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18.1  INTRODUCTION
The development of computer science and technology widens our view to the world. As a result, the 
amount of data observed from the world to be stored and processed has become larger. Analysis of 
such large-scale data with traditional technologies is usually time-consuming and requires a large-scale 
system infrastructure, and therefore can hinder the development of scientific discoveries and theories. 
eScience offers scientists the scope to store, interpret, analyze and distribute their data to other research 
groups with state-of-the-art computing technologies. eScience plays a significant role in every aspect 
of scientific research, starting from the initial theory-based research through simulations, systematic 
testing and verification, to the organized collecting, processing and interpretation of scientific data. 
Recently, cloud computing has become a popular computing infrastructure for eScience. In this chap-
ter, we review the status of cloud-based eScience applications and present a taxonomy specifically 
designed for eScience in the cloud.

eScience is an important type of Big Data application. eScience is also considered the “big-data sci-
ence”, which includes broad scientific research areas, from the areas that are close to our everyday life 
(eg, biological study), areas concerning the planet that we live on (eg, environmental science), to areas 
related to outer space (eg, astronomy studies to find the origins of our universe). Although the term 
‘eScience’ has only been used for about a decade, the study of eScience problems started much earlier. 
In the early days, scientists were not able to efficiently study the value of scientific data due to the lack 
of technologies and tools to capture, organize and analyze the data. Technological advances such as 
new computing infrastructures and software protocols have brought great opportunities for eScience 
projects in various fields [1–4]. For example, grid computing has greatly advanced the development 
of eScience. Many eScience applications are becoming data-driven. For example, the development of 
the modern telescope has given us the Large Synoptic Survey Telescope (LSST) [5], which obtains 
30 trillion bytes of image data from the sky every day. Currently, almost all major eScience projects 
are hosted in the grid or cluster environments [6]. With aggregated computational power and storage 
capacity, grids are able to host the vast amount of data generated by eScience applications and to ef-
ficiently conduct data analysis. This has enabled researchers to collaboratively work with other profes-
sionals around the world and to handle data enormously larger in size than before.

In the past few years, the emergence of cloud computing has brought the development of eScience 
to a new stage. Cloud computing has the advantages of scalability, high capacity and easy acces-
sibility compared to grids. Recently, many eScience projects from various research areas have been 
shifting from grids to cloud platforms [7–9]. It breaks the barrier of doing eScience without a self-
owned large-scale computing infrastructure. In this chapter, we review the current status of scientific 
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applications in the cloud, and propose a taxonomy to clearly classify the related projects, according 
to the infrastructure, ownership, application, processing tools, storage, security, service models and 
collaboration aspects. We find that, for scientific applications in the cloud, resource provisioning is 
a major concern for the monetary cost and performance optimizations of the applications. In this 
chapter, we briefly introduce our initial efforts on the resource provisioning problems of scientific 
workflows in the cloud.

Both eScience and cloud computing are rapidly developing and becoming more mature. It is time 
to examine the efforts related to scientific computing in the cloud. This chapter focuses especially on 
eScience projects in the cloud. Due to the pay-as-you-go service model of the cloud, monetary cost 
and performance are two important concerns for eScience applications in the cloud. In this chapter, 
we introduce our existing studies on cloud resource provisioning to optimize the cost and performance 
for eScience in the cloud. We compare the advantages and weaknesses against eScience in the grid to 
discuss the obstacles and opportunities of eScience services in the cloud.

The rest of this chapter is structured as follows. Section  18.2 introduces the background of 
eScience history and grid-based and cloud-based eScience. Section 18.3 gives the taxonomy and 
reviews the current status of eScience in the cloud. Section 18.4 introduces some of our efforts on 
optimizing the resource provisioning problems of scientific applications in the cloud. Last, we dis-
cuss the open problems for scientific computing on the cloud in Section 18.5 and summarize this 
chapter in Section 18.6.

18.2  �BACKGROUND
In this section, we briefly discuss the history of scientific computing development, particularly for 
eScience. Next, we focus our review on grid-based scientific computing, and introduce cloud computing.

18.2.1 � HISTORY
Computer infrastructures have long been adopted to host scientific data sets and computations. eScience 
is a new science paradigm that uses distributed computing infrastructures for computation, simulation 
and analysis. In addition, scientists can make use of high-speed networks to access huge distributed 
and shared data collected by sensors or stored in databases. Computing infrastructures allow scientists 
around the world to share knowledge and resources, and to build close scientific collaborations.

The term eScience was first introduced in 1999[10]. During the development of eScience, it has 
gone through roughly three stages. Table 1 shows the major development stages that scientific comput-
ing has gone through. We review the history in the following dimensions.

Table 1  Development Stages of the Scientific Computing

Stage Data Generated Research Period Infor. Tech.

Manual By hand Ad-hoc Paper and pencil

(Semi-) Automated With the help of machinery Short-term Computer assisted

Large-scale Sensing From satellites and sensors around the world Real-time Cluster and grid
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Dimension 1: the evolution of science. We observed that technology (particularly information tech-
nology) is one of the main driving factors in pushing science forward. From the perspective of experi-
mental methods, eScience first used manual measurements: meaning the measurements were taken by 
hand, not using machinery or electronics to fulfill the function. Then with the development of technol-
ogy, machinery such as computers and metering instruments were used to help in the measurements, 
but with manual operations still involved. This stage is called the semi-automated stage. After this 
stage, machinery took a greater part in the measurements and eScience evolved to the automated stage 
where machines took almost all the work, with a minimal amount of human involvement required. 
Technologies such as high-performance computers, sensor networks, and various types of experimental 
software make the eScience measurements evolve to the large-scale sensing stage [11].

Take the research in Meteorology for example, in the early stage (classified to the manual stage), re-
searchers used thermometers, barometers and hygrometers to measure the temperature, air pressure and 
water vapor, and write down the records. In the nineteenth century (classified as the semi-automated 
stage), breakthroughs occurred in meteorology after observing the development of networks. The data 
collected in local meteorological observatories are transmitted through networks and then are gathered 
by different spatial scales to study the various meteorological phenomena. Since the twentieth century 
(classified as the automated stage), with the adoption of radar, lasers, remote sensors and satellites into 
meteorological research, collecting data in a large area is no longer a challenging problem, and special 
instruments, together with the automation of computers, can automatically fulfill the measuring tasks. 
At the end of the twentieth century (classified as the large-scale sensing stage), large-scale observation 
experiments are performed. The experiments relied on satellites, meteorological rockets, meteorologi-
cal observatories on the ground around the world, automatic meteorological stations, airplanes, ships, 
buoy stations and constant level balloons. These instruments were combined to form a complete ob-
serving system to automatically measure the meteorological variables worldwide.

Dimension 2: the length of the research period. eScience has gone through an ad-hoc stage, when 
research was done just for a specific problem or task, and not for other general purposes. Later, in the 
short-term plan stage, researchers made plans in priori for their problems about what to do in what 
time, so that a project of a short term could be kept on schedule. In the real-time stage, the research 
is subject to real-time constraints, such as the experimental data being collected in real-time, wherein 
the system needs to give out results in real-time. This evolution of research periods also requires the 
experimental methods to be more efficient and support high technology.

Dimension 3: technology. eScience has gone through the paper and pencil stage, when no machin-
ery was involved in our research and human work with paper and pencil was the only tool for science. 
When computers appeared, eScience was able to move to the computer-assisted stage when computers 
played a great role in helping with complex calculations and solving logical problems. With the sci-
entific problems getting more complicated and traditional computers not sufficient for the computing 
power required, cluster and grid computing are coming to scientists’ attention and helping them solve 
many data-intensive or compute-intensive problems within a reasonable time, which is not possible on 
traditional computers.

We summarize our findings in the three dimensions. Initially, scientists only dealt with specific 
problems using manual methods such as doing theoretical calculations using paper and pencil in the 
early days. As problems are getting more complicated, more planning is needed for the research, and 
semi-automated and automated methods are also required for research during this time. Computers are 
used, and when the problem scale gets larger, new technologies such as clusters and grids are applied 
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for solving the problems faster. New challenges from science have risen. We have witnessed these 
recent challenges, including the large-scale of scientific data (Big Data) and the requirements of real-
time processing.

18.2.2 � GRID-BASED eSCIENCE
Current major eScience projects are mostly hosted in the grid or high-performance computing (HPC) 
cluster environments. With aggregated computational power and storage capacity, grids have been con-
sidered an ideal candidate for scientific computing for decades. There are many labs around the world 
working on grid-based projects, such as GridPP in the UK, XSEDE in the US, CNGrid in China, France 
Grilles in France, D-Grid in Germany and Kidney-Grid in Australia. In the following, we present some 
details about the grid infrastructure in the UK, USA and China.

In the UK, particle physicists and computer scientists have been collaboratively working on the 
GridPP project, aiming at providing distributed computing resources across the UK for particle physi-
cists working on the Large Hadron Collider experiments at CERN [6]. These organizations include all 
of the UK universities and institutions that are working as members of this project. At the end of 2011, 
the project has contributed a large number of resources (29,000 CPUs and 25 Petabytes of storage) to 
the worldwide grid infrastructure.

The Grid Infrastructure Group (GIG) along with eleven resource provider sites in the United States 
have initiated an eScience grid computing project called TeraGrid. In 2007, TeraGrid provided more 
than 250 Teraops of computation resources, more than 30 Petabytes of data storage resources, and over 
100 databases of different disciplines for many researchers. The resources had grown to 2 Petaflops 
of computing capability and over 60 Petabytes of storage in late 2009. In 2011, after the termination 
of the TeraGrid project, the National Science Foundation (NSF) funded another high-performance 
project named XSEDE (Extreme Science and Engineering Discovery Environment) as a follow-up to 
TeraGrid.

The China National Grid (CNGrid) has quickly grown to serve more than 1,400 users, including 
both research institutes and commercial companies, providing more than 380 Teraflops of computation 
resources and more than 2 Petabytes of shared data storage resources. Since 2009, this project has built 
three Petaflop-level supercomputers, in which Tianhe-1 was ranked the fastest supercomputer in the 
top 500 supercomputers in 2010 [12].

Besides nationwide initiatives, volunteer computing projects have taken place to build grid plat-
forms with the public donation of computing resources. For example, SETI@home [13] is such a 
volunteer computing project employing the BOINC software platform to search for extra-terrestrial 
signals with the spare capacity on home and office computers.

The strength of grid computing has attracted many scientific applications.

•	 First, since governments are very concerned about the research on grid and frontier scientific 
research, most of the grid-based projects are funded by national funding. Resourceful funding 
offers good chances to boost eScience in the grid.

•	 Second, sharing the vast computational and storage resources from grids becomes possible.
•	 Third, the tools and software developed on the grid can benefit more research groups besides 

the developers themselves. This strength can save a lot of development time for the projects 
developed on the grids.
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While the grid is the dominant infrastructure for eScience, it faces a number of limitations. First, due 
to the limitation of its structure, the grid is not able to provide the elasticity required by most scientific 
projects which are pursuing cost efficiency. Second, it is not easy to get access to grid resources for every-
one because a program getting access to grid resources needs to be authorized on the project’s behalf, and 
resources would then be distributed to this project as a whole. Since grids are mostly nationwide initia-
tives, getting the authorization is very hard for most small-scale projects. Third, while the grid offers ac-
cess to many heterogeneous resources, many applications need very specific and consistent environments.

18.2.3 � CLOUD COMPUTING
According to the definition of the National Institute of Science and Technology (NIST), cloud 
computing is

Cloud computing became popular in the early 2000’s. Officially launched in 2006, Amazon Web 
Service (AWS) was the first utility computing platform to provide computation resources as services 
to external customers. Many other cloud service providers, including Microsoft Azure, Google Cloud 
Platform and Rackspace, have come into the market since then. Open-source systems and research 
projects are developed to facilitate use of the cloud. For example, Eucalyptus allows deploying AWS-
compatible private and hybrid cloud computing environments. The OpenNebula toolkit is designed for 
building private and hybrid clouds with different cloud models and flexibility from Eucalyptus.

Cloud computing shares many similarities with, and differences from grid computing. In the 
year 2008, Foster et al. [15] has compared clouds and grids mainly from a technological perspective. 
Compared to the grid, the cloud has better scalability and elasticity.

•	 When developing applications on the grid infrastructure, it is not easy to scale up or down 
according to the change of data scale. In the cloud, with the use of virtualization, clients can 
scale up or down as they need and pay only for the resources they used.

•	 Virtualization techniques also increase the computation efficiency as multiple applications can 
be run on the same server, and increase application availability since virtualization allows quick 
recovery from unplanned outages with no interruption in service and improves responsiveness 
using automated resource provisioning, monitoring and maintenance.

•	 The cloud has easier accessibility compared to the grid. Users can access commercial cloud 
resources through a log-in and use the resources as they need them as long as they can pay with 
a credit card. In this case, even small-scale scientific projects can also have the chance to use 
powerful clusters or supercomputers on their computer-intensive or data-intensive projects.

Scalable data analytics for Big Data applications in the cloud has become a hot topic. Due to 
the large volumes of input data, many data analytics tasks usually take a long time to finish the data 
processing. However, in many Big Data applications such as weather analytics, the input data must 
be analysed in a cost- and time-effective way to discover the value of the data. The easy accessibil-
ity and good scalability of the cloud make it a perfect match for serving scalable (big) data analytics 

The delivery of computing as a service rather than a product, whereby shared resources, software, 
and information are provided to computers and other devices as a utility (like the electricity grid) over 
a network (typically the Internet) [14].
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applications. More and more eScience applications are beginning to shift from grid to cloud platforms 
[16,17]. For example, the Berkeley Water Centre is undertaking a series of eScience projects collabo-
rating with Microsoft [7–9]. They utilized the Windows Azure cloud to enable rapid scientific data 
browsing for availability and applicability and enable environmental science via data synthesis from 
multiple sources. Their BWC Data Server project is developing an advanced data synthesis server. 
Computer scientists and environmental scientists are collaborating to build new tools and approaches 
to benefit regional and global scale data analysis efforts [7,8].

18.3 � TAXONOMY AND REVIEW OF eSCIENCE SERVICES IN THE CLOUD
There have been various cloud computing techniques for eScience. We need a taxonomy to reflect the 
interplay between eScience and cloud computing. The taxonomy in this section gives a clear classifi-
cation of cloud computing techniques used in eScience services from several perspectives, including 
the computation infrastructure for eScience applications, the ownership of cloud infrastructures, the 
eScience application types, the processing tools used for eScience applications, the storage model, the 
security insurance method, service models of the cloud and the collaboration goal between different 
research groups. Fig. 1 summarizes our taxonomy. Some are mainly from eScience’s perspective, and 
some are mainly from cloud computing’s perspective.
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Taxonomy of eScience in the Cloud.
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18.3.1 � INFRASTRUCTURE
The infrastructure of the cloud provides access to computing and storage resources for eScience ap-
plications in an on-demand fashion. The cloud shares some similarities with the grid while at the same 
time is modified to overcome the limitations of the grid. Roughly, we can classify the infrastructure into 
three kinds: the grid, the grid with virtualization (ie, a hybrid approach), and the cloud.

One characteristic of the grid is that it assigns resources to users in the unit of organizations, and 
each individual organization holds full control of the resources assigned to it. However, such a coarse-
grained resource assignment is not efficient. There are efforts in the grid to use virtualization to address 
the deficiency issue. The nimbus scientific cloud is one such effort that provides a virtual workspace for 
dynamic and secure deployment in the grid. Virtualization hides from users the underlying infrastruc-
tures which are usually heterogeneous hardware and software resources, and provides the users with 
fine-grained resource management capabilities.

As for cloud infrastructures, several national cloud initiatives have also been announced to provide 
on-demand resources for governmental purposes [18], such as the US Cloud Storefront [19], the UK 
G-Cloud [20], and the Japanese Kasumigaseki [21] cloud initiatives. Many industry players have also 
dived into the cloud business, and provide users with seemingly infinite public cloud resources. With 
the popularity of the cloud, many eScience applications have been deployed in the general public cloud 
infrastructures such as Amazon EC2, Windows Azure to benefit from its high performance, scalability 
and easy-access [7–9,22–24].

There have been a number of studies comparing the performance of the cloud with other infrastruc-
tures. The NG-TEPHRA [24] project performed a volcanic ash dispersion simulation on both the grid 
and the cloud, using the East Cluster at Monash University and the Amazon EC2 computing resources, 
separately. Experiments show efficient results on both platforms, and the EC2 results have shown very 
small differences in their standard deviation, indicating the consistent QoS of the cloud. Cloudbursting 
[9] implemented its satellite image processing application with three different versions: an all-cloud 
design on Windows Azure, a version that runs in-house on Windows HPC clusters, and a hybrid cloud-
bursting version that utilizes both in-house and cloud resources. The hybrid version achieves the best of 
the previous two versions, namely the development environment of a local machine and the scalability 
of the cloud. Their experimental results showed that the application is benefiting from the hybrid de-
sign, both on execution time and cost.

From the existing studies, we find that the performance comparison between the cloud and HPC is 
application dependent. Due to the scheduling and communication overhead, the applications involving 
large and frequent data transfers over multiple computation nodes usually perform worse on the cloud 
than on HPC clusters which are equipped with a high-bandwidth network. In contrast, the advantage 
of the cloud is its high scalability. Users can easily and quickly scale up and down their applications 
as needed, without wasting too much money. Applications such as Cloudbursting [9] can benefit from 
this characteristic of the cloud.

18.3.2 � OWNERSHIP
The ownership of cloud infrastructures can be classified as the following types: private, public, hybrid 
and federated. They have different levels of security and ownership scope.

Private clouds are infrastructures operated only by a single organization for internal use. The secu-
rity level of private clouds is the highest among the four types. eScience applications which have high 
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security requirements or possess highly sensitive data can be deployed on private clouds. OpenNebula 
is the first open-source software supporting private-cloud deployment and is widely used by industry 
and research users [25].

On the contrary, public clouds are more open, with their application, storage and other resources 
available to the public on the pay-as-you-go basis.

A federated cloud, also known as a community cloud, is a logical combination of two or more 
clouds from private, public, or even federated clouds. In this combination, two or more clouds often 
have similar goals in security, compliance and jurisdiction. Many countries have built federated clouds 
to support the research and education purposes of their own countries. The EGI Federated Cloud Task 
Force [26] is a federation of academic private clouds to provide services for the scientific community. 
It has been used by a wide areas of eScience applications, including Gaia (a global space astrometry 
mission [27]) and the Catania Science Gateway Framework (CSGF) [28].

A hybrid cloud utilizes cloud resources from both private and public clouds. The benefit of hybrid 
clouds is off-loading. While the workload is bursting and the private cloud can no longer support us-
ers' requirements, users can then request resources from the public cloud to sustain performance and 
scalability.

18.3.3 � APPLICATION
Cloud computing techniques have been applied to various eScience applications. We have surveyed a 
lot of eScience papers and summarized them in the following four categories based on their areas of 
expertise: Life sciences [4,29], Physical sciences [30,31], Climate and Earth sciences [7,23] as well as 
Social sciences and Humanities [32,33].

We note that those application categories can overlap with each other. There is no absolute bound-
ary between categories. Still, different categories have their own requirements on the cloud. The first 
three categories, ie, life sciences, physical sciences and climate and earth sciences, are focusing more 
on extending their works to large-scale datasets and thus require the cloud platform to deal with large-
scale data analysis efficiently. The fourth category, ie, social science and humanities, is focusing more 
on collaboration, and thus requires the cloud platform to be easy for sharing.

Another observation is that the development of eScience projects is ad-hoc. Some applications are 
developed on Amazon EC2 cloud [34], some on Windows Azure [9] while some others on both cloud 
platforms to verify their design [35].

However, it is not clearly explained why certain cloud platforms should be chosen over others 
in those projects. For example, MFA [34] is a Life Science project developed with the cloud ser-
vices provided by Amazon. Its aim is to investigate whether utilizing the MapReduce framework 
is beneficial for performing simulation tasks in the area of Systems Biology. The experiments on a 
64-node Amazon MapReduce cluster and a single-node implementation have shown up to a 14times 
performance gain, with a total cost of on-demand resources of $11. MODIS-Azure [7] is a Climate 
and Earth science application deployed on Windows Azure to process large-scale satellite data. The 
system is implemented with the Azure blob storage for data repositories and Azure queue services 
for task scheduling. However, neither of the two projects has technically explained their choice 
of cloud platforms. To compare the performance on different cloud platforms, a Physical science 
project, Inversion [35], was deployed on both Amazon EC2 and Windows Azure with symmetry 
structures.
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All these examples indicate that it can be a challenging problem to choose cloud platforms for 
eScience applications. Due to the current ad-hoc implementation in specific cloud providers, the les-
sons learned during the implementation of one project may not be applicable to other projects or other 
cloud providers.

18.3.4 � PROCESSING TOOLS
From the perspective of processing tools, we have witnessed the deployment of classic workflow sys-
tems in the cloud, new cloud-oriented programming models such as MapReduce and DryadLINQ, and 
hybrids of such newly proposed tools and models.

Scientific workflows have been proposed and developed to assist scientists in tracking the evolution 
of their data and results. Many scientific applications use workflow systems to enable the composi-
tion and execution of complex analysis on distributed resources [36]. ‘Montage’ is the example of a 
widely-used workflow for making large-scale, science-grade images for astronomical research [31]. 
Workflow management systems (WMSes) such as Pegasus [37] and Kepler [38] are developed to man-
age and schedule the execution of scientific workflows. WMSes rely on tools such as Directed Acyclic 
Graph Manager (DAGMan) [39] and Condor [40] to manage the resource acquisition from the cloud 
and schedule the tasks of scientific workflows to cloud resources for execution. The application owners 
have to separately deploy and configure all the required software such as Pegasus and Condor on the 
cloud platforms to make their applications run. Such re-implementation and redesign work requires ef-
fort from the application owners and should be avoided. Recently, container techniques, such as Docker 
[41], have been emerging to address this issue.

Emerging cloud-oriented programming models hold great promise for the development of cloud 
computing. MapReduce is a framework proposed by Google in 2004 [42] for processing highly dis-
tributable problems using a large number of computers. This makes this framework especially suitable 
for eScience application users who may not be experts in parallel programming. We have observed 
the emergence of eScience applications adopting MapReduce framework for data-intensive scientific 
analyses [3].

Due to the large data size of many eScience applications, new data processing models, such as in-
situ [43] and in-transit processing [44], have been proposed to reduce the overhead of data processing. 
An eScience workflow typically includes two parts, namely the simulation part which simulates the 
scientific applications to generate raw data and the analysis part which analyses the raw data to gener-
ate findings. The in-situ processing model co-locates the simulation and analysis parts on the same ma-
chine to eliminate data movement cost, while in the in-transit processing model, the simulation output 
data are staged to the analysis node directly through interconnect to avoid touching the storage system.

18.3.5 � STORAGE
Data is centric to eScience applications. With the development of science, the hypothesis to data has 
evolved from the empirical description stage, theoretical modelling stage, and computational simula-
tion stage to the fourth paradigm today, the data-intensive scientific discovery stage. Due to the vast 
data size, knowledge on the storage format of scientific data in the cloud is very important. Facing the 
massive data sets, there are two major ways for data storage: data can be stored as files in file systems 
or in databases.
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Many distributed file systems have been proposed to provide efficient and reliable access to large-
scale data using clusters of commodity hardware [45,46]. For example, distributed and reliable file 
systems such as the Hadoop Distributed File System (HDFS) are the primary storage system used 
by Hadoop applications which utilize the MapReduce model for large dataset processing. OpenStack 
Swift [47] is a distributed storage system for large-scale unstructured data. It currently serves the larg-
est object storage clouds, such as Rackspace Cloud Files and IBM Softlayer Cloud. To efficiently or-
ganize and store the massive scientific datasets, scientific data formats such as NetCDF [48] and HDF5 
[49] have been widely used to achieve high I/O bandwidth from parallel file systems. The scalable and 
highly efficient distributed file system models together with the scientific data formats provide a prom-
ising data storage approach for data-intensive eScience applications.

Databases for eScience have been emerging for a number of advantages in query processing capa-
bility, relatively mature techniques, and data integrity. HBase, a Hadoop project modelled on Bigtable, 
has been applied to many eScience applications such as bioinformatics domains [50]. Some array-
based databases such as SciDB [51] have also been proposed to satisfy the special requirements of 
array-based eScience applications. SciDB is a scientific database system built from the ground up that 
has been applied to many scientific application areas, including astronomy, earth remote sensing and 
environmental studies [52].

Although the data size of most eScience applications is enormous, we have observed that many of 
the eScience data are statically stored. For example, the SciHmm [53] project is making optimizations 
on time and money for the phylogenetic analysis problem. The data involved in this application are ge-
netic data, which do not require frequent updates and can be viewed as statically stored. Similarly, the 
bioinformatics data in the CloudBLAST [4] project and the astronomy data in the Montage Example 
[30], although they may be updated from time to time, are seldom modified once obtained. Existing 
blob-based or distributed storage like Amazon S3 can be an ideal storage system for eScience.

18.3.6 � SECURITY
Security is a big issue in regard to eScience applications, especially for those with sensitive data. On 
one hand, scientists need to make sure that the sensitive data is secured from malicious attacks. On the 
other hand, they also need to share data between scientific groups (possibly from different nations) 
working on the same project. Thus, how to find a balance point between the two aims is a challenging 
problem. Currently, the security level in the cloud is relatively immature compared to the grid com-
puting platform. One common way to make sure of security in the cloud is through logging in. Many 
eScience applications deployed on the cloud have designed their own way of authentication and autho-
rization to further ensure security. Such as in [54], the Group Authorization Manager is used to grant 
access permission based on a user-defined access control policy. The emerging Open authorization 
(OAuth2.0) protocol is used to support authorization for users to share datasets or computing resources. 
In [55], the Gold security infrastructure is utilized to deal with the authentication and authorization of 
users to keep sensitive data secure. Data owners could specify their security preferences for the security 
infrastructure to control role- and task-based access.

Unlike in grid computing, where the authentication and authorization mechanisms are mainly based 
on the public key infrastructure (PKI) protocol [56], many cloud vendors support multiple security pro-
tocols such as OAuth2.0. The eScience gateway is a commonly adopted approach to reinforce security 
mechanisms.
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18.3.7 � SERVICE MODELS
There are different levels of computing services offered by the cloud (ie, IaaS, IaaS with tools, PaaS 
and SaaS). The IaaS model is the most basic cloud service model, where cloud providers only offer 
physical infrastructures such as virtual machines and raw storage to users. Amazon EC2 is such an 
example [23,24,57]. To enable the execution of scientific applications in IaaS clouds, a number of 
domain-specific supporting software and tools need to be installed. In order to save scientists' effort of 
installation, platforms providing IaaS level services but with additional tools and software, have been 
proposed. Nimbus [31] and Eucalyptus are examples of this kind. In the PaaS model, cloud providers 
offer a computing platform typically equipped with operating system, programming language execu-
tion environments and databases. Users of the PaaS cloud can simply develop their applications on the 
platform without the effort and cost of buying and managing the underlying hardware and software 
layers. Typical examples of this type include Windows Azure, and Google’s App Engine. In the SaaS 
model, cloud providers provide a computing platform installed with application software. Cloud pro-
viders are in charge of the software maintenance and support. One example is Altair SaaS [58], which 
provides high-performance computing (HPC) workload management and scheduling services for ap-
plications such as scientific simulations.

Due to the pay-as-you-go pricing feature of cloud services, monetary cost is an important consid-
eration of eScience in the cloud. MFA [34] reported a 14-times speedup for their metabolic flux analy-
sis on Amazon cloud with an $11 cost, which includes the EC2 cost, EMR cost and S3 storage cost. 
SciHmm [53] aims to reduce the monetary cost for scientists via deciding the most adequate scientific 
analysis method for the scientists a priori. It reported the cost for the parallel execution of SciHmm on 
the Amazon EC2 cloud and showed that it is acceptable for most scientists (US $47.79). Due to the 
large scale of data and long-running jobs, eScience applications have to carefully manage the cloud re-
sources used to optimize their monetary cost. However, this resource management problem is not trivial 
and requires both domain expertise and knowledge on cloud computing. A lot of ongoing studies have 
concentrated on the monetary cost optimizations for scientific workflows [30,59–62]. In Section 18.4, 
we present our experiences on cloud resource provisioning problems to optimize the monetary cost and 
performance of eScience in the cloud.

18.3.8 � COLLABORATION
Another important usage of the cloud for eScience applications is collaboration. Collaboration between 
the groups includes two different focuses: sharing storage and/or sharing computation. Sharing storage 
is the sharing mechanism of scientific data and analysis results between different research groups work-
ing on the same project. Sharing computation is to share the idle computing resources of one group to 
the others such that the resource utilization rate of all the collaborating groups can be highly improved. 
Collaboration between these groups is very important to the success of the projects. With the devel-
opment of the Internet and the popularity of social networks, some previous studies have leveraged 
cloud computing techniques and social network APIs to provide a collaboration platform for eScience 
researchers [63,64].

The Life science project CloudDRN [65] moves medical research data to the cloud to enable se-
cure collaboration and sharing of distributed data sets. It relies on authentication and authorization 
to ensure security. Also, many applications in Social Science and Humanities have shown increasing 
collaboration. The SoCC [63] project leverages social network platform for the sharing of resources 



442 CHAPTER 18  eSCIENCE AND BIG DATA WORKFLOWS IN CLOUDS

in scientific communities. They provide a PaaS social cloud framework for users to share resources 
and support creating virtual organizations and virtual clusters for collaborating users. The SCC [64] 
project is also leveraging social network and cloud computing to enable data sharing between social 
network users.

18.4 � RESOURCE PROVISIONING FOR eSCIENCE WORKFLOWS IN CLOUDS
From our survey on existing scientific applications, we find that resource provisioning is an important 
problem for scientific applications in the cloud. In this section, we present our existing studies on this 
direction. We can easily classify the resource provisioning problems using our taxonomy. We study the 
problems in public IaaS clouds for scientific workflows. Workflows in physical sciences (eg, Montage 
and Ligo) and biological sciences (eg, Epigenomics) are studied. The Pegasus workflow management 
system is used to run the scientific workflows in the cloud. Distributed file systems are used to store 
the large-scale scientific data and workflow tasks that share cloud computation resources for monetary 
cost optimization.

18.4.1 � MOTIVATION
Scientists often use scientific workflows to analyse and understand scientific data. Scientific work-
flows involve complex computational processes, often requiring accessing a large amount of data. 
Montage workflow [66] is an example in astronomical study for generating sky mosaics in the scale 
of hundreds of GBs. CyberShake [67] is a data-intensive workflow for characterizing earthquake haz-
ards. CyberShake workflows are composed of more than 800,000 tasks and have input data larger than 
200TBs. Another example is the Epigenomics workflow [67], which is a biological application that 
studies the set of epigenetic modifications on human cells. All these example workflows involve man-
aging and processing very large data sets, such as the sky image data and human genetic data.

Due to the pay-as-you-go characteristic of the cloud, many real-world scientific workflows are cur-
rently deployed and executed in IaaS clouds [68]. Although the scalability and elasticity of the cloud 
have brought great opportunities for the workflows, many research problems also arise. Resource pro-
visioning is one important problem for the monetary cost and performance optimizations of scientific 
workflows in IaaS clouds. Since cloud providers usually offer multiple instance types with different 
prices and computational capabilities, we need to carefully decide the types of instances that each task of 
a workflow executes on to optimize the performance and monetary cost. However, making the resource 
provisioning decisions is non-trivial, involving the complexities from cloud, workflows, and users.

The resource provisioning for workflows in IaaS clouds is a complex problem, from the following 
three aspects.

Diverse cloud offerings. The IaaS clouds usually offer a large number of instance types. For exam-
ple, Amazon EC2 provides more than 20 types of instances (only counting the latest generation) for the 
users [69]. Different types of instances usually have diversified capabilities and prices. For example, 
Amazon EC2 offers storage optimized instances to provide very high random I/O performance for 
I/O-intensive applications. If we consider multiple clouds, the situation is even worse since the cloud 
providers usually adopt different cloud offerings. For example, Amazon EC2 adopts an hourly pricing 
scheme, while Google Compute Engine charges users by the minute.
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The dynamics in cloud performance and prices make the problem even more complex. Most exist-
ing resource provisioning approaches for scientific workflows in IaaS clouds [61,70,71] assume that 
the execution time of each task in the workflow is static on a given VM type. However, this assumption 
does not hold in the cloud. The cloud environment is, by design, a shared infrastructure. The perfor-
mance of cloud resources, such as I/O and network, is dynamic due to interferences between users [72]. 
We have observed remarkable dynamics in the I/O and network performances from Amazon EC2 [73]. 
Fig. 2 shows the quantiles of the normalized execution time of the Montage workflows in different 
scales running on Amazon EC2 for 100 times each. The execution time of the three workflows varies 
significantly. The variances are mainly from the interferences from disk and network I/O. In fact, sci-
entific workflows may process input data of a large size. Due to the significant performance variance of 
scientific workflows in IaaS clouds, the deterministic notions of performance/cost constraints are not 
suitable, and a more rigorous notion is required.

On the other hand, the cloud is an economic market, and has dynamic prices [74]. Amazon EC2 offers 
spot instances, whose prices are determined by market demand and supply. Most existing optimization 
approaches for scientific workflows in IaaS clouds [61,75] adopt static notions of performance and cost, 
which are not suitable for performance and cost optimizations in the dynamic cloud environment. Effective 
optimization techniques and more rigorous QoS notions are needed to capture the cloud dynamics.

Complex workflow structures and characteristics. Workflows can have very different and complex 
structures. For example, Fig. 3 shows the DAG structure of Ligo, Montage and Epigenomics workflows. 
We can easily observe from the figure that the structure of Montage is the most complicated in the 
three workflows while Ligo and Epigenomics workflows have higher parallelism compared to Montage. 
Within a single workflow, the characteristics of tasks also vary. For example, in the Montage workflow, 
some tasks are computation-intensive (ie, most of the task execution time is spent on CPU computations) 
and some are I/O-intensive (ie, most of the task execution time is spent on I/O operations). There are also 
different application scenarios of workflows. For example, the workflows can be continuously submit-
ted to the cloud and the optimizations are made for each workflow individually [75,76]. Users can also 
group the workflows with similar structures but different input parameters as an ensemble, and submit 
QoS and optimization requirements for the entire ensemble. We need an effective system that is capable 
of simplifying the optimizations of different kinds of tasks and workflows. We should also consider how 
to make use of the different workflow structures for cost and performance optimizations.
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Execution time variances of running Montage workflows on Amazon EC2.
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Various user requirements. Scientists submit their workflow applications to the IaaS clouds usually 
with some predefined optimization objectives and QoS requirements. For example, one may desire 
to finish a workflow execution with a minimum monetary cost before a predefined deadline while 
another one may desire to execute a workflow as fast as possible with a given budget. Users may also 
define skyline optimization objectives, eg, minimizing both the monetary cost and the execution time of 
workflows. The users’ requirements are also evolving. For example, a user may want to minimize the 
execution time of a workflow on a cloud C1 with a predefined budget. In the other scenario, she may 
consider running the workflow on multiple clouds other than C1. At this point, the optimal solution 
depends on the offerings of the multiple clouds and the network performance across clouds. Existing 
optimization algorithms are specifically designed for certain optimization problems and are usually not 
extensible or flexible to various evolving user requirements. Different resource provisioning schemes 
result in significant monetary cost and performance variations. Fig. 4 shows the normalized average 
cost of running the Montage workflow with deadline constraint using different instance configurations 

(A) Ligo Montage Epigenomics(B) (C)

FIG. 3

Workflow structure of Ligo, Montage and Epigenomics.
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Average cost of running Montage workflows under different instance configurations on Amazon EC2.
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on Amazon EC2. We consider seven scenarios: the workflow is executed on a single instance type 
only (m1.small, m1.medium, m1.large and m1.xlarge), on randomly chosen instance types, and using 
the instance configurations decided by Autoscaling [75] and by a optimization engine proposed in this 
chapter (denoted as Deco). Although the configurations m1.small and m1.medium obtain low average 
cost, they cannot satisfy the performance constraint of the workflow. Among the configurations satisfy-
ing the deadline constraint, Deco achieves the lowest monetary cost. The cost of Deco is only 40% of 
the cost of the most expensive configuration (ie, m1.xlarge).

18.4.2 � OUR SOLUTION
To address these challenges, we design a flexible and effective optimization system to simplify the op-
timization of monetary cost and performance for scientific workflows in IaaS clouds. Fig. 5 shows our 
overall design. Specifically, we propose a probabilistic scheduling system called Dyna [73] to minimize 
the cost of workflows while satisfying the probabilistic performance guarantees of individual workflows 
predefined by the user. We also abstract the common monetary cost and performance optimizations of 
workflows as transformation operations, and propose a transformation-based optimization framework 
named ToF [59] for the monetary cost and performance optimizations of workflows. Finally, we pro-
pose a declarative optimization engine named Deco [77], which can automatically generate resource 
provisioning plans for various workflow optimization problems, considering the cloud performance 
dynamics. We introduce the details of the three projects in the following subsections.

Effective monetary cost optimizations for workflows in IaaS clouds
Cloud dynamics, including the price and performance dynamics, can greatly affect the resource provi-
sioning result of workflows in IaaS clouds. In this project, we consider a typical scenario of providing 
software-as-a-service for workflows in the IaaS clouds. We denote this model as workflow-as-a-service 
(WaaS). We propose a dynamics-aware optimization framework called Dyna, to improve the effective-
ness of monetary cost optimizations for WaaS providers. Compared with existing scheduling algorithms 
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or systems [75], Dyna is specifically designed to capture the cloud performance and price dynamics. 
The main components of Dyna are illustrated in Fig. 6.

When a user has specified the probabilistic deadline requirement for a workflow, WaaS providers 
schedule the workflow by choosing the cost-effective instance types for each task in the workflow. The 
overall functionality of the Dyna optimizations is to determine the suitable instance configuration for 
each task of a workflow so that the monetary cost is minimized while the probabilistic performance 
requirement is satisfied. We formulate the optimization process as a search problem, and develop a 
two-step approach to find the solution efficiently. The instance configurations of the two steps are il-
lustrated in Fig. 6. We first adopt an A*-based instance configuration approach to select the on-demand 
instance type for each task of the workflow, in order to minimize the monetary cost while satisfying the 
probabilistic deadline guarantee. Second, starting from the on-demand instance configuration, we adopt 
the hybrid instance configuration refinement to consider using a hybrid of both on-demand and spot 
instances for executing tasks in order to further reduce costs. After the two optimization steps, the tasks 
of the workflow are scheduled to execute on the cloud according to their hybrid instance configuration. 
At runtime, we maintain a pool of spot instances and on-demand instances, organized in lists according 
to different instance types. Instance acquisition/release operations are performed in an auto-scaling man-
ner. For the instances that do not have any tasks and are approaching multiples of full instance hours, 
we release them and remove them from the pool. We schedule tasks to instances in the earliest-deadline-
first manner. When a task with the deadline residual of ‘zero’ requests an instance and the task is not 
consolidated to an existing instance in the pool, we acquire a new instance from the cloud provider, and 
add it into the pool. In our experiment, for example, Amazon EC2 poses the capacity limitation of 200 
instances. If this cap is met, we cannot acquire new instances until some instances are released.

The reason that we divide the search process into two steps is to reduce the solution space. For 
example, consider searching the instance configuration for a single task, where there are n on-demand 
types and m spot instance types. If we consider spot and on-demand instances together, the number of 
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optimization effectiveness and efficiency. In the first step, we only consider on-demand instances and 
utilize the pruning capability of the A⋆ search to improve the optimization efficiency. In the second 
step, we consider the hybrid of spot and on-demand instances as the refinement of the instance con-
figuration obtained from the first step. We give the following example to illustrate the feasibility of the 
two-step optimization.

EXAMPLE 1
Consider the instance configuration for a single task. In the A*-based instance configuration step, 
the on-demand instance configuration found for the task is 0 0 1, . , False( ) . In the refinement step, 
the on-demand instance configuration is refined to 0 0 01 0 0 1, ,. , , . ,Ture False( ) ( ) . Assume the ex-
pected execution time of the task on type 0 instance is 1 hour and the spot price is lower than $0.01 
(equals to $0.006) for 50% of the time. The expected monetary cost of executing the task under the 
on-demand instance configuration is $0.1 and under the hybrid instance configuration is only $0.053 
( $ $0 006 50 0 1 50. % . %´ + ´ ). Thus, it is feasible to reduce the expected monetary cost by instance con-
figuration refinement in the second step.

Evaluation results. We compare Dyna with the state-of-the-art algorithm [75] (denoted as Static) on 
three different workflow applications shown in Fig. 3 and find that Dyna saves monetary costs over Static 
by 15{73% when the probabilistic deadline requirement is 96%. Although the average execution time 
of Dyna is longer than Static, it can guarantee the probabilistic deadline requirements under all settings.

Transformation-based optimizations for workflows in IaaS clouds
Due to the diversified cloud offerings and complex workflow structures and characteristics, resource 
provisioning for scientific workflows in IaaS clouds is a complicated optimization problem. To address 
the complexity issues, we propose a transformation-based optimization framework called ToF to sim-
plify workflow optimizations effectively. In ToF, we abstract the common operations in the monetary 
cost and performance optimizations of scientific workflows as transformations and design a cost model 
to guide the selection of transformations effectively.

We have developed six basic transformation operations, namely Merge, Split, Promote, Demote, 
Move and Co-scheduling. These basic transformations are simple and lightweight. Moreover, they can 
capture the current cloud features considered in this chapter. They are the most common operations and 
widely applicable to workflow structures. For example, the operations of all the comparison algorithms 
used in the experiments can be represented using those transformations. However, we do not claim 
they form a complete set. Users can extend more transformation operations into the transformation set. 
Adding a transformation operation requires the modifications, including adding the cost model, and 
transformation implementation on the instance DAG.

Based on their capabilities in reducing monetary costs, we categorize the transformation operations into 
two kinds, namely main schemes and auxiliary schemes. A main scheme can reduce the monetary cost while 
an auxiliary scheme simply transforms the workflows so that the transformed workflow is suitable for main 
schemes to reduce costs. By definition, Merge and Demote are main schemes, and the other four operations 
are auxiliary schemes. Table 2 summarizes the definition and categorization for the six operations.

Some examples of transformation are illustrated in Fig. 7. We illustrate the transformation opera-
tions with an instance-time chart, where the x axis represents time and y axis represents the instance. 
An instance-time chart is similar to a Gantt chart, with the box width as the execution time and with 
dependencies between boxes. The height of the boxes stand for prices of instances. During the transfor-
mation, we maintain the structural dependency among tasks even after transformations.
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Table 2  Details of the Six Transformation Operations. The Formulation V
i
(t0, t1)Stands for an 

Instance of Type i and the Task on this Instance Starts at t0 While Ends at t1.

Name Category Description Formulation

Merge Main Merge multiple tasks to 
the same instance to fully 
utilize partial hours.

M V t t V t t V t ti i i0 1 2 3 0 3, , ,( ) ( )( ) ® ( ),

Demote Main Assign a task to a cheaper 
instance type.

D V t t V t t i ji j0 1 2 3, , where( )( ) ® ( ) >,

Move Auxiliary Delay a task to execute 
later.

V V t t V t t t t t ti i0 1 2 3 3 2 1 0, , where( )( ) ® ( ) = + -( ),

Promote Auxiliary Assign a task to a better 
instance type.

P V t t V t t i ji j0 1 2 3, , where( )( ) ® ( ) <,

Split Auxiliary Stop a running task at 
some checkpoint and 
restart it later.

S V t t V t t V t ti i i0 1 1 0 2 2 3 4, , ,( )( ) ® ( ) ( ),

Co-scheduling Auxiliary Assign two or more tasks 
to the same instance for 
execution.

C V t t V t t V t t t ti i i0 1 2 3 0 2 1 3, , , ,( ) ( )( ) ® ( ) ( )( ), min ,max
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Use cases of the six transformation operations shown in the instance-time chart.
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We develop simple yet effective cost models to estimate the cost and the time changes for applying 
one transformation operation on the instance DAG. Since an auxiliary scheme does not directly reduce 
the cost, we estimate the potential cost saving of the main schemes after applying the auxiliary scheme. 
As for the time estimation, the changes of execution time need to be propagated to all the tasks with 
dependencies on the vertices affected by the transformation operation. This article estimates the worst 
case for the change of execution time, since worst-case analysis usually can have simplified estimation 
processes. For details on cost models, readers can refer to the paper [73].

In one optimization iteration, we first estimate the (potential) cost reduction of each operation 
which satisfies the deadline constraint, using the cost models. Second, we select and perform the opera-
tion with the most cost reduction. All selected transformations form the optimization sequence.

Fig. 8 shows an example of a simple structured workflow with three tasks. The deadline of the 
workflow is 120 minutes and the execution time of Tasks 0, 1 and 2 on the assigned instance types are 
30, 30 and 40 minutes respectively. In the first iteration, we first check the operations in main schemes 
and find that no one can reduce cost. We then check the operations in auxiliary schemes and select the 
Move operation to perform as it can introduce the most cost reduction. In the next iteration, Merge 
from the main schemes is selected and performed, after which no operation can further reduce the cost 
of the workflow. After applying the Move and Merge operations, the charging hours of executing this 
workflow is reduced from three to two.

Evaluation results. We demonstrated the accuracy of our cost model estimation and compared ToF 
with the state-of-the-art algorithm [75] on the Montage and Ligo workflows. ToF outperforms the 
state-of-the-art algorithm by 30% for monetary cost optimization, and by 21% for the execution time 
optimization. Please refer to our previous work [59] for experimental details.

A declarative optimization engine for workflows in IaaS clouds
WMSes [78–80] are often used by scientists to execute and manage scientific workflows. Those work-
flow management systems often have dependent software tools such as Condor and DAGMan [39], 
and require specific skills to implement the specific optimization algorithms in the cloud. All those 
software packages are interplayed with the resource provisioning problem in the cloud. It is desirable to 
abstract these complexities from users and shorten the development cycle. In this chapter, we develop 
a declarative resource provisioning engine named Deco and integrate it into a popular WMS named 
Pegasus for executing scientific workflows in IaaS clouds. Fig. 9 presents a system overview of Deco 
and its integration in the Pegasus WMS.

In order to schedule the workflows in the cloud, users can alternatively choose from several tra-
ditional schedulers provided by Pegasus and our proposed Deco. For example, Pegasus provides a 
Random scheduler by default, which randomly selects the instance to execute for each task in the 

FIG. 8

Example of applying transformation operations on a three node structured workflow.
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workflow. With Deco, we model the resource provisioning problem as a constrained optimization prob-
lem. Users can specify various optimization goals and constraints with WLog programs. WLog is a 
declarative language extended from ProLog, with special extensions for scientific workflows and the 
dynamic clouds. Table 3 gives several examples of such extensions and explains their functionality.

Deco allows users to use probabilistic notions to specify their optimization requirements in the 
dynamic clouds. We model the dynamic cloud performance with probabilistic distributions, which is 
transparent to users. Deco automatically translates a WLog program submitted by users to a proba-
bilistic intermediate representation (IR) and interprets it using the WLog interpreter. We traverse the 
solution space to find a good solution for the optimization problem. For each searched solution, we 
evaluate it with the probabilistic IR, which requires a lot of computation [81]. To effectively and ef-
ficiently search for a good solution in a reasonable time, we implement a GPU-accelerated parallel 
solver to leverage the massive parallelism of the GPU. After the optimization process, Deco returns the 
found resource provisioning plan (indicating the selected execution site for each task in the workflow) 
to Pegasus for generating the executable workflow.

Evaluation results. We use Deco to solve three different workflow optimization problems. 
Specifically, we formulate a workflow scheduling problem (single workflow and single cloud), a work-
flow ensemble optimization problem (multiple workflows and single cloud) and a workflow migration 

FIG. 9

System overview of Deco with integration in Pegasus.

Table 3  Workflow and Cloud Specific Built-in Functions and Keywords in WLog.

Function/Keyword Remark

goal Optimization goal defined by the user.

cons Problem constraint defined by the user.

var Problem variable to be optimized.
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problem (multiple workflow and multiple clouds). These use cases have covered a large part of re-
source provisioning problems for scientific workflows. Our experimental results show that Deco is able 
to obtain better optimization results than heuristic based methods in all use cases. Specifically, Deco 
can achieve more effective performance/cost optimizations than the state-of-the-art approaches, with 
the monetary cost reduction by 30-50%. The optimization overhead of Deco takes 4.3-63.17 ms per 
task for a workflow with 20–1000 tasks.

18.5 � OPEN PROBLEMS
Previous sections have reviewed the status and the observations in building eScience applications and 
systems in the cloud. Despite the fruitful results along this research direction, we clearly see that there 
are still many open problems to be addressed in order to fully unleash the power of cloud computing for 
eScience. We present the open problems for developing the next-generation eScience applications and 
systems in the cloud. Those open problems are rooted at the interplay between eScience requirements 
and cloud computing features.

Data Lock-In: There is no standardization between different cloud platforms, such as different 
clouds used for different data storage formats. For example, data stored in Amazon S3 cannot be easily 
used by the jobs running on the Windows Azure platform due to different APIs, data storage techniques 
such as encryption techniques and security protocols. On the other hand, due to the fact that eScience 
projects usually involve a large amount of data for scientific research, such as the genome sequence data 
and seismographic data, data transfer costs between different cloud platforms is substantial. It requires 
further research on reducing the network data transfer in terms of both performance and monetary cost.

Performance Unpredictability: Some eScience applications have rather rigid performance require-
ments. Performance unpredictability is a critical problem for running those applications in the cloud, 
due to the interference among concurrent applications running in the same cloud. This problem is 
particularly severe for disk I/O and network traffic, especially for data-intensive eScience applications. 
The other factor of performance unpredictability is VM failures or unreliability. In [8], the authors is-
sued a total of 10,032 VM unique instance start events on the Windows Azure cloud and only 8,568 in-
stances started once during their lifetimes while the others had encountered various unknown problems 
during their run and were restarted by the Azure infrastructure many times.

Data Confidentiality and Auditability: Current commercial clouds are essentially open to the public 
and are consequently exposing themselves to more attacks. For eScience applications, the data involved 
could be relevant to the homeland security of a country, such as the geographical data of the country, 
or even the security of human beings, such as the human genome data. So protecting this sensitive data 
from unauthorized or even malicious access is an important ongoing research topic.

Lacking of eScience Common System Infrastructure: As we discussed in the previous section, the ef-
forts of implementing eScience projects on the cloud are quite ad-hoc. For example, the Montage work-
flow, an astronomy toolkit, is commonly used to discuss the pros and cons of using cloud computing 
for scientific applications [30,31] and such physical science systems built in the cloud are specifically 
designed to better fit the cloud for scientific workflow applications. Thus, such developmental experi-
ences may not be useful to scientific applications in other areas. In order to save the development cycle 
and better exploit the experiences of current systems, we need a holistic platform which various re-
search fields can build their systems on that offers opportunities for application-specific optimizations.
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Resource Management on Future Clouds: With the presence of new cloud service models and new 
technologies, the resource management problem is becoming more important and complex for future 
clouds. The high-speed Internet connection makes hybrid cloud resources available as if they are physi-
cally located close to the users. However, to enable such cost-efficient and low-latency services to us-
ers, we need to design a fine-grained and extensive resource management system providing different 
ways of measuring and allocating resources. As the cloud gets popular, cloud autonomics is on its way. 
As a result, automated resource management systems are also required to ease the users from tedious 
system configurations, monitoring and management.

18.6 � SUMMARY
Scientific computing is an emerging and promising application in the Big Data era. Recently, we have 
witnessed many scientific applications that have been developed and executed on the cloud infrastructure, 
due to its elasticity and scalability. In this chapter, we developed a taxonomy and conducted a review of 
the current status of eScience applications in the cloud. Due to the pay-as-you-go pricing feature of the 
cloud, we find that resource provisioning is an important problem for scientific applications in the cloud. 
We presented our experiences on improving the effectiveness of monetary cost and performance optimiza-
tions for scientific workflows in IaaS clouds. Finally, we proposed the open problems in this area and call 
for more support from the cloud community and more investment and efforts from other communities.
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