
Efficient Gather and Scatter Operations on Graphics

Processors

Bingsheng He
#
 Naga K. Govindaraju

*
Qiong Luo

Burton Smith

*

 #
Hong Kong Univ. of Science and Technology

{saven, luo}@cse.ust.hk

*
Microsoft Corp.

{nagag, burtons}@microsoft.com

ABSTRACT

Gather and scatter are two fundamental data-parallel operations,

where a large number of data items are read (gathered) from or are

written (scattered) to given locations. In this paper, we study these

two operations on graphics processing units (GPUs).

With superior computing power and high memory bandwidth,

GPUs have become a commodity multiprocessor platform for

general-purpose high-performance computing. However, due to

the random access nature of gather and scatter, a naive

implementation of the two operations suffers from a low

utilization of the memory bandwidth and consequently a long,

unhidden memory latency. Additionally, the architectural details

of the GPUs, in particular, the memory hierarchy design, are

unclear to the programmers. Therefore, we design multi-pass

gather and scatter operations to improve their data access locality,

and develop a performance model to help understand and

optimize these two operations. We have evaluated our algorithms

in sorting, hashing, and the sparse matrix-vector multiplication in

comparison with their optimized CPU counterparts. Our results

show that these optimizations yield 2-4X improvement on the

GPU bandwidth utilization and 30-50% improvement on the

response time. Overall, our optimized GPU implementations are

2-7X faster than their optimized CPU counterparts.

Categories and Subject Descriptors

E.5 [Files] Optimization, sorting/searching; I.3.1 [COMPUTER

GRAPHICS] Hardware Architecture – Graphics processors,

parallel processing.

General Terms

Algorithms, Measurement, Performance.

Keywords

(c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00Gather, scatter,

parallel processing, graphics processors, cache optimization.

1. INTRODUCTION
The increasing demand for faster scientific routines to enable

physics and multimedia applications on commodity PCs has

transformed the graphics processing unit (GPU) into a massively

parallel general-purpose co-processor [29]. These applications

exhibit a large amount of data parallelism and map well to the

data parallel architecture of the GPU. For instance, the current

NVIDIA GPU has over 128 data parallel processors and a peak

memory bandwidth of 86 GB/s. Many numerical algorithms

including matrix multiplication [16][27][31], sorting [20][25]

[30], LU decomposition [19], and fast Fourier transforms [24][28]

have been designed on GPUs. Due to the high performance

capabilities of GPUs, these scientific algorithms achieve 2-5X

performance improvement over optimized CPU-based algorithms.

In order to further improve the performance of GPU-based

scientific algorithms and enable optimized implementations

similar to those for the CPU-based algorithms, recent GPUs

include support for inter-processor communication using shared

local stores, and support for scatter and gather operations [6].

Scatter and gather operations are two fundamental operations in

many scientific and enterprise computing applications. These

operations are implemented as native collective operations in

message passing interfaces (MPI) to define communication

patterns across the processors [4], and in parallel programming

languages such as ZPL [8] and HPF [1]. Scatter operations write

data to arbitrary locations and gather operations read data from

arbitrary locations. Both operations are highly memory intensive

and form the basic primitives to implement many parallel

algorithms such as quicksort [12], sparse matrix transpose [8], and

others. In this paper, we study the performance of scatter and

gather operations on GPUs.

Figure 1 shows the execution time of the scatter and the gather on

a GPU with the same input array but either sequential or random

read/write locations. The input array is 128MB. The detailed

experimental setup is described in Section 3.5. This figure shows

that location distribution greatly affects the performance of the

scatter and the gather. For sequential locations, if we consider the

data transfer of the output data array and internal data structures,

both operations are able to achieve a system bandwidth of over 60

GB/s. In contrast, for random locations, both operations yield a

low utilization of the memory bandwidth. The performance

comparison indicates that locality in memory accesses is an

important factor for the performance of gather and scatter

operations on GPUs.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage, and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SC07 November 10-16, 2007, Reno, Nevada, USA

(c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00

5.2

176.9

5.4

176.9

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

Sequential Random

T
im

e
(m

s)
Scatter

Gather

Figure 1. The elapsed time of the scatter and the gather on a

GPU. Both operations underutilize the bandwidth for random

locations.

GPU memory architectures are significantly different from CPU

memory architectures [21]. Specifically, GPUs consist of high-

bandwidth, high-latency video memory and the GPU cache sizes

are significantly smaller than the CPUs – therefore, the

performance characteristics of scatter and gather operations on

GPUs may involve different optimizations than corresponding

CPU-based algorithms. Additionally, it was only recently that the

scatter functionality was introduced on GPUs, and there is little

work in identifying the performance characteristics of the scatter

on GPUs.

In this paper, we present a probabilistic analysis to estimate the

performance of scatter and gather operations on GPUs. Our

analysis accounts for the memory access locality and the

parallelism in GPUs. Using our analysis, we design optimized

algorithms for scatter and gather. In particular, we design multi-

pass algorithms to improve the locality in the memory access and

thereby improve the memory performance of these operations.

Based on our analysis, our algorithms are able to determine the

number of passes required to improve the performance of scatter

and gather algorithms. Moreover, we demonstrate through

experiments that our performance model is able to closely

estimate the performance characteristics of the operations. As a

result, our analysis can be applied to runtime systems to generate

better execution plans for scatter and gather operations.

We use our scatter and gather to implement three common

applications on an NVIDIA GeForce 8800 GPU (G80) - radix sort

using scatter operations, and the hash search and the sparse-matrix

vector multiplication using gather operations. Our results indicate

that our optimizations can greatly improve the utilization of the

memory bandwidth. Specifically, our optimized algorithms

achieve a 2-4X performance improvement over single-pass GPU-

based implementations. We also compared the performance of our

algorithms with optimized CPU-based algorithms on high-end

multi-core CPUs. In practice, our results indicate a 2-7X

performance improvement over CPU-based algorithms.

Organization: The remainder of the paper is organized as

follows. We give a brief overview of the GPU and the prior work

on GPU- or CPU-based cache efficient algorithms in Section 2.

Section 3 describes our performance model and presents our

optimization techniques for GPUs. In Section 4, we use the

optimized scatter and gather to improve the performance of

sorting, the hash search and the sparse-matrix vector

multiplication on the GPU. Finally, we conclude in Section 5.

2. BACKGROUND AND RELATED WORK
In this section, we first review techniques in general-purpose

computing on the GPU. Next, we survey the cache-optimized

techniques on the CPU and the GPU.

2.1 GPGPU (General-purpose computation

on GPU)
A GPU is a SIMD processing unit with high memory bandwidth

primarily intended for use in computer graphics rendering

applications. In recent years, the GPU has become extremely

flexible and programmable. This programmability is strengthened

in every major generation (roughly every 18 months) [29]. Such

programming flexibility further facilitates the use of the GPU as a

general-purpose processor. Recently, NVIDIA has released the

CUDA (Compute Unified Device Architecture) framework [6]

together with the G80 GPU for general-purpose computation.

Unlike DirectX or OpenGL, CUDA provides a programming

model for a thread-based programming language similar to C.

Thus, programmers can take advantage of GPUs without requiring

graphics know-how. Two of the newly exposed features on the

G80 GPU - data scattering and on-chip shared memory for the

processing engines, are exploited by our implementation.

GPUs have been recently used for various applications such as

matrix operations [16][27][31] and FFT computation [24][28].

We now briefly survey the techniques that use GPUs to improve

the performance of scientific and database operations. The GPU-

based scientific applications include linear algebra computations

such as matrix multiplication [16] and sparse matrix computations

[15]. Govindaraju et al. presented novel GPU-based algorithms

for relational database operators including selections,

aggregations [22] as well as sorting [20], and for data mining

operations such as computing frequencies and quantiles for data

streams [23]. For additional information on the state-of-the-art

GPGPU techniques, we refer the reader to a recent survey by

Owens et al. [29]. The existing work mainly develops

OpenGL/DirectX programs to exploit the specialized hardware

features of GPUs. In contrast, we use a general-purpose

programming model to utilize the GPU hardware features, and

implement our algorithms with two common building blocks, i.e.,

scatter and gather. Recently, Sengupta et al. implemented the

segmented scan using the scatter on the GPU [31]. Our

optimization on the scatter can be applied to the segmented scan

to further improve its performance.

There is relatively less work on developing efficient algorithms

for scatter and gather on GPUs, even though these two operations

are commonly provided primitives in traditional MPI architectures

[4]. Previous-generation GPUs support gather but do not directly

support scatter. Buck described algorithms to implement the

scatter using the gather [14]. However, these algorithms usually

require complex mechanisms such as sorting, which can result in

low bandwidth utilization. Even though new generation GPUs

have more programming flexibility supporting both scatter and

gather, the high programmability does not necessarily achieve

high bandwidth utilization, as seen in Figure 1. These existing

limitations motivate us to develop a performance model to

understand the scatter and the gather on the GPU, and to improve

their overall performance.

2.2 Memory optimizations
Memory stalls are an important factor for the overall performance

of data-intensive applications, such as relational database systems

[13]. For the design and analysis of memory-efficient algorithms,

a number of memory models have been proposed, such as the

external memory model [10] (also known as the cache-conscious

model) and the cache-oblivious model [17]. Our model is similar

to the external memory model but applies to the parallel

computation on the graphics processor. In addition to modeling

the cache cost, Bailey proposed a memory model to estimate the

cost of memory bank contention on the vector computer [11]. In

contrast, we focus on the cache performance of the graphics

processor.

The algorithms reducing the memory stalls can be categorized into

two kinds, cache-conscious [32] and cache-oblivious [17]. Cache-

conscious algorithms utilize knowledge of cache parameters, such

as cache size. On the other hand, cache-oblivious algorithms do

not assume any knowledge of cache parameters. Cache-conscious

techniques have been extensively used to improve the memory

performance of the CPU-based algorithms. LaMarca et al. [26]

studied the cache performance for the quick sort and showed that

cache optimizations can significantly improve the performance of

the quick sort. Boncz et al. [13] proposed the radix clustering with

a multi-pass partitioning method in order to optimize the cache

performance. Williams et al. [33] proposed cache optimizations

for matrix operations on the Cell processor.

Memory optimization techniques have also been shown useful for

GPU-based algorithms. These memory optimizations need to

adapt to the massive threading architecture of the GPU.

Govindaraju et al. [21] proposed a memory model for scientific

applications and showed that optimizations based on the model

greatly improved the overall performance. Fatahalian et al. [16]

analyzed the cache and bandwidth utilization of the matrix-matrix

multiplication. Galoppo et al. [19] designed block-based data

access patterns to optimize the cache performance of dense linear

systems. In comparison, we propose a general performance model

for scatter and gather, and use a multi-pass scheme to improve the

cache locality.

3. MODEL AND ALGORITHM
In this section, we first present our memory model on the graphics

processor. Next, we give the definitions for the scatter and the

gather. We then present our modeling and optimization

techniques for the scatter and the gather. Finally, we present our

evaluation results for our techniques.

3.1 Memory model on GPU
Current GPUs achieve a high memory bandwidth using a wide

memory interface, e.g., the memory interface of G80 is 384-bit. In

order to mask high memory latency, GPUs have small L1 and L2

SRAM caches. Compared with the CPU, the GPU typically has a

flat memory hierarchy and the details of the GPU memory

hierarchy are often missing in vendor hardware specifications.

We model the GPU memory as a two-level hierarchy, the cache

and the device memory, as shown in Figure 2. The data access to

the cache can be either a hit or a miss. If the data is found in the

cache, this access is a hit. Otherwise, it is a miss and a memory

block is fetched from the device memory. Given the number of

cache misses, #miss, and that of cache hits, #hit, the cache hit rate,

h, is defined as #miss#hit

#hit
h

.

We model the GPU as M SIMD multiprocessors. At any time, all

processors in a multiprocessor execute the same instruction. The

threads on each multiprocessor are grouped into thread warps. A

warp is the minimum schedule unit on a multiprocessor. If a warp

is stalled by memory access, it will be put to the end of a waiting

list of thread warps. Then, the first warp in the waiting list

becomes active and is scheduled to run on the multiprocessor.

Multiprocessor

1

Multiprocessor

M

Cache

Device memory

Small size

High memory bandwidth

Figure 2. The memory model of GPU. The GPU consists of M

SIMD multiprocessors. The cache is shared by all the

multiprocessors.

3.2 Definitions
Gather and scatter are dual operations. A scatter performs indexed

writes to an array, and a gather performs indexed reads from an

array. We define the two operations in Figure 3. The array L for

the scatter contains distinct write locations for each Rin tuple, and

that for the gather the read locations for each Rout tuple.

Essentially, the scatter consists of sequential reads and random

writes. In contrast, the gather consists of sequential writes and

random reads. Figure 4 illustrates examples for the scatter and the

gather.

Primitive: Scatter

Input: R
in

[1, …, n], L[1, …, n].

Output: R
out

[1, …, n].

Function: R
out

[L[i]]=R
in

[i], i=1, …n.

Primitive: Gather

Input: R
in

[1, …, n], L[1, …, n].

Output: R
out

[1, …, n].

Function: R
out

[i]=R
in

[L[i]], i=1, …n.

Figure 3. Definitions of scatter and gather

To quantify the performance of the scatter and gather operations,

we define the effective bandwidth for the sequential access (resp.

the random access) to be the ratio of the amount of the data array

tuples accessed by the sequential access (resp. the random access)

in the scatter and gather operations to the elapsed time. This

measure indicates how much bandwidth is utilized to access the

target (effective) data. That means, we define two kinds of

effective bandwidth, sequential and random bandwidths, to

distinguish the sequential and the random access patterns,

respectively. Since the sequential access has a better locality than

the random access, the sequential bandwidth is usually higher

than the random bandwidth.

(a) Scatter (b) Gather

R1 R2 R3 R4 R5 R6Rin

1 4 2 5 3 6L

R1 R3 R5 R2 R4 R6Rout

1 4 2 5 3 6L

R1 R2 R3 R4 R5 R6Rin

R1 R4 R2 R5 R3 R6Rout

Figure 4. Examples of scatter and gather.

3.3 Modeling the effective bandwidth
In this subsection, we present our probabilistic model on

estimating the sequential bandwidth and the random bandwidth

(denoted as Bseq and Brand). Since the estimation and optimization

techniques are similar on the scatter and the gather operations, we

describe the techniques for the scatter in detail, and present those

for the gather in brief.

3.3.1 Modeling the sequential bandwidth
A sequential access fetches each memory block exactly once. A

memory block causes a cache miss at the first access, and the later

accesses to this memory block are cache hits. Thus, the sequential

access achieves a high effective bandwidth.

We estimate the sequential bandwidth using our measured

effective bandwidth. To obtain the measured bandwidth, we

perform a set of calibration measurements with input data arrays

of different sizes. Given the capacity of the device memory, Dm

MB, we measure the execution time for the sequential scan when

the input array size is 2i MB, i=1, 2, …, m
D

2
log

. Let the

execution time for the input array of 2i MB be ti. We compute the

sequential bandwidth to be the weighted bandwidth of all

calibrations as Eq. 1, where n= m
D

2
log

. Compared with the

estimation using the average value, the weighted sum gives more

weight to the bandwidth of the larger sizes, which fully utilize the

bus bandwidth of the GPU.

)2

1

2
(

1

2

1 i
n

i i
t

i

n

i

i
seq

B

 (1)

3.3.2 Modeling the random bandwidth
Compared with the sequential access, the random access has a low

cache locality. Some accesses are cache hits, and many others are

misses. Given the cache hit rate, h, the expected time for accessing

a data array is defined as t, given in Eq. 2.

)'/

/
)1((

 lzh

B

llz
hnt

seq

(2)

In this equation, n is the number of data array tuples; z is the size

of each tuple (bytes); l and l’ are the memory block size and the

transfer unit between the cache and the GPU (bytes); Bseq is the

estimated sequential bandwidth; is the time for fetching a

cache line from the cache to the GPU. In this equation, the

amortized cost for a cache hit is '/ lz . The data transfer

between the device memory and the GPU for a cache miss

is llz / . Since Bseq measures the data transfer between the

device memory and the GPU as well as the accesses to the GPU

cache, we estimate the total cost for a cache miss to be

seqB

llz /
.

We define the random bandwidth as follows.

)
/

'/(
/

seqseq

rand

B

llz
lzh

B

llz

z

t

zn
B

(3)

Given a fixed input, we maximize the cache hit rate in order to

maximize the random bandwidth.

We develop a probabilistic model to estimate the cache hit rate.

Specifically, we estimate the cache hit rate in two cases. One is

that the access locations are totally random, and the other is with

the knowledge of the number of partitions in the input data. The

number of partitions is usually a priori knowledge for various

applications such as radix sort and hash partitioning. For instance,

given the number of bits used in the radix sort, Bits, the number of

partitions for the input data is 2Bits. With the knowledge of the

number of partitions, we have a more accurate estimation on the

cache hit rate. When there is no knowledge of the number of

partitions, we assume the access locations are random and use the

first case to estimate the cache hit rate.

Case I: totally random accesses. We first estimate the expected

number of distinct memory blocks, E, accessed by n random

accesses. Suppose the total number of memory blocks for storing

the input data array is k. Let Ej be the number of cases accessing

exactly j (1<=j<=n) distinct memory blocks. We estimate Ej as

follows.

!),(),(jjnSjkCE j (4)

In this equation, C(k, j) is the number of cases of choosing j

memory blocks from the available k memory blocks; S(n,j) is the

Stirling number of the second kind [9] that equals the number of

cases of partitioning n accesses into j memory blocks; j! is the

number of cases in the permutation of the j memory blocks. Since

the total number of cases in accessing the k memory blocks is kn,

we estimate the expected number of distinct memory blocks by

these n accesses in Eq. 5.

n

n

j j

k

jE
E

1

)(

(5)

Based on E and the number of cache lines in the GPU cache, N,

we estimate the cache miss rate, m, in Eq. 6.

otherwise
n

En
E

N
E

NE
n

E

m

,

)()1(

,

(6)

When E>N, we model cache misses in two categories -- the

compulsory misses of loading E memory blocks, and the capacity

misses,
E)(n)

E

N
(1

. Intuitively, given a fixed input, the larger the

cache size, the smaller the cache miss rate.

Finally, we compute the cache hit rate of Case I to be, h=(1-m).

Case II: Given the number of partitions, p. In this case, if the

write locations of a thread warp belong to the same partition, they

are consecutive. The writes to consecutive locations are

sequential, and have a good cache locality.

Suppose a warp consists of w threads. Each thread accesses one

tuple at one time. The number of tuples accessed by the warp is w.

To estimate the number of cache misses, we estimate the expected

number of distinct partitions, D, accessed by the warp. Let Dj be

the number of cases containing exactly j distinct partitions,

1<=j<=min(w, p). We estimate Dj to be Dj=C(p,j)*S(w,j)*j!. The

estimation is similar to that on the number of distinct memory

blocks accessed in Case I. Since the total number of cases is
wp

, we estimate D in Eq. 7.

w

wp

j j

p

jD
D

),min(

1
)(

(7)

The average number of tuples belonging to each of these D

partitions is
D

w
. The number of memory blocks for each partition

is
 lD

zw

. Therefore, the cache miss rate within a thread warp is

estimated in Eq. 8.

w

lD

zw
D

m

(8)

The cache hit rate within a thread warp to be (1-m).

Finally, we compute the cache hit rate of Case II to be the sum of

the intra- and inter-warp cache hit rates. The inter-warp cache hit

rate is estimated as in Case I, totally random accesses. Note, even

with the knowledge of the number of partitions, the accesses of

warps on different multiprocessors are random due to the

unknown execution order among warps.

3.4 Improving the memory performance
A basic implementation of the scatter is to sequentially scan L and

Rin once, and output all Rin tuples to Rout during the scan.

Similarly, the basic implementation of the gather is to scan L

once, read the Rin tuples according to L, and write the tuples to

Rout sequentially. Given Bseq and Brand, the total execution time of

the scatter and the gather is estimated in Eq. 9 and 10,

respectively. Given an array, X, we denote the number of tuples in

X and the size of X (bytes) to be |X| and ||X||, respectively.

rand

out

seqseq

in
scatter

B

R

B

L

B

R
T

||||||||||||

(9)

seq

out

seqrand

in
gather

B

R

B

L

B

R
T

||||||||||||

(10)

This basic implementation is simple. However, if L is random, the

scatter and the gather suffer from the random access, which has

low cache locality and results in a low bandwidth utilization.

Since Brand is usually much lower than Bseq, we consider a multi-

pass optimization scheme to improve the cache locality. We apply

the optimization technique to both the scatter and gather

operations, and illustrate the optimization technique using the

scatter as an example.

Suppose we perform the scatter in nChunk passes. In each pass,

we output only those Rin tuples that belong to a certain region of

Rout. That is, the algorithm first divides Rout into nChunk chunks,

and then performs the scatter in nChunk passes. In the ith pass

(1<=i<=nChunk), it scans L once, and outputs the Rin tuples

belonging to the ith chuck of Rout (i.e., the write locations are

between nChunk

|
out

R|
1)(i

 and nChunk

|
out

R|
i

). Since each chunk is much

smaller than |Rout|, our multi-pass scatter has a better cache locality

than the single-pass one.

(a) Single-pass scatter (b) Multi-pass scatter

R1 R2 R3 R4 R5 R6Rin

1 4 2 5 3 6L

R1 R3 R5 R2 R4 R6Rout

R1 R2 R3 R4 R5 R6Rin

1 4 2 5 3 6L

R1 R3 R5 - - -Rout

R1 R2 R3 R4 R5 R6Rin

R1 R3 R5 R2 R4 R6Rout

Pass 1

Pass 2

miss hit

Figure 5. Single-pass vs. multi-pass scatter: the multi-pass

scatter has a better cache locality than the single-pass one.

Let us illustrate our multi-pass scheme using an example, as

shown in Figure 5. For simplicity, we assume that the GPU cache

can hold only one memory block and a block can hold three

tuples. Under this assumption, each write in the single-pass

scheme in Figure 5 (a) results in a miss. Consequently, the single-

pass scheme has a low cache locality. In comparison, the multi-

pass scheme divides Rout into two chunks, and writes one chunk in

each pass. It achieves an average hit rate of 2/3.

We estimate the total execution time of the multi-pass scatter as

scanning Rin and L for nChunk times and outputting the data.

Given the nChunk value, we estimate the cache hit rate in a

similar way to the single-pass scheme. The major difference is that

in the estimation of the random bandwidth, the number of data

accesses considered in each pass is n/nChunk, where n is the total

number of data accesses in the scatter. When nChunks>1,

n/nChunks is smaller than n, the multi-pass scheme has a higher

cache hit rate than the single-pass scheme.

Given the estimated random bandwidth for the multi-pass scheme

when the number of passes is nChunk, Brand, we estimate the

execution time of the multi-pass scatter, T’scatter, in Eq. 11. We

choose the nChunk value so that T’scatter is minimized.

rand

out

seq

in

scatter B

R

B

nChunkLR
T

||||||)||||(||'

 (11)

3.5 Evaluation
We evaluated our model and optimization techniques with

different data sizes and data distributions. We increase the data

size to be sufficiently large to show the performance trend. The

default tuple size is 8 bytes, and the default size of the input data

array is 128MB (i.e., the input data array consists of 16 million

tuples). The default data distribution is random.

We have implemented and tested our algorithms on a PC with an

NVidia G80 GPU. The PC runs Windows XP on an Intel Core2

Quad CPU. We also run our CPU-based algorithms on a

Windows Server 2003 server machine with two AMD Opteron

280 dual-core processors. The hardware configuration of the PC

and the server is shown in Table 1. The cache configuration of the

GPU is obtained based on the GPU memory model proposed by

Govindaraju et al. [21]. The cache latency information of the

CPU are obtained using a cache calibrator [1], and those of the

GPU are obtained from the hardware specification [6]. We

estimate the transfer unit between the cache and the GPU to be the

memory interface, i.e., 384 bits, since we do not have any details

on this value.

We compute the theoretical memory bandwidth to be the bus

width multiplying the memory clock rate. Thus, the GPU, Intel

and AMD have a theoretical bandwidth of 86.4 GB/s, 10.4 GB/s

and 8.0 GB/sec, respectively. Based on our measurements on

sequentially scanning a large array, the G80 achieves a peak

memory bandwidth of around 69.2 GB/s whereas the Intel and the

AMD 5.6 GB/s and 5.3 GB/s, respectively.

To evaluate our model, we define the accuracy of our model to be

(1- v

|v'v|

), where v and v’ are the measured and estimated values,

respectively. We run each experiment five times and report the

average value. Since we aim at validating our cache model and

evaluating the scatter and the gather on the GPU, the results for

the GPU-based algorithms in this section do not include the data

transfer time between the CPU and the GPU.

Table 1. Hardware configuration

 GPU(G80) CPU(Intel) CPU(AMD)

Processors 1350MHz 8

16

2.4 GHz 4

(Quad-core)

2.4GHz 2 2

(two dual-core)

Cache size 392 KB L1: 32KB 4,

L2: 8MB

L1: 64KB 2 2,

L2: 1MB 2 2

Cache block

size (bytes)

256 L1: 64, L2: 128 L1: 128, L2:

128

Cache access

time (cycle)

10 L1: 3, L2: 11 L1: 3, L2: 9

DRAM (MB) 768 1024 16384

DRAM latency

(cycle)

200 138 138

Bus width (bit) 384 64 64

Memory clock

(GHz)

1.8 1.3 1.0

Validating the performance model. Figure 6 demonstrates the

measured and estimated performance of sequential scatter and

gather operations on the GPU. The gather and the scatter have a

very similar performance trend as the data size increases. The

sequential bandwidth is estimated to be 63.9 GB/s. The figure also

indicates that our estimation achieves an accuracy of over 87% for

the gather and the scatter. The range of the accuracy is 80%~97%,

i.e., min=70%, max=99%.

Figure 7 shows the measured and estimated performance with the

data size varied when the read/write locations are totally random.

Our model has a high accuracy on predicting the performance of

the gather and the scatter. The average accuracy of our model on

the gather and the scatter is over 90% (min: 62%, max: 98%).

Again, the gather and the scatter have a very similar performance

trend as the data size increases. In the following, we report the

results for the scatter only, because the results of the gather are

similar to those of the gather.

Scatter

0

2

4

6

8

10

12

0 64 128 192 256

Data size (MB)

T
im

e
(m

s)

Measured
Estimated

Gather

0

2

4

6

8

10

12

0 64 128 192 256

Data size (MB)

T
im

e
(m

s)

Measured
Estimated

Figure 6. The measured and estimated performance of the

sequential single-pass scatter (top) and gather (bottom) on the

GPU.

Scatter

0

20

40

60

80

100

120

140

160

180

0 16 32 48 64 80 96 112 128

Data size (MB)

T
im

e
(m

s)

Measured

Estimated

Gather

0

20

40

60

80

100

120

140

160

180

0 16 32 48 64 80 96 112 128

Data size (MB)

T
im

e
(m

s)

Measured

Estimated

Figure 7. The measured and estimated performance of the

single-pass scatter (top) and gather (bottom) on the GPU with

random locations.

Figure 8 shows the measured and estimated performance with the

number of partitions in the input data varied. The data size is

128MB. Given the number of partitions, the partition ID of each

tuple is randomly assigned. When the number of partitions is

larger than 32 (i.e., the warp size on the G80), the measured time

increases dramatically due to the reduced cache reuse within a

warp. We also observe this performance increase in our estimated

time. These figures indicate that our estimation is accurate on

different data sizes and different numbers of partitions in the input

data. The average accuracy in Figure 8 is over 82% (min: 70%,

max: 99%).

Scatter

0

10

20

30

40

50

60

70

0 32 64 96 128

#partition

E
ff

ec
ti

v
e

b
an

d
w

id
th

 (
G

B
/s

)

Measured

Estimated

Scatter

0

20

40

60

80

100

120

140

160

180

0 32 64 96 128

#partition

T
im

e
(m

s)

Measured

Estimated

Figure 8. The measured and estimated single-pass scatter

performance on the GPU: (top) the effective bandwidth of the

random access; (bottom) the execution time.

Scatter

0

50

100

150

200

250

300

0 8 16 24 32 40 48 56 64

#pass

T
im

e
 (

m
s)

Measured

Estimated

Figure 9. The measured and estimated performance of the

multi-pass scatter on GPU with the number of passes varied.

Finally, we validate our performance model on the multi-pass

scheme. Figure 9 shows the measured and estimated performance

of the multi-pass scatter with the number of passes varied. The

suitable value for the number of passes is 16. When the number of

passes is smaller than the suitable value, the scatter performance

improves because the cache locality of the scatter is improved.

When the number of passes is larger than the suitable value, the

overhead of extra scans in the multi-pass scheme becomes

significant. The average accuracy of our model in Figure 9 is 86%

(min: 70%, max: 99%), and our estimations for different data

sizes and different number of partitions are also highly accurate.

Evaluating the multi-pass scheme. We first consider whether we

can improve the performance through dividing the input array into

multiple segments. We apply our multi-pass scheme to each

segment. Since the segment can fit into the cache, the cost of the

multiple scans is minimized. Figure 10 shows the scatter

performance when the number of segments, #bin, increases. The

input array is 128 MB. When #bin is 512, the segment size is

256KB, which is smaller than the GPU cache size. When the #bin

value increases, the scatter time increases as well. This is because

the cache locality between the scatters on different segments gets

worse.

We next evaluate our multi-pass scheme with the number of

partitions, p, varied. The result is shown in Figure 11. When

p<=8, the suitable number of passes in our multi-pass scheme is

one, and the multi-pass scatter reduces to the single-pass one. As

p increases from 8, our multi-pass scheme outperforms the single-

pass scheme. Regardless of the number of partitions in the input

relation, our model correctly predicts a suitable value for the

number of passes, and our multi-pass optimization technique

improves the scatter performance up to three times.

Scatter

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

log2(#bin)

T
im

e
(m

s)

Figure 10. The scatter performance with the number of

segments varied.

Scatter

0

20

40

60

80

100

120

140

160

180

0 32 64 96 128 160 192 224 256

p

T
im

e
(m

s)

Single-pass
Multi-pass

Figure 11. The performance of the multi-pass scatter on the

GPU with the number of partitions, p, varied.

Finally, we compare the performance of scatter on the GPU and

the CPU when the write locations are random. We obtain similar

performance results as the number of partitions varied, and omit

the results. Figure 12 shows the scatter performance with the tuple

size varied and with the number of tuples fixed to be 16 million.

The maximum tuple size is 16 due to the limited size of the device

memory. Figure 13 shows the elapsed time with the number of

tuples varied and the tuple size fixed to be 8 bytes.

On the CPU, we consider whether our multi-pass scheme and the

multithreading technique can improve the performance of the

scatter. We find that the multi-pass scheme has little performance

improvement on both Intel and AMD. This is due to the

difference of memory architectures of the GPU and the CPU. We

apply the single-pass scheme to the gather and the scatter on the

CPU. The multithreading technique improves the performance of

the scatter by 1-2X and 2-4X on Intel and AMD, respectively.

On the GPU, the effective bandwidth of the random access

increases as the tuple size increases. When the tuple size is fixed,

the effective bandwidth is stable as the data size increases.

Regardless of the tuple size and the data size, the GPU-based

scatter has a much better performance than the optimized CPU-

based one. The speedup is 7-13X and 2-4X on Intel and AMD,

respectively. On both the GPU and CPUs, the effective bandwidth

is much lower than the peak bandwidth. This indicates the random

access pattern has low locality and yield low bus utilization.

Nevertheless, our multi-pass scheme improves the effective

bandwidth of the GPU-based scatter by 2-4X.

Scatter (CPU vs. GPU)

0

200

400

600

800

1000

1200

4 8 12 16

Tuple size (Bytes)

T
im

e(
m

s)

GPU(Single-pass)

GPU(Multiple-pass)

Intel (w/ optimization)

AMD(w/ optimization)

Scatter (CPU vs. GPU)

0

0.5

1

1.5

2

2.5

4 8 12 16

Tuple size (Bytes)

E
ff

ec
ti

v
e

b
an

d
w

id
th

(G
B

/s
)

GPU(Single-pass)

GPU(Multiple-pass)

Intel (w/ optimization)

AMD(w/ optimization)

Figure 12. The scatter performance on the CPU and the GPU

with tuple size varied.

Scatter (CPU vs. GPU)

0

200

400

600

800

32 64 96 128

Data size (MB)

T
im

e(
m

s) GPU(Single-pass)

GPU(Multiple-pass)

Intel (w/ optimization)

AMD(w/ optimization)

Figure 13. The scatter time on the CPU and the GPU with

data size varied.

4. APPLICATION AND ANALYSIS
Scatter and gather are two fundamental data-parallel operations

for many parallel algorithms [29]. In this section, we use scatter

and gather to implement three memory intensive algorithms on

GPUs, including the radix sort, the hash search and the sparse-

matrix vector multiplication. Specifically, we use our improved

scatter to implement the radix sort and our improved gather for

the hash search and the sparse-matrix vector multiplication. We

also compare the end-to-end performance of the three applications

on the GPU and the CPU. Our total execution time for the GPU-

based algorithms includes the data transfer time between the CPU

and the GPU.

4.1 Radix sort

Radix sort is one of the highly parallel sorting algorithms [34]. It

has a linear-time computational complexity. In this study, we

implement the most significant digit (MSD) radix sort. The

algorithm first performs P-phase partitioning on the input data,

and then sorts the partitions in parallel. In each phase, we divide

the input data into multiple partitions using Bits bits. In the ith

(0<=i<=P) phase of the radix sort, we use the (i*Bits)th to

((i+1)*Bits)th bits from the most significant bit. After partitioning,

we use the bitonic sort [20] to sort each partition. The bitonic sort

can exploit the fast shared memory on G80 [6], where the shared

memory of each multiprocessor is 16KB. Different from the

cache, the shared memory is programmer-manipulated.

Additionally, it is shared by threads on the same multiprocessor.

When the partition size is smaller than the shared memory size,

the bitonic sort works entirely on the data in the shared memory,

and causes no further cache misses. We determine the suitable P

value so that the resulting size of each partition is smaller than the

shared memory size, i.e., P=logf(n/S), where f is the number of

partitions generated in each phase, i.e., 2Bits; n, the size of the

input array (bytes); S, the shared memory size of each

multiprocessor (bytes).

1

0

3

2

2

3

0

1

Data

0

0

1

1

1

1

0

0

PID

1

0

5

4

7

6

3

2

Loc

1

0

0

1

3

2

2

3

Output Data

1

0

0

1

1

0

0

1

PID

2

0

1

3

6

4

5

7

Loc

0

0

1

1

2

2

3

3

Output

Phase 1:

the first bit from the left

Phase 2:

the second bit from the left

1

0

0

1

3

2

2

3

Figure 14. An example of radix sort.

We implement the partitioning scheme using the scatter. Given an

input array of data tuples, dataArray, the partitioning process is

performed in three steps. The algorithm first computes the

partition ID for each tuple and stores all partition IDs into an

array, pidArray, in the same order as dataArray. Next, it

computes the write location for each tuple based on pidArray, and

stores the write locations into the third array, locArray. Finally, it

applies our multi-pass scatter to output dataArray according to

locArray. An example of the radix sort on eight tuples is

illustrated in Figure 14. The first step is fast, because it is a

sequential scatter and a scan. We consider optimizations on the

second and third steps.

For the second step, we use histograms to compute the write

location for each tuple. Our histograms are similar to those in the

parallel radix sort proposed by Zagha [34]. The main difference is

that we fully consider the hardware features of the GPU to design

our histograms. Specifically, in our partitioning algorithm, each

thread is responsible for a portion of the input array. Because the

histogram for each thread is accessed randomly, we store the

histograms into the shared memory to reduce the latency of these

random accesses.

In our implementation, each histogram element is encoded in one

byte. The size of each histogram is 2Bits bytes. Since each thread

has one histogram, the Bits value must satisfy the following

constraint due to the limited size of the shared memory:

T*2Bits<=S, where T is the number of concurrent threads sharing

the shared memory and S is the size of the shared memory.

For the third step, we determine the suitable number of passes to

minimize the execution time of the radix sort. The number of

phases, i.e., the number of scatter operations, in the radix sort is

P. We estimate the execution time of each scatter as in Case II

with the number of partitions, 2Bits. The total execution time of

these P scatter operations is C=P*T’scatter. Considering the

constraint in the second step, we choose the suitable Bits value to

minimize the C value.

We have implemented the radix sort on the GPU and the CPU.

Figure 15 shows the performance impact of our optimization

techniques on the GPU and the CPU. Each array element is an 8-

byte record, including a four-byte key value and a four-byte

record identifier. The key values are randomly distributed.

For the CPU implementation, we consider both multithreading

and cache-optimization techniques. Suppose the CPU has Cp

cores. We first divide the input array into Cp partitions, and sort

these partitions in parallel. Each partition is sorted by a thread

running an optimized CPU-based radix sort, which is a multi-pass

algorithm [13]. It determines the number of bits used in each pass

according to the cache parameters of the CPU, e.g., the number of

cache lines in the L1 and the L2 caches and the number of entries

in the data TLB (Translation Lookaside Buffer). According to the

existing cost model [13], the number of bits in each pass is set to

be six on both Intel and AMD so that the cache stalls are

minimized. The number of partitions generated in one pass is

26=64. Finally, we merge the Cp sorted partitions into one. The

performance comparison for the CPU-based radix sort with and

without optimizations is shown on the top of Figure 15. Our

optimization techniques greatly improve the radix sort by 85% on

AMD and slightly improve the radix sort on Intel.

On the GPU, the number of bits used in each phase of the radix

sort, Bits, is five. That is, in each phase, an array is divided into

32 sub-arrays. Our test data takes three phases of partitioning in

total. The suitable number of passes in our optimized scatter is

four according to our performance model. As shown in Figure 15,

our multi-pass scheme improves the GPU-based radix sort by over

30%. Note, the data transfer time between the GPU and the CPU

is 10-30% of the total execution time of the GPU-based radix sort.

Figure 16 highlights the performance of the GPU-based radix sort,

the GPU-based bitonic sort [20] and the CPU-based radix sort

[13]. The GPU-based radix sort is twice faster than the GPU-

based bitonic sort. Moreover, our GPU-based algorithm is over

2X faster than the best optimized CPU-based radix sort.

Finally, we perform back-of-envelope calculation on the system

bandwidth. We estimate the data transfer of the GPU-based radix

sort through considering the cache misses estimated by our model

and the internal data structures in the radix sort. The CPU-based

radix sort is estimated using the existing cost model [13]. The

estimated bandwidth of the radix sort is on average 21.4 GB/s, 1.2

GB/s, and 2.1 GB/s on the GPU, Intel and AMD, respectively.

RadixSort on CPU

0

500

1000

1500

2000

2500

4 8 12 16

#keys (million)

T
im

e
(m

s)

Intel radixsort(w/o optimization)

Intel radixsort(w/ optimization)

AMD radixsort(w/o optimization)

AMD radixsort(w/ optimization)

RadixSort on GPU

0

100

200

300

400

500

600

700

800

900

4 8 12 16

#keys (million)

T
im

e
(m

s)

GPU radixsort(w/o optimization)

GPU radixsort(w/ optimization)

 Figure 15. The performance impact of optimizations on the

CPU and the GPU.

Sort (CPU vs. GPU)

0

200

400

600

800

1000

1200

1400

1600

1800

4 8 12 16

#keys (million)

T
im

e
(m

s)

GPU radixsort(w/ optimization)

GPU bitonic sort

Intel radixsort(w/ optimization)

AMD radixsort(w/ optimization)

Figure 16. The execution time of sorting algorithms on the

GPU and the CPU.

4.2 Hash search

A hash table is commonly used to speed up equality search on a

set of records. Applications using hash tables include the hash

join and hash partitioning in databases [13]. A hash table consists

of multiple hash headers, each of which maintains a pointer to its

corresponding bucket. Each bucket stores the key values of the

records that have the same hash value, and the pointers to the

records. An example of the hash table is illustrated in Figure 17

(a). Since dynamic allocation and deallocation of the device

memory is not supported on current GPUs, we use an array to

store the buckets, and each header maintains the start position of

its corresponding bucket in the array.

The hash search takes as input a number of search keys, performs

probes on a hash table with these keys, and outputs the matching

records to a result buffer in the device memory. In our

implementation, each thread is responsible for one search key. To

avoid the conflict when multiple threads are writing results to the

shared result buffer concurrently, we implement the hash search in

four steps. First, for each search key, we use the hash function to

compute its corresponding bucket ID and determine the (start,

end) pair indicating the start and end locations for the bucket.

Second, we scan the bucket and determine the number of

matching results. Third, based on the number of results for each

key, we compute a prefix sum on these numbers to determine the

start location at which the results of each search key are written,

and output the record IDs of the matching tuples to an array, L.

Fourth, we perform a gather according to L to fetch the actual

result records. Due to the random nature of the hash search, we

estimate the execution time of the gather in Case I. Figure 17 (b)

illustrates the four steps of searching two keys.

0

2

3

5

4

8

1

6

2

3

15

7

Header

Buckets

H(x)=x mod 7

(a) The hash table (b) Search

4 3

keys

Step 1:

(0, 2) (5,8)

(start, end)

Step 2:

1 1

#matches

Step 3:

4 3

Record IDs

0

1

2

3

R1

Records

R2

R3

R4

R6

R7

R5

R8

R15 Step 4:

R4 R3

output

Figure 17. An example of hash search.

Figure 18 shows the execution time of the hash search on the

GPU and the CPU. Note that the data transfer time is 40-60% of

the total execution time of the hash search. The values of the

search keys and the keys in the hash table are all 32-bit random

integers. The record size is 8 bytes. We fixed the number of

search keys to be 4 million and varied the total number of records

in the hash table. The load factor of the hash table is around 99%.

Similar to the CPU-based radix sort, we consider multithreading

and cache optimization techniques for the CPU-based hash

search. Suppose the CPU has Cp cores. We first divide the search

keys into Cp partitions, and probe the hash table using the search

keys of each partition in parallel. In our implementation, we used

Cp threads and each thread is in charge of one partition. Each

thread runs the cache-efficient hash searches using a multi-pass

scheme similar to that on the GPU. The difference is that the

chunk size is set to be the L2 data cache size. Similar to the CPU-

based radix sort, the performance improvement of our

optimization on AMD is significant and that on Intel is moderate.

Based on our performance model, the suitable number of passes

for the GPU-based multi-pass scatter is 16. We observe that the

optimized GPU-based hash search is 7.2X and 3.5X faster than its

optimized CPU-based counterpart on Intel and AMD,

respectively. Additionally, the hash search optimized with our

multi-pass scheme is on average 50% faster than the single-pass

scheme. We also varied the number of search keys and the number

of records in the hash table, and obtained similar performance

results. Through back-of-envelope calculation, the estimated

bandwidth of the hash search is on average 13.0 GB/s, 0.56 GB/s,

and 1.0 GB/s on the GPU, Intel and AMD, respectively.

Hash search on GPU

0

50

100

150

200

250

4 8 12 16

#keys in the hash table (million)

T
im

e
(m

s)

GPU(w/o optimization)

GPU(w/ optimization)

Hash search (CPU vs. GPU)

0

200

400

600

800

1000

1200

4 8 12 16

#keys in the hash table (million)

T
im

e
(m

s)

GPU(w/ optimization)

Intel radixsort(w/ optimization)

AMD radixsort(w/ optimization)

Figure 18. Hash search on the GPU and the CPU.

4.3 Sparse-matrix vector multiplication (SpMV)

Sparse-matrix vector multiplication (SpMV) is widely used in

many linear solvers [15]. SpMV stores the sparse matrix in a

compressed format and performs the multiplication on the

compressed matrix. We adopt the compressed format (CSR) from

the Intel MKL library [3] to represent the sparse matrix: for each

row, only the non-zero elements are stored. In row i, if column j is

not zero, we represent this cell as a tuple (j, v), where v is the

value of the cell (i, j). This compressed format stores the matrix

into four arrays: values, columns, pointerB and pointerE. Array

values stores all the values of non-zero cells in the order of their

row and column indexes. Array columns stores all the column

indexes for the non-zero cells in the row order, i.e., columns[i]

stores the column index of the corresponding cell of values[i].

Arrays pointerB and pointerE store the start and end positions of

each row in the values array, respectively. That is, the positions of

the non-zero cells of the ith row are between pointerB[i] and

(pointerE[i]-1).

Given a sparse matrix M and a dense vector V, we store M in the

compressed format and compute the multiplication W=M*V. Our

algorithm computes W in two steps. First, we scan values and

columns once, and compute the partial multiplication results on

values and V into an array, R, where R[i]=

(values[i]*V[columns[i]]). This multiplication is done through a

gather to fetch the values from the vector V at read locations given

in the array columns. Second, based on R, we sum up the partial

results into W:

1-]pointerE[i

]pointerB[ij
R[j]W[i]

.

When the matrix is large, SpMV is both data- and computation-

intensive. We use our multi-pass scheme to reduce the random

accesses to the vector. Applying our performance model to

SpMV, we estimate the execution time of the gather in Case I.

CG benchmark

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Class A Class B

G
F

L
O

P
S

GPU (w/o optimization)

GPU (w/ optimization)

Intel (w/ optimization)

AMD (w/ optimization)

Figure 19. Conjugate gradient benchmark on the GPU and the

CPU.

CG benchmark

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Stanford_Berkeley pkustk14 pkustk08 nd24k

Matrices

G
F

L
O

P
S

GPU (w/o optimization)

GPU (w/ optimization)

Intel (w/ optimization)

AMD (w/ optimization)

Figure 20. Conjugate gradient benchmark with real-world

matrices on the GPU and the CPU.

Figure 19 plots the performance in GFLOPS (Giga Floating Point

Operations per Second) of SpMV on the GPU and the CPU. We

applied our SpMV algorithm to the conjugate gradient benchmark

[5], where SpMV is a core component in the sparse linear solver.

The benchmark solves a linear system through calling the

conjugate gradient (CG) method niter multiple times. Each

execution of CG has 25 iterations. Each iteration consists of a

SpMV on the matrix and a dense vector, in addition to some

vector manipulation. In our experiments, the total execution time

of SpMV is over 90% of the total execution time of the CG

benchmark on both the GPU and the CPU. There are two classes

in the benchmark, classes A and B. The vector sizes are 14 and 75

thousand (i.e., 56KB and 300KB, respectively) for classes A and

B, respectively. The niter value is 15 and 75 for classes A and B,

respectively. The CPU-based SpMV uses the Intel MKL routines,

mkl_dcsrmv [3]. The MKL routine does not utilize all the cores

on the CPU. We further consider multithreading techniques on the

CPU. Suppose the CPU has Cp cores. We horizontally divide the

matrix into Cp sub-matrices. Next, each thread performs the

multiplication on a sub-matrix and the vector using the

mkl_dcsrmv routine. The multithreading technique improves the

benchmark around 2X on both AMD and Intel.

Since the vector size is smaller than the cache size on G80, the

vector fits into the cache. As a result of this small vector size, the

performance of the GPU-based algorithm with optimization is

similar to that without. Note that the GPU-based SpMV uses the

single precision, whereas the MKL routine uses the double

precision. The single-precision computation may have up to 2X

performance advantage over the double-precision computation.

Nevertheless, the GPU-based algorithm is more than six times

faster than the CPU-based algorithm.

We further evaluated our SpMV algorithms using the CG

benchmark with real-world matrices. We used the real-world

matrices downloaded from the Sparse Matrix Collection [7]. We

follow Gahvari’s categorization on these matrices [18]: the matrix

size is small, medium or large, and the number of non-zero

elements per row is low, medium or high. Figure 20 shows the

performance comparison for four large real-world matrices,

namely pkustk08, pkust14, Stanford_Berkeley and nd24k. These

matrices have a similar size, and their non-zero elements per row

increase from 11, 98, and 145 to 399. The benchmark

configuration is the same as class B. The optimized SpMV with

our multi-pass scheme is moderately faster than the one with the

single-pass scheme. Moreover, the GPU-based algorithm is over

six times faster than the CPU-based algorithm. We also evaluated

our algorithms with matrices of different sizes and obtained

similar performance results.

5. CONCLUSION AND FUTURE WORK
We presented a probabilistic model to estimate the memory

performance of scatter and gather operations. Moreover, we

proposed optimization techniques to improve the bandwidth

utilization of these two operations by improving the memory

locality in data accesses. We have applied our techniques to three

scientific applications and have compared their performance

against prior GPU-based algorithms and optimized CPU-based

algorithms. Our results show a significant performance

improvement on the NVIDIA 8800 GPU.

There are several avenues for future work. We are interested in

applying our scatter and gather operations to other scientific

applications. We are also interested in developing efficient scatter

and gather operations on other architectures such as the IBM Cell

processor and AMD Fusion. Finally, it is an interesting future

direction to extend our algorithms to multiple hosts, e.g., clusters

or MPPs without shared memory.

6. ACKNOWLEDGMENTS
The authors thank the shepherd, Leonid Oliker, and the

anonymous reviewers for their insightful suggestions, all of which

improved this work. Funding for this work was provided in part

by DAG05/06.EG11 and 617206 from the Hong Kong Research

Grants Council.

7. REFERENCES
[1] CWI Calibrator, http://monetdb.cwi.nl/Calibrator/.

[2] HPF, http://hpff.rice.edu/.

http://monetdb.cwi.nl/Calibrator/
http://hpff.rice.edu/

[3] Intel Math Kernel Library 9.0,

http://www.intel.com/cd/software/products/asmo-

na/eng/266853.htm.

[4] MPI, http://www.mpi-forum.org/docs/.

[5] NAS parallel benchmarks,

http://www.nas.nasa.gov/Resources/Software/npb.html.

[6] NVIDIA CUDA (Compute Unified Device Architecture),

http://developer.nvidia.com/object/cuda.html.

[7] Sparse matrix collection,

http://www.cise.ufl.edu/research/sparse/matrices/.

[8] ZPL, http://www.cs.washington.edu/research/zpl/home/.

[9] M. Abramowitz and I. A. Stegun (Eds.). Stirling numbers of

the second kind. In Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables, 9th

printing. New York: Dover, 1972.

[10] A. Aggarwal and S. V. Jeffrey. The input/output complexity

of sorting and related problems. Communications of the

ACM, 31(9):1116–1127, 1988.

[11] D. H. Bailey. Vector computer memory bank contention.

IEEE Transactions on Computers, vol. C-36, no. 3 (Mar.

1987), pp. 293-298.

[12] G. E. Blelloch. Prefix sums and their applications. Technical

report, CMU-CS-90-190, Nov 1990.

[13] P. Boncz, S. Manegold and M. Kersten. Database

architecture optimized for the new bottleneck: memory

access. In Proc. of the International Conference on Very

Large Data Bases (VLDB), pp 54-65, 1999.

[14] I. Buck. Taking the plunge into GPU computing. In GPU

Gems 2, Pharr M., (Ed.). Addison Wesley, Mar. 2005, pp.

509–519.

[15] J. Bolz, I. Farmer, E. Grinspun and P. Schröoder. Sparse

matrix solvers on the GPU: conjugate gradients and

multigrid. ACM Transactions on Graphics 2003, pp. 917-

924.

[16] K. Fatahalian, J. Sugerman and P. Hanrahan. Understanding

the efficiency of GPU algorithms for matrix-matrix

multiplication. In Proc. of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, 2004.

[17] M. Frigo, C. E. Leiserson, H. Prokop and S. Ramachandran.

Cache-oblivious algorithms. In Proc. of the 40th Annual

Symposium on Foundations of Computer Science, 1999.

[18] H. Gahvari. Benchmarking sparse matrix-vector multiply.

Master thesis, Computer Science Division, U.C. Berkeley,

December 2006.

[19] N. Galoppo, N. Govindaraju, M. Henson and D. Manocha.

LU-GPU: efficient algorithms for solving dense linear

systems on graphics hardware. In Proc. of the 2005

ACM/IEEE conference on Supercomputing.

[20] N. Govindaraju, J. Gray, R. Kumar and D. Manocha.

GPUTeraSort: high performance graphics coprocessor

sorting for large database management. In Proc. of the 2006

ACM SIGMOD international conference on Management of

data.

[21] N. Govindaraju, S. Larsen, J. Gray, D. Manocha. A memory

model for scientific algorithms on graphics processors. In

Proc. of the 2006 ACM/IEEE conference on

Supercomputing.

[22] N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D.

Manocha. Fast computation of database operations using

graphics processors. In Proc. of the 2004 ACM SIGMOD

international conference on Management of data.

[23] N. Govindaraju, N. Raghuvanshi and D. Manocha. Fast and

approximate stream mining of quantiles and frequencies

using graphics processors. In Proc. of the 2005 ACM

SIGMOD international conference on Management of data.

[24] D. Horn. Lib GPU FFT,

http://sourceforge.net/projects/gpufft/, 2006.

[25] P. Kipfer, M. Segal, and R. Westermann. Uberflow: A gpu-

based particle engine. In Proc. of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, 2004.

[26] A. Lamarca and R. Ladner. The influence of caches on the

performance of sorting. In Proc. of the eighth annual ACM-

SIAM symposium on Discrete algorithms, 1997.

[27] E. Larsen and D. McAllister. Fast matrix multiplies using

graphics hardware. In Proc. of the 2001 ACM/IEEE

conference on Supercomputing.

[28] K. Moreland and E. Angel. The FFT on a GPU. In Proc. of

the ACM SIGGRAPH/EUROGRAPHICS conference on

Graphics hardware, 2003.

[29] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.

Krüger, A. E. Lefohn and T. J. Purcell. A survey of general-

purpose computation on graphics hardware. Computer

Graphics Forum, Volume 26, 2007.

[30] T. Purcell, C. Donner, M. Cammarano, H. Jensen, and P.

Hanrahan. Photon mapping on programmable graphics

hardware. In Proc. of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, 2003.

[31] S. Sengupta, M. Harris, Y. Zhang, J. D. Owens. Scan

primitives for GPU computing. In Proc. of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, 2007.

[32] J. Vitter. External memory algorithms and data structures:

Dealing with massive data. ACM Computing Surveys, 209-

271, 2001.

[33] S. Williams, J. Shalf, L. Oliker, P. Husbands and K. Yelick,

Dense and sparse matrix operations on the Cell processor.

May, 2005. Lawrence Berkeley National Laboratory. Paper

LBNL-58253.

[34] M. Zagha and G. E. Blelloch. Radix sort for vector

multiprocessors. In Proc. of the 1991 ACM/IEEE conference

on Supercomputing.

http://www.intel.com/cd/software/products/asmo-na/eng/266853.htm
http://www.intel.com/cd/software/products/asmo-na/eng/266853.htm
http://www.mpi-forum.org/docs/
http://www.nas.nasa.gov/Resources/Software/npb.html
http://developer.nvidia.com/object/cuda.html
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cs.washington.edu/research/zpl/home/
http://sourceforge.net/projects/gpufft/

