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Cache-oblivious techniques, proposed in the theory community, have optimal asymptotic bounds on

the amount of data transferred between any two adjacent levels of an arbitrary memory hierarchy.

Moreover, this optimal performance is achieved without any hardware platform specific tuning.

These properties are highly attractive to autonomous databases, especially because the hardware

architectures are becoming increasingly complex and diverse.

In this article, we present our design, implementation, and evaluation of the first cache-oblivious

in-memory query processor, EaseDB. Moreover, we discuss the inherent limitations of the cache-

oblivious approach as well as the opportunities given by the upcoming hardware architectures.

Specifically, a cache-oblivious technique usually requires sophisticated algorithm design to achieve

a comparable performance to its cache-conscious counterpart. Nevertheless, this development-time

effort is compensated by the automaticity of performance achievement and the reduced ownership

cost. Furthermore, this automaticity enables cache-oblivious techniques to outperform their cache-

conscious counterparts in multi-threading processors.
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1. INTRODUCTION

For the last two decades, processor speeds have been increasing at a much faster
rate (60% per year) than memory speeds (10% per year) [Ailamaki 2005]. Due
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to this increasing speed gap, the memory hierarchy has become an important
factor for the overall performance of relational query processing [Ailamaki et al.
1999; Boncz et al. 1999]. However, it is a challenging task to consistently achieve
a good query processing performance across various memory hierarchies, be-
cause both relational database systems and hardware platforms are becoming
increasingly complex and diverse. This problem is even more severe for in-
memory query processing, because the upper levels of a memory hierarchy,
specifically the CPU caches, are hard, if feasible at all, to manage by software.

Cache-conscious techniques are a leading approach to improving the in-
memory query processing performance [Bohannon et al. 2001; Boncz et al. 1999;
Chen et al. 2004; He et al. 2006; Shatdal et al. 1994; Zhou and Ross 2003]. In
this approach, the capacity and block size of a target level in a specific mem-
ory hierarchy, for example, the L2 cache, are taken as explicit parameters for
data layout and query processing. As a result, cache-conscious techniques can
achieve a high performance with suitable parameter values and fine tuning.
Nevertheless, it is difficult to determine these suitable parameter values at all
times and across platforms [Kim et al. 2004; Samuel et al. 2005; Bender et al.
2006; He and Luo 2006, 2007], since they are affected by the characteristics
of the memory hierarchy as well as the system runtime dynamics, such as the
number of concurrent threads sharing the cache.

Considering the difficulties faced by the cache-conscious approach, we pro-
pose another alternative, namely cache-oblivious query processing, to achieve
the goal of improving in-memory performance automatically. Our approach is
based on the cache-oblivious model [Frigo et al. 1999], on which an algorithm
is aware of the existence of a multilevel memory hierarchy, but assumes no
knowledge about the parameter values of the memory hierarchy, such as the
number of levels in the hierarchy, the cache block size, and the cache capac-
ity of each level. By eliminating the dependency on the memory parameters,
cache-oblivious data structures and algorithms [Frigo et al. 1999; Bender et al.
2000; Brodal and Fagerberg 2002; Brodal et al. 2004; Bender et al. 2006] usually
have provable upper bounds on the number of block transfers between any two
adjacent levels of an arbitrary memory hierarchy. Furthermore, this memory
efficiency asymptotically matches those more knowledgeable external memory
algorithms in many cases. With such nice theoretical properties, the cache-
oblivious approach can, in principle, achieve a consistently good performance
on an arbitrary machine.

In this article, we present in detail our design and implementation of
EaseDB, the first cache-oblivious query processor for memory-resident rela-
tional databases. Without the knowledge of cache parameters, we employ two
methodologies, namely divide-and-conquer and buffering, to develop cache-
oblivious algorithms. With these two methodologies, all of our query processing
data structures and algorithms asymptotically match the cache efficiency of
their cache-conscious counterparts.

We evaluate the performance of EaseDB using both existing microbench-
marks and our homegrown workloads. We also consider the emerging processor
techniques, for example, hardware prefetching [Intel Corp. 2004], multicore and
multithreading chip designs [Marr et al. 2002; Hardavellas et al. 2007]. We ran
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EaseDB on four different platforms without modification or tuning. Through
evaluating the query processing algorithms of EaseDB in comparison with their
cache-conscious counterparts, we show that our algorithm achieves a perfor-
mance comparable to the best performance of the fine-tuned cache-conscious
algorithm for each platform. Moreover, our cache-oblivious algorithms are up
to 28% faster than cache-conscious algorithms on a multithreading processor.

The contributions of this article are as follows.

—We develop the first cache-oblivious query processor, EaseDB, for in-memory
relational databases. It includes a full set of relational operators in their
cache-oblivious implementation forms. Additionally, we propose a cache-
oblivious cost model for estimating the expected cache cost of an algorithm
on an arbitrary memory hierarchy. With this cost estimation, we choose the
query plan with the minimum cost among multiple candidate plans. We also
use this cost model to determine the suitable base case size in the divide-
and-conquer methodology in order to reduce the recursion overhead.

—We provide an extensive experimental study on EaseDB in comparison with
its cache-conscious counterpart on four different architectures. With our
homegrown workloads and existing microbenchmarks, we demonstrate that
EaseDB, without any manual tuning, achieves a comparable performance to
its cache-conscious counterpart with platform-specific tuning.

—Based on our hands-on experience on developing an efficient cache-oblivious
query processor, we discuss the inherent limitations of the cache-oblivious
approach as well as the opportunities given by the upcoming hardware ar-
chitectures.

The remainder of this article is organized as follows. In Section 2, we briefly
review the background on the memory hierarchy, and discuss related work on
main memory databases as well as cache-conscious and cache-oblivious tech-
niques. In Section 3, we give a system overview of EaseDB. In Section 4, we
present our cache-oblivious techniques and use them to develop cache-oblivious
algorithms for two core operators in EaseDB, the sort and the join. We exper-
imentally evaluate EaseDB in Section 5. We discuss the strengths and the
weaknesses of the cache-oblivious approach in Section 6. Finally, we conclude
in Section 7.

2. BACKGROUND AND RELATED WORK

In this section, we first review the background on the memory hierarchy. We
next survey related work on main memory databases and cache-centric tech-
niques including both cache-conscious and cache-oblivious techniques.

2.1 Memory Hierarchy

The memory hierarchy in modern computers typically contains multiple levels
of memory from top down [Hennessy and Patterson 2002]:

—Processor registers. They provide the fastest data access, usually in one CPU
cycle. The total size is hundreds of bytes.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 8, Publication date: June 2008.



8:4 • B. He and Q. Luo

—Level 1 (L1) cache. The access latency is a few cycles and the size is usually
tens of kilobytes (KB).

—Level 2 (L2) cache. It is an order of magnitude slower than the L1 cache. Its
size ranges from 256 KB to a few megabytes (MB).

—Level 3 (L3) cache. It has a higher latency than the L2 cache. Its size is often
several to dozens of megabytes.

—Main memory. The access latency is typically hundreds of cycles and the size
can be several gigabytes (GB).

—Disks. The access latency is hundreds of thousands of cycles. The capacity of
a single disk can be up to several hundred gigabytes.

Each level in the memory hierarchy has a larger capacity and a slower access
speed than its higher levels. A higher level serves as a cache for its immediate
lower level and all data in the higher level can be found in its immediate lower
level (known as cache-inclusion [Hennessy and Patterson 2002]). In this paper,
we use the cache and the memory to represent any two adjacent levels in the
memory hierarchy whenever appropriate.

We define a cache configuration as a three-element tuple <C, B, A>, where C
is the cache capacity in bytes, B the cache line size in bytes and A the degree of
set-associativity. The number of cache lines in the cache is C

B . A = 1 is a direct-

mapped cache, A = C
B a fully associative cache and A = n an n-associative cache

(1 < n < C
B ).

In addition to these static characteristics, we consider dynamic characteris-
tics, for example, the number of concurrent threads or tasks using the cache.
Compared with static characteristics, dynamic characteristics are more difficult
to capture but are important in multi-task systems, such as databases.

Dynamic characteristics become more complex due to the thread-level par-
allelism in modern architectures, where multiple threads or processes can run
simultaneously on a single chip via multiple on-chip processor cores (chip mul-
tiprocessors, or CMP [Kim et al. 2004; Hardavellas et al. 2007]) and/ or multiple
simultaneous threads per processor core (simultaneous multithreading, or SMT
[Marr et al. 2002]). Since concurrent threads share cache resources such as the
L2 cache, the overall performance of each thread is affected by the runtime
dynamics of the cache.

The notations used throughout this article are summarized in Table I. In the
remainder of this article, we assume ||R|| ≤ ||S||.

2.2 Main Memory Databases

Main memory databases have been an active research field since the 1980’s
[DeWitt et al. 1984; Garcia-Molina and Salem 1992; Lehman and Carey 1986a,
1986b]. Recently, they have attracted an even more significant amount of atten-
tion due to the great increase of the memory capacities [Ailamaki et al. 1999;
Baulier et al. 1999; Boncz et al. 1999; MonetDB 2006; TimesTen 2006; He et al.
2007]. With large memory capacities, most frequently accessed data items in
relational databases are likely to fit into the main memory, and the CPU caches
become an important performance factor.
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Table I. Notations Used in this Article

Parameter Description

C Cache capacity (bytes)

B Cache line size (bytes)

R, S Outer and inner relations of the join

r, s Tuple sizes of R and S (bytes)

|R|,|S| Cardinalities of R and S
||R||,||S|| Sizes of R and S (bytes)

CS The base case size in number of tuples

b The minimum size of buffers in our buffer hierarchy in number of tuples

Bits The total number of bits used in the radix sort

Table II. Main Memory Relational Query Processors

FastDB TimesTen MonetDB EaseDB
Cache awareness — — cache-conscious cache-oblivious

Optimizer rule-based instruction

cost-based

cache

cost-based

cache cost-based

Indexes T-tree, hash

index

T-tree, hash

index

B+-Tree, T-tree,

hash index

B+-Tree, hash

index

Database file virtual memory main memory virtual memory main memory

Storage model row-based row-based column-based row-based,

column-based

We study cache-oblivious algorithms to optimize the CPU cache performance
for main memory databases. These algorithms are especially attractive to CPU
caches, for example, L1 and L2 caches, because CPU caches are managed by the
hardware. As a result, the accurate state information of these caches are diffi-
cult to obtain due to the system runtime dynamics and the hardware complexity.
Moreover, even with the knowledge of the cache parameters, the performance
of cache-conscious algorithms needs to be tuned carefully. Therefore, we inves-
tigate whether and how cache-oblivious algorithms can automatically optimize
CPU caches for main memory databases.

Table II summarizes the main features of EaseDB in comparison with three
existing main memory relational query processors, including FastDB [FastDB
2002], TimesTen [TimesTen 2006], and MonetDB [MonetDB 2006]. FastDB and
TimesTen are among the first-generation main memory databases. Their pro-
cessing is unaware of CPU caches. In contrast, both MonetDB and EaseDB are
cache-optimized. Similar to MonetDB, EaseDB uses cache cost as the cost met-
ric in the query optimizer. The cache cost in EaseDB is an expected value on
an arbitrary memory hierarchy as opposed to an estimated value on a specific
memory hierarchy in MonetDB. Additionally, recognizing the pros and cons of
row-based versus column-based storage, we support both storage models in a
cache-oblivious format in EaseDB.

2.3 Cache-Conscious Techniques

Cache-conscious techniques [Shatdal et al. 1994; Boncz et al. 1999; Bohan-
non et al. 2001; Zhou and Ross 2003; Chen et al. 2004; He et al. 2006] have
been the leading approach to optimizing the cache performance of in-memory
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Table III. Cache Complexity of Cache-Conscious Algorithms

Algorithm Complexity

Single search on the B+-tree built on R O(logB |R|) [Comer 1979]

Sorting R O( |R|
B logC |R|) (merge sort) [Knuth 1998]

O( |R|
B logC 2Bits) (radix sort) [Knuth 1998]

Non-indexed nested-loop join (NLJ) on R
and S

O( |R|·|S|
C·B ) [Shatdal et al. 1994]

Indexed NLJ on R and S (with a B+-tree

on S)

O(|R| · logB |S|) [Ramakrishnan and Gehrke

2003]

Sort-merge join on R and S sorting R+sorting S+merging

[Ramakrishnan and Gehrke 2003]

Hash join on R and S O( |R|+|S|
B logC |S|) [Boncz et al. 1999]

relational query processing. Representatives of cache-conscious techniques
include blocking [Shatdal et al. 1994], buffering [Zhou and Ross 2003; He
et al. 2006], partitioning [Shatdal et al. 1994; Boncz et al. 1999] and merg-
ing [LaMarca and Ladner 1997; Ramakrishnan and Gehrke 2003] for temporal
locality, and compression [Bohannon et al. 2001] and clustering [Chilimbi et al.
1999] for spatial locality. We list the cache complexity of the state-of-the-art
cache-conscious query processing algorithms in Table III. The cache complex-
ity of an algorithm is defined to be the asymptotical number of block transfers
between the cache and the memory incurred by the algorithm. In the following,
we discuss the cache-conscious techniques for B+-trees, hash joins and storage
models, which are most relevant to our work.

Cache-conscious optimizations for the B+-tree typically set the node size to
be several cache blocks [Rao and Ross 1999, 2000; Bohannon et al. 2001]. Given
a fixed tree node size, both Cache-Sensitive Search Trees (CSS-trees) [Rao and
Ross 1999] and Cache-Sensitive B+-Trees (CSB+-trees) [Rao and Ross 2000] in-
crease the tree fanout by eliminating the pointers in each tree node, whereas the
partial key technique [Bohannon et al. 2001] increases the tree fanout through
compression. The CSS-tree eliminates all pointers in the tree node. Thus, the
nodes are fully packed with keys and are laid out contiguously, level by level.
The CSB+-tree stores groups of sibling nodes in consecutive memory areas.
One node stores one pointer only. The partial key technique reduces the key
size by storing only part of the key. All these techniques require the knowledge
of cache block size. However, this static block size is often different from the
effective block size due to the advanced memory techniques, such as hardware
prefetching data from the main memory to the CPU cache [Intel Corp. 2004].

Partitioning schemes have been proposed to improve the in-memory perfor-
mance of hash joins [Boncz et al. 1999; Shatdal et al. 1994]. Shatdal et al.
[1994] showed that cache partitioning, in which the partitioning granularity is
smaller than the cache capacity, can improve the cache performance of hash
joins. This partitioning was performed in a single pass. The major problem for
the single-pass partitioning is that a large relation may result in a large par-
titioning fanout, which in turn causes cache thrashing and TLB (Translation
Lookaside Buffer) thrashing. To solve this problem, Boncz et al. [1999] pro-
posed the radix join, which uses a multi-pass partitioning method. For each
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pass, the partitioning fanout is tuned according to the cache or TLB param-
eters. More recently, Zhou et al. [2005] applied staging to restructure the
hash join, and proposed a multi-threaded hash join using a worker thread
to preload the cache lines required in the join on a SMT processor. Garcia
et al. [Garcia and Korth 2006] demonstrated software prefetching could fur-
ther improve the multi-threaded hash join on CMP/SMT processors. These two
studies mainly exploit the parallelism and the memory optimization within a
single join. In addition to the optimizations within a single operator, we also
investigate the cache behavior among concurrent operators on the CMP/SMT
processors.

Two common storage models are NSM (N-ary Storage Model) [Ramakrish-
nan and Gehrke 2003] and DSM (Decomposition Storage Model) [Copeland
and Khoshafian 1985], which store the relation into a cache block in rows
and columns, respectively. Alternatives to NSM and DSM were PAX (Parti-
tion Attributes Across) [Ailamaki et al. 2001] and data morphing [Hankins
and Patel 2003]. They are essentially a cache block level decomposition model
where each attribute or each group of attributes is stored within a cache block.
They are found to have a good performance for both the disk and the CPU
caches. More recently, a column-based variant called C-Store [Stonebraker
et al. 2005] was developed to optimize the read performance for database
applications.

The major drawback of cache-conscious algorithms is that they explicitly
take cache parameters as input and require tuning on these parameter values.
A common way of obtaining these cache parameters is to use calibration tools
[Manegold 2004]. One problem of calibration is that some calibration results
may be inaccurate or missing, especially as the memory system becomes more
complex and diverse. For example, the calibrator [Manegold 2004] did not give
the characteristics of TLB on the P4 or Ultra-Sparc machines used in our ex-
periments. Even with the knowledge of the cache configuration, the suitable
parameter values for a cache-conscious algorithm need further tuning. First,
the best parameter values for the cache-conscious algorithm may be none of the
cache parameters. Second, these values are affected by the cache dynamics on
CMP/SMT processors. In contrast, cache-oblivious algorithms are an automatic
approach to performance optimization for the entire memory hierarchy without
any tuning.

2.4 Cache-Oblivious Techniques

The cache-oblivious model [Frigo et al. 1999] assumes a two-level memory hier-
archy, the cache and the memory. The cache is assumed to be tall (C � B2), fully
associative, and has an optimal replacement policy. Frigo et al. [1999] showed
that, if an algorithm has an optimal cache complexity in the cache-oblivious
model, this optimality holds on all levels of a memory hierarchy.

Two main methodologies of designing a cache-oblivious algorithm are
divide-and-conquer and amortization [Demaine 2002]. The divide-and-conquer
methodology is widely used in general cache-oblivious algorithms, because it
usually results in a good cache performance. In this methodology, a problem is
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recursively divided into a number of subproblems. At some point of the recur-
sion, the subproblem can fit into the cache, even though the cache capacity is
unknown. The amortization methodology is used to reduce the average cost per
operation for a set of operations, even though the cost of a single operation may
be high.

Existing work on cache-oblivious algorithms has focused on basic computa-
tion tasks, for example, sorting and matrix operations [Frigo et al. 1999; Brodal
and Fagerberg 2002], and basic data structures, for example, cache-oblivious
B-trees [Bender et al. 2000; Bender et al. 2006]. These algorithms have the
same cache complexity as their cache-conscious counterparts. Moreover, pre-
vious studies [Brodal et al. 2004; Bender et al. 2006] have shown that cache-
oblivious algorithms can outperform the best cache-conscious algorithms in the
main memory or the disk. In comparison, we develop cache-oblivious techniques
for relational query processing, and pay attention to both the cache complex-
ity of our algorithms and their performance on real systems. In particular, we
implement the merge sort using a buffer hierarchy similar to the funnel sort
[Frigo et al. 1999; Brodal et al. 2004] with two major differences. One is that the
previous work defines the buffer size in theoretical bounds, whereas we define
exact buffer sizes considering the cache reuse within the hierarchy. The other
difference is that we propose a buffer reuse technique to reduce the memory
consumption. Yoon et al. [Yoon and Lindstrom 2006] proposed a cache-oblivious
cost model for the mesh layout. The cost model estimates the expected number
of cache misses caused by the accesses to a mesh. In contrast, our cost model es-
timates the expected cache cost between the cache and the memory for general
query processing algorithms.

Our previous work [He and Luo 2006] designed cache-oblivious algorithms
for nested-loop joins (NLJs). In our position paper [He and Luo 2007], we briefly
discussed our initial efforts in developing EaseDB. Additionally, we gave a sys-
tem demonstration of the internal working mechanisms and the end-to-end per-
formance of EaseDB in comparison with cache-conscious algorithms [He et al.
2007]. In contrast, this paper provides a detailed description of the architectural
design and implementation issues of EaseDB with a focus on discussing the lim-
itations and the opportunities for cache-oblivious query processing. Moreover,
we investigate the cache behavior of cache-oblivious algorithms on emerging
CMP/SMT processors.

3. SYSTEM OVERVIEW

In this section, we describe the architectural design and implementation of
EaseDB. The goal of EaseDB is to automatically and consistently achieve a
good performance on various platforms without any platform-specific tuning.

3.1 Components

Figure 1 shows the system architecture of EaseDB. There are three major com-
ponents, namely the SQL parser, the query optimizer, and the plan executor. The
query optimizer in turn consists of a query plan generator and a cache-oblivious
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Fig. 1. The system architecture of EaseDB.

cost estimator. We use a Selinger-style optimizer [Selinger et al. 1979] for plan
generation.

EaseDB employs a multi-threading mechanism at the query level. It creates
a pool of worker threads when it starts up. When a query is issued to the system,
EaseDB schedules a free worker thread to handle the query.

In the following, we focus our discussion on the plan executor and the cost
estimator.

3.2 Execution Engine

We divide the execution engine into three layers, including the storage, access
methods, and query operators.

3.2.1 Storage. As in previous work [MonetDB 2006; Boncz et al. 1999], we
focus on the read-only queries. Thus, EaseDB uses arrays to represent rela-
tions either in rows (as NSM [Ramakrishnan and Gehrke 2003]) or in columns
(as DSM [Copeland and Khoshafian 1985]). EaseDB does not support on-line
updates. Instead, it rebuilds a relation for batch updates. Since recent work
[Ailamaki et al. 2001; Stonebraker et al. 2005] has shown that column-based
and row-based storage models have their own pros and cons, we support both of
them. Specifically, we allow a table to be stored in one format and to have a full
table replica or a different table stored in the other format at one point in time.
We let the user explicitly specify which storage model(s) to use for each table.
It will be an interesting extension to develop methods to choose the suitable
storage model for a given workload.

EaseDB supports variable-sized columns using two arrays, values and start.
Array values stores the values of the column. Array start stores the pair of the
record identifier and the start position in the values array.

EaseDB has a memory manager to handle memory allocation and dealloca-
tion. Similar to other main memory databases [FastDB 2002; MonetDB 2006;
TimesTen 2006], EaseDB does not have a global buffer manager. When EaseDB
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starts up, it pre-allocates a large memory pool. The memory space required for
query processing is allocated from the pool on demand.

3.2.2 Access Methods and Query Operators. EaseDB supports three com-
mon access methods, including the table scan, the B+-tree and the hash index.

—Table scan. The relation is sequentially scanned. If the relation is sorted, a
binary search is performed on the relation according to the sort key.

—B+-trees. We have implemented two versions of COB+-trees, with and with-
out pointers (explicit vs. implicit addressing). In the latter version, we use an
existing implicit addressing scheme [Brodal et al. 2002]. We compared these
two versions of COB+-trees, and found that COB+-trees without pointers
outperformed those with pointers when the COB+-tree with pointers can
not fit into the L2 cache. Thus, we used the COB+-tree without pointers in
our experiments.

—Hash indexes. The hash index for R consists of |R| buckets so that each
bucket contains one tuple on average. We implement the hash index using
two arrays. One is the array of hash headers, each of which maintains a
pointer to its corresponding bucket. The other is the array of buckets. Each
bucket stores the key values of the records that have the same hash value,
and their record identifiers. Due to the larger number of hash headers, our
hash index has more space overhead than the cache-conscious hash index.
The memory efficiency bound of a probe on the hash index is O(1), which
matches the memory efficiency bound of a probe on the cache-conscious hash
index [Ramakrishnan and Gehrke 2003].

EaseDB supports the following common query processing operators.

—Selection. In the absence of indexes, a sequential scan or binary search on
the relation is used. In the presence of indexes, if the selectivity is high, a
data scan on the relation is performed. Otherwise, the B+-tree index or the
hash index can be used.

—Projection. If duplicate elimination is required, we use either sorting or
hashing to eliminate the duplicates for the projection.

—Sorting. We consider two sorting algorithms, the cache-oblivious radix sort
and the cache-oblivious merge sort. We determine which sorting algorithm
to use in a cost-based way (Details in Section 4.2).

—Grouping and aggregation. We use the build phase of the hash join to perform
grouping and aggregation.

—Joins. We consider cache-oblivious nested-loop joins with or without indexes,
sort-merge joins, and hash joins.

3.3 Cost Estimator

When multiple query plans are available, the optimizer chooses the one of the
minimum cost. In the optimizer of EaseDB, the cost estimator estimates the
cache cost of a query plan in terms of the data volume transferred between
the cache and the memory in the cache-oblivious model. Compared with the
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cache-conscious cost model [Boncz et al. 1999], our estimation assumes no
knowledge of the cache parameters of each level or the number of levels in
a specific memory hierarchy.

Our cost estimator is based on a two-level memory hierarchy with the fol-
lowing characteristics for simplicity of cost estimation. First, the cache block
size is a power of two. Second, C is no less than B2 according to the tall cache
assumption (C ≥ B2) [Frigo et al. 1999]. Third, the cache is fully associative
and uses an optimal cache replacement policy. The latter two characteristics
are in the original cache-oblivious model, and the first one is our own simplify-
ing assumption. These assumptions are based on the fundamental properties
of the memory hierarchy rather than specific parameter values. Consequently,
there is no platform-specific tuning or calibration involved.

To compute the expected volume of data transferred between the cache and
the memory caused by an algorithm, we need a cost function for the algorithm.
This cost function estimates the number of cache misses caused by the algo-
rithm for a given cache capacity and cache block size. The cache misses include
compulsory and capacity misses, since the number of conflict misses is zero
in the fully associative cache of our model. We denote this cost function to be
F (C, B).

Suppose a query plan has a working set size ws bytes, which is the total
size of the data (e.g., relations and indexes) involved in the query plan. We
consider all possible combinations of the cache capacity and the cache block
size to compute the expected volume of data transferred between the cache and
the memory on an arbitrary memory hierarchy. If C ≥ ws, this working set
can fit into the cache. In such cases, once data in the working set are brought
into the cache, they stay in the cache for further processing. That is, further
processing does not increase the volume of data transferred. Therefore, we
estimate the volume of data transferred to be zero when the cache capacity is
larger than the working set of the query plan. Thus, given a certain cache block
size, Bx , we consider all possible C values, that is, B2

x , B2
x + Bx , B2

x + 2Bx , . . . ,
�ws

Bx
�Bx , and compute the expected volume of data transferred to be 1

� ws
Bx

�−Bx+1
(Bx ·

F (B2
x , Bx)+Bx ·F (B2

x +Bx , Bx)+Bx ·F (B2
x +2Bx , Bx)+· · ·+Bx ·F (�ws

Bx
�Bx , Bx)) =

Bx
� ws

Bx
�−Bx+1

∑� ws
Bx

�Bx

Cx=B2
x

F (Cx , Bx).

Subsequently, we estimate the expected volume of data transferred to be
Q(F ), as shown in Equation (1).

Q(F ) = 1

�log2

√
ws� + 1

×
⎛
⎝k=�log2

√
ws�∑

k=0,Bx=2k

Bx

�ws
Bx

� − Bx + 1

� ws
Bx

�Bx∑
Cx=B2

x

F (Cx , Bx)

⎞
⎠ . (1)

Our model includes the estimations of some unrealistic cache capacities and
cache block sizes. In contrast, the cache-conscious cost model [Boncz et al. 1999]
includes the estimation with the exact cache parameter values of a specific
machine. Therefore, we consider a hybrid approach by adding the ranges on
the cache parameters to our cost model as a tradeoff between the knowledge of
the exact cache parameter values and the estimations on the unrealistic cache
parameter values using our cache-oblivious cost model.
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Fig. 2. The cache-oblivious B+-tree.

4. ALGORITHMS

In this section, we first develop our cache-oblivious techniques applying the
divide-and-conquer methodology and buffering. Next, we use these techniques
to develop our cache-oblivious algorithms for two core operators, the sort and
the join, in relational databases. Additionally, we present the results on the
cache complexity of our cache-oblivious algorithms. Finally, we describe a cost-
based way of estimating the suitable base case size for a divide-and-conquer
algorithm.

4.1 Techniques

We develop our cache-oblivious techniques considering the divide-and-conquer
methodology and buffering, as well as considering that query processing algo-
rithms are inherently data centric.

4.1.1 Applying the Divide-and-Conquer Methodology. Following the
divide-and-conquer methodology, we propose to use three cache-oblivious tech-
niques, recursive clustering for the spatial locality, and recursive partitioning
as well as recursive merging for the temporal locality.

As its name suggests, recursive clustering recursively places related data
together so that a cluster fits into one cache block at some level of the recursion.
An example of recursive clustering is the cache-oblivious B+-tree (COB+-tree)
[Bender et al. 2000, 2004]. A COB+-tree is obtained by storing a complete
binary tree according to the van Emde Boas (VEB) layout [van Emde Boas
et al. 1977], as illustrated in Figure 2. Suppose the tree consists of N nodes
and has a height of h = log2(N +1). The VEB layout proceeds as follows. It first
cuts the tree at the middle level, i.e., the edges below the nodes of height h/2.
This cut divides the tree into a top subtree, T0, and approximately

√
N bottom

subtrees below the cut, T1, T2, . . . , and Tt . Each subtree contains around
√

N
nodes. Next, it recursively stores these subtrees in the order of T0, T1, T2, . . . ,
and Tt . With the VEB layout, an index node and its child nodes are stored close
to each other. Thus, the spatial locality of the tree index is improved. Bender
et al. showed that a search on the COB+-tree has a cache complexity matching
that on the cache-conscious B+-tree (CCB+-tree) [Bender et al. 2000].
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Recursive partitioning recursively divides data into two subpartitions so that
at some level of the recursion a subpartition is fully contained in some level of
the memory hierarchy. An example of recursive partitioning is the quick sort,
one of the most efficient sorting algorithms in the main memory.

The cache complexity of recursive partitioning is higher than that of cache-
conscious partitioning. Suppose we divide relation R into N partitions. The
cache-conscious partitioning algorithm (such as the radix cluster [Boncz et al.
1999]) has a partitioning fanout of C/B. This multi-pass partitioning algorithm
achieves a cache complexity of O( |R|

B logC N ). In contrast, the cache complexity

of recursive partitioning is O( |R|
B log2 N ).

Recursive merging can be considered as a dual technique to recursive parti-
tioning. It recursively combines two partitions into one. An example for recur-
sive merging is the merging phase of the binary merge sort. At the beginning,
the relation is divided into multiple partitions. It then sorts each partition
and recursively merges every two partitions into one. This recursive merging
process will not end until all data are merged into one partition. Suppose we
merge N partitions of size O(1). The cache complexity of recursive merging
is O( N

B log2 N ), which is higher than that of its cache-conscious counterpart,

O( N
B logC N ) [Knuth 1998].

Note that recursive partitioning and recursive merging by themselves have
no constraints on the partitioing/merging fanout. We set the fanout to be a small
constant, two, due to the cache-obliviousness.

4.1.2 Applying the Buffering Technique. We use the buffering technique to
improve the cache efficiency of recursive partitioning and recursive merging.
In the following, we first introduce the buffering technique for recursive parti-
tioning in detail and then briefly discuss the technique for recursive merging.

The high cache complexity of recursive partitioning is because the cost of
processing each tuple in the partitioning is high in the worst case. Since each
tuple requires to be processed multiple times and there are a larger number of
tuples in recursive partitioning, we consider using buffers to improve the cache
locality and the overall performance.

To match the cache complexity of the cache-conscious partitioning, we de-
sign a cache-oblivious buffer hierarchy, as shown in Figure 3(a). We call this
hierarchy a partitioner tree. Each node of a partitioner tree is a partitioner,
which decomposes a relation into two sub-relations. The partitioner can use
either range partitioning or hash partitioning. Each non-leaf partitioner has
two output buffers for temporarily storing tuples having been processed by the
partitioner. The input buffer of a nonroot partitioner is the output buffer of
its parent partitioner. The tuples having been processed by a leaf node are in-
serted into the result partitions. If we divide relation R into N partitions, the
partitioner tree consists of N/2 leaf partitioners.

We use the following representations for a partitioner: level is its level in the
partitioner tree, buf [0, 1] are the two output buffers for a nonleaf node or the
two result partitions for a leaf node, and child[0, 1] are the pointers to its two
child partitioners (if any). The partitioner tree has an attribute root pointing to
the root partitioner. The level of the root node is one. We define two operations
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Fig. 3. Cache-oblivious buffer hierarchies: (left) partitioner tree, (right) merger tree. The size of

the buffers in the hierarchy is recursively defined.

on the buffer, fill and flush. Fill inserts a tuple at the tail of the buffer. Flush
removes all tuples from the buffer, and fills them into the buffers at lower levels
or result partitions.

Algorithm 1 uses a hash partitioning scheme for recursive partitioning with
buffers. The set of hash functions for the partitioners are oid = H(x, level ),
where x is the value of the hashing attribute of the tuple and oid ∈ {0, 1}.
For a partitioner at level level , the result of the hash function is the ID of its
output buffer or the result partition that the tuple should go to. For instance,
the radix sort uses H(x, level ) = (x >> (Bits − level ))&1. Procedures fillBuf
and fillResult implement the fill operation on a buffer and the insertion of a
tuple into a result partition, respectively. Procedure flush implements the flush
operation on a buffer. Procedure flushTree flushes all the buffers in the tree in
the depth-first order.

Having defined the data structure and the partitioning algorithm, we now
describe a recursive scheme to determine the size of each buffer. The basic idea
of our definition is that at each level of the recursion, the size of the input
buffer for the root node of a subtree is set to be the total size of the buffers in
the subtree. Thus, the input buffer size of a node is defined as the total buffer
size of the nodes in the subtree resulting from the recursion, not an arbitrary
subtree in the tree structure. We use this design because the temporal locality
of the subtree will be high, if the total size of all buffers in the subtree and the
input buffer for the root node is smaller than the cache capacity.

We define the size of each buffer following the VEB recursion [van Emde Boas
et al. 1977], which is widely used in cache-oblivious algorithms [Bender et al.
2000; Brodal and Fagerberg 2002; Brodal et al. 2004; He and Luo 2006]. We
follow the VEB recursion and cut the tree at the middle level. This cut results
in a top tree as the subtree above the cut and multiple bottom trees below the
cut, as shown in Figure 4(a). Next, we set the size for the buffers at the middle
level.

At each recursion level, if a bottom tree contains k buffers, we set the input
buffer size for its root node to be (b · k log2 k) in number of tuples, where b is
the minimum buffer size in number of tuples. Denote S(N ) to be the total size (in
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Algorithm 1. Partitioning R into Np partitions: recursive partitioning with a parti-
tioner tree

/*part buf: divide R into Np partitions with buffers*/

Procedure: part buf (R, Np)

1: Construct a partitioner tree, T , of height L = log2 Np;

2: baseLevel = 0; /*a global variable representing the adjustment for the level of the

partitioner*/

3: for each tuple r in R do
4: fillBuf (T.root, r);

5: flushTree(T.root);

/*fillBuf: fill tuple into node’s output buffer*/

Procedure: fillBuf (node, tuple)

1: aL = node.level + baseLevel;
2: bufID = H(tuple.key, aL); /*compute the buffer ID with adjusted level*/

3: let oBuf be node.buf [bufID];

4: if oBuf.full() then
5: flush(node, bufID);

6: oBuf.fill(tuple);

/*fillResult: fill tuple into node’s result partition*/

Procedure: fillResult(node, tuple)

1: aL = node.level + baseLevel;
2: partID = H(tuple.key, aL); /*compute the result partition ID with adjusted level*/

3: let oPart be node.buf [partID];

4: oPart.fill(tuple);

/*flush: flush node’s buf [bufID]*/

Procedure: flush(node, bufID)

1: if node.level < L then
2: for each tuple t in node.buf [bufID] do
3: fillBuf (node.child [bufID], t); /*insert tuples to the child buffers*/

4: else
5: for each tuple t in node.buf [bufID] do
6: fillResult(node.child [bufID], t); /*insert tuples to the result partitions*/

/*flushTree: flush the buffers in the subtree rooted at node recursively*/

Procedure: flushTree(node)

1: for bufID = 0, 1 do
2: flush(node, bufID);

3: flushTree(node.child[bufID]);
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Fig. 4. The VEB buffer size definition of the partitioner tree.

number of tuples) of buffers in the partitioner tree consisting of N buffers. Note,
the size of the input buffer for the root node is not included in S(N ). At the first
cut of the recursion, each bottom tree has around N 1/2 buffers. According to our
definition, the input buffer size for the root node of each bottom tree equals the
total size of the buffers in the tree, S(N 1/2). According to the VEB recursion,
we have the formula, S(N ) = N 1/2S(N 1/2) + (N 1/2 + 1) · S(N 1/2). We solve this
formula, eliminate lower-order terms, and obtain S(N ) = b · N log2 N . Thus,
we set the input buffer size for the root node of the bottom tree to be around

b · N
1
2 log2 N

1
2 . The sizes of buffers in the top tree and the bottom trees are re-

cursively defined following the VEB recursion. This process ends when the tree
contains only one level. We then set the size of each of its output buffers to be b.

An example of our VEB buffer size definition on a partitioner tree of four
levels is shown in Figure 4(b). The first cut of the VEB recursion on this tree
is between levels two and three. This results in one top tree and four bottom
trees. Since each bottom tree has two buffers, the size of the input buffer for its
root node is b · 2 log2 2 = 2b. Further cuts on each subtree complete the setting
of the buffer sizes in the tree.

Proposition 1 gives the total buffer size for a partitioner tree.

PROPOSITION 1. Given the number of partitioners in a partitioner tree, N, the
total buffer size for the partitioner tree is S(N ) = b · N log2 N.

PROOF. This proposition is directly derived from our buffer size defini-
tion.

While examining our buffer scheme for the partitioner tree on sorting R using
the radix sort, we find that the total buffer size is more than linear to |R|. In the
basic implementation of the radix sort using the partitioner tree, the number of
partitioners is O(|R|). According to Proposition 1, the total buffer size is super-
linear to the relation size. To improve the scalability of recursive partitioning,
we need to reduce the total size of the buffers used in the partitioner tree.

One observation on the first cut of the VEB recursion is that the top tree
is similar to a bottom tree. Specifically, the height of each of these subtrees is
around one half of the height of the original tree. Based on this observation, we
propose a buffer reuse technique to reduce the total buffer size, as illustrated in
Algorithm 2. First, we construct a partitioner tree, T , whose height is one half
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Fig. 5. Buffer reuse. Relation R is first decomposed into four partitions, R0, . . . , R3, with T . Next,

each partition is decomposed by reusing T .

of the original partitioner tree. This tree is similar to the subtrees obtained at
the first level of the recursion in the original tree. Next, we use T to decompose
R into multiple partitions, and reuse T to further decompose each partition.
The total buffer size with buffer reuse becomes S(N 1/2) = b · N 1/2 log2 N 1/2,
which is sublinear to |R|. Take the partitioner tree in Figure 4(b) as an exam-
ple. The partitioning process with buffer reuse constructs a tree of height two,
as illustrated in Figure 5. This process essentially performs four-pass binary
partitioning on R and generates 16 result partitions.

Algorithm 2. Partitioning R into Np partitions with buffer reuse

/*part reuse: divide R into Np partitions with buffer reuse*/

Procedure: part reuse(R, Np)

1: Construct a partitioner tree, T , of height L = 1
2

log2 Np;

2: baseLevel = 0;

3: for each tuple r in R do
4: fillBuf(T.root, r);

5: flushTree(T.root);

6: baseLevel = L; /*adjust the global variable.*/

7: for pid = 0;pid < 2L;pid + + do
8: for each tuple r in Rpid do
9: fillBuf(T.root, r);

10: flushTree(T.root);

Having discussed the partitioner tree structure for recursive partitioning,
we present our buffering technique for recursive merging. We develop a buffer
hierarchy called a merger tree to improve the cache performance of recursive
merging. As shown in Figure 3(b), the merger tree has a similar buffer hier-
archy to the partitioner tree. The buffer size definition of the merger tree is
the same as the partitioner tree. The major difference is the direction of data
flow. Specifically, data flow from top down in the partitioner tree so that the
data from the buffer at a higher level are partitioned and temporarily stored
in the buffers at a lower level. In contrast, data move from bottom up in the
merger tree so that the data from the buffers at a lower level are merged and
temporarily stored in the buffer at a higher level. To reduce their total buffer
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size of the merger tree, we develop the buffer reuse technique for the merger
tree in a similar way to the partitioner tree.

4.2 Sort

We have developed two cache-oblivious sorting algorithms, namely the cache-
oblivious radix sort and the cache-oblivious merge sort.

We choose to implement a most significant digit (MSD) radix sort for its
divide-and-conquer nature [Knuth 1998]. We use recursive partitioning to de-
velop the cache-oblivious radix sort algorithm. The recursive partitioning in the
radix sort is to recursively partition the relation into two subrelations accord-
ing to the bits of the sorting key. At the ith pass (i ≥ 1) of the partitioning, we
use the (Bits − i + 1)th bit from the right, where Bits is the total number of bits
required in the radix sort. This recursion ends when the number of tuples in the
relation is less than CS (the base case size) or the sort reaches the least signif-
icant bit. We use the insertion sort to sort the base case, because the base case
is small or is nearly sorted. The recursive partitioning is implemented with our
partitioner tree and the buffer reuse technique. The height of the partitioner
tree is the minimum value of Bits

2
and 1

2
· log2

|R|
CS

.

After presenting the cache-oblivious radix sort, we describe the cache-
oblivious merge sort in brief. The cache-oblivious merge sort is a dual algo-
rithm to the cache-oblivious radix sort. It starts with dividing the relation into
|R|
CS

partitions. Each partition consists of CS tuples. We sort each partition using

the insertion sort. Next, we construct a merger tree of height L = 1
2

log2
|R|
CS

.

We use the merger tree to merge every 2L consecutive partitions. Thus, the
number of intermediate result partitions is 2L. Finally, we use the merger tree
to merge these intermediate result partitions. The final result partition is the
sorted relation.

We develop a cost-based method to compare the performance of the radix sort
and the merge sort. The cache complexity of the first ith pass (1 ≤ i ≤ Bits) in
the partitioning process of the radix sort matches that of the last ith pass (if any)
in the merging process of the merge sort. Thus, the performance comparison
of the radix sort and the merge sort can be determined by the comparison of
the number of partitioning passes in the radix sort and the number of merging
passes in the merge sort. If the number of merging passes in the merge sort is
larger than the number of partitioning passes in the radix sort, we choose the
radix sort. Otherwise, we choose the merge sort. Formally, given relation R, we
choose the merge sort when log2

|R|
CS

≤ Bits, i.e., |R|
CS

≤ 2Bits.

4.3 Joins

We have implemented cache-oblivious algorithms for the four most common join
implementations in relational databases [Ramakrishnan and Gehrke 2003],
including the nested-loop join with or without indexes, the sort-merge join, and
the hash join.

4.3.1 Nested-Loop Joins. Our previous work applies recursive partitioning
to implement the non-indexed NLJ and recursive clustering to implement the
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indexed NLJ [He and Luo 2006]. To make our presentation self-contained, we
briefly review these cache-oblivious nested-loop join algorithms.

The non-indexed NLJ (denoted as CO NLJ) performs recursive partitioning
on both relations. With recursive partitioning, both relations are recursively
divided into two equal sized subrelations, and the join is decomposed into four
smaller joins on the subrelation pairs. This recursive process goes on until the
base case is reached; that is, the number of tuples in the inner relation is no
larger than CS . The base case is evaluated using the simple tuple-based NLJ
algorithm.

The indexed NLJ is similar to the traditional one [Ramakrishnan and Gehrke
2003] except that the tree index is the cache-oblivious B+-tree [Bender et al.
2000; He and Luo 2006]. Our previous work [He and Luo 2006] proposed a
buffer hierarchy, similar to that in a partitioner tree, for the temporal lo-
cality of the indexed NLJ. The main weakness of this algorithm is that it
does not support pipelined execution, whereas the algorithm without buffer-
ing does. For simplicity and scalability, we choose the indexed NLJ without
buffering.

4.3.2 Sort-Merge Joins. The sort-merge join works in two steps. In the first
step, it sorts both relations using a cache-oblivious sorting algorithm. It chooses
either the radix sort or the merge sort for each relation. The sorting algorithms
for the two relations may be different. In the second step, we perform a merge
join on the two sorted relations. This merge join algorithm is similar to the
traditional merge join [Ramakrishnan and Gehrke 2003]. The major difference
is that we use the cache-oblivious nonindexed nested-loop join algorithm to
evaluate the join of tuples with duplicate keys.

4.3.3 Hash Joins. We use recursive partitioning with buffer reuse to im-
plement the cache-oblivious hash join. We perform partitioning on the build
relation R as well as on the probe relation S.

The join algorithm includes the following five steps. Steps 1–3 are the build
phase of the hash join, which constructs a number of hash tables. We construct
a hash table for each result partition obtained from Step 3. Steps 4–5 are the
probe phase of the hash join, which uses the S tuples to probe the corresponding
hash table of R for matching.

Step 1. It constructs a partitioner tree, T , of height L = 1
2

log2
|R|
CS

.

Step 2. It uses T to decompose R into p partitions (p = 2L), R0, . . . , Rp−1.

Step 3. It uses T to further decompose Ri (0 ≤ i < p). The tuples having been
processed by the leaf partitioner of T are inserted into the hash table
corresponding to the result partition.

Step 4. It decomposes S into p partitions using T , S0, . . . , Sp−1.

Step 5. It uses T to further decompose Si (0 ≤ i < p). The tuples having been
processed by the leaf partitioner of T are used to probe the correspond-
ing hash table of Ri for matching.
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4.4 Cache Complexity

Having presented our cache-oblivious data structures and algorithms, we give
their cache complexity.

Propositions 2 and 3 give the cache complexity of recursive partitioning with
the partitioner tree and recursive merging with the merger tree, respectively.

PROPOSITION 2. The cache complexity of partitioning R into N partitions
with a partitioner tree is O( |R|

B logC N ).

PROOF. We consider the soonest level of the VEB recursion at which all
buffers in each subtree (either the top tree or a bottom tree) and the input
buffer of its root node can fit into the cache. These subtrees are denoted as
base trees [Brodal and Fagerberg 2002]. Suppose each base tree contains k
buffers. The total size of the buffers in this tree and the input buffer of its
root node is (2rbk log2 k) bytes. Since a subtree at the previous recursion level
contains approximately k2 buffers, and can not fit into the cache. The total size
of buffers in this tree and the input buffer of its root node is (2rbk2 log2 k2) bytes.
Therefore, 2rbk log2 k < C and 2rbk2 log2 k2 ≥ C. Taking “log2” on both sides of
these two formulas, we have 1

4
log2

C
2br ≤ log2 k < log2

C
2br .

Since the cache lines of a base tree and the input buffer of its root node
is reused over (bk log2 k) tuples, the average cost of each tuple for partition-

ing on a base tree is O(
2rbk log2 k

B /(bk log2 k)) = O(1/B). During partitioning,
the number of base trees that each tuple must go through is log2 N/ log2 k.
Given 1

4
log2

C
2br ≤ log2 k < log2

C
2br , we have log2 N/ log2 k=O(log2 N/ log2 C) =

O(logC N ). Thus, the average cost of each partitioning tuple through the entire
tree is O( 1

B logC N ). Therefore, the cache complexity of partitioning R into N
partitions with a partitioner tree is O( |R|

B logC N ).

PROPOSITION 3. The cache complexity of merging N partitions of size O(1)
with a merger tree is O( N

B logC N ).

PROOF. Since merging is a dual problem of partitioning, we can prove this
proposition in a similar way to Proposition 2. �

Propositions 4 and 5 give the cache complexity of the cache-oblivious radix
sort and the cache-oblivious merge sort, respectively.

PROPOSITION 4. The cache complexity of sorting R using the cache-oblivious
radix sort algorithm is O( |R|

B logC 2Bits).

PROOF. The number of result partitions in the radix sort is O(2Bits). Accord-
ing to Proposition 2, the cache complexity of sorting relation R with the radix
sort is O( |R|

B logC 2Bits).

PROPOSITION 5. The cache complexity of sorting R using the cache-oblivious
merge sort algorithm is O( |R|

B logC |R|).
PROOF. The merge sort starts with |R|

CS
partitions. Each partition consists of

CS tuples. According to Proposition 3, the cache complexity of sorting R with
the merge sort is O( |R|

B logC |R|).
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Propositions 6–9 give the cache complexity of the cache-oblivious nonindexed
NLJ, the cache-oblivious indexed NLJ, the cache-oblivious sort-merge join and
the cache-oblivious hash join, respectively.

PROPOSITION 6 (HE AND LUO 2006). The cache complexity of the cache-
oblivious nonindexed NLJ is O( |R|·|S|

CB ).

PROPOSITION 7 (HE AND LUO 2006). The cache complexity of the cache-
oblivious indexed NLJ with the COB+-tree is O(|R| logB |S|).

PROPOSITION 8. The cache complexity of the cache-oblivious sort-merge join
is O(COMR + COMS), where COMR = min( |R|

B logC |R|, |R|
B logC 2Bits) and

COMS = min( |S|
B logC |S|, |S|

B logC 2Bits).

PROOF. We choose using either the cache-oblivious merge sort or the cache-
oblivious radix sort to sort R and S. According to our choice, COMR and COMS
give the cache complexity of sorting R and S, respectively. The matching cost
is O(|R|+ |S|), since the merge phase involves one scan on each relation. Thus,
the cache complexity of the sort-merge join is O(COMR + COMS).

PROPOSITION 9. The cache complexity of the cache-oblivious hash join is
O( |R|+|S|

B logC |R|).
PROOF. According to Proposition 2, the cache complexity of partitioning R

is O( |R|
B logC |R|). Additionally, since the cache complexity of partitioning one

tuple with the partitioner tree on R is O( 1
B logC |R|), decomposing S causes

O( |S|
B logC |R|) cache misses.

For matching, the average number of times of loading each partition of R
is roughly |S|

|R| . The total cache cost of matching is O( |S|
|R| · |R|

B + |S|
B ) = O( |S|

B ).
Summing up the partitioning cost and the matching cost, the total cache cost
of the cache-oblivious hash join is O( |R|+|S|

B logC |R|).
Through comparing these complexity results with those in Table III, we con-

clude that all of our cache-oblivious data structures and algorithms match the
cache complexity of their cache-conscious counterparts.

4.5 Reducing the Recursion Overhead

The base case size is important for the efficiency of divide-and-conquer algo-
rithms, even though it does not affect the cache complexity. A small base case
size results in a large number of recursive calls, which can yield a significant
cache overhead as well as computation overhead. A large base case size may
cause cache thrashing. Since the cost estimator gives the cache cost of an algo-
rithm, we use it to compare the costs with and without the divide-and-conquer
operation for a given problem size. We then obtain the suitable base case size to
be the maximum size of which the problem is small enough to stop the divide-
and-conquer process. Even though the cost estimation is about the amount of
data transfer, since it is used to determine the base case size, it essentially
determines the computation overhead in the recursion as well—the larger the
base case, the smaller the computation overhead.
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We take CO NLJ and the hash join as examples. In CO NLJ, we use the cost
estimator to compute the minimum sizes of the relations that are worthwhile to
be partitioned in the NLJ. Specifically, we compare the cache costs for the NLJ
without and with partitioning: (1) the join is evaluated as a base case, and (2) we
divide the join into four smaller joins and evaluate each of these smaller joins
as a base case. Since CO NLJ uses the tuple-based simple NLJ to evaluate
the base case, the cost functions of the NLJ without and with partitioning
are given as F and F ′, respectively, in the following two formulas. Note, we
define f c to be the size of the data (in bytes) brought into the cache for a
recursive call, which includes parameters, function pointers and the return
result in a recursive call.

F (Cx , Bx) =
{

1
Bx

(||R|| + |R| · ||S||), ||S|| ≥ Cx
1
Bx

(||R|| + ||S||), otherwise

F ′(Cx , Bx) =

⎧⎪⎨
⎪⎩

1
Bx

(2||R|| + |R| · ||S|| + 4 f c), ||S|| ≥ 2Cx
1
Bx

(||R|| + ||S|| + 4 f c), ||S|| ≤ Cx
2

1
Bx

(2||R|| + ||S|| + 4 f c), otherwise

With the cost estimator, we obtain φ = Q(F ) and φ′ = Q(F ′). Given the condi-
tion of recursive partitioning in CO NLJ, ||R|| = ||S||, we obtain the minimum
base case size when φ > φ′. In our experiment, the f c value is 64. Suppose
r = s = 128 bytes. When |S| is larger than 16, we have φ > φ′. The CS value is
set to be 16 in this example. With this CS value, we eliminate more than 97%
of the recursive calls in CO NLJ with CS = 1.

The base case of the cache-oblivious hash join can be estimated in a similar
way. Specifically, we estimate the cache costs of the build phase without and
with partitioning: (1) the tuples of R are directly inserted into the hash table,
and (2) we decompose R into p partitions with a partitioner tree, where p
is around |R|1/2. Next, the tuples in these p partitions are directly inserted
into the hash table. The cost functions of the build phase without and with
partitioning are given as F and F ′, respectively. Note, we define z to be the size
of a hash bucket header (in bytes).

F (Cx , Bx) =
{

1
Bx

(|R|z + 2||R||), |R| < Cx
Bx

1
Bx

(|R|� z
Bx

�Bx + |R|(r + � r
Bx

�Bx)), otherwise

F ′(Cx , Bx) = 1

Bx
(||R|| logCx

|R| + |R|1/2 F (Cx , Bx , |R|1/2))

F includes two components, the cost of accessing the hash bucket headers, and
the cost of reading the tuples and inserting them into the hash table. F ′ also
includes two components, the partitioning cost and the total cost of inserting
the tuples from each partition into the hash table.

Given r = s = 8 bytes and z = 8 bytes, when |R| is larger than 128, we have
Q(F ) > Q(F ′). Thus, the suitable base case size is 128. With this base case size,
we eliminate seven passes of binary partitioning (log2 128 = 7) in the build or
probe phase of the hash join.
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Table IV. Machine Characteristics

Name Intel P4 AMD Ultra-Sparc Intel QuadCore

OS Linux 2.4.18 Linux 2.6.15 Solaris 8 Windows XP

Processor Intel P4 2.8GHz AMD Opteron 1.8GHz Ultra-Sparc III 900Mhz 2.4 GHz × 4

L1 DCache <8K, 64, 4> <128K, 64, 4> <64K, 32, 4> <32K, 64, 2> × 4

L2 cache <512K, 128, 8> <1M, 128, 8> <8M, 64, 8> <8M, 128, 4>

DTLB 64 1024 64 64

Memory

(GB) 2.0 15.0 8.0 2.0

5. EXPERIMENTAL RESULTS

We present our experimental results both on the overall performance of EaseDB
using microbenchmarks and on the detailed performance of its core components,
specifically the access methods, the sorting algorithms and the join algorithms.

5.1 Experimental Setup

Our experiments were conducted on four machines of different architectures,
namely P4, AMD, Ultra-Sparc, and QuadCore. The main features of these ma-
chines are listed in Table IV. The L2 caches on all four platforms are unified. The
Ultra-Sparc does not support hardware prefetching data from the main memory
[Sun Corp. 1997], whereas the other three do. AMD performs prefetching for as-
cending sequential accesses only [AMD Corp. 2005] whereas P4 and QuadCore
support prefetching for both ascending and descending accesses [Intel Corp.
2004].

In modern CPUs, a TLB is used as a cache for physical page addresses,
holding the translation for the most recently used pages. We treat a TLB as
a special CPU cache, using the memory page size as its cache line size, and
calculating its capacity as the number of entries multiplied by the page size.

Since the L2 cache in QuadCore is shared by concurrent threads, we can
evaluate the performance impact of cache coherence on our algorithms. All ex-
periments were conducted in a single-threaded environment, whereas the ones
that are described in Section 5.8 ran multiple threads to evaluate the perfor-
mance on CMP/SMT processors.

All algorithms were implemented in C++. The compiler was g++ 3.2.2-5 with
optimization flags (O3 and finline-functions) on Linux/Solaris, and was MSVC8
on WinXP. In our experiments, the memory pool was set to be 1.5G bytes on all
platforms. The data in all experiments were always memory-resident and the
memory usage never exceeded 90%.

We first used microbenchmarks to evaluate the overall performance of
EaseDB. We chose the microbenchmarks, DBmbench [Shao et al. 2005], pro-
posed by Shao et al. over the TPC benchmarks [TPC 2004], since DBmbench
mimics the cache behavior of TPC benchmarks (TPC-H and TPC-C) well on
modern architectures and it allows us to study the performance in more detail.

DBmbench consists of three queries, including a scan-dominated query
(μSS), a join-dominated query (μNJ) and an index-dominated query (μIDX).
Tables V and VI show the table schema and the queries in DBmbench, re-
spectively. Following previous studies [Ailamaki et al. 1999; Shao et al. 2005;
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Table V. Table Schema of DBmbench

Table T1 Table T2

CREATE TABLE T1 ( CREATE TABLE T2 (

a1 INTEGER NOT NULL, a1 INTEGER NOT NULL PRIMARY KEY,

a2 INTEGER NOT NULL, a2 INTEGER NOT NULL,

a3 INTEGER NOT NULL, a3 INTEGER NOT NULL,

<padding>, <padding>,

FOREIGN KEY (a1) references T2 ); );

Table VI. Queries of DBmbench

μSS μNJ μIDX

SELECT distinct (a3) SELECT avg (T1.a3) SELECT avg (a3)

FROM T1 FROM T1, T2 FROM T1

WHERE Lo < a2 < Hi WHERE T1.a1=T2.a1 AND Lo < T1.a2 < Hi WHERE Lo < a2 < Hi

ORDER BY a3

Harizopoulos and Ailamaki 2006], we set the length of “padding” to make a
record 100 bytes long. The values of a1, a2, and a3 are uniformly distributed
between 1 and 150,000, between 1 to 20,000 and between 1 to 50, respectively.
The parameters in the predicate, Lo and Hi, are used to obtain different selec-
tivities. In our study, we set the selectivity of μSS to be 10%, the join selectivity
of μNJ to be 20% and the selectivity of μIDX to be 0.1%. These settings for
DBmbench represent the characteristics of TPC benchmarks best [Shao et al.
2005].

In addition to this benchmark, we used other homegrown data sets and work-
loads for more detailed studies. Our homegrown workload contains two selec-
tion queries and two join queries on relations R and S. Both tables contain n
fields, a1, . . . , an, where ai is a randomly generated 4-byte integer. We varied n
to scale up or down the tuple size. The tree index was built on the field a1 of R
and S. The hash index was built on the field a1 of R.

The selection queries in our own workloads are in the following form:

Select R.a1

From R
Where <predicate>;

One of the two selection queries is with a non-equality predicate (x−δ < R.a1 <

x + δ) and the other an equality predicate (R.a1 = x). Note that x is a randomly
generated 4-byte integer. We used the B+-tree index to evaluate the nonequal-
ity predicate and the hash index to evaluate the equality predicate. Since we
focused on the search performance of the tree index, we set δ to a small constant,
such as ten, in the nonequality predicate.

The join queries in our own workloads are:

Select R.a1

From R, S
Where <predicate>;

One of the two join queries is an equi-join and the other a nonequijoin. The
equijoin takes R.a1 = S.a1 as the predicate and the non-equijoin R.a1 < S.a1
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Table VII. Performance Metrics

Metrics Description

TOT CYC Total execution time in seconds (sec)

L1 DCM Number of L1 data cache misses in billions (109)

L2 DCM Number of L2 data cache misses in millions (106)

TLB DM Number of TLB misses in millions (106)

and . . . and R.an < S.an. All fields of each table are involved in the non-equijoin
predicate so that an entire tuple is brought into the cache for the evaluation
of the predicate. We used the non-indexed NLJ to evaluate the non-equijoin
and used the indexed NLJ, the sort-merge join, or the hash join to evaluate
the equi-join. The measured results for non-indexed NLJs were obtained when
|R| = |S| = 256K and r = s = 128 bytes. The measured results for indexed
NLJs, sort-merge joins and hash joins were obtained when |R| = |S| = 32M and
r = s = 8 bytes. These settings were chosen to be comparable to the previous
studies on cache-conscious join algorithms [Boncz et al. 1999; Shatdal et al.
1994].

Table VII lists the main performance metrics used in our experiments. We
used the C/C++ function clock() to obtain the total execution time. In addition,
we used hardware profiling tools, PCL [Berrendorf et al. 2002] and Intel VTune
[Intel Corp. 2007], to count cache misses on P4 and on QuadCore, respectively.

For the cache-conscious algorithms in our study, we varied their parameter
values to examine the performance variance. Given a cache parameter, y , of a
target level in the memory hierarchy (either C or B) of an experiment platform,
we varied the parameter value x in a cache-conscious algorithm within a range
so that the three cases x < y , x = y and x > y were all observed. Given a
multi-level memory hierarchy, we considered all cache levels and varied the
cache parameter value in a cache-conscious algorithm for every level of the
cache.

5.2 Microbenchmarks

We first compared EaseDB with a prototype cache-conscious engine that we
developed using DBmbench [Shao et al. 2005]. We stored the relations in the
benchmark in the row-based or the column-based manner. The DBmbench data
set was 512M bytes. We built a B+-tree on the attribute a2 of table T1. We
manually tuned the parameter values for the cache-conscious algorithms for
the best performance. Both cache-oblivious and cache-conscious cost estimators
give the same query plan for each of the three queries. They choose the table
scan and next the radix sort to evaluate μSS, the hash join to evaluate μNJ,
and the index scan to evaluate μIDX.

We issued each kind of query as a group from DBmbench continuously to both
EaseDB and the cache-conscious engine and measured the average execution
time per query for μSS and μNJ, and per thousand queries for μIDX. Figure 6
shows the measured average time on P4 when the relations are stored in the
row-based or the column-based manner. The number of queries of each kind
executed was 20K . We do not show the results on other three platforms, because
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Fig. 6. The average execution time of each query group in DBmbench on P4. We compute the

execution time per query for μSS and μNJ, and per thousand queries for μIDX.

the performance comparison between EaseDB and the cache-conscious engine
is similar to that on P4. Regardless of the storage models, EaseDB has a good
performance that is similar to the fine-tuned cache-conscious engine. It is less
than 5% slower than the cache-conscious engine for μSS and μNJ, and around
10% slower for μIDX. Thus, we present the results for the row-based storage
model only in the remainder of the study.

5.3 Model Evaluation

We evaluated our cache-oblivious cost model with two basic access patterns in-
cluding the linear scan and the random traversal, and our join algorithms on
our homegrown workloads. A linear scan sequentially accesses all the tuples
in a relation. A random traversal accesses the tuples at random locations in
a relation. We first compared our estimation with the estimation of a cache-
conscious cost model [Manegold et al. 2002]. The cache-conscious cost model
used the cache parameter values of the L2 cache on the three architectures. We
only report the results on P4, because the results on the other three architec-
tures are similar. Next, we verified the effectiveness of our estimation on the
suitable base case size.

Figure 7 shows the volume of data transfer based on our measurement and
the estimation using cache-conscious and cache-oblivious cost models on P4. We
limit the range of the cache capacity and the cache block size with the knowledge
of the configurations on the modern machine; that is, the cache block size is in
the range between 32B and 256B, and the cache capacity is between 8KB and
16MB. We denote the extension to our cost model with the range knowledge as
“CC(Range)”. We compute the volume of data transferred in our measurement
to be the measured number of L2 cache misses multiplied by the L2 cache block
size. We fixed the tuple size to be 8 bytes and varied the number of tuples in
both relations. Regardless of the data size and the algorithm, both CO and
CC(Range) correctly predict the order of relative performance of the four join
algorithms. For example, both models predict that the hash join is the most
cache efficient and the nonindexed nested-loop join is the least cache efficient
among the four join algorithms. Moreover, CC(Range) correlates well with the
estimation by the cache-conscious cost model.

In our estimation, cache misses in the linear scan are all compulsory misses,
whereas those in other algorithms include compulsory and capacity misses. The
three models achieve the same accuracy for the linear scan. In comparison, for
the other algorithms, our estimation is off the measurement by various degrees.
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Fig. 7. Evaluation of cache-conscious and cache-oblivious cost models on P4.

In particular, for those algorithms where capacity misses dominate compulsory
misses, such as random traversal and non-indexed nested-loop joins, our esti-
mation results in a low accuracy. On the other hand, for those algorithms where
compulsory misses dominate capacity misses, such as hash joins and sort merge
joins, our estimation is close to the measurement. Additionally, CC(Range) is
more accurate than our CO estimation, because the range knowledge excludes
from consideration the cache capacities that are unrealistically small.

Figure 8 shows the time breakdown of two representative cache-oblivious
join algorithms, non-indexed NLJs and the build phase of hash joins, with the
base case size varied on P4. The results for the sort-merge join algorithm are not
shown in this figure, since they were similar to those of the hash join. The busy
time is obtained by subtracting the three types of cache stalls from the total
elapsed time. The base case for the nonindexed NLJ is a join on two equal-sized
partitions. The size of each partition is compared with the capacities of the L1
and L2 caches, and the TLB. The base case for the build phase of the hash join
is to construct a small hash table. Since each hash bucket is likely to be one
cache line, the size of the hash table is compared with the number of cache lines
in the L1 and L2 data caches, and the number of entries in the TLB.
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Fig. 8. Performance of join algorithms with the base case size varied on P4: (left) the non-indexed

nested-loop join, (right) the build phase of the hash join.

Fig. 9. Performance comparison between COB+-trees and CSS-trees.

Our estimated base case size greatly reduces the recursion overhead. With
the estimated base case size, the cache stalls of both algorithms are greatly
reduced, by over 80% and 60% compared with those when the base case is one.
The busy time is also greatly reduced. These results verify the effectiveness
of our cost estimator. One may conjecture from Figure 8(a) that the L1 cache
capacity is a better guess than our cost estimator for the base case size on P4;
unfortunately, this particular phenomenon does not hold for different platforms,
different algorithms, or different data sizes [Bender et al. 2006; Brodal et al.
2004; He and Luo 2006].

5.4 Access Methods

We evaluated our access methods including the B+-Tree and the hash index
using a number of selection queries.

5.4.1 B+-Trees. We compared the search performance of COB+-trees and
CSS-trees [Rao and Ross 1999]. On each platform, we varied the fanout of the
CSS-tree from 9 to 65. The node size was varied from 32 to 256 bytes. Figure 9
shows the performance comparison with the number of tuples in the relation
varied. The number of selection queries executed was 200K .
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Fig. 10. Performance of hash indexes. The hash index with Bk = 1 is our cache-oblivious hash

index in EaseDB.

On all platforms, COB+-trees have a similar performance to CSS-trees. The
performance difference between them becomes smaller as the relation size in-
creases. When |R| = 64M , the COB+-tree is around 20% slower than the best
CSS-tree on P4 and AMD, and it is less than 1% slower than the best CSS-tree
on Ultra-Sparc. The results on Ultra-Sparc are similar to those in the previous
study on a P3 machine [Brodal et al. 2002].

5.4.2 Hash Indexes. We evaluated the hash index with the average number
of tuples in each bucket, Bk, varied. The number of selection queries executed
was 200K . Figure 10 shows the performance of hash indexes when Bk is varied
from one to 512. Since each tuple takes 8 bytes (four bytes for the value and
four bytes for the record identifier), the bucket size is around (8 × Bk) bytes.
That is, the bucket size is varied from 8 to 4K bytes. The cache-oblivious hash
index is the one with Bk = 1, whereas the cache-conscious one chooses the Bk
value according to the cache block size.

On all platforms, the performance degrades dramatically as the Bk value
increases. Due to its hardware prefetching capability, P4 has a smaller perfor-
mance degradation than Ultra-Sparc. The cache-oblivious hash index is faster
than the cache-conscious one, because its bucket size is smaller and the com-
putation time on each bucket is likely to be smaller.

5.5 Sorting Algorithms

We compared the overall performance of the radix sort and the merge sort. We
fixed the number of tuples to be 32M and the tuple size to be 8 bytes. The
minimum value of the sorting key was one and the maximum value was max.
The number of bits used in the radix sort is Bits = log2 max. According to our
estimation, if max ≥ 218, the merge sort outperforms the radix sort.

Figure 11 shows the performance comparison between the cache-oblivious
radix sort and the merge sort with max varied. We observed the same perfor-
mance trend on all three platforms. When max is small, the radix sort outper-
forms the merge sort. As max becomes larger, the performance of the radix sort
becomes close to that of the merge sort. The merge sort outperforms the radix
sort when max is larger than 218 on Ultra-Sparc and 219 on P4 and AMD. There-
fore, our estimation correctly predicts the performance comparison between the
radix sort and the merge sort.
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Fig. 11. The cache-oblivious radix sort and cache-oblivious merge sort. We varied the maximum

value of the sorting key, max.

5.6 Join Algorithms

We evaluated the performance of our cache-oblivious join algorithms in com-
parison with the best performance of their cache-conscious counterparts.
Figure 12 shows the performance measurements of join algorithms on P4, AMD
and Ultra-Sparc.

Figures 12(a–c) show the performance of nonindexed NLJs. The cache-
conscious algorithm is the blocked NLJ [Shatdal et al. 1994], whose parameter
is the block size of the inner relation. We varied the block size of the blocked
NLJ from 4K to 16M bytes.

Figures 12(d–f) show the performance of indexed NLJs with COB+-trees and
CSS-trees. We varied the node size of the CSS-tree from 32 to 256 bytes.

Figures 12(g–i) show the performance of sort-merge joins. The number of
bits in the radix sort, Bits, is 32, which is larger than our estimated threshold
value, 17. Therefore, we chose the merge sort to sort both relations. The cache-
conscious merge sort [Ramakrishnan and Gehrke 2003; LaMarca and Ladner
1997] works in two phases. First, given the partition granularity, gr bytes, it
divides the relation into multiple partitions. Each partition is around gr bytes.
It sorts each partition using the quick sort. Second, given the merge fanout F ,
it recursively merges F partitions. These figures show the best performance
obtained in our tuning on the merge fanout for a given partition granularity.

Figures 12(j–l) show the performance of hash joins. The cache-conscious hash
join is the radix join [Boncz et al. 1999]. In the radix join, we need to tune
the partition fanout and the partition granularity. Given a certain partition
granularity, gr bytes, we varied the partition fanout and measured the execution
time. Again, these figures show the best performance obtained in our tuning
for a given partition granularity.

We analyze the results of Figure 12 on three aspects. First, we study the per-
formance variance of each cache-conscious algorithm. On a given platform, the
performance variance of cache-conscious join algorithms (except the indexed
NLJ) with different parameter values is large. Furthermore, the performance
variance of a cache-conscious algorithm differs across platforms. For exam-
ple, the performance variance of cache-conscious non-indexed NLJs, sort-merge
joins and hash joins on Ultra-Sparc is smaller than on the other two platforms.

Second, we study the best parameter values for the cache-conscious algo-
rithms. Table VIII shows the best parameter values for the four cache-conscious
join algorithms on our platforms. On a given platform, the best parameter value
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Fig. 12. Performance study for join algorithms. From top down: the non-indexed NLJ, the indexed

NLJ, the sort-merge join and the hash join.

for a cache-conscious join algorithm may be none of the cache parameters, for
example, the sizes of the L1 and L2 data caches, or the number of entries in
the TLB. Moreover, for a given cache-conscious algorithm, the best parameter
values differ across platforms. These results show it is difficult to determine
the best parameter values on different platforms even with the knowledge of
the cache parameters.

Third, we compare the overall performance of cache-conscious and cache-
oblivious algorithms on three platforms. Regardless of the architectural dif-
ferences among the three platforms, our join algorithms provide a robust and
good performance. Specifically, the performance of our join algorithms is close
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Table VIII. The Best Parameter Values for the Four Cache-Conscious Join Algorithms

Platform P4 AMD Ultra-Sparc

Non-indexed NLJ L1 Cap < x < L2 Cap x < L1 Cap x = L1 Cap

Indexed NLJ x > L2 B x = L2 B x > L2 B
Sort-merge join x < L1 Cap x < L1 Cap x = L1 Cap

Hash join L1 Cap < x < L2 Cap x < L1 Cap L1 Cap < x < L2 Cap

We denote the parameter of the cache-conscious algorithm as x. On each platform, L1 B and L2 B
denote the block sizes of the L1 and L2 data caches, respectively; L1 Cap and L2 Cap denote the cache

capacities of the L1 and L2 data caches, respectively.

Fig. 13. Time breakdown of cache-oblivious algorithms and the best cache-conscious algorithms

on P4.

to, if not better than, the best performance of cache-conscious join algorithms
on P4, and is mostly better than the best performance of cache-conscious join
algorithms on both AMD and Ultra-Sparc.

We further examine the time breakdown of our cache-oblivious algorithms
and the best cache-conscious algorithms in Figure 13. The total cache stalls of
the cache-conscious join algorithms are significant, because these algorithms
typically optimize only for the cache of a chosen level and cache thrashing may
occur at the levels other than the chosen one. In contrast, the cache stalls of
our cache-oblivious algorithms are less significant due to their automatic opti-
mization for the entire memory hierarchy. The busy time is significant among
all cache-oblivious join algorithms.

Finally, we study the effect of data skews and join selectivities on the
TOT CYC ratio of cache-oblivious joins over fine-tuned cache-conscious joins
with the suitable parameter values on the three platforms. We omit the
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Fig. 14. The TOT CYC ratio of cache-oblivious hash joins over cache-conscious hash joins.

results on sort-merge joins and NLJs from the figures, because the trend of
the TOT CYC ratio of the sort-merge join is similar to that of the hash join,
and the nested-loop join with and without indexes have a stable TOT CYC ra-
tio regardless of skewness and join selectivities. Figure 14(a) shows the ratio
for the hash join when the number of duplicate tuples per key is varied. The
larger this number is, the more skewed the relation becomes. As both relations
become skewed, the matching cost becomes more significant, which is the same
between cache-oblivious and cache-conscious hash joins. Hence, the ratio be-
comes closer to one. The performance ratio is consistently close to one on P4,
and smaller than one on AMD and Ultra-Sparc. Figure 14(b) shows the ratio
for the hash join when the percentage of probe tuples having matches is varied.
The smaller this percentage is, the higher the join selectivity is. Regardless of
the join selectivities, the performance ratio is stable on all platforms.

5.7 Comparison with MonetDB

To check whether our cache-centric implementation has a comparable perfor-
mance with state-of-the-art main memory databases, we performed a compar-
ison between our engines and MonetDB 5.0 [MonetDB 2006]. The comparison
was done on the core query processing algorithms, excluding the other compo-
nents such as query parsing, plan generation, and optimization. We used our
homegrown datasets for better control on the data size, the data distribution
and the query workload. To measure the query processing performance on Mon-
etDB, we first stored the data sets into text files, and imported these files into
MonetDB using the copy command. Next, we issued SQL queries to MonetDB
through JDBC.

Figure 15 compares the performance of the sort and the hash join in our
cache-oblivious and cache-conscious engines with those in MonetDB on the
QuadCore machine. The results were obtained from running the system on a
single core of the QuadCore processor. We also performed the experiments on
P4 and obtained similar results. We varied |R| from 4M to 16M for the sort, and
we kept |R| = |S| and varied both |R| and |S| from 4M to 16M for the hash join.
As the data size increases, our sorting algorithm has a similar performance as
that in MonetDB, and our join algorithm outperforms that in MonetDB. This
figure indicates that the efficiency of our implementation for the cache-efficient
algorithms is comparable to MonetDB.
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Fig. 15. Performance comparison between our engines and MonetDB on QuadCore.

Fig. 16. Average execution time of the four join implementations on QuadCore.

5.8 Evaluation on CMP/SMT Processors

We studied the performance impact of cache interference when multiple concur-
rent threads run on CMP/SMT processors. The cache behavior of an algorithm
on a CMP/SMT processor may be different from that in a single-threaded exe-
cution environment. A thread may reuse the data that have been brought into
the cache by other threads, or its own working set may be evicted from the cache
due to other threads loading other cache lines.

Figures 16 and 17 show the average execution time and the cache miss rate of
join algorithms when we varied the number of concurrent threads. The average
execution time is the total execution time divided by the number of threads. The
cache miss rate is defined to be the ratio of the number of L2 data cache misses
and the number of retired instructions [Intel Corp. 2007]. For the non-indexed
NLJ, |R| = |S| = 32K and r = s = 128B; for other three joins, |R| = |S| = 4M
and r = s = 8B. Each thread ran either a cache-oblivious algorithm without
any tuning, or a cache-conscious algorithm with tuning. The measurements of
the cache-conscious algorithm include those with the suitable cache parameter
values in the single-threaded execution, denoted as “CC”. Additionally, for the
join algorithms that are aware of the cache capacity including the non-indexed
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Fig. 17. L2 data cache miss rate of the four join implementations on QuadCore (obtained using

Intel VTune).

NLJs, the sort-merge join and the hash join, we consider the tuning with re-
spect to the number of cores in the CMP processor. Suppose the suitable cache
parameter values in the single-threaded execution is x0, and the number of
cores in the CMP processor is #core, we obtained the measurements with the
parameter value of x0

#core . These measurements are denoted as “CC(#core).” This
setting reduces the cache interference among threads. However, it does not fully
utilize the cache when the number of threads is smaller than the number of
cores. As a result, the CC(#core) algorithm does not necessarily improve the
overall performance.

When the number of threads is smaller than the number of cores, the av-
erage execution time of both algorithms decreases due to the parallelism in
the execution. When the number of threads is larger than the number of cores,
the average execution time becomes stable. This indicates the processor is fully
utilized. Additionally, when the number of threads is one, the CC(#core) algo-
rithm is slower than the CC algorithm. When the number of threads is equal
to the number of cores on the CMP, the CC(#core) algorithm is faster than the
CC algorithm. Since the runtime dynamics on the CMP is difficult to predict,
the tuning of the CC(#core) algorithm does not necessarily improve the overall
performance.

Comparing cache-conscious and cache-oblivious algorithms on the four joins,
we find that they achieve a similar average execution time on the indexed NLJ
regardless of the number of threads, whereas the cache-oblivious algorithm is
better than the cache-conscious algorithm on other three joins as the number
of threads increases. When the number of threads is four, cache-oblivious al-
gorithms are 28%, 10%, and 8% faster than their fine-tuned cache-conscious
counterparts for the nonindexed NLJ, the sort-merge join and the hash join,
respectively.
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We analyze the cache performance of the cache-conscious and the cache-
oblivious algorithms, as shown in Figure 17. The cache miss rate of both cache-
conscious and cache-oblivious algorithms increases, as the number of threads
increases. This increase suggests the presence of cache interference. For all
joins except the indexed NLJ, the increase in the cache miss rate of the cache-
oblivious algorithm is smaller than that of the CC algorithm, and is similar
to that of CC(Range) algorithm. When the number of threads increases from
one to four, the increases in the cache miss rate of the cache-oblivious non-
indexed NLJ, sort-merge join and hash join are 8%, 13% and 15%, respectively;
the increases for the CC non-indexed NLJ, sort-merge join and hash join are
11%, 21% and 26%, respectively; the increases for the CC(#core) non-indexed
NLJ, sort-merge join and hash join are 6%, 7% and 10%, respectively. This
shows that the cache-oblivious algorithm has a more robust cache performance
than the cache-conscious algorithm, or has a similar robustness on the cache
performance to the cache-conscious algorithm with further tuning with respect
to the number of cores in the CMP processor. Since the cache performance of our
cache-oblivious algorithm matches that of its cache-conscious counterpart in
the single-threaded execution environment, our cache-oblivious algorithm may
outperform its cache-conscious counterpart when cache interference occurs, as
shown in Figure 16.

5.9 Summary

In summary, EaseDB, without any platform-specific tuning, is less than 30%
slower than its fine-tuned and platform-specific cache-conscious counterpart
on all of our platforms. This comparable performance applies to both the row-
based and the column-based storage models. The performance of each of the four
cache-oblivious join algorithms in EaseDB is close to the best performance of its
cache-conscious counterpart on P4 and AMD, and is better than the best per-
formance of its cache-conscious counterpart on Ultra-Sparc, regardless of data
skews and join selectivities. Additionally, our join algorithms have a more ro-
bust cache performance than the cache-conscious join algorithms on CMP/SMT
processors. As a result, they are up to 28% faster than their fine-tuned cache-
conscious counterparts on the quad-core machine.

6. DISCUSSION

Through the design, implementation and evaluation of EaseDB, we have iden-
tified a number of limitations and opportunities for cache-oblivious query pro-
cessing in comparison with cache-conscious query processing.

6.1 Limitations

We identify four limitations of cache-oblivious algorithms. All of these limita-
tions are rooted at the philosophy of the cache-oblivious approach—the opti-
mal performance must be achieved without any platform-specific tuning. In
the following, we discuss these limitations and our experience in addressing
them.
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First, without the knowledge of any cache parameters, cache-oblivious tech-
niques usually employ sophisticated data structures and mechanisms, for
example, the VEB layout and our buffer hierarchy, in order to achieve the same
cache complexity as their cache-conscious counterparts. From a systems’ point
of view, we make great effort to reuse these efficient data structures and mecha-
nisms as building blocks to develop a cache-oblivious query processing system.
For example, we use the partitioner tree as a common data structure for the
radix sort and the hash join.

Second, as the base case size in the recursion is usually small, the recur-
sion process may go unnecessarily deep. Consequently, the recursion overhead,
especially the computational overhead, becomes significant. For instance, the
cache-oblivious non-indexed nested loop join had three times less CPU busy
time when the base case increased from one to two tuples in our experiments.
Moreover, the dominance of computational cost in the overall time remained for
all base cases smaller than 64 tuples. On the other hand, a large base case may
result in cache thrashing. Thus, it is necessary to determine a suitable base
case size to eliminate the unnecessary recursions and to avoid cache thrash-
ing. Furthermore, this reduction of the recursion overhead must be achieved
in a cache-oblivious way, as opposed to any platform-dependent approach, self-
learning or not. In our work, we have developed a simple cost model to estimate
the expected cache cost of an algorithm on an arbitrary memory hierarchy and
subsequently to determine a suitable base case size for the algorithm.

Third, the cache-oblivious cost estimation may not be as accurate as the
cache-conscious cost estimation, as we have shown in the experiments. Again,
the reason is that, instead of estimating the cache cost for a specific memory
hierarchy, our model gives an expected value of cache costs on an arbitrary
memory hierarchy. Furthermore, this cache-oblivious estimation is difficult to
devise an error bound, if feasible at all. Fortunately, our experiments demon-
strated that the expected value estimated by our model followed the trend of the
cache-conscious estimation well. Additionally, the base case size obtained from
our estimation greatly reduces the recursion overhead in our cache-oblivious
algorithm. Nevertheless, the cache-conscious approach is still a valid choice
for the cost estimation. Extending our cache-oblivious cost estimation with the
range of the cache parameter values is a good tradeoff between the accuracy
and the automaticity of the cost model.

Fourth, cache-oblivious algorithms may underutilize the hardware capa-
bility of the caches. Without the knowledge of the cache block size and the
cache capacity, it is difficult to derive the accurate state of the cache. With-
out the knowledge of the cache state, cache-oblivious algorithms can not ex-
plicitly take advantage of other cache characteristics, such as the prefetching
capability and the number of concurrent threads sharing the cache. Fortu-
nately, most of the cache-oblivious algorithms pack the data into a consecu-
tive memory area, such as the VEB layout in the COB+-tree, so that they can
exploit the hardware prefetching capability of the cache (if available) automat-
ically. Furthermore, since cache-oblivious algorithms have a robust cache per-
formance, they are likely to achieve a high and robust throughput on CMP/SMT
processors.
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6.2 Opportunities

The major opportunity of a cache-oblivious database also comes from its inde-
pendence from any platform-specific tuning. As a result, it can run efficiently
on a diversity of machines without parameter setting or tuning. Furthermore,
it automatically achieves a good cache performance on all levels of the mem-
ory hierarchy. This automaticity is especially desirable when the significant
level of caches in the memory hierarchy changes, for example, from the disk
to the L2 data cache [Ailamaki et al. 1999]. A recent study [Hardavellas et al.
2007] shows that the L1 data cache will become an important factor in the
total execution time of query processing on CMP/SMT machines. This finding
implies that cache-conscious algorithms require new tuning or complete re-
design to adapt to such changes. In contrast, cache-oblivious algorithms will
thrive through hardware changes. This feature reduces the ownership cost of
a cache-oblivious database system.

With high automaticity, cache-oblivious algorithms have great potential in
parallel computing [Chowdhury and Ramachandran 2007]. They naturally
fit into the parallel computing paradigm due to their divide-and-conquer de-
sign. Subproblems in the divide-and-conquer methodology can be run inde-
pendently on different cores on a CMP/SMT machine or on different nodes in
a share-nothing system. Moreover, the automaticity of cache-oblivious algo-
rithms greatly reduces the amount of tuning in parallel computing, which is
more complicated than in single-node systems.

In addition to automaticity, the performance of a cache-oblivious algorithm is
more robust than its cache-conscious counterpart when the cache state is highly
dynamic, such as in CMP/SMT machines. The robust cache performance of the
cache-oblivious algorithm is due to its small reuse distance. The reuse distance
is defined to be the number of distinct cache accesses between two consecutive
accesses to a certain cache line [Ding and Zhong 2003]. A cache-conscious al-
gorithm typically sets the parameter value close to the cache parameter value
of the target level of caches in a specific memory hierarchy. For example, the
block size of the inner relation in the blocked NLJ [Shatdal et al. 1994] is set to
around the cache capacity of the significant level of cache. The reuse distance
of the cache hits in the blocked NLJ is close to the number of cache lines in the
cache. In contrast, the cache-oblivious algorithm follows the divide-and-conquer
process. As the recursion gets deeper, the cache accesses become localized. The
base case is sufficiently small so that the reuse distance is small. Thus, our
cache-oblivious algorithm is likely to have a more robust cache performance
than its cache-conscious counterpart on CMP/SMT processors.

In summary, both cache-oblivious and cache-conscious algorithms share the
common wisdom of optimizing the cache performance in a multi-level memory
hierarchy, such as exploiting the sequential access nature and improving the lo-
cality of cache accesses. They differ in optimization strategies. Cache-conscious
algorithms utilize the knowledge of the cache parameter and explicitly pack
data into the cache or into a cache block of a specific level. In contrast, cache-
oblivious algorithms utilize more sophisticated techniques to improve the lo-
cality. The difference in the optimization strategy results in different strengths
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and weaknesses for both kinds of algorithms. We consider the cache-oblivious
approach as an alternative way of improving the cache performance for in-
memory query processing. As memory systems and processors become more
complicated, there will be times that cache-oblivious query processing is more
desirable than its cache-conscious counterpart.

7. CONCLUSION

As the memory hierarchy becomes an important factor for the performance
of database applications, we propose to apply cache-oblivious techniques to
automatically improve the memory performance of relational query processing.
While database researchers have demonstrated the effectiveness of the cache-
conscious approach on CPU caches, we provide a practical alternative that
achieves a high automaticity as well as a comparable performance to the cache-
conscious approach.

In this article, we present our design, implementation, and evaluation of our
cache-oblivious in-memory query processor, EaseDB. To the best of our knowl-
edge, EaseDB is the first relational query processor to employ cache-oblivious
techniques for improving data cache performance. Our results show that our
cache-oblivious algorithms provide a good performance on various platforms,
which is similar to or even better than their fine-tuned cache-conscious coun-
terparts. Moreover, this good performance is achieved without any tuning on
the platforms in our experiments.

We expect the ideas behind EaseDB to become even more relevant and ap-
plicable to the upcoming generation of machines whose memory hierarchies
become deeper and more diversified [Hennessy and Patterson 2002]. We also
conjecture that the advantage of the automaticity of the cache-oblivious algo-
rithms will be greater in the future when multicore and multithreading chips
support more concurrent threads [Hardavellas et al. 2007].

The EaseDB software packages are available on our project site, http://www.
cse.ust.hk/cactus/.
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