
GPU-Accelerated Cloud Computing
for Data-Intensive Applications

Baoxue Zhao, Jianlong Zhong, Bingsheng He, Qiong Luo, Wenbin Fang,
and Naga K. Govindaraju

Abstract Recently, many large-scale data-intensive applications have emerged
from the Internet and science domains. They pose significant challenges on the
performance, scalability and programmability of existing data management systems.
The challenges are even greater when these data management systems run on
emerging parallel and distributed hardware and software platforms. In this chapter,
we study the use of the GPU (Graphics Processing Units) in MapReduce and general
graph processing in the Cloud for these data-intensive applications. In particular,
we report our experiences in developing system prototypes, and discuss the open
problems in the interplay between data-intensive applications and system platforms.

1 Introduction

In recent years, Big Data has become a buzz word in both industry and academia,
due to the emergence of many large-scale data-intensive applications. These data-
intensive applications not only have very large data volume, but may also have
complex data structures and high update rates. All these factors pose significant
challenges on the performance, scalability and programmability of existing data
management systems. We elaborate more details about these challenges in the
following.

B. Zhao • Q. Luo (�)
Department of Computer Science and Engineering, HKUST, Hong Kong
e-mail: bzhaoad@cse.ust.hk; luo@cse.ust.hk

J. Zhong • B. He
School of Computer Engineering, Nanyang Technological University, Nanyang, Singapore
e-mail: jzhong2@ntu.edu.sg; bshe@ntu.edu.sg

W. Fang
San Francisco, CA, USA
e-mail: wenbin@cs.wisc.edu

N.K. Govindaraju
Microsoft Redmond, Redmond, WA, USA
e-mail: nagag@microsoft.com

© Springer Science+Business Media New York 2014
X. Li, J. Qiu (eds.), Cloud Computing for Data-Intensive Applications,
DOI 10.1007/978-1-4939-1905-5__5

105

mailto:bzhaoad@cse.ust.hk
mailto:luo@cse.ust.hk
mailto:jzhong2@ntu.edu.sg
mailto:bshe@ntu.edu.sg
mailto:wenbin@cs.wisc.edu
mailto:nagag@microsoft.com


106 B. Zhao et al.

Performance Many processing tasks are driven by data updates, which require
on-line response. Examples include traffic control and video surveillance. The
performance issue is crucial for these on-line applications over large amounts of
data.

Scalability Also due to the increasing data volume, it is essential for systems to
scale with data growth.

Programmability To meet performance and scalability requirement of big data, data
management systems are run on parallel and/or distributed platforms. Programming
on such systems is much more challenging than sequential programming.

Many data processing algorithms and systems have been developed, including
MapReduce [20] and general graph processing. MapReduce was originally pro-
posed by Google for the ease of development of web document processing on
a large number of machines. This framework provides two primitive operations
(1) a map function to process input key/value pairs and to generate intermediate
key/value pairs, and (2) a reduce function to merge all intermediate pairs associated
with the same key. With a MapReduce framework, developers can implement
their application logic using the two primitives. The MapReduce runtime will
automatically distribute and execute the task on a number of computers. MapReduce
is mainly for flat-structured data, and can be inefficient for unstructured data [54].
Thus, general graph processing systems are proposed for processing unstructured
data such as social networks and graphs. Representative systems include Google’s
Pregel [54] and Microsoft’s Trinity [63].

Both MapReduce and general graph processing platforms have been developed
and run on various kinds of distributed and parallel systems. This chapter focuses
on two emerging platforms: GPUs (Graphics Processing Units) and the Cloud, as
the representatives for many-core and distributed computing platforms, respectively.
Specifically, we review the related work for MapReduce and general graph pro-
cessing on GPUs and Cloud platforms. Moreover, we report our experiences in
developing system prototypes: Mars [32] and MarsHadoop [25] for GPU-based
MapReduce; Medusa [74,76] and Surfer [16] for GPU-based and Cloud-based graph
processing, respectively. Finally, we discuss the open problems in the interplay
between data processing systems and system platforms.

Organization The remainder of this chapter is organized as follows. Section 2
reviews the background on GPUs and Cloud Computing, and related work on
MapReduce and general graph processing frameworks on GPUs and in the Cloud.
Section 3 introduces the MapReduce work on GPU Clusters. Section 4 presents
the parallel graph processing techniques on GPUs and the Cloud. We conclude our
chapter and discuss the open problems in Sect. 5.



GPU-Accelerated Cloud Computing for Data-Intensive Applications 107

2 Background and Related Work

2.1 Cloud Computing

With the rapid growth of the Internet and other application areas such as finance,
biology and astronomy, great amounts of data are produced continuously and need
to be processed with high time constraints. To handle data-intensive problems,
the concept of Cloud Computing has been proposed. A few Internet corporations
implemented their own Cloud Computing platforms to provide elastic computing
services for their customers. Such as Google Compute Engine, Amazon EC2 and
Microsoft Azure. The Cloud Computing services are provided at different levels:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a
Service (SaaS). Customers who use services at a higher level do not need to know
the lower level details of the Cloud, e.g., network topology or resource allocation.
In view of these features, Cloud Computing poses new challenges for computing
tasks compared with traditional computation platforms such as HPC clusters. In
Sect. 4.2 we will discuss the challenges in detail and introduce the solutions for
graph processing in the Cloud.

2.2 The GPU

In recent years, GPUs (Graphics Processing Units) have shifted from pure graphics
processors to general-purpose parallel processors. A modern GPU can run a massive
number of lightweight threads simultaneously to process data in the SIMD (Single
Instruction, Multiple Data) style and can provide an order of magnitude speedup
over traditional CPU with higher cost-efficiency. GPUs are widely used in desktops,
servers and clusters as parallel computing platforms to accelerate various kinds of
applications. However, writing a correct and efficient GPU program is challenging
in general, and even more difficult for higher level applications. First, the GPU is
a many-core processor with massive thread parallelism. To fully exploit the GPU
parallelism, developers need to write parallel programs that scale to hundreds of
cores. Moreover, compared with CPU threads, the GPU threads are lightweight,
and the tasks in the parallel algorithms should be fine-grained. Second, the GPU
has a memory hierarchy that is different from the CPU’s, and is exposed to the
programmer for explicit use. Since applications usually involve irregular accesses
to the memory, careful designs of data layouts and memory accesses are key factors
to the efficiency of GPU acceleration. Finally, since the GPU is designed as a co-
processor, developers have to explicitly perform memory management on the GPU,
and deal with GPU specific programming details such as kernel configuration and
invocation. All these factors make the GPU programming a difficult task. In this
chapter, we will introduce the GPU-accelerated MapReduce system (Sect. 3) and
GPU-accelerated graph processing library (Sect. 4.1), both of which ease the effort
of developing higher level applications using GPUs.



108 B. Zhao et al.

2.3 MapReduce

MapReduce [20] is a programming model proposed by Google, and has been
widely used for large scale data processing. Many researchers and engineers have
tried to implement their own MapReduce systems since the publication of the
MapReduce paper. Hadoop [3] is the most successful and widely-used open source
implementation of MapReduce on the distributed computing platform. There are
also some implementations on other platforms, such as multi-core shared-memory
systems and GPUs.

Phoenix [62,67,72] is a MapReduce library that runs on shared memory systems
leveraging the power of multi-core CPUs. Our previous work Mars [25, 32] is
among the first GPU-accelerated MapReduce frameworks. Mars provides a set
of higher level programming interfaces, and hides the vendor-specific lower-level
details such as thread configurations. The design goal of Mars is to ease the GPU
programming effort for MapReduce applications. Since Mars, there has been a
number of improvements [11,14,36,40] as well as extended GPU-based MapReduce
implementations to support multi-GPUs on a single-machine [17,18,41], integrated
architectures [15] and clusters [8, 64, 65, 68].

MapCG [36] is a single-machine MapReduce framework that provides source
code portability between CPU and GPU. The users only need to write one version of
the code, and the MapCG runtime is responsible for generating both CPU and GPU
specific codes and executes them on the corresponding platforms: multi-core CPUs
and GPUs. Different from Mars, MapCG does not need the counting step to compute
the required memory space on GPUs. Instead, it allocates a large block of GPU
memory space, and uses the atomicAdd operation to manage and record the memory
space required by each thread. Another improvement of MapCG is that it avoids the
sorting of intermediate key/value pairs by using a memory efficient hash table. Ji
et al. [40] proposed to use the GPU shared memory to buffer the input and output
data of the Map and Reduce stages. Chen et al. [14] proposed to use shared memory
in a more efficient way by carrying out reductions in shared memory. Grex [11] is
a recent GPU-based MapReduce framework. It provides some new features over
Mars and MapCG, including parallel input data splitting, even data distribution
to Map/Reduce tasks to avoid partitioning skew, and a new memory management
scheme. Experiments show that Grex achieves 12.4� and 4.1� speedup over Mars
and MapCG, respectively.

Chen et al. [15] designed a MapReduce framework for integrated architectures,
i.e. AMD Fusion chip as a representative in their implementation. In their frame-
work, the workload can be partitioned across the CPU cores and GPU cores by two
different schemes: the map-dividing scheme and the pipelining scheme. In the first
scheme, each of the Map/Reduce stage is executed by both CPU cores and GPU
cores simultaneously, whereas in the second scheme, each stage is executed by only
one type of cores. To leverage the memory overhead, a continuous reduction strategy
based on reduction object is used in the framework. The strategy is very similar to
the optimization work in [14]. Their experiment results show 1.2–2.1� speedup over
the best multi-core or discrete GPU-based implementation.



GPU-Accelerated Cloud Computing for Data-Intensive Applications 109

While previous implementations use a single GPU, MGMR [18, 41] is a
single-machine MapReduce system supporting multiple GPUs. With the support
of host memory, MGMR can handle large-scale data exceeding GPU memory
capacity. In addition, MGMR uses the GPUDirect technology to accelerate inter-
GPU data transmission. The Pipelined MGMR (PMGPR) [17] is an upgraded
version of MGMR. PMGMR takes advantage of the CUDA stream feature on Fermi
and Kepler GPUs to achieve the overlap of computation and memory copy. For
Fermi GPUs, PMGMR uses a runtime scheduler to resolve the dependency among
different CUDA streams to achieve the highest concurrency, whereas for Kepler
GPUs, PMGMR exploits Kepler’s Hyper-Q feature to automatically reach the best
performance. PMGMR achieves 2.5� speedup over MGMR.

To support MapReduce on GPU clusters, MarsHadoop [25] makes a simple
extension by integrating single-node Mars into Hadoop using the Hadoop streaming
technology [5]. Most of the work on MapReduce on GPU clusters integrates GPU
workers into Hadoop [8,27,29,64,68,73], and there is also an implementation using
MPI (Message Passing Interface) [65].

MITHRA [27] is a Hadoop-based MapReduce framework for Monte-Carlo
simulations. It leverages GPUs for the Map/Reduce stage computation. Like
MarsHadoop, MITHRA uses Hadoop streaming technology to invoke the GPU
kernels written in CUDA. Pamar [68] integrates GPUs into the Hadoop framework
using JCUDA API. The main focus of Pamar is to provide a framework that can
utilize different types of resources (CPU and GPU) transparently and automatically.
Surena [8], on the other hand, uses Java Native Interface (JNI) to invoke CUDA code
from the Java-based Hadoop framework. Shirahata et al. [64] proposed a hybrid map
task scheduling techniques for MapReduce on GPU clusters by dynamic profiling
of the map task running on CPUs and GPUs, and demonstrated a speedup of nearly
two times over the original scheduler of Hadoop. Lit [73] and HadoopCL [29]
improves previous Hadoop-based works by automatically generating kernel codes
for GPU devices, so that they hide the GPU programming complexity from users.
Specifically, Lit uses an annotation based approach to generate CUDA kernel code
from Java code, whereas HadoopCL generates OpenCL kernel code from Java code
using an open source tool called Aparapi [2]. In these Hadoop-based extensions,
various features of Hadoop such as reliability, scalability and simplified input/output
management through HDFS are inherited while the Map and Reduce stages are
parallelized on the GPUs.

GPMR [65] is a MapReduce library on GPU clusters. It is not based on
Hadoop; instead it implements the MapReduce model using MPI. GPMR supports
multiple GPUs on each node. Compared with the Hadoop-based GPU MapReduce
implementation, GPMR is more flexible and more efficient since it exposes more
GPU programming details to the application level. Therefore, users can apply
application-specific optimizations. Moreover, GPMR also parallelizes the sort and
partitioning modules of MapReduce. The scalability of GPMR to the number of
GPUs is limited, as the speedup of most applications decreases dramatically when
there are more than 16 GPUs [71].



110 B. Zhao et al.

In addition to the MapReduce frameworks supporting NVIDIA GPUs, there are
some efforts using other types of CPUs and GPUs. Among them, StreamMR [23]
is a MapReduce framework for AMD GPUs, and CellMR [61] is a MapReduce
framework supporting asymmetric Cell-Based Clusters. Our enhanced Mars imple-
mentation [25] also supports AMD GPUs and co-processing of different types of
processors (Multi-core CPU, NVIDIA GPU and AMD GPU).

2.4 General Graph Processing

Graphs are common data structures in various applications such as social networks,
computational chemistry and web link analysis. Graph processing algorithms have
been the fundamental tool in such fields. Developers usually apply a series of
operations on the graph edges and vertices to obtain the final result. Example
operations are breadth first search (BFS), PageRank [58], shortest paths and
customized variants (for example, developers may apply different application logics
on top of BFS). The efficiency of graph processing is essential for the performance
of the entire system. On the other hand, writing every graph processing algorithm
from scratch is inefficient and involves repetitive work, since different algorithms
may share the same operation patterns, optimization techniques and common
software components. A programming framework supporting high programmability
for various graph processing applications and providing high efficiency can greatly
improve productivity.

Recently, we have witnessed many research efforts in offering parallel graph
processing frameworks on multi-core/many-core processors and cloud computing
platforms. Those frameworks embrace architecture-aware optimization techniques
as well as novel data structure designs to improve the parallel graph processing
on the target platform. The most popular paradigm so far is vertex-oriented
programming. The introduction of vertex-oriented programming is based on the
observations in previous studies [21, 51, 52] that many common graph algorithms
can be formulated using a form of the bulk synchronous parallel (BSP) model (we
call it GBSP). In GBSP, local computations are performed on individual vertices,
and vertices are able to exchange data with each other. These computation and
communication procedures are executed iteratively with barrier synchronization at
the end of each iteration. This common algorithmic pattern is adopted by common
parallel graph processing frameworks such as Pregel [54], GraphLab [53] and
Medusa [76]. For example, Pregel applies a user-defined function Compute() on
each vertex in parallel in each iteration of the GBSP execution. The communications
between vertices are performed with message passing interfaces.



GPU-Accelerated Cloud Computing for Data-Intensive Applications 111

3 MapReduce on GPU Clusters

In this section, we introduce the MapReduce implementation on GPU clusters. We
first give an overview of the previous work: Mars single-machine and MarsHadoop.
We also give an alternative of multi-machine implementation of Mars, called Mars-
MR-MPI. Finally we study the performance of different implementations.

3.1 Mars Overview

Mars [25, 32] is a GPU-based MapReduce implementation. It hides the program-
ming details of vendor-specific GPU devices, and provides a set of user-friendly
higher level programming interfaces. The design of Mars is guided by three goals:

1. Programmability. Ease of programming releases programmers’ efforts on GPU
programming details and makes them more focused on higher-level algorithm
design and implementation.

2. Flexibility. The design of Mars should be applicable to various kinds of devices
including multi-core CPUs, NVIDIA GPUs and AMD GPUs. Moreover, it
should be easy for users to customize their workflows.

3. Performance. The overall performance of GPU-based MapReduce should be
comparable to or better than that of the state-of-the-art CPU-based counterparts.

Mars provides a set of APIs, which are listed in Table 1. These APIs are of two
types: user-implemented APIs, which the users should implement, and the system-
provided APIs, which is a part of the Mars library implementation and can be called
by the users directly. The APIs of Mars are similar to those of other MapReduce
frameworks, except that Mars uses two steps for both the Map and Reduce stages.
Firstly, the count functions (MAP_COUNT or REDUCE_COUNT) are invoked to
compute the sizes of the key/value pairs and then the MAP or REDUCE is invoked
to emit the actual key/value pairs.

Figure 1 shows the workflow of Mars. The Mars workflow contains three stages
for a MapReduce job—Map, Group and Reduce. Before the Map stage, the input
data on the disk is transformed into input records using the CPU and those records
are copied from the main memory into the GPU device memory. Both the Map
and Reduce stages use a two-step lock-free scheme, which avoids costly atomic
operations and dynamic memory allocation on GPU devices. Take the Map stage
as an example. In the first step MapCount invokes the user-defined MAP_COUNT
function to compute the sizes of the intermediate key/value pairs for each thread.
Then a prefix sum operation is performed to compute the writing locations for each
thread as well as the total sizes of the output. Finally Mars allocates device memory
space for the output. In the second step, the user-defined MAP function is invoked
on each thread to map the input records to intermediate records and output them to
the device memory according to the pre-computed writing locations. The lock-free
scheme of the Reduce stage is similar to that of the Map stage. The Group stage sorts



112 B. Zhao et al.

Table 1 Mars APIs [25, 32]

Function name Description Type

MAP_COUNT Calculates the output
buffer size of MAP

User

MAP The map function User

REDUCE_COUNT Calculates the output
buffer size of REDUCE

User

REDUCE The reduce function User

EMIT_INTERMEDIATE_COUNT Emits the key size and the
value size in
MAP_COUNT

System

EMIT_INTERMEDIATE Emits the key and the
value in MAP

System

EMIT_COUNT Emits the key size and the
value size in
REDUCE_COUNT

System

EMIT Emits the key and the
value in REDUCE

System

the intermediate key/value pairs according to the key field, so that the intermediate
key/value pairs with the same key are stored consecutively as a group.

Since the three stages are loosely coupled modules, the Mars framework can
fit three kinds of user-customized workflows, according to whether the Group and
Reduce stages are required:

• MAP_ONLY. Only the Map stage is required and executed.
• MAP_GROUP. Only the Map and Group stages are executed.
• MAP_GROUP_REDUCE. All three stages—Map, Group, and Reduce are

executed.

The GPU-based Mars single-machine implementation was evaluated in com-
parison with the CPU-based MapReduce framework Phoenix [62] as well as the
native implementation without MapReduce using a set of representative MapReduce
applications. The results show that the GPU-based Mars was up to 22 times faster
than Phoenix, and Mars applications had a code size reduction of up to 7 times
compared with the native implementation. In summary, Mars greatly simplifies the
MapReduce programming on CUDA-based GPU and achieves great efficiency.

3.2 MarsHadoop

While the single-GPU Mars makes a showcase of implementing MapReduce using
GPU, it cannot handle very large data set due to the limited memory capacity of a
single GPU. In many data-intensive applications, the data scale exceeds far beyond
the memory capacity of a single computer, let alone the GPU memory, which usually
has a much smaller capacity than main memory.



GPU-Accelerated Cloud Computing for Data-Intensive Applications 113

Preprocess
Map
Split

PrefixSum

Reduce
Split

PrefixSumGroup

Notation: GPU Processing Mars Scheduler

Map Stage

Reduce StageGroup Stage

Reduce
Count

Reduce
Count

MapCount

MapCount

Map

Map

Reduce

Reduce

Fig. 1 The workflow of Mars on the GPU [25, 32]

We briefly introduce the previous multi-machine implementation of Mars—
MarsHadoop [25]. MarsHadoop is implemented by integrating Mars into the widely
used Hadoop MapReduce framework. This integration provides an easy way of
exploiting computation power of multiple GPUs for MapReduce, while it also
inherits the scalability and fault-tolerance features of Hadoop, as well as the
distributed file system support.

Figure 2 shows the workflow of MarsHadoop. A Mapper/Reducer in Mar-
sHadoop is executed on either CPU or GPU, depending on the underlying proces-
sors. MarsHadoop Mappers and Reducers are integrated using Hadoop streaming
technology [5], which enables the developers to use their customized Mapper/Re-
ducer implementation with any programming language in Hadoop. The Mapper/Re-
ducer executable reads data from stdin and emit record to the stdout, while the actual
task execution is the same as on single machine. The preliminary experiments using
Matrix Multiplication on three nodes (one master node and two slave nodes) showed
that MarsHadoop was up to 2.8 times faster than the Hadoop without GPU.

3.3 Mars-MR-MPI

In the following we present an alternative to MarsHadoop, which we call Mars-MR-
MPI.

MapReduce-MPI (MR-MPI) [59, 60] is an open source, lightweight imple-
mentation of the MapReduce model using MPI and C/C++. It is designed for



114 B. Zhao et al.

Fig. 2 MarsHadoop workflow [25]. The Map and Reduce tasks are executed on GPUs or CPUs

distributed-memory clusters. MR-MPI has well organized APIs and complete
document support. It has been successfully used for SOM [66] and shows good
scalability on hundreds of cores. It can process large data sets far exceeding the
accumulated memory size of the cluster by using on-disk virtual pages. Moreover,
since MR-MPI is implemented using C/C++, the GPU code can be invoked
seamlessly with no or little extra runtime cost. We choose MR-MPI as an alternative
for extending Mars to multiple machines in view of these features.

The Mars-MR-MPI is implemented as follows.

1. Initial Data Loading. Since the MR-MPI framework has no distributed file
system support, to avoid the overhead of remote reading, we partition the input
data into chunks of equal size and distribute them evenly to the local file system
of each node. This approach is comparable with Hadoop since most Hadoop map
tasks will read HDFS blocks stored in local node.

2. The Map Stage. Instead of assigning only one block of data (i.e. 64 MB, which
is the default block size of Hadoop) to each map task, we use persistent map tasks
for Mars-MR-MPI. In other words, we launch only a small number of map tasks
for a job, with each task processing many blocks of input data iteratively. The
processing of each data block is the same as the Map stage of single-machine
Mars, followed by an additional step of organizing the intermediate key/value



GPU-Accelerated Cloud Computing for Data-Intensive Applications 115

pairs generated from this block into an MR-MPI KeyValue object and add this
object to the MR-MPI runtime framework. The GPU device for each map task
is chosen according to the MPI rank of the current process. Using this approach,
the number of GPU context switches is reduced with more work done in each
context.

3. The Reduce Stage. In MR-MPI, each time the reduce callback function [6] is
called, it will process only one Key-MultiValues tuple, which contains a unique
key and a list of values. A parallel reduce for one tuple is inefficient if the tuple
contains only a small number of values. Therefore, we allocate a global fixed-
size memory buffer and pass it to the reduce callback function to accumulate the
tuples. Once the size of the accumulated tuples exceeds a threshold ratio of the
buffer size, we will perform a parallel reduction on the GPU for all tuples and
empty the buffer for accumulating new tuples. In addition to the global buffer, a
boolean flag is passed to the callback function, to indicate whether this is the first
call on the GPU device. If so, we initialize the GPU device context.

Both the MarsHadoop and the Mars-MR-MPI are based on existing MapReduce
frameworks, namely Hadoop and MR-MPI. Compared with Hadoop, MR-MPI
provides an interface that is more flexible for integrating the GPU into MapReduce,
and the persistent tasks can be used to reduce overhead and better utilize device
resources.

3.4 Experiments

We study the performance of the two alternatives of MapReduce on a GPU cluster
experimentally.

The experiments are conducted on a 20-node GPU cluster on Amazon EC2.
Each node is a Hardware Virtual Machine(HVM)-based instance equipped with 8
Intel Xeon E5-2670 Processors, 15 GB memory, 60 GB local storage and a single
NVIDIA Kepler GK104 GPU card (with 1536 CUDA cores and 4 GB memory).
The Operating System is Ubuntu 12.04 with CUDA SDK v5.0 installed.

We first study the performance of MarsHadoop using a classic data-intensive
MapReduce workload—Inverted Index, which extracts the URL links from a set of
HTML files. Each map task takes a block of data as input and emit hurl; filenamei for
each URL extracted from the input, whereas each reduce task simply outputs the list
of file names for each unique URL. For MarsHadoop streaming job, we parallelize
the map tasks on the GPU, whereas the reduce tasks are sequentially executed as
they only perform outputting (this kind of reduce task is called IdentityReducer in
Hadoop). We implemented the sequential Inverted Index using Hadoop Java API
and ran it as Hadoop sequential job as the baseline. We set the number of map slots
on each node to 4 in Hadoop configuration. For the sequential job, each map uses
one CPU core whereas for the MarsHadoop streaming job, the four map slots on
each node share the single GPU to make full use of the GPU computation resources.



116 B. Zhao et al.

We use two Wikipedia web page data sets of different sizes from the Purdue
MapReduce Benchmarks Suite [9], one 50 GB and the other 150 GB. Figure 3
shows the execution time of the map tasks in MarsHadoop streaming jobs and
Hadoop sequential jobs. For both data sets, the MarsHadoop streaming jobs are
more efficient than Hadoop sequential jobs.

50 GB 150 GB
0

20

40

60

80

100

120

140

160

180

T
im

e 
(s

ec
o

n
d

s)

Data Size

Hadoop
Mars Hadoop Streaming
Mars MR-MPI

Fig. 3 The execution time of Inverted Index map tasks in MarsHadoop streaming jobs, Hadoop
sequential jobs and Mars-MR-MPI jobs using 50 and 150 GB data sets

Next we study the performance of Mars-MR-MPI, in comparison with Mar-
sHadoop. Figure 3 shows the execution time of map tasks in Mars-MR-MPI and
MarsHadoop for Inverted Index respectively. We observed that for both 50 GB and
150 GB data sets, the map time of Mars-MR-MPI is 3–5� faster than MarsHadoop
streaming. Compared with Mars-MR-MPI, the inefficiency of MarsHadoop stream-
ing is due to the following two factors:

1. Inter-process data communication overhead with Hadoop streaming, since the
input data are passed into the Mars map executable by stdin and the output passed
out by stdout.

2. The latencies from Hadoop internal, such as the latency of a TaskTracker
requesting new tasks from JobTracker. The GPUs will be idle during the latency
intervals, leading to under-utilization.

As the Mars-MR-MPI is more efficient, we further study its scalability and
performance bottlenecks. We configure Mars-MR-MPI to process 2.5 GB data on
each node. Figure 4 shows the time consumption of each MR-MPI stage with
the cluster size varied from 2 to 20 nodes. We observe that when the number of
nodes increases, for the stages involving only local operations, including Map stage,
Sort/Hash stage and Reduce stage, the time nearly keeps stable. The reason is that
the local operations are performed independently on each node and the workload on
each node is even. However, for the Network I/O stage which involves large amount
of inter-node communication, the time increases with the cluster size.



GPU-Accelerated Cloud Computing for Data-Intensive Applications 117

We further give the time breakdown of Mars-MR-MPI running Inverted Index
with two data sets on the entire cluster (Fig. 5). The result shows that the Network
I/O takes 30 and 36 % of the total time on 50 and 150 GB data sets, respectively. We
conclude that the network I/O is the performance bottleneck when the cluster size
or data size becomes larger.

0 2 4 6 8 10 12 14 16 18 20 22

4
6
8

10
12
14
16
18
20
22
24
26
28
30

T
im

e 
(s

ec
o

n
d

s)

Cluster Size

Map
Network I/O
Sort/Hash
Reduce

Fig. 4 The time consumption of each MR-MPI stage for Mars-MR-MPI with cluster size varied,
running Inverted Index on 50 GB data set

Fig. 5 The time breakdown
of Mars-MR-MPI running
Inverted Index on the entire
cluster

50GB 150GB
0

20
40
60
80

100
120
140
160
180
200

T
im

e 
(s

ec
o

n
d

s)

Data Size

Reduce
Sort/Hash
Network I/O
Map

Both MarsHadoop and Mars-MR-MPI are built on top of existing MapReduce
frameworks and do not parallelize the internals of the frameworks, such as sort or
hash partition. The performance of this type of extension is closely dependent on the
performance of the frameworks themselves. We now study the performance of the
GPMR, a recent stand-alone MapReduce library based on the GPU. We select two
examples enclosed with the GPMR source code: K-means Clustering and Integer
Counting. The former example is map-computation-bound, whereas the latter is
communication-bound.



118 B. Zhao et al.

To test the GPMR scalability on various number of nodes, we launch one MPI
process for each GPU. Due to the limitation of the GPU-based radix sort used
in GPMR, we let each process consume 32 million randomly generated integers
for Integer Counting, and 32 million randomly generated two-dimensional floating
point data for K-means Clustering. The results are shown in Fig. 6. In the K-mean
Clustering results in Fig. 6a, we notice that (1) The Map time keeps nearly stable for
various number of nodes and it dominates the total running time; (2) The Network
I/O, Sort and Reduce stages consume very little time. The reason is that the K-means
Clustering needs a lot of computation in the map stage and produces very small size
intermediate data. In contrast, in Fig. 6b, since Integer Counting produces a large
amount of intermediate result, both the Map and Network I/O stages dominate the
total running time. It also requires a moderate amount of Sort and Reduce time
to handle the intermediate data, but the time of these operations does not change
much with the variation of number of nodes, as these are local operations. We
conclude that the GPMR framework scales well to cluster size for compute-bound
applications, but suffers from the network I/O bottleneck for communication-bound
ones.

0 2 4 6 8 10 12 14 16 18 20 22

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e 
(s

ec
o

n
d

s)

T
im

e 
(s

ec
o

n
d

s)

Cluster Size

a b

Cluster Size

Map
Network I/O
Sort
Reduce

0 2 4 6 8 10 12 14 16 18 20 22
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Map
Network I/O
Sort
Reduce

Fig. 6 The time consumption of each MapReduce stage in GPMR with number of nodes
varied. (a) K-means Clustering with each GPU processing 32 million randomly generated two-
dimensional floating points. (b) Integer Counting with each GPU processing 32 million randomly
generated integers

Finally, we study the GPMR scalability to data size. Due to the limitation of
the GPU-based radix sort, GPMR cannot handle more than 32 million integers on
each process unless it uses CPU-based sort algorithms. The scalability test is only
conducted for K-means Clustering. We use 20 nodes with one process on each node
and let each process consume various numbers of points ranging from 32 million to
160 million. The result is shown in Fig. 7. The map time grows linearly to the data
size, whereas the Network I/O, Sort and Reduce consumes very little time.



GPU-Accelerated Cloud Computing for Data-Intensive Applications 119

Fig. 7 The time consumption
of each MapReduce stage in
GPMR with data size varied,
running K-means Clustering
on 20 nodes

32 64 96 128 160
−1

0

1

2

3

4

5

6

7

8

T
im

e 
(s

ec
o

n
d

s)
Num. of Points (million)

Map
Network I/O
Sort
Reduce

4 Graph Processing on GPUs and the Cloud

In this section, we introduce two representative vertex-oriented programming
frameworks on GPUs and in the Cloud—Medusa and Surfer. Particularly, Medusa
is a parallel graph processing library running on multi-GPUs on a single machine.
It uses a novel graph programming model called “Edge-Message-Vertex” and
simplifies the graph processing using GPUs. Surfer uses a network performance
aware graph partitioning framework to improve the performance of large graph
processing on the Cloud.

4.1 Parallel Graph Processing on GPUs

Recent years have witnessed the increasing adoption of GPGPU (General-Purpose
computation on Graphics Processing Units) in many applications [57], such as
databases [33, 34] and data mining [26]. The GPU has been used as an accel-
erator for various graph processing applications [31, 35, 48, 70]. While existing
GPU-based solutions have demonstrated significant performance improvement
over CPU-based implementations, they are limited to specific graph operations.
Developers usually need to implement and optimize GPU programs from scratch
for different graph processing tasks.

Medusa is the state-of-the-art vertex-oriented graph processing framework on
multiple GPUs in the same machine [76]. Medusa is designed to ease the pain
of leveraging the GPU in common graph computation tasks. Extending the sin-
gle vertex API of Pregel, Medusa develops a novel graph programming model
called “Edge-Message-Vertex” (EMV) for fine-grained processing on vertices and
edges. EMV is specifically tailored for parallel graph processing on the GPU.
Medusa provides a set of APIs for developers to implement their applications.
The APIs are based on the EMV programming model for fine-grained parallelism.



120 B. Zhao et al.

Medusa embraces an efficient message passing based runtime. It automatically
executes user-defined APIs in parallel on all the processor cores within the GPU and
on multiple GPUs, and hides the complexity of GPU programming from developers.
Thus, developers can write the same APIs, which automatically run on multiple
GPUs.

Memory efficiency is often an important factor for the overall performance of
graph applications [31, 35, 48, 70]. Medusa has a series of memory optimizations
to improve the locality of graph accesses. A novel graph layout is developed to
exploit the coalesced memory feature of the GPU. A graph aware message passing
mechanism is specifically designed for message passing in Medusa. Additionally,
Medusa has two multi-GPU-specific optimization techniques, including the cost
model guided replication for reducing data transfer across the GPUs and overlapping
between computation and data transfer.

Medusa has been evaluated on the efficiency and programmability. Medusa
simplifies programming GPU graph processing algorithms in terms of a significant
reduction in the number of source code lines. Medusa achieves comparable or better
performance than the manually tuned GPU graph operations.

The experiments were conducted on a workstation equipped with four NVIDIA
Tesla C2050 GPUs, two Intel Xeon E5645 CPUs (totally 12 CPU cores at 2.4
GHz) and 24 GB RAM. The workloads include a set of common graph processing
operations for manipulating and visualizing a graph on top of Medusa. The graph
processing operations include PageRank, breadth first search (BFS), maximal
bipartite matching (MBM), and single source shortest paths (SSSP). In order to
assess the queue-based design in Medusa, we have implemented two versions of
BFS: BFS-N and BFS-Q for the implementations without and with the usage of
queue-based APIs, respectively. Thus, BFS-Q is work optimal whereas BFS-N is
not. Similarly, two versions of SSSP are implemented: SSSP-N and SSSP-Q without
and with the usage of queue-based APIs, respectively.

The experimental dataset includes two categories of sparse graphs: real-world
and synthetic graphs. Table 2 shows their basic characteristics. We use the GTgraph
graph generator [4] to generate power-law and random graphs. To evaluate MBM,
we generate a synthetic bipartite graph (denoted as BIP), where vertex sets of two
sides have one half of the vertices and the edges are randomly generated. The real
world graphs are publicly available [1, 7].

MTGL [13] is used as the baseline for graph processing on multi-core CPUs.
The BFS and PageRank implementations are offered by MTGL. We implement the
Bellman-Ford SSSP algorithm and a randomized maximal matching algorithm [10]
using MTGL. The best result was obtained when the number of threads was 12
on the experiment machine. MTGL running on 12 cores is on average 3.4 times
faster than that running on one core. Due to the memory intensive nature of graph
algorithms, the scalability of MTGL is limited by the memory bandwidth.

Figure 8 shows the speedup for Medusa over MTGL running on 12 cores. The
speedup is defined as the ratio between the elapsed time of the CPU-based execution
and that of Medusa-based execution. PageRank is executed with 100 iterations.
Medusa is significantly faster than MTGL on most comparisons and delivers a



GPU-Accelerated Cloud Computing for Data-Intensive Applications 121

Table 2 Characteristics of graphs used in the experiments

Graph Vertices (106) Edges (106) Max d Avg d �

RMAT 1:0 16:0 1;742 16 32:9

Random (Rand) 1:0 16:0 38 16 4:0

BIP 4:0 16:0 40 4 5:1

WikiTalk (Wiki) 2:4 5:0 100;022 2:1 99:9

RoadNet-CA (Road) 2:0 5:5 12 2:8 1:0

kkt_power (KKT) 2:1 13:0 95 6:3 7:5

coPapersCiteseer (Cite) 0:4 32:1 1;188 73:9 101:3

hugebubbles-00020 (Huge) 21:2 63:6 3 3:0 0:03

0

2

4

6

8

10

12

14

16

18

20

RMAT Rand Wiki Road Huge KKT Cite BIP

M
ed

u
sa

o
ve

r 
M

T
G

L
 S

p
ee

d
u

p

BFS-N

BFS-Q

SSSP-N

SSSP-Q

PageRank

BM

Fig. 8 Performance speedup of Medusa running on the GPU over MTGL [13] running on 12 cores

performance speedup of 1.0–19.6 with an average of 5.5. On some graphs such
as Road, BFS-N is notably slower than MTGL-based BFS, because the work-
inefficient issue of BFS-N is exaggerated on the graphs with large diameter.

The work-efficient BFS and SSSP algorithms (BFS-Q and SSSP-Q) achieve
better performance on the graphs with large diameters, and can degrade the
performance in some cases (e.g., Rand, Wiki and KKT) due to the computation
and memory overhead in maintaining the queue structure. This is consistent with
the previous studies [37].

4.2 Parallel Graph Processing on the Cloud

Large graph processing has become popular for various data-intensive applications
on increasingly large web and social networks [43, 44]. Due to the ever increasing
size of graphs, application deployments are moving from a small number of HPC



122 B. Zhao et al.

servers or supercomputers [28, 46] towards the Cloud with a large number of
commodity servers [44, 54]. Early studies on parallel graph processing in the
Cloud are to adopt existing distributed data-intensive computing techniques in the
Cloud [19,39]. Most of these studies [43,44,77] are built on top of MapReduce [19],
which is suitable for processing flat data structure, not particularly for graph
structured data. More recently, systems such as Pregel [54], Trinity [63] and
Surfer [16] have been developed specifically for large graph processing. These
systems support a vertex-oriented execution model and allow users to develop
custom logics on vertices. The Medusa system [76] has been extended to support
the GPU-enabled cloud environment [75]. In those Cloud-based graph processing
systems, network performance optimizations are the key for improving the overall
performance.

Most vertex-oriented graph processing systems share the same network perfor-
mance issue. Take Pregel as an example. Pregel executes user-defined function
Compute./ per vertex in parallel, based on the general bulk synchronous parallel
(BSP) model. By default, the vertices can be stored in different machines according
to a simple hash function. However, the simple partitioning function leads to heavy
network traffic in graph processing tasks. For example, if we want to compute
the two-hop friend list for each account in a social network, every friend (vertex)
must first send its friends to each of its neighbors, and then each vertex combines
the friend lists of its neighbors. Implemented with the simple partitioning scheme,
this operation results in a great amount of network traffic because of shuffling the
vertices.

A traditional way of reducing data shuffling in distributed graph processing
is graph partitioning [22, 45, 49]. Graph partitioning minimizes the total number
of cross-partition edges among partitions in order to minimize data transfer.
The commonly used distributed graph processing algorithms are multi-level algo-
rithms [46, 47, 69]. These algorithms recursively divide the graph into multiple
partitions with bisections according to different heuristics.

It is well understood that large graphs should be partitioned; however, little
attention is given to how graph partitioning can be effectively integrated into the
processing in the Cloud environment. There are a number of challenging issues
in the integration. First, graph partitioning itself is a very costly task, generating
lots of network traffic. Moreover, partitioned graph storage and vertex-oriented
graph processing need a careful revisit in the context of Cloud. The Cloud network
environment is significantly different from those in previous studies [46, 47, 49],
e.g., Cray supercomputers or a small cluster. The network bandwidth is often the
same for every machine pair in a small cluster. However, the network bandwidth of
the Cloud environment is uneven among different machine pairs. Current Cloud
infrastructures are often based on tree topology [12, 30, 42]. Machines are first
grouped into pods, and then pods are connected to higher-level switches. The intra-
pod bandwidth is much higher than the cross-pod bandwidth. Even worse, the
topology information is usually unavailable to users due to virtualization techniques
in the Cloud. In practice, such network bandwidth unevenness has been confirmed
by both Cloud providers and users [12,42]. It requires careful network optimizations
and tuning on graph partitioning and processing.



GPU-Accelerated Cloud Computing for Data-Intensive Applications 123

We briefly describe the approach adopted by Surfer [16]. Surfer uses a net-
work performance aware graph partitioning framework to improve the network
performance of large graph processing on partitioned graphs. Specifically, the graph
partitions generated from the framework improve the network performance of graph
processing tasks. To capture the network bandwidth unevenness, Surfer models the
machines chosen for graph processing as a complete undirected graph (namely
machine graph): each machine as a vertex, and the bandwidth between any two
machines as the weight of an edge. The network performance aware framework
recursively partitions the data graph, as well as the machine graph, with bisection
correspondingly. That is, the bisection on the data graph is performed with the
corresponding set of machines selected from the bisection on the machine graph.
The recursion terminates when the data graph partition can fit into main memory. By
partitioning the data graph and machine graph simultaneously, the number of cross-
partition edges among data graph partitions is gracefully adapted to the aggregated
amount of bandwidth among machine graph partitions. To exploit the data locality
of graph partitions, Surfer develops hierarchical combination to exploit network
bandwidth unevenness in order to improve the network performance.

Fig. 9 Network performance aware graph partitioning (a) and NR (b) on Amazon EC2 with the
number of medium instances varied

Surfer has been evaluated on a real-world social network and synthetic graphs
of over 100 GB each in a 32-node cluster as well as on Amazon EC2. We briefly
discuss the experimental results on network performance aware graph partitioning
and graph processing on Amazon EC2.

We compare Surfer with two baselines: “Baseline 1” is the baseline Surfer
with local combination, but with graph partition storage distribution generated
from ParMetis, and “Baseline 2” is “Baseline 1” with the bandwidth aware graph
partitioning, without hierarchical combination. Figure 9a shows the performance
improvement of the network bandwidth-aware optimization on graph partitioning,
and Fig. 9b compares the response time of Network ranking (NR) with different
approaches. NR is to generate a ranking on the vertices in the graph using
PageRank [58] or its variants. In the experiment, the number of medium instances
is increased from 32 to 128 and the size of synthetic graphs is increased from
25 to 100 GB. We measure 100 times of each experiment on the same set of



124 B. Zhao et al.

instances, and report the average and the range for the elapsed time of graph
partitioning and processing. The variation is acceptable in Amazon EC2. Due to
the network bandwidth unevenness in Amazon EC2, the network performance
aware optimizations improve both graph partitioning and processing, with 20–25 %
performance improvement for graph partitioning and with 49 and 18 % performance
improvement for NR over Baseline 1 and 2 respectively. This demonstrates the
effectiveness of the network performance aware optimizations of Surfer on the
public Cloud environment.

5 Summary and Open Problems

In this chapter, we have introduced the MapReduce implementations on GPU
clusters, as well as two state-of-the-art graph processing frameworks running on
GPUs and the Cloud.

The MapReduce model is designed originally for big data processing on
large clusters, thus scalability is a very important feature. The approaches of
integrating GPU parallelism into Hadoop [3] using various technologies such as
Hadoop streaming, Hadoop pipes, JCUDA and Java Native Interface can inherit
the outstanding scalability and fault-tolerance features of the Hadoop framework.
However they usually incur low efficiency due to inter-process communication cost
and under-utilization of GPU resources. Moreover, only the map and reduce stages
are parallelized whereas the time-consuming sort process remains sequential.

Similar to Hadoop-based work, the Mars-MR-MPI can also process out-of-
memory data sets with the support of the MR-MPI framework. Moreover, it is more
efficient than the Hadoop-based work using streaming. However, its performance
is still limited by the network I/O cost. The stand-alone GPMR framework [65]
exposes the GPU programming details to the users, which makes the programming
more complex, but can achieve a better performance if the program is well-tuned.
GPMR processes input data in chunks. However, due to the lack of a buffer
mechanism during the MapReduce pipeline, it cannot handle data sets exceeding the
main memory capacity. The scalability of GPMR is still limited, though it involves
less overhead and is more optimized than the Hadoop-based GPU MapReduce work.

Graph are very common in data-intensive applications. Compared with other
data-intensive applications such as text processing, graph applications are usually
more complex and need more computation and communication. To cope with
challenges in processing large graphs, several general graph frameworks have been
proposed in recent years. Medusa is a representative vertex-oriented graph process-
ing framework on GPUs. It simplifies the graph processing on GPUs and achieves
comparable or better performance than the manually tuned GPU graph operations.
Surfer focuses on improving the network performance of graph processing on the
Cloud by employing network performance-aware graph partitioning strategies. As
such, both the graph partitioning and processing efficiency can be improved in a
public Cloud environment.



GPU-Accelerated Cloud Computing for Data-Intensive Applications 125

We conclude the chapter with a few open problems as the future research
directions.

1. For both MapReduce and general graph processing, data communication i.e.,
network I/O is the performance bottleneck, which limits the scalability of
MapReduce and graph processing algorithms on multi-GPUs and clusters.
The experiment results of GPMR show that the speedup of most applications
decreases dramatically when there are tens of GPUs. Zhong et al. [76] used up to
four GPUs in one machine to accelerate a set of common graph algorithms such
as BFS and PageRank. Their study shows that scalability for graph algorithms
with light weight computation is poor since the inter-GPU communication cost
can easily become the bottleneck, and the scalability issue can be magnified
in a distributed environment. To reduce network I/O, we may consider using
more advanced communication techniques provided by hardware vendors such
as GPUDirect. We can also apply GPU or CPU based data compression
algorithms [24] to reduce the amount of data transfer at the cost of increased
computation.

2. Out-of-core support is missing in most GPU-based systems. In recent years we
have witnessed significant improvement in the computation capability of the
GPU, however, the capacity of the GPU memory rarely increases. Yet most data-
intensive applications involve data that exceeds the aggregated main memory
size. Currently single-GPU MapReduce implementations [14, 25, 32, 36, 40] can
only process in-memory data. GPMR processes data in chunks, however, it
cannot provide full out-of-core support when data size exceeds main memory
capacity. Existing studies on GPU graph processing also mainly deal with in-
memory processing of graphs [31, 37, 38, 55, 56, 76]. With several Gigabytes of
GPU memory, the size of the maximum input graph is limited to millions of
vertices and edges. External memory CPU algorithms have been widely adopted
by many applications, including Hadoop shuffle and graph processing [50], for
processing data larger than main memory. However, adopting external memory
algorithms for GPU is challenging due to the larger gap between GPU memory
bandwidth and disk bandwidth, as well as the overhead of PCIe data transfer.

3. For GPU-based MapReduce, variable-length data (keys and values) processing
is challenging. To handle variable-length data, Mars uses a lock-free method
by pre-computing the key and value length before emitting the actual key/value
pair, and some other works use atomic operations. Both approaches bring extra
overheads, and the performance of each approach is application dependent.
Moreover, variable-length data leads to un-coalesced memory access on GPU.

4. Dynamic Graph Processing. Real world graphs, such as the social networks,
are usually evolving. Also, some graph algorithms require changing the graph
structure during runtime. However, currently there is little work on GPU-based
dynamic graph processing. Narse et al. [56] presented implementations of five
graph algorithms which morph structure of the input graph in different ways.
They provide a set of basic methods for adding and deleting subgraphs and



126 B. Zhao et al.

require users to make their choices based on the application characteristics and
the scale of the problem. The applicability of their methods are application
dependent and requires non-trivial programming efforts to implement.

References

1. 10th DIMACS implementation challenge. http://www.cc.gatech.edu/dimacs10/index.shtml
2. AMD Aparapi. http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-libraries/

aparapi
3. Apache Hadoop. http://hadoop.apache.org
4. GTGraph generator. http://www.cse.psu.edu/~madduri/software/GTgraph/index.html
5. Hadoop Streaming. http://hadoop.apache.org/docs/stable/streaming.html
6. MapReduce-MPI Documentation. http://mapreduce.sandia.gov/doc/Technical.html/Manual.

html
7. Stanford large network dataset collections. http://snap.stanford.edu/data/index.htm
8. Abbasi, A., Khunjush, F., Azimi, R.: A preliminary study of incorporating GPUs in the Hadoop

framework. In: 2012 16th CSI International Symposium on Computer Architecture and Digital
Systems (CADS’12), pp. 178–185. IEEE (2012)

9. Ahmad, F., Lee, S., Thottethodi, M., Vijaykumar, T.: PUMA: Purdue MapReduce Benchmarks
Suite. http://web.ics.purdue.edu/~fahmad/papers/puma.pdf

10. Anderson, T.E., Owicki, S.S., Saxe, J.B., Thacker, C.P.: High-speed switch scheduling for
local-area networks. ACM Transactions on Computer Systems (TOCS) 11, 319–352 (1993)

11. Basaran, C., Kang, K.D.: Grex: An efficient MapReduce framework for graphics processing
units. Journal of Parallel and Distributed Computing 73(4), 522–533 (2013)

12. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers in the
wild. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement,
pp. 267–280. ACM (2010)

13. Berry, J., Hendrickson, B., Kahan, S., Konecny, P.: Software and Algorithms for Graph Queries
on Multithreaded Architectures. In: IEEE International Parallel and Distributed Processing
Symposium (IPDPS’07), pp. 1–14. IEEE (2007)

14. Chen, L., Agrawal, G.: Optimizing MapReduce for GPUs with effective shared memory
usage. In: Proceedings of the 21st international symposium on High-Performance Parallel
and Distributed Computing, pp. 199–210. ACM (2012)

15. Chen, L., Huo, X., Agrawal, G.: Accelerating MapReduce on a coupled CPU-GPU archi-
tecture. In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, p. 25. IEEE Computer Society Press (2012)

16. Chen, R., Yang, M., Weng, X., Choi, B., He, B., Li, X.: Improving Large Graph Processing
on Partitioned Graphs in the Cloud. In: Proceedings of the Third ACM Symposium on Cloud
Computing (SoCC’12), pp. 3:1–3:13 (2012)

17. Chen, Y., Qiao, Z., Davis, S., Jiang, H., Li, K.C.: Pipelined Multi-GPU MapReduce for Big-
Data Processing. In: Computer and Information Science, pp. 231–246. Springer (2013)

18. Chen, Y., Qiao, Z., Jiang, H., Li, K.C., Ro, W.W.: MGMR: Multi-GPU based MapReduce. In:
Grid and Pervasive Computing, pp. 433–442. Springer (2013)

19. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: Proceed-
ings of the 6th Conference on Symposium on Opearting Systems Design and Implementation
(OSDI’04) (2004)

20. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. Communi-
cations of the ACM 51(1), 107–113 (2008)

http://www.cc.gatech.edu/dimacs10/index.shtml
http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-libraries/aparapi
http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-libraries/aparapi
http://hadoop.apache.org
http://www.cse.psu.edu/~madduri/software/GTgraph/index.html
http://hadoop.apache.org/docs/stable/streaming.html
http://mapreduce.sandia.gov/doc/Technical.html/Manual.html
http://mapreduce.sandia.gov/doc/Technical.html/Manual.html
http://snap.stanford.edu/data/index.htm
http://web.ics.purdue.edu/~fahmad/papers/puma.pdf


GPU-Accelerated Cloud Computing for Data-Intensive Applications 127

21. Delorimier, M., Kapre, N., Mehta, N., Rizzo, D., Eslick, I., Rubin, R., Uribe, T.E., Knight, T.F.,
Dehon, A.: GraphStep: A System Architecture for Sparse-Graph Algorithms. In: 2006 14th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’06),
pp. 143–151. IEEE (2006)

22. Derbel, B., Mosbah, M., Zemmari, A.: Fast distributed graph partition and application. In:
IPDPS (2006)

23. Elteir, M., Lin, H., Feng, W.c., Scogland, T.: StreamMR: an optimized MapReduce framework
for AMD GPUs. In: 2011 IEEE 17th International Conference on Parallel and Distributed
Systems (ICPADS’11), pp. 364–371. IEEE (2011)

24. Fang, W., He, B., Luo, Q.: Database compression on graphics processors. Proceedings of the
VLDB Endowment 3(1–2), 670–680 (2010)

25. Fang, W., He, B., Luo, Q., Govindaraju, N.K.: Mars: Accelerating MapReduce with graphics
processors. IEEE Transactions on Parallel and Distributed Systems (TPDS) 22(4), 608–620
(2011)

26. Fang, W., Lu, M., Xiao, X., He, B., Luo, Q.: Frequent itemset mining on graphics processors.
In: Proceedings of the 5th International Workshop on Data Management on New Hardware
(DaMoN’09), pp. 34–42 (2009)

27. Farivar, R., Verma, A., Chan, E.M., Campbell, R.H.: MITHRA: Multiple data independent
tasks on a heterogeneous resource architecture. In: 2009 IEEE International Conference on
Cluster Computing and Workshops (CLUSTER’09), pp. 1–10. IEEE (2009)

28. Gregor, D., Lumsdaine, A.: The Parallel BGL: A generic library for distributed graph
computations. In: Parallel Object-Oriented Scientific Computing (POOSC) (2005)

29. Grossman, M., Breternitz, M., Sarkar, V.: HadoopCL: MapReduce on Distributed Heteroge-
neous Platforms Through Seamless Integration of Hadoop and OpenCL. In: Proceedings of the
2013 IEEE 27th International Symposium on Parallel and Distributed Processing Workshops
and PhD Forum, pp. 1918–1927. IEEE Computer Society (2013)

30. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: Dcell: a scalable and fault-tolerant network
structure for data centers. In: ACM SIGCOMM Computer Communication Review, vol. 38,
pp. 75–86. ACM (2008)

31. Harish, P., Narayanan, P.: Accelerating large graph algorithms on the GPU using CUDA. In:
High performance computing (HiPC’07), pp. 197–208. Springer (2007)

32. He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a MapReduce framework
on graphics processors. In: Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques (PACT’08), pp. 260–269. ACM (2008)

33. He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q., Sander, P.V.: Relational query
coprocessing on graphics processors. ACM Transactions on Database Systems (TODS) 34(4),
21:1–21:39 (2009)

34. He, B., Yu, J.X.: High-throughput transaction executions on graphics processors. Proceedings
of the VLDB Endowment 4(5), 314–325 (2011)

35. He, G., Feng, H., Li, C., Chen, H.: Parallel SimRank computation on large graphs with
iterative aggregation. In: Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 543–552. ACM (2010)

36. Hong, C., Chen, D., Chen, W., Zheng, W., Lin, H.: MapCG: writing parallel program portable
between CPU and GPU. In: Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques (PACT’10), pp. 217–226. ACM (2010)

37. Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accelerating CUDA graph algorithms at
maximum warp. In: Proceedings of the 16th ACM symposium on Principles and Practice of
Parallel Programming (PPoPP’11), pp. 267–276 (2011)

38. Hong, S., Oguntebi, T., Olukotun, K.: Efficient parallel graph exploration on multi-core CPU
and GPU. In: 2011 International Conference on Parallel Architectures and Compilation
Techniques (PACT’11), pp. 78–88. IEEE (2011)

39. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel programs
from sequential building blocks. ACM SIGOPS Operating Systems Review 41(3), 59–72
(2007)



128 B. Zhao et al.

40. Ji, F., Ma, X.: Using shared memory to accelerate MapReduce on graphics processing units.
In: 2011 IEEE International Parallel and Distributed Processing Symposium (IPDPS’11),
pp. 805–816. IEEE (2011)

41. Jiang, H., Chen, Y., Qiao, Z., Li, K.C., Ro, W., Gaudiot, J.L.: Accelerating MapReduce
framework on multi-GPU systems. Cluster Computing pp. 1–9 (2013)

42. Kandula, S., Sengupta, S., Greenberg, A., Patel, P., Chaiken, R.: The nature of data center
traffic: measurements & analysis. In: Proceedings of the 9th ACM SIGCOMM conference on
Internet Measurement Conference (IMC’09), pp. 202–208. ACM (2009)

43. Kang, U., Tsourakakis, C., Appel, A.P., Faloutsos, C., Leskovec, J.: HADI: Fast diameter
estimation and mining in massive graphs with Hadoop. Tech. Rep. CMU-ML-08-117, Carnegie
Mellon University (2008)

44. Kang, U., Tsourakakis, C.E., Faloutsos, C.: Pegasus: A peta-scale graph mining system -
implementation and observations. In: 2009 9th IEEE International Conference on Data Mining
(ICDM’09), pp. 229–238. IEEE (2009)

45. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1998)

46. Karypis, G., Kumar, V.: A parallel algorithm for multilevel graph partitioning and sparse matrix
ordering. Journal of Parallel and Distributed Computing 48(1), 71–95 (1998)

47. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed computing 48(1), 96–129 (1998)

48. Katz, G.J., Kider Jr, J.T.: All-pairs shortest-paths for large graphs on the GPU. In: Proceed-
ings of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics Hardware,
pp. 47–55. Eurographics Association (2008)

49. Koranne, S.: A distributed algorithm for k-way graph partitioning. In: Proceedings of the 25th
Conference of EUROMICRO (EUROMICRO’99), vol. 2, pp. 446–448. IEEE (1999)

50. Kyrola, A., Blelloch, G., Guestrin, C.: GraphChi: Large-scale graph computation on just a
PC. In: Proceedings of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’12), pp. 31–46 (2012)

51. Lin, J., Schatz, M.: Design patterns for efficient graph algorithms in MapReduce. In:
Proceedings of the Eighth Workshop on Mining and Learning with Graphs (MLG’10),
pp. 78–85. ACM (2010)

52. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: GraphLab:
A new parallel framework for machine learning. In: The 26th Conference on Uncertainty in
Artificial Intelligence (UAI’10) (2010)

53. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: Distributed
GraphLab: A framework for machine learning and data mining in the cloud. Proceedings of
the VLDB Endowment 5(8), 716–727 (2012)

54. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:
Pregel: A System for Large-Scale Graph Processing. In: Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data (SIGMOD’10), pp. 135–146.
ACM (2010)

55. Merrill, D., Garland, M., Grimshaw, A.: Scalable GPU graph traversal. In: Proceedings of
the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming
(PPoPP’12), pp. 117–128 (2012)

56. Nasre, R., Burtscher, M., Pingali, K.: Morph algorithms on GPUs. In: Proceedings of the 18th
ACM SIGPLAN symposium on Principles and Practice of Parallel Programming (PPoPP’13),
pp. 147–156 (2013)

57. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.:
A Survey of General-Purpose Computation on Graphics Hardware. In: Computer Graphics
Forum, vol. 26, pp. 80–113. Wiley Online Library (2007)

58. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order
to the Web. Stanford InfoLab. Technical report (1999)

59. Plimpton, S.J., Devine, K.D.: MapReduce in MPI for large-scale graph algorithms. Parallel
Computing 37(9), 610–632 (2011)



GPU-Accelerated Cloud Computing for Data-Intensive Applications 129

60. Plimpton, S and Devine, K: MapReduce-MPI Library. http://mapreduce.sandia.gov
61. Rafique, M.M., Rose, B., Butt, A.R., Nikolopoulos, D.S.: CellMR: A framework for supporting

MapReduce on asymmetric cell-based clusters. In: 2009 IEEE International Parallel and
Distributed Processing Symposium (IPDPS’09), pp. 1–12. IEEE (2009)

62. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating MapReduce
for multi-core and multiprocessor systems. In: IEEE 13th International Symposium on High
Performance Computer Architecture (HPCA’07), pp. 13–24. IEEE (2007)

63. Shao, B., Wang, H., Li, Y.: Trinity: A distributed graph engine on a memory cloud. In: Pro-
ceedings of the 2013 ACM International Conference on Management of Data (SIGMOD’13),
New York, New York, USA (2013)

64. Shirahata, K., Sato, H., Matsuoka, S.: Hybrid Map task scheduling for GPU-based hetero-
geneous clusters. In: 2010 IEEE Second International Conference on Cloud Computing
Technology and Science (CloudCom’10), pp. 733–740. IEEE (2010)

65. Stuart, J.A., Owens, J.D.: Multi-GPU MapReduce on GPU clusters. In: 2011 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS’11), pp. 1068–1079. IEEE
(2011)

66. Sul, S.J., Tovchigrechko, A.: Parallelizing BLAST and SOM algorithms with MapReduce-MPI
library. In: IEEE International Symposium on Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW’11), pp. 481–489. IEEE (2011)

67. Talbot, J., Yoo, R.M., Kozyrakis, C.: Phoenix++: Modular MapReduce for Shared-Memory
Systems. In: Proceedings of the 2nd International Workshop on MapReduce and its
Applications, pp. 9–16. ACM (2011)

68. Tan, Y.S., Lee, B.S., He, B., Campbell, R.H.: A Map-Reduce based Framework for Het-
erogeneous Processing Element Cluster Environments. In: IEEE/ACM 12th International
Symposium on Cluster, Cloud and Grid Computing (CCGrid’12), pp. 57–64. IEEE (2012)

69. Trifunović, A., Knottenbelt, W.J.: Parallel Multilevel Algorithms for Hypergraph Partitioning.
Journal of Parallel and Distributed Computing 68, 563–581 (2008)

70. Vineet, V., Narayanan, P.J.: CUDA cuts: Fast graph cuts on the GPU. In: IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’08),
pp. 1–8. IEEE (2008)

71. Wittek, P., Darányi, S.: Leveraging on High-Performance Computing and Cloud Technologies
in Digital Libraries: A Case Study. In: IEEE Third International Conference on Cloud
Computing Technology and Science (CloudCom’11), pp. 606–611. IEEE (2011)

72. Yoo, R.M., Romano, A., Kozyrakis, C.: Phoenix rebirth: Scalable MapReduce on a large-scale
shared-memory system. In: IEEE International Symposium on Workload Characterization
(IISWC’09), pp. 198–207. IEEE (2009)

73. Zhai, Y., Mbarushimana, E., Li, W., Zhang, J., Guo, Y.: Lit: A high performance massive
data computing framework based on CPU/GPU cluster. In: IEEE International Conference
on Cluster Computing (CLUSTER’13), pp. 1–8. IEEE (2013)

74. Zhong, J., He, B.: Parallel Graph Processing on Graphics Processors Made Easy. Proceedings
of the VLDB Endowment 6(12), 1270–1273 (2013)

75. Zhong, J., He, B.: Towards GPU-Accelerated Large-Scale Graph Processing in the Cloud.
In: IEEE Third International Conference on Cloud Computing Technology and Science
(CloudCom’13), pp. 9–16. IEEE (2013)

76. Zhong, J., He, B.: Medusa: Simplified Graph Processing on GPUs. IEEE Transactions on
Parallel and Distributed Systems (TPDS) 25(6), 1543–1552 (2014)

77. Zhou, A., Qian, W., Tao, D., Ma, Q.: DISG: A DIStributed Graph Repository for Web
Infrastructure (Invited Paper). Proceedings of the 2008 Second International Symposium on
Universal Communication 0, 141–145 (2008)

http://mapreduce.sandia.gov

	GPU-Accelerated Cloud Computing for Data-Intensive Applications
	1 Introduction
	2 Background and Related Work
	2.1 Cloud Computing
	2.2 The GPU
	2.3 MapReduce
	2.4 General Graph Processing

	3 MapReduce on GPU Clusters
	3.1 Mars Overview
	3.2 MarsHadoop
	3.3 Mars-MR-MPI
	3.4 Experiments

	4 Graph Processing on GPUs and the Cloud
	4.1 Parallel Graph Processing on GPUs
	4.2 Parallel Graph Processing on the Cloud

	5 Summary and Open Problems
	References


