracks that connect one PR region to other regions. The first track in the
static region to which the IO port of the PR region connects is defined as the virtual
pin of the PR region. We discuss different cases as illustrated in Figure 14. Here we
assume that regions A and B are the only two PR regions and other parts are static
regions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

Library-Based Placement and Routing in FPGAs with Support of Partial Reconfiguration 71:15

—Case 1: The source port and sink port are in different PR regions A and B, and their
connection is through a switch box. Since there is no track in the static region along
the path, we define the virtual pin to be track A1 (red line) in region A and track B1
(blue line) in region B.

—Case 2: The source port and sink port are in different PR regions A and B, and the
ports are connected through track C between the two regions. Then track C (green
line) is defined as the virtual pin for both regions.

—Case 3: The source port and sink port are in different PR regions A and B. It is
similar to case 1, but track A2 across the two regions can directly connect the ports.
Thus we define the A2 (yellow line) track as the virtual pin for both regions.

—Case 4: The source port and sink port are in different PR regions A and B, and there
is more than one track between them. Thus, we define track A3 (purple line) as the
virtual pin for track A and track B2 (red line) as the virtual pin for region B.

—Case 5: The source port and sink port are in one PR region, such as region A, and the
static region, such as the pad. We only need to define the virtual pin the PR region.
Following the rule, track A4 (green line) can be defined as the virtual pin for region A.

—Case 6: The source port and the sink port are all in the same region (all are in the
static region or in the PR region). We do not need to define the interface for this net
since all the content in the PR region can be reconfigured and re-routed.

We use these defined virtual pins or tracks for later PR operation. If a PR region
needs PR operation, then the context in the specific region is modified while other
parts keep unchanged. During the PR operation, the new context needs to connect to
the virtual pin and through it connects to the static region or other PR region. Local
placement and routing are needed to connect the PR context to the virtual pins as
discussed in the next section.

7. LOCAL PLACEMENT AND ROUTING IN PR REGION

As we have discussed in Section 4, the size of the reconfigurable module or region is
determined by the largest context of the module. To place the other different contexts
in the PR region, we need to perform local placement and routing to fit the context in
the region and connect the context IOs with the virtual pins which are fixed during the
global routing.

We divide local placement into two types. In the first case, some ratio of the pre-
synthesized module of the new context can be directly fitted in the PR region. Since
the contexts stored in the library are already placed and routed well, we take it as a
reference and place the module as a whole inside the region using the wirelength or
delay as the optimized objectives. In the second case, the new context cannot be fit in
the PR region directly. In this case, we need to place the logic of the new context using
tile-based placement in the PR region and route the whole region. Figure 15 shows
an example for the local placement in a PR region. We use the PR region R1 from the
Figure 13 as shown in (a). Figure 15(b) and (c) are two contexts: R11 and R12, which
need to be loaded in the PR region R1. Figure 15(d) shows that the context R11 can be
placed in the PR region R1 directly, and Figure 15(e) shows that the context R12 cannot
be placed in the PR region directly and thus we need to do tile-based local placement
for this context in the PR region.

As for the local routing, note that we have considered the IOs needed for all the
contexts of a reconfigurable module as discussed in Section 4. Hence, the virtual pins
needed for this context have been fixed during the global routing. The local routing
only needs to connect the context with its corresponding virtual pins through the
normal routing. If the new context has no path to make connections to the previously
chosen virtual pin interfaces, then we can adopt the following two methods: (1) We do

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

71:16 F. Mao et al.

Fig. 15. Local placement in a PR region.

Table I. Benchmarks in VPR Suite

Arch Name BLEs RAM Startcol RAM Gap RAM Height DSP Startcol DSP Gap DSP Height
Architecture 1 10 4 8 6 2 8 4
Architecture 2 4 3 5 2 5 5 4

re-placement of the logic in the modules that are to connect to the virtual pin interface,
and (2) we change the framework from scratch to redo the flow for the whole design.
It is similar to the VLSI and FPGA mapping flow where, when the routing fails, the
flow can reroute (i.e., re-placement and re-routing).

8. EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate the performance of the proposed mapping flow and explore the design
space of placer BMP, benchmarks for library-based placement and routing flow are
first created to test the tools. Then the results of the library-based mapping flow are
compared with the tile-based flow to demonstrate the tradeoff in area, delay, and
execution time. Finally, the design space exploration is performed to optimize the
parameters of the BMP placer. The simulations are run on IBM server x3650 with
Intel Xeon(R) CPU and 42GB DDR2 RAM. In general, we are using the architecture file
that is similar to k6_N10_memDepth16384_memData64_40nm_timing, with the VTR
project. The experiments are performed on this base architecture and its homogeneous
variation has the same architecture parameters except without the RAMs and DSPs.
The two architectures are denoted as Architectures 2 and 4. The channel width is set to
be 200 and the percentages for length-4, length-2, and length-1 wires are 60%, 20% and
20%, respectively. In order to further evaluate our flow in different architectures, we
changed the parameters of Architecture 2 and created a new architecture file, denoted
as Architecture 1, whose homogeneous variation is Architecture 3, correspondingly.
The parameters for Architectures 1 and 2 are summarized in Table I.

8.1. Benchmarks for Library-Based Placement

Due to the unavailability of the benchmarks for module-based mapping, we select and
modify the cases in the VPR suite for demonstrating the performance and functionality
of the proposed library-based placement. Information of the cases are shown in Table II.
The number of modules ranges from 4 to 32 for the current case set. We also show the
number of tiles contained to compare the difference in the size among these cases. The
absolute tile values are for reference only since it varies in different architectures. We
decompose each of the verilog files into multiple verilog files according to subfunctions,

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

Library-Based Placement and Routing in FPGAs with Support of Partial Reconfiguration 71:17

Table II. Benchmarks in the VPR Suite

circuit name modules CLB RAM DSP circuit name modules CLB RAM DSP
raygentop 15 427 7 1 stereovision1 21 4001 0 0

bgm 32 8290 0 0 stereovision2 14 7618 0 0
LU32PEEng 4 17897 32 150 boundtop 13 558 0 0
mkPktMerge 4 34 0 15 mcml 5 15504 30 38

mkSMAdapter4B 4 393 0 5 mkDelayWorker32B 8 1117 0 41
LU8PEEng 4 5102 8 45

Fig. 16. Floorplan and placement results for the case boundtop.

which are known as modules. For each reconfigurable module, multiple contexts are
created correspondingly for pre-defined functions. For the module-based applications,
identifying connections between each module relies on the name of each inputs and
outputs. Ports of the same name would be connected together to form the whole function
in the netlist since, depending on the benchmarks, different modules may have their
own best ratios. We evaluated some typical ratios within the range of 0.1 to 1.0 with
step 0.1 and also their inversions. We observed that except the extreme cases of very
wide (ratio 10) or tall modules (ratio 0.1), the area-delay results of other ratios do not
differ very much. In order to provide the tool a good flexibility to choose a different
ratio of modules according to different benchmark requirements and at the same time
limit the number of total ratios to a small number, we choose 0.2, 0.4, 0.6, 0.8, 1.0, 1.2,
1.6, 2.5, 5.0 for the case of K = 9. In the experiments, we assume all the modules are
stored in the library.

8.2. Library-Based Placement Results and Discussion

First, we demonstrate a placement result of benchmark Boundtop in Figure 16(a). The
red rectangle (the outside boundary) is the area of the benchmark. The gray area is
the floorplan of each module of the logic function. The white area is not placed with
any modules and is taken as the waste area due to the library-based placement. The
IOs are not shown here, which is around the red area. We index each module with a
specific number starting from 0. Hence, there are in total 13 modules in the benchmark.
Figure 16(b) shows the placement results on VPR. The red area is the corresponding
mapping area of each module shown in Figure 16(a). The proposed placement also
supports heterogeneous components as discussed, for example, for RAMs and DSPs.
Currently, the library-based flow deals with the low and high resource utilization
designs in the same manner. We take each module as a function module and place
them in the chip. The utilization rates of the cases are listed in Table III. CLBU, DSPU,
and RAMU represent the utilization of CLB, DSP, and RAM. The experiments show
that our flow succeeds for the placement and routing of all the cases, even when the
utilization rate of some case is high. Next, we compare the mapping results between the

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

71:18 F. Mao et al.

Table III. Resource Utilization for All the Cases

circuit name CLBU DSPU RAMU circuit name CLBU DSPU RAMU
LU32PEEng 68% 2% 4% LU8PEEng 80% 2% 4%

mcml 80% 2% 1% mkDelayWorker32B 63% 0 14%
mkPktMerge 27% 0 68% mkSMAdapter4B 88% 0 8%

raygentop 79% 22% 1% bgm 83% 0 0
boundtop 81% 0 0 stereovision2 89% 0 0

stereovision1 89% 0 0

Fig. 17. Area comparison between tile-based results (VPR) and BMP results (our approach) for the tested
cases.

tile-based flow and our proposed flow to discuss the area and delay overhead incurred
by the library-based approach and the savings on the execution time. Note that since
VPR routing does not support PR, in order to fairly compare with the tile-based flow,
we assume all the modules are static.

8.2.1. Area. Figure 17 shows the area comparison of each benchmark and average
area comparison of all the cases. The black (left, VPR) bars introduce the tile-based
results generated by the original VPR flow and the red (right, BMP) bars demonstrate
the library-based placement results using the proposed flow. Theoretically, the library-
based placement has an extra area cost because of the non-placed area demonstrated in
Figure 16. Meanwhile, the amount of the logic tiles in usage for each benchmark should
be the same. Thus, the differences between the black bars and red bars mainly result
from the extra cost. As the boundary (red) line of the bounding box shows in Figure 16,
the extra cost of each benchmark varies from −22% to 55%. The bars for average
area comparison in the last column shows that our approach has 17% extra area cost
more than tile-based results. Allowing more iterations in the searching may reduce the
wasted area between the modules. Moreover, the blank area inside the module depends
on the benchmark; however, it can also be minimized through properly selecting the
aspect ratio. Note that reducing the waste area may also reduce the delay, since the
track delay is proportional to the routing distance in the FPGAs.

8.2.2. Delay. We demonstrate the delay comparison in Figure 18. The black (left, VPR)
bars and red (right, BMP) bars show the delay of the critical path of each benchmark
generated by the original VPR and by the BMP, respectively. We can see that our flow
gives a better delay for five cases and a worse delay for six cases. The average delay
comparison in the last column shows that the average delay is slightly worse than the
VPR around 8.2%. The cases of LU8PEEng, mcml, bgm, boundtop, and stereovision2
demonstrate that the delay is improved by 0.03%–24%, as shown in Figure 18. This
is because the modules selected from the candidate list are with a smaller τ . It gives
the tool a good initial placement to ease the optimization. Furthermore, each module
can be regarded as a cluster (the term is commonly used in FPGA field), and, for

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

Library-Based Placement and Routing in FPGAs with Support of Partial Reconfiguration 71:19

Fig. 18. Delay comparison between tile-based results (VPR) and BMP results (our approach) for the tested
cases.

Fig. 19. Execution time comparison between tile-based results (VPR) and BMP results (our approach) for
the tested cases.

some benchmarks, it may reduce the critical path. Thus, later it may ease the routing,
too, and enable better performance. The tile-based VPR flow needs to search in larger
solution spaces in the placement stage, which may result in fewer optimized results in
the same amount of time. Moreover, modules with different ratios may provide a better
design for that module, as it enables better final placement results. For the benchmarks
with poor delay, the situation is the opposite. The cluster does not catch the critical
path well and the critical path may cross several modules and, hence, trigger a long
delay. Tile-based placement managed to optimize across the modules and place the
critical path together while the library-based one could not achieve it. One thing to be
noticed is that the preparation of different ratios of a module is similar to compiling the
module for multiple rounds with different seeds. However, the efforts can be amortized
through module reuse in later designs. If we allow the VPR to run same number of
rounds with different seeds and select the best results, then the delay of VPR flow can
be improved by 3%.

8.2.3. Execution Time. The total execution time of the placement and routing of bench-
marks for the original VPR and BMP are shown in Figure 19 with black (left, VPR) and
red (right, BMP) bars, respectively, using a log10 scale. Execution time includes place-
ment and routing stages. Assuming the module information is available in the library,
the library-based mapping flow has significantly better execution time in all bench-
marks. For a benchmark with a large number of tiles, the improvement can achieve
96%. For all the benchmarks, there is 65% improvement on average. The reason for
the improvement is obviously from the reduction of searching space for the solution.
Compared to the original VPR flow, the number of modules are largely reduced for
several orders of magnitude. At the same time, the reduction in the module number

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

71:20 F. Mao et al.

Fig. 20. Boundtop routing result without/with PR-aware.

also leads to a simple routing. All connections between modules are relatively close and
thus the tool has no need to trace and optimize for a long path.

The above discussion is for the situation where we have the modules’ information
available. If there is no module library or pre-synthesis results, then the tool has to
run a trial round for all the modules. The module-based placer (BMP) needs modules
with various aspect ratios, which take more trial rounds. However, since it is a part of
floorplanning search, the total runtime considering module generation is similar with
VPR flow to achieve the same placement results. Moreover, note that the trial rounds
are all independent, we can use multi-threaded processing to speed up the execution.

8.3. PR-aware Global Routing Results

The difference between a PR-aware router and the router of VPR is that a PR-aware
router cannot use the routing resource of all PR regions. Figure 20 shows the routing
result without PR-aware and with PR-aware. Figure 20(a) shows the routing result
without PR-aware for the case boundtop. Assuming that all the modules are PR mod-
ules, the routing resource for the static regions is limited to the tracks between modules
and the tracks between the modules and IO pads. Figure 20(b) shows the routing result
with PR-aware. Compared to the routing result without PR-aware in Figure 20(a), the
routing result with PR-aware in Figure 20(b) shows more congestion between modules.
Due to the resource limitations of PR-aware routing, it can be expected that more rout-
ing efforts have to be made to find a feasible routing. The study of pin-to-wire routing
[Shah and Rose 2012] has observed an increase of more than double the routing efforts,
assuming use of 30% more routing tracks than normal routing.

8.4. Design Space Exploration

The proposed mapping flow searches a solution randomly at the beginning, which may
result in widely various results. Thus, it is set to run 10 rounds for each benchmark of
each group of parameters in the exploration. It may give results of distinctive deviation,
but multi-round simulation helps to reduce impact of the deviations. Then, we average
across benchmarks and normalize the results of all benchmarks to eliminate differences
in logic complexity among benchmarks. Without loss of generality, we take the case bgm
for exploration and it has 32 modules in total. The distribution of module sizes is as
follows: there are 12 cases with CLB number less than 10, 9 cases with CLB number
less than 200, and 11 cases with CLB number larger than 600.

8.4.1. Reducing Searching Space. Searching the space of a solution is the main factor
for the execution time. To reduce the searching space, we propose a reduction method
to lower the search space for selecting the modules. We set the smaller modules to a

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

Library-Based Placement and Routing in FPGAs with Support of Partial Reconfiguration 71:21

Table IV. BMP Comparison Between Modules with Different Ratios and Modules with Only One Ratio

one ratio multi-ratio
circuit name Area Delay Area AreaIncrease Delay DelayImprove
LU32PEEng 40610 9.89E-08 43130 6.21% 9.73E-08 −1.66%
LU8PEEng 9600 1.05E-07 10437 8.72% 1.00E-07 −4.77%

mcml 31439 7.76E-08 32016 1.84% 7.63E-08 −1.72%
mkDelayWorker32B 2856 9.34E-09 2860 0.14% 9.43E-09 0.94%

stereovision2 8533 1.43E-08 8625 1.08% 1.30E-08 −9.54%
Average 18607.6 6.11E-08 19413.6 3.60% 5.93E-08 −3.35%

Fig. 21. Design space exploration for definition of small module size.

fixed aspect ratio, since they can easily fit into an empty slot, and they do not have
big impact on the total area. This indicates that the original searching space should be
modules × ratios, and now it becomes moduleslarge × ratios + modulessmall. Here we need
to discuss what the proper threshold value is to define a small module. We compare the
experiment results between modules with different ratios and modules with only one
ratio to show the effects of the module ratios for area and delay, and the comparison re-
sults are listed in Table IV. From the table, we can see that we can get better delay when
we consider different ratios of modules compared with module with only one ratio. The
average delay improvement can achieve 3.35% with area increase slightly compared to
the result that modules only use one ratio. The reason for delay improvement is that it
can choose the best of several different ratios from each module. We also show a design
space exploration result of the size threshold in Figure 21. From the figure, we can see
that, with the threshold increase, the area of the placement increases. This is because
when the threshold increases, more modules are placed with a fixed ratio, which re-
duces the placement flexibility and leads to a suboptimal placement. If we look into the
details of the curve, then we can see that there are fluctuations around the mean value.
The fluctuations are from the simulated annealing algorithm and the differences in the
benchmark set. Figure 21(b) shows a trend where the larger module size can reduce
execution time. In particular, when all the modules have only one ratio, its runtime is
largely reduced. In summary, from the normalized area graph (Figure 21(a)) and time
graph (Figure 21(b)), we can see that the blue line (the average line) shows that the
number from 13 to 16 is a proper number for defining the small module since the thresh-
old larger than this has a negative impact on the overall optimization results. This is
because when a larger module is set to a fixed aspect ratio, the solution space is smaller
and the algorithm can quickly find the optimal point, but the area and the runtime
generally are conflicting objectives. We can see from the exploration that, according to
characteristics of the targeting benchmark set, the threshold can be set to the value that
optimizes the area and delay together. For our benchmarks, the value can be around 14.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

71:22 F. Mao et al.

Fig. 22. Design space exploration for parameters in the cost function.

Fig. 23. Design space exploration for rate of moving operation.

8.4.2. Parameters α and β in Equation (1). Parameters α and β of the cost function are two
important parameters to guide CAD tools in placement. The quality of placement and
execution time are strongly related to these two parameters. We demonstrate design
space explorations for optimization of the two parameters here.

We explore α from 0.1 to 0.9 with a step of 0.1, and β is set from 0.1 to 0.9 with a
step of 0.1. Figure 22(a) shows the impact of the variation of α on the normalized area
and deviation for the benchmarks. The area is related to α with around −4% to 7%
deviation from the normalized average area for different values of α when β is stepping
from 0.1 to 0.9. We can see that when α ranges from 0.5 to 0.9, the algorithm give the
best area results. This is because when α > 0.5, the cost function emphasizes the area
more. The best points can be 0.6 and 0.8.

The β values are the percentages between the wirelength (track delay) and module
delay in the placement. To discuss the impact of β on the wirelength (track delay), we
first preset α from 0.1 to 0.9, and β is varied from 0.1 to 0.9 with a step of 0.1. The
results of the average wirelength (track delay) and the deviation to mean value with
various β are showed in Figure 22(b). We can see that when when β ranges from 0.5 to
0.7, the algorithm gives the best wirelength (track delay) results. The best points can
be 0.6 and 0.7.

8.4.3. Probability of Operations in SA. Theoretically, there are four operations in the pro-
posed modified B*-tree representation. We merge OP1 and OP4 and then load all
modules with various aspect ratios into the computation. Hence, the weight for the
loading operation is 1. We only discuss the weight for the rest of the operations, includ-
ing moving a module to another empty place (OP2) and swapping two modules (OP3).
Their weights sum to 1. Figure 23(a) demonstrates the impact of the moving rate on
the area. We simulate the benchmarks with various moving rates in many rounds and
then average and normalize the result. We can see that the moving rate has a smaller
impact on the area result. The area decreases slightly when the moving rate ranges

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

Library-Based Placement and Routing in FPGAs with Support of Partial Reconfiguration 71:23

Table V. Comparison Between VPR and Our Proposed Flow in Different Architectures

VPR BMP
circuit name ChannelWidth Area Delay Time Area Delay Time

Architecture 1
LU32PEEng 200 10000 1.53E-07 18864.55 14694 1.55836E-07 1896.91
LU8PEEng 200 2916 1.52543E-07 966.47 4186 1.51457E-07 209.23

mcml 200 8464 1.11432E-07 5271.82 10212 1.10583E-07 514
mkDelayWorker32B 200 1764 7.77673E-09 135.23 1849 9.12278E-09 82.2

mkPktMerge 200 676 4.02695E-09 17.57 624 5.94131E-09 26.49
mkSMAdapter4B 200 324 7.73036E-09 23.91 418 8.67654E-09 6.18

raygentop 200 289 6.66207E-09 27.46 414 7.63094E-09 32.4
Average 1 1 1 25.79% 13.15% −43.31%

Architecture 2
LU32PEEng 250 29929 9.71165E-08 20057.85 43130 9.88503E-08 1962.22
LU8PEEng 250 8464 1.01784E-07 4288.78 10437 1.01821E-07 198.84

mcml 250 25921 9.07892E-08 16882.24 32016 7.79289E-08 866.83
mkDelayWorker32B 250 1849 6.21091E-09 237.99 2860 1.01263E-08 59.2

mkPktMerge 250 225 3.60412E-09 10.11 176 5.31364E-09 6.48
mkSMAdapter4B 250 676 6.15022E-09 46.21 704 7.048E-09 8.83

raygentop 250 729 4.51367E-09 56.12 888 5.67742E-09 45.63
Average 1 1 1 21.40% 19.79% −70.15%

Architecture 3
bgm 300 3481 3.40905E-08 2068.89 3922 3.2529E-08 202.19

boundtop 300 256 7.82643E-09 47.76 266 7.35228E-09 47.22
stereovision1 300 1681 9.57075E-09 505.17 2002 1.02107E-08 143.56
stereovision2 300 3136 1.61955E-08 1644.56 3312 1.74035E-08 111.36

Average 1 1 1 10.32% 0.88% −64.04%
Architecture 4

bgm 150 8464 2.67565E-08 4287.94 10064 2.10551E-08 245.61
boundtop 150 576 5.04455E-09 68.35 525 4.25568E-09 44.71

stereovision1 150 4096 6.85571E-09 1217.05 4582 7.8015E-09 193.06
stereovision2 150 7744 1.94235E-08 3691.04 8625 1.33106E-08 155.31

Average 1 1 1 8.32% −13.66% −77.20%

from 0 to 0.6, and it increases slightly when the moving rate ranges from 0.6 to 0.8. The
moving rate is zero, which indicates that there is no moving operation. Figure 23(b)
shows the moving rate impact on the execution time. However, we can see the average
time varies a lot with the moving rate change. From the exploration, the moving rates
ranging from 0.6 to 0.9 can improve the execution time, and it impacts the area slightly.

8.5. Running in Different Architectures

In order to evaluate the efficiency of our flow in different architectures, we perform
the experiments in four architectures, as shown in Table I. Moreover, we also set the
channel width to different values to evaluate their impact. The experiments show that
basically the area increases all the time. The homogeneous architectures tend to have
less area overhead. It is because the fixed position of DSPs and RAMs increases the
challenge of module placement and more easily incurs area waste. Similarly, the delay
in the homogeneous architecture is better than that of the heterogeneous architecture,
especially for Architecture 4. The possible reason should be that our proposed BMP
can get a compact solution and there is no position constraint. Architecture 4 achieves
better delay than Architecture 3 because, except for the benchmark stereovision1, the
other three benchmarks all favor the small CLBs in Architecture 4 and achieve delay
improvement. Table V shows that the area increase ranges from 8.32% to 25.79%, delay

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

71:24 F. Mao et al.

varies from −13.66% to 19.79%, and runtime improves by 43.31% to 77.2%. It shows
the efficiency of the proposed flow in various architectures.

9. CONCLUSIONS

Our work proposes a library-based mapping flow that supports the partial run-time
reconfiguration and replacement for multi-context functions in a PR region. Further-
more, it can reuse the resource in the module library to reduce the compilation time
and to build large circuits. The proposed module-based (BMP) placer uses the modified
B*-Tree representation to optimize the floorplanning and placement of the modules
with the consideration of a flexible module ratio. The corresponding parameters for
cost functions and searching algorithms are explored in the experiments. Compared
to the original tile-based flow, the delay of the proposed module-based flow is slightly
worse than the VPR around 8.2% in a basic architecture but with a significant runtime
reduction around 65% with an acceptable area cost due to the empty space that shows
the efficiency of the proposed flow. We also develop the pin-to-wire interface to support
the PR-aware routing without adding extra cost.

REFERENCES

Altera. 2010. Increasing Design Functionality with Partial and Dynamic Reconfiguration in 28-nm FPGAs.
Retrieved from http://www.altera.com.

S. Areibi, G. Grewal, D. Banerji, and P. Du. 2007. Hierarchical FPGA placement. Can. J. Electric. Comput.
Eng. 32, 1 (Winter 2007), 53–64.

P. Athanas, et al. 2007. Wires on demand: Run-time communication synthesis for reconfigurable computing.
In FPL, 2007. 513–516.

Pritha Banerjee, et al. 2011. Floorplanning for partially reconfigurable FPGAs. TCAD 30, 1 (2011).
P. Banerjee, S. Sur-Kolay, and A. Bishnu. 2009. Fast unified floorplan topology generation and sizing on

heterogeneous FPGAs. TCAD 28, 5 (May 2009), 651–661.
Kiarash Bazargan, Ryan Kastner, and Majid Sarrafzadeh. 2000. Fast template placement for reconfigurable

computing systems. IEEE Des. Test Comput. 17, 1 (2000), 68–83.
Christian Beckhoff et al. 2013. Automatic floorplanning and interface synthesis of island style reconfigurable

systems with GOAHEAD. In Architecture of Computing Systems (ARCS). Springer, Berlin, 303–316.
Jeffrey M. Carver, Richard Neil Pittman, and Alessandro Forin. 2009. Automatic bus macro placement for

partially reconfigurable FPGA designs. In FPGA. 269–272.
R. Castro-lpez, F. V. Fernndez, O. Guerra-vinuesa, and Á. Rodrguez-vzquez. 2006. A reuse-based design

framework for analog ICs. In Reuse-Based Methodologies and Tools in the Design of Analog and Mixed-
Signal Integrated Circuits. Springer, The Netherlands, 27–62.

T. C. Chen and Y. W. Chang. 2006. Modern floorplanning based on B*-tree and fast simulated annealing.
TCAD 25, 4 (2006), 637–650.

Yu-Chen Chen, Sheng-Yen Chen, and Yao-Wen Chang. 2014. Efficient and effective packing and analytical
placement for large-scale heterogeneous FPGAs. In ICCAD. 647–654.

Lei Cheng and Martin D. F. Wong. 2006. Floorplan design for multimillion gate FPGAs. TCAD 25, 12 (2006).
C. Claus, et al. 2007. An XDL-based busmacro generator for customizable communication interfaces for

dynamically and partially reconfigurable systems. In Works on Reconfigurable Computing Education.
Jason Cong, Vivek Sarkar, Glenn Reinman, and Alex Bui. 2011. Customizable domain-specific computing.

IEEE Des. Test Comput. 28, 2 (2011), 6–15.
D. D. Gajski. 1999. IP-based design methodology. In Design Automation Conference, 1999. 43.
M. Gort and J. H. Anderson. 2012. Analytical placement for heterogeneous FPGAs. In FPL, 2012. 143–150.
Marcel Gort and Jason Anderson. 2014. Design re-use for compile time reduction in FPGA high-level syn-

thesis flows. In FPT. 4–11.
Ruining He, et al. 2012. PDPR: Fine-grained placement for dynamic partially reconfigurable FPGAs. In

Reconfigurable Computing: Architectures, Tools and Applications. Springer, Berlin, 350–356.
A. Hekmatpour, K. Goodnow, and H. Shah. 2005. Standards-compliant IP-based ASIC and SoC design. In

Proceedings of the IEEE International SOC Conference, 2005. 322–323.
Bo Hu. 2006. Timing-driven placement for heterogeneous field programmable gate array. In ICCAD, 2006.

383–388.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

http://www.altera.com

Library-Based Placement and Routing in FPGAs with Support of Partial Reconfiguration 71:25

E. Hung, S. J. E. Wilton, Haile Yu, T. C. P. Chau, and P. H. W. Leong. 2009. A detailed delay path model for
FPGAs. In FPT 2009. 96–103.

P. Jamieson, F. Gharibian, and L. Shannon. 2013. Supergenes in a genetic algorithm for heterogeneous FPGA
placement. In 2013 IEEE Congress on Evolutionary Computation (CEC). 253–260.

Andrew A. Kennings and Igor L. Markov. 2000. Analytical minimization of half-perimeter wirelength. In
ASPDAC. 179–184.

D. Koch, C. Beckhoff, and J. Teich. 2008. ReCoBus-builder - a novel tool and technique to build statically and
dynamically reconfigurable systems for FPGAS. In FPL, 2008. 119–124.

Dirk Koch, Christian Beckhoff, and Jim Torresen. 2010. Zero logic overhead integration of partially recon-
figurable modules. In SBCCI (SBCCI’10). 103–108.

C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutchings. 2011. HMFlow: Accelerating
FPGA compilation with hard macros for rapid prototyping. In FCCM, 2011. 117–124.

Nan Liu, Song Chen, and T. Yoshimura. 2011. Floorplanning for high utilization of heterogeneous FPGAs.
In ISQED, 2011. 1–6.

T. S. T. Mak, P. Sedcole, P. Y. K. Cheung, and W. Luk. 2007. Average interconnection delay estimation for
on-FPGA communication links. Electron. Lett. 43, 17 (August 2007), 918–920.

Minkovich K. 2007. MCNC benchmarks. (2007). http://cadlab.cs.ucla.edu/∼kirill/.
Alessio Montone, Marco D Santambrogio, Donatella Sciuto, and Seda Ogrenci Memik. 2010. Placement and

floorplanning in dynamically reconfigurable FPGAs. TRETS 3, 4 (2010), 24.
A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee. 2002. Accurate area and delay estimators for FPGAs.

In DATE, 2002. 862–869.
Jonathan Rose, et al. 2012. The VTR project: Architecture and CAD for FPGAs from verilog to routing. In

FPGA. 77–86.
M. Samaranayake, H. Ji, and J. Ainscough. 2009. Module placement based on hierarchical force directed

approach. In 2009 3rd International Conference on Signals, Circuits and Systems (SCS). 1–6.
Yaska Sankar and Jonathan Rose. 1999. Trading quality for compile time: Ultra-fast placement for FPGAs.

In FPGA (FPGA’99). ACM, New York, NY, 157–166.
Navaratnasothie Selvakkumaran, et al. 2004. Multi-resource aware partitioning algorithms for fpgas with

heterogeneous resources. In FPGA (FPGA’04). 253–253.
N. Shah and J. Rose. 2012. On the difficulty of pin-to-wire routing in FPGAs. In FPL, 2012. 83–90.
Love Singhal and Elaheh Bozorgzadeh. 2006. Multi-layer floorplanning on a sequence of reconfigurable

designs. In FPL. 1–8.
V. Sklyarov, I. Skliarova, P. Almeida, and M. Almeida. 2003. Design tools and reusable libraries for FPGA-

based digital circuits. In Proceedings of the Euromicro Symposium on Digital System Design, 2003.
255–263.

Greg Stitt, Frank Vahid, and Shawn Nematbakhsh. 2004. Energy savings and speedups from partitioning
critical software loops to hardware in embedded systems. TECS 3, 1 (2004), 218–232.

Nicolas Telle, Wayne Luk, and Ray C. C. Cheung. 2004. Customising hardware designs for elliptic curve
cryptography. In Computer Systems: Architectures, Modeling, and Simulation. Springer, Berlin, 274–
283.

Vereen, L. 2004. Soft FPGA Cores Attract Embedded Developers. Retrieved from http://www.embedded.
com//showArticle.jhtml?articleID=19200183.

K. Vipin and S. A. Fahmy. 2011. Efficient region allocation for adaptive partial reconfiguration. In FPT. 1–6.
Ting-Chi Wang and D. F. Wong. 1991. An optimal algorithm for floorplan area optimization. In DAC. 180–186.
Xiaojun Wang and Miriam Leeser. September 2010. VFloat: A variable precision fixed- and floating-point

library for reconfigurable hardware. TRETS 3, 3, Article 16 (September 2010), 1–34.
Xilinx. 2011a. Early Access PR User Guide. Retrieved from http://www.xilinx.com.
Xilinx. 2011b. Xilinx Partial Reconfiguration User Guide. Retrieved from http://www.xilinx.com/support/

documentation/sw_manuals/xilinx13_2/ug702.pdf.
Xilinx. 2012. Partial Reconfiguration of Xilinx FPGAs Using ISE Design Suite. Retrieved from http://www.

xilinx.com.
Liming Xiu. 2007. VLSI circuit design methodology demystified: A conceptual taxonomy. IEEE Press, 200.
Chang Xu, Wentai Zhang, and Guojie Luo. 2014. Analyzing the impact of heterogeneous blocks on FPGA

placement quality. In FPT, 2014. 36–43.
Shaon Yousuf and Ann Gordon-Ross. 2010. DAPR: Design automation for partially reconfigurable FPGAs.

In Engineering of Reconfigurable Systems and Algorithms (ERSA). 97–103.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

http://cadlab.cs.ucla.edu/protect $elax sim $kirill/
http://www.embedded.com//showArticle.jhtml?articleID=19200183
http://www.embedded.com//showArticle.jhtml?articleID=19200183
http://www.xilinx.com
http://www.xilinx.com/support/documentation/swmanuals/xilinx132/ug702.pdf
http://www.xilinx.com/support/documentation/swmanuals/xilinx132/ug702.pdf
http://www.xilinx.com
http://www.xilinx.com

71:26 F. Mao et al.

Jun Yuan, Sheqin Dong, Xianlong Hong, and Yuliang Wu. 2005. LFF algorithm for heterogeneous FPGA
floorplanning. In ASP-DAC, 2005, Vol. 2. 1123–1126.

N.-E. Zergainoh, K. Popovici, A. Jerraya, and P. Urard. 2005. IP-block-based design environment for high-
throughput VLSI dedicated digital signal processing systems. In ASP-DAC, 2005, Vol. 1. 612–618.

Received June 2015; revised November 2015; accepted March 2016

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 71, Pub. date: May 2016.

