
EaseDB: A Cache-Oblivious In-Memory Query Processor

Bingsheng He† Yinan Li‡
†Hong Kong Univ. of Science and Technology

{saven,luo}@cse.ust.hk

Qiong Luo† Dongqing Yang‡
‡Peking University

{liyinan,dqyang}@pku.edu.cn

ABSTRACT
We propose to demonstrate EaseDB, the first cache-oblivious query
processor for in-memory relational query processing. The cache-
oblivious notion from the theory community refers to the prop-
erty that no parameters in an algorithm or a data structure need
to be tuned for a specific memory hierarchy for optimality. As a
result, EaseDB automatically optimizes the cache performance as
well as the overall performance of query processing on any mem-
ory hierarchy. We have developed a visualization interface to show
the detailed performance of EaseDB in comparison with its cache-
conscious counterpart, with both the parameter values in the cache-
conscious algorithms and the hardware platforms varied.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Processing, Re-
lational Databases

General Terms
Algorithms, Measurement, Performance

Keywords
Cache-oblivious, In-memory query processing

1. INTRODUCTION
As the gap between the processor speed and the memory speed

increases, the memory performance has become an important factor
for the overall performance of relational query processing. How-
ever, it is a challenging task to optimize the memory performance
for relational query processing, due to the diversity, complexity and
runtime dynamics of database systems as well as memory hierar-
chies. Thus, it is imperative to investigate self-optimizing query
processing techniques for the memory hierarchy.

EaseDB [5] is a new cache-oblivious in-memory relational query
processor that can automatically optimize the query processing per-
formance on any multi-level memory hierarchy. In EaseDB, data
structures and algorithms for query processing are cache-oblivious,
since they do not depend on any cache parameters of a specific
memory hierarchy, e.g., the cache capacity and block size. They
automatically achieve a high performance comparable to the fine-
tuned cache-conscious algorithms on various platforms. In con-
trast, cache-conscious algorithms (see Ailamaki’s survey [1]) ex-

Copyright is held by the author/owner(s).
SIGMOD’07, June 12–14, 2007, Beijing, China.
ACM 978-1-59593-686-8/07/0006.

plicitly take cache parameters as input and have a high performance
with suitable parameter values.

EaseDB automatically optimizes the performance of relational
query processing on all levels of a memory hierarchy. This auto-
maticity is especially desirable for the levels above the main mem-
ory, because caches at these levels, e.g., L1 and L2 caches, are
managed by the hardware. As a result, the accurate state informa-
tion of these caches are difficult to obtain due to the system runtime
dynamics and the hardware complexity. Thus, we consider cache-
oblivious algorithms that can automatically improve the in-memory
performance of query processing.

The system demonstration exposes the cache behavior of cache-
oblivious query processing on a multi-level memory hierarchy in
comparison with cache-conscious query processing, and also pro-
vides an intuitive way of visualizing the cache performance as well
as the overall performance of the query processor. Through our vi-
sualization tool, we can examine the cache performance together
with the status of the query execution at runtime.

We organize our demo into two parts:

• Visualizing the cache behavior of a cache-conscious algo-
rithm with different parameter values.This part is to simu-
late the performance tuning process for cache-conscious al-
gorithms. Initially, the parameter value is set to be a small
one. Subsequently, it doubles the one used in the previous
execution. The execution stops when the parameter value is
larger than the L2 cache capacity. Through comparing these
executions, we determine the suitable parameter value for the
cache-conscious algorithm.

• Visualizing the cache behavior of the cache-oblivious algo-
rithm in comparison with its cache-conscious counterpart.
The cache-conscious algorithm under comparison uses the
suitable parameter value obtained in the first part.

Through the demonstration, we show that (1) cache-conscious
algorithms typically optimize only the target level of the memory
hierarchy, and (2) cache-oblivious algorithms in EaseDB have a
comparable cache performance as well as overall performance to
their fine-tuned cache-conscious counterparts.

2. SYSTEM OVERVIEW
We first give a brief overview of EaseDB in this demonstration.

Next, we describe our visualization tool for the cache performance.

2.1 EaseDB
Figure 1 shows the system architecture of EaseDB. There are

three major components, namely the SQL parser, the query opti-
mizer, and the plan executor. The query optimizer in turn consists

1064

 cache
configuration

run query with
 CC or CO
 algorithms

number of
panels on
 the right

view the history
 of the thread
 execution

the data region accessed during the last period accumulated percentages of the total execution time

 accumulated
execution time

total times of
 executions

cache misses
 every period

percentage of
cache stalls in
the last period

Figure 2: The main execution window

EaseDB

SQL

Results

Plan executor

Parser

CO

cost estimator

Plan

generator

Query plan

Parsed query
Operators

CO

B+-tree

Table

scan

CO

Hash index

Table scan

Index scan

Sort

Hashing

Hash-grouping

Nested -loop

Sort -merge

Hash -joinMerge sort

Join

Sort Aggr .

Sel . Proj .

Access

methods

Execution engine

Memory

manager
RelationStorage

Radix sort

Figure 1: The system architecture of EaseDB

of a query plan generator and a cache-oblivious cost estimator. The
execution engine is divided into three layers, including the storage,
the access methods and the query operators [7]. All these compo-
nents and algorithms are designed to be cache-oblivious.

We use two main methodologies, divide-and-conquer and amor-
tization, to develop a cache-oblivious algorithm in EaseDB. For ex-
ample, the cache-oblivious non-indexed nested-loop join (CO NLJ)
[4] applies recursive partitioning on both relations. The algorithm
first divides each of the inner and outer relations into two equal-
sized sub-relations. Next, it performs joins on the pairs of inner
and outer sub-relations. This partitioning and joining process goes
on recursively. At some point of the recursion, the join on two par-
titions fits into the L2 data cache. As the recursion goes on, the
join fits into the L1 data cache. The base case is evaluated using
the tuple-based nested-loop join algorithm. More details about the
design and implementation of EaseDB can be found in our system
overview paper [5].

2.2 Visualizing the cache performance
The visualization tool is a graphical user interface (GUI) that

dynamically displays the cache performance and the state of all
queries in the system. The GUI is implemented in Java SWT (Stan-
dard Widget Toolkit), since Java SWT is widely applicable on var-
ious systems. The performance on CPU caches including the num-
bers of cache hits and misses are typically measured using a profil-
ing tool. In our demonstration, we use PCL (Performance Counter

Library) [3] to periodically obtain the cache performance from the
lower-level hardware counters. In addition, PCL allows user-level
code to access the performance counters.

Figure 2 shows the main execution window when a simple query
is running. There are four panels on the left of the window, namely
Processors, Queries, Threads and Options. On the right
of the window, there are a number of panels visualizing the cache
performance dynamically. The information shown in the Processors
panel is automatically obtained from the calibrator [6]. We de-
fine the cache configuration as a three-element tuple <C, B, A>,
where C is the cache capacity in bytes, B the cache line size in
bytes and A the set associativity.

In the Queries panel, the user can submit custom queries on
the in-memory data. The user can choose cache-conscious or cache-
oblivious algorithms to execute the query. When the cache-conscious
algorithm is chosen, its parameters can be individually configured.
More specifically, when the CC Run button is clicked, a popup
window is shown for the user to input the parameter value for the
cache-conscious algorithm. The default parameter value for the
cache-conscious algorithm is L2 cache capacity or cache line size
according to the algorithmic characteristics, since the L2 cache is
typically a major bottleneck for memory accesses [2]. The user can
also click on the View plan button and view the query plans gen-
erated from both the cache-conscious optimizer used in traditional
relational databases and the cache-oblivious one used in EaseDB.

In the Threads panel, we display the basic information of all
threads that are running or ran previously in the system. The state
of a thread can be Running (the thread is running), Stop (the user
clicks the Pause button in the panel, and stops the execution) and
Done (the execution ends).

In the Options panel, the user can specify the time period of
reading the cache performance metrics from hardware counters.
The main performance metrics shown in our demo include the num-
ber of L1 and L2 data cache misses (L1 DCM and L2 DCM re-
spectively) and the number of translation lookaside buffer (TLB)
misses (TLB DM). These performance metrics can be shown on a
per thread or per processor basis. The default setting is per thread.

In each panel on the right of the main execution window, we
display the main performance metrics graphically (from top down:
L2 DCM, L1 DCM and TLB DM), query status and totals. The

1065

(a) CC NLJ with the block size varied (b) CC NLJ (best) (c) CO NLJ

Figure 3: Screen shots: CO NLJ and CC NLJ on P4

query status includes the relation regions that are accessed in the
last period and the query progress. Based on this information, we
can determine the hot region during the process of evaluating the
query.

3. DEMONSTRATION
We use the visual tool to study cache-oblivious algorithms in

EaseDB in comparison with cache-conscious algorithms.

3.1 Demo setup
We will run our demo on two different platforms, namely P4 and

AMD. Some features of these machines are listed in Table 1.
Table 1: Machine characteristics

Name P4 AMD
OS Linux 2.4.18 Linux 2.6.15

Processor Intel P4 2.8GHz AMD Opteron 1.8GHz
L1 D-Cache <8K, 64, 4> <64K, 64, 2>

L2 cache <512K, 128, 8> <1M, 128, 16>
DTLB 64 1024

Memory (bytes) 2.0G 2.0G

In our demonstration, we will submit custom queries to our syn-
thetic data sets. An example custom query shown in Figure 2 is a
join “SELECT R.a1 FROM R, S WHERE R.a1<S.a1 and
R.a2<S.a2... and R.an<S.an”. Each of relations R and S
consists of n four-byte integer attributes, a1, a2, ..., and an. All
fields of each table are involved in the non-equijoin predicate so
that an entire tuple is brought into the cache for the evaluation
of the predicate. This query is evaluated with either the blocked
nested-loop join (CC NLJ) [8] or the cache-oblivious nested-loop
join (CO NLJ) [4].

Figure 2 shows the screen shot of evaluating the exapmle query
with CO NLJ when the query progress was 50%. Each relation has
32 attributes. The tuple size is 128 bytes (the L2 cache line size of
P4). The size of each relation is 8M bytes, which is larger than the
L2 data cache capacity. We have varied the relation size and the
tuple size, and obtained similar results [4].

3.2 Runtime performance results
As an example, Figure 3 shows some screen shots of the runtime

performance results running our demonstration system on P4.
Figure 3 (a) shows the screen shot of evaluating the query with

CC NLJ with a changing block size of the inner relation. The block

size is ranged from 4K to 512K bytes. The performance variance
of CC NLJ with different block sizes is large. This large perfor-
mance variance quantifies the potential performance loss with inef-
fective tuning or without any tuning. Moreover, the three kinds of
cache misses reach their minimum at different block sizes. This is
evidence of a disadvantage of cache-conscious algorithms, i.e., they
often optimize the performance for a specific level in the memory
hierarchy, but do not optimize for all levels of the memory hierar-
chy. Note, there are a very small number of outliers in the measure-
ments. A possible reason is the casual error of the profiling tool [3].
Nevertheless, the accumulated results are stable in our experiments.

Figures 3 (b, c) show the screen shots of evaluating the query
with the best CC NLJ and CO NLJ, respectively. The best CC NLJ
has a block size of 128K bytes. Compared with the best CC NLJ,
CO NLJ has a consistently good performance on the L1, the L2
and TLB. This performance advantage shows the power of auto-
matic optimization for all levels of the memory hierarchy achieved
by cache-oblivious techniques. The execution time of CO NLJ is
similar to that of the best CC NLJ.

In addition to the runtime performance results, we will demon-
strate the working mechanisms of our cache-oblivious algorithms.

4. REFERENCES
[1] A. Ailamaki. Database Architectures for New Hardware.

VLDB, 2004.
[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.

DBMSs on a Modern Processor: Where Does Time Go?
VLDB, 1999.

[3] R. Berrendorf, H. Ziegler, and B. Mohr. PCL: Performance
Counter Library. http://www.fz-juelich.de/zam/PCL/.

[4] B. He and Q. Luo. Cache-Oblivious Nested-Loop Joins.
CIKM, 2006.

[5] B. He and Q. Luo. Cache-Oblivious Query Processing. CIDR,
2007.

[6] S. Manegold. The Calibrator (v0.9e), a Cache-Memory and
TLB Calibration Tool.
http://www.cwi.nl/∼manegold/Calibrator/.

[7] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill, 3 edition, 2003.

[8] A. Shatdal, C. Kant, and J. F. Naughton. Cache Conscious
Algorithms for Relational Query Processing. VLDB, 1994.

1066

