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ABSTRACT 

Gather and scatter are two fundamental data-parallel operations, 

where a large number of data items are read (gathered) from or are 

written (scattered) to given locations. In this paper, we study these 

two operations on graphics processing units (GPUs). 

With superior computing power and high memory bandwidth, 

GPUs have become a commodity multiprocessor platform for 

general-purpose high-performance computing. However, due to 

the random access nature of gather and scatter, a naive 

implementation of the two operations suffers from a low 

utilization of the memory bandwidth and consequently a long, 

unhidden memory latency.  Additionally, the architectural details 

of the GPUs, in particular, the memory hierarchy design, are 

unclear to the programmers.  Therefore, we design multi-pass 

gather and scatter operations to improve their data access locality, 

and develop a performance model to help understand and 

optimize these two operations.  We have evaluated our algorithms 

in sorting, hashing, and the sparse matrix-vector multiplication in 

comparison with their optimized CPU counterparts. Our results 

show that these optimizations yield 2-4X improvement on the 

GPU bandwidth utilization and 30-50% improvement on the 

response time.  Overall, our optimized GPU implementations are 

2-7X faster than their optimized CPU counterparts.   

Categories and Subject Descriptors 

E.5 [Files] Optimization, sorting/searching; I.3.1 [COMPUTER 

GRAPHICS] Hardware Architecture – Graphics processors, 

parallel processing. 

General Terms 

Algorithms, Measurement, Performance. 

Keywords 

(c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00Gather, scatter, 

parallel processing, graphics processors, cache optimization. 

1. INTRODUCTION 
The increasing demand for faster scientific routines to enable 

physics and multimedia applications on commodity PCs has 

transformed the graphics processing unit (GPU) into a massively 

parallel general-purpose co-processor [29]. These applications 

exhibit a large amount of data parallelism and map well to the 

data parallel architecture of the GPU. For instance, the current 

NVIDIA GPU has over 128 data parallel processors and a peak 

memory bandwidth of 86 GB/s. Many numerical algorithms 

including matrix multiplication [16][27][31], sorting [20][25] 

[30], LU decomposition [19], and fast Fourier transforms [24][28] 

have been designed on GPUs. Due to the high performance 

capabilities of GPUs, these scientific algorithms achieve 2-5X 

performance improvement over optimized CPU-based algorithms. 

In order to further improve the performance of GPU-based 

scientific algorithms and enable optimized implementations 

similar to those for the CPU-based algorithms, recent GPUs 

include support for inter-processor communication using shared 

local stores, and support for scatter and gather operations [6]. 

Scatter and gather operations are two fundamental operations in 

many scientific and enterprise computing applications. These 

operations are implemented as native collective operations in 

message passing interfaces (MPI) to define communication 

patterns across the processors [4], and in parallel programming 

languages such as ZPL [8] and HPF [1].  Scatter operations write 

data to arbitrary locations and gather operations read data from 

arbitrary locations. Both operations are highly memory intensive 

and form the basic primitives to implement many parallel 

algorithms such as quicksort [12], sparse matrix transpose [8], and 

others. In this paper, we study the performance of scatter and 

gather operations on GPUs.   

Figure 1 shows the execution time of the scatter and the gather on 

a GPU with the same input array but either sequential or random 

read/write locations. The input array is 128MB. The detailed 

experimental setup is described in Section 3.5. This figure shows 

that location distribution greatly affects the performance of the 

scatter and the gather. For sequential locations, if we consider the 

data transfer of the output data array and internal data structures, 

both operations are able to achieve a system bandwidth of over 60 

GB/s.  In contrast, for random locations, both operations yield a 

low utilization of the memory bandwidth. The performance 

comparison indicates that locality in memory accesses is an 

important factor for the performance of gather and scatter 

operations on GPUs.  
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Figure 1. The elapsed time of the scatter and the gather on a 

GPU. Both operations underutilize the bandwidth for random 

locations. 

GPU memory architectures are significantly different from CPU 

memory architectures [21]. Specifically, GPUs consist of high-

bandwidth, high-latency video memory and the GPU cache sizes 

are significantly smaller than the CPUs – therefore, the 

performance characteristics of scatter and gather operations on 

GPUs may involve different optimizations than corresponding 

CPU-based algorithms. Additionally, it was only recently that the 

scatter functionality was introduced on GPUs, and there is little 

work in identifying the performance characteristics of the scatter 

on GPUs. 

In this paper, we present a probabilistic analysis to estimate the 

performance of scatter and gather operations on GPUs.  Our 

analysis accounts for the memory access locality and the 

parallelism in GPUs. Using our analysis, we design optimized 

algorithms for scatter and gather. In particular, we design multi-

pass algorithms to improve the locality in the memory access and 

thereby improve the memory performance of these operations. 

Based on our analysis, our algorithms are able to determine the 

number of passes required to improve the performance of scatter 

and gather algorithms. Moreover, we demonstrate through 

experiments that our performance model is able to closely 

estimate the performance characteristics of the operations.  As a 

result, our analysis can be applied to runtime systems to generate 

better execution plans for scatter and gather operations.  

We use our scatter and gather to implement three common 

applications on an NVIDIA GeForce 8800 GPU (G80) - radix sort 

using scatter operations, and the hash search and the sparse-matrix 

vector multiplication using gather operations. Our results indicate 

that our optimizations can greatly improve the utilization of the 

memory bandwidth. Specifically, our optimized algorithms 

achieve a 2-4X performance improvement over single-pass GPU-

based implementations. We also compared the performance of our 

algorithms with optimized CPU-based algorithms on high-end 

multi-core CPUs. In practice, our results indicate a 2-7X 

performance improvement over CPU-based algorithms.  

Organization: The remainder of the paper is organized as 

follows. We give a brief overview of the GPU and the prior work 

on GPU- or CPU-based cache efficient algorithms in Section 2. 

Section 3 describes our performance model and presents our 

optimization techniques for GPUs. In Section 4, we use the 

optimized scatter and gather to improve the performance of 

sorting, the hash search and the sparse-matrix vector 

multiplication on the GPU. Finally, we conclude in Section 5. 

2. BACKGROUND AND RELATED WORK 
In this section, we first review techniques in general-purpose 

computing on the GPU. Next, we survey the cache-optimized 

techniques on the CPU and the GPU. 

2.1 GPGPU (General-purpose computation 

on GPU) 
A GPU is a SIMD processing unit with high memory bandwidth 

primarily intended for use in computer graphics rendering 

applications. In recent years, the GPU has become extremely 

flexible and programmable. This programmability is strengthened 

in every major generation (roughly every 18 months) [29].  Such 

programming flexibility further facilitates the use of the GPU as a 

general-purpose processor. Recently, NVIDIA has released the 

CUDA (Compute Unified Device Architecture) framework [6] 

together with the G80 GPU for general-purpose computation. 

Unlike DirectX or OpenGL, CUDA provides a programming 

model for a thread-based programming language similar to C. 

Thus, programmers can take advantage of GPUs without requiring 

graphics know-how. Two of the newly exposed features on the 

G80 GPU - data scattering and on-chip shared memory for the 

processing engines, are exploited by our implementation. 

GPUs have been recently used for various applications such as 

matrix operations [16][27][31] and FFT computation [24][28]. 

We now briefly survey the techniques that use GPUs to improve 

the performance of scientific and database operations. The GPU-

based scientific applications include linear algebra computations 

such as matrix multiplication [16] and sparse matrix computations 

[15].  Govindaraju et al. presented novel GPU-based algorithms 

for relational database operators including selections, 

aggregations [22] as well as sorting [20], and for data mining 

operations such as computing frequencies and quantiles for data 

streams [23]. For additional information on the state-of-the-art 

GPGPU techniques, we refer the reader to a recent survey by 

Owens et al. [29].  The existing work mainly develops 

OpenGL/DirectX programs to exploit the specialized hardware 

features of GPUs. In contrast, we use a general-purpose 

programming model to utilize the GPU hardware features, and 

implement our algorithms with two common building blocks, i.e., 

scatter and gather. Recently, Sengupta et al. implemented the 

segmented scan using the scatter on the GPU [31]. Our 

optimization on the scatter can be applied to the segmented scan 

to further improve its performance.   

There is relatively less work on developing efficient algorithms 

for scatter and gather on GPUs, even though these two operations 

are commonly provided primitives in traditional MPI architectures 

[4]. Previous-generation GPUs support gather but do not directly 

support scatter. Buck described algorithms to implement the 

scatter using the gather [14]. However, these algorithms usually 

require complex mechanisms such as sorting, which can result in 

low bandwidth utilization. Even though new generation GPUs 

have more programming flexibility supporting both scatter and 

gather, the high programmability does not necessarily achieve 

high bandwidth utilization, as seen in Figure 1. These existing 

limitations motivate us to develop a performance model to 

understand the scatter and the gather on the GPU, and to improve 

their overall performance. 



2.2 Memory optimizations 
Memory stalls are an important factor for the overall performance 

of data-intensive applications, such as relational database systems 

[13]. For the design and analysis of memory-efficient algorithms, 

a number of memory models have been proposed, such as the 

external memory model [10] (also known as the cache-conscious 

model) and the cache-oblivious model [17]. Our model is similar 

to the external memory model but applies to the parallel 

computation on the graphics processor. In addition to modeling 

the cache cost, Bailey proposed a memory model to estimate the 

cost of memory bank contention on the vector computer [11]. In 

contrast, we focus on the cache performance of the graphics 

processor.  

The algorithms reducing the memory stalls can be categorized into 

two kinds, cache-conscious [32] and cache-oblivious [17]. Cache-

conscious algorithms utilize knowledge of cache parameters, such 

as cache size. On the other hand, cache-oblivious algorithms do 

not assume any knowledge of cache parameters.  Cache-conscious 

techniques have been extensively used to improve the memory 

performance of the CPU-based algorithms. LaMarca et al. [26] 

studied the cache performance for the quick sort and showed that 

cache optimizations can significantly improve the performance of 

the quick sort. Boncz et al. [13] proposed the radix clustering with 

a multi-pass partitioning method in order to optimize the cache 

performance.  Williams et al. [33] proposed cache optimizations 

for matrix operations on the Cell processor. 

Memory optimization techniques have also been shown useful for 

GPU-based algorithms. These memory optimizations need to 

adapt to the massive threading architecture of the GPU. 

Govindaraju et al. [21] proposed a memory model for scientific 

applications and showed that optimizations based on the model 

greatly improved the overall performance.  Fatahalian et al. [16] 

analyzed the cache and bandwidth utilization of the matrix-matrix 

multiplication. Galoppo et al. [19] designed block-based data 

access patterns to optimize the cache performance of dense linear 

systems. In comparison, we propose a general performance model 

for scatter and gather, and use a multi-pass scheme to improve the 

cache locality. 

3. MODEL AND ALGORITHM 
In this section, we first present our memory model on the graphics 

processor. Next, we give the definitions for the scatter and the 

gather. We then present our modeling and optimization 

techniques for the scatter and the gather. Finally, we present our 

evaluation results for our techniques.  

3.1 Memory model on GPU 
Current GPUs achieve a high memory bandwidth using a wide 

memory interface, e.g., the memory interface of G80 is 384-bit. In 

order to mask high memory latency, GPUs have small L1 and L2 

SRAM caches. Compared with the CPU, the GPU typically has a 

flat memory hierarchy and the details of the GPU memory 

hierarchy are often missing in vendor hardware specifications. 

We model the GPU memory as a two-level hierarchy, the cache 

and the device memory, as shown in Figure 2. The data access to 

the cache can be either a hit or a miss. If the data is found in the 

cache, this access is a hit. Otherwise, it is a miss and a memory 

block is fetched from the device memory.  Given the number of 

cache misses, #miss, and that of cache hits, #hit, the cache hit rate, 

h, is defined as #miss#hit

#hit
h




.   

We model the GPU as M SIMD multiprocessors. At any time, all 

processors in a multiprocessor execute the same instruction. The 

threads on each multiprocessor are grouped into thread warps. A 

warp is the minimum schedule unit on a multiprocessor.  If a warp 

is stalled by memory access, it will be put to the end of a waiting 

list of thread warps. Then, the first warp in the waiting list 

becomes active and is scheduled to run on the multiprocessor.  

Multiprocessor 

1

Multiprocessor 

M

Cache

Device memory

Small size

High memory bandwidth

 

Figure 2. The memory model of GPU. The GPU consists of M 

SIMD multiprocessors. The cache is shared by all the 

multiprocessors.  

3.2 Definitions 
Gather and scatter are dual operations. A scatter performs indexed 

writes to an array, and a gather performs indexed reads from an 

array. We define the two operations in Figure 3.  The array L for 

the scatter contains distinct write locations for each Rin tuple, and 

that for the gather the read locations for each Rout tuple. 

Essentially, the scatter consists of sequential reads and random 

writes. In contrast, the gather consists of sequential writes and 

random reads.  Figure 4 illustrates examples for the scatter and the 

gather.    

Primitive: Scatter

Input: R
in

[1, …, n], L[1, …, n].

Output: R
out

[1, …, n].

Function: R
out

[L[i]]=R
in

[i], i=1, …n.

Primitive: Gather

Input: R
in

[1, …, n], L[1, …, n].

Output: R
out

[1, …, n].

Function: R
out

[i]=R
in

[L[i]], i=1, …n.
 

Figure 3.  Definitions of scatter and gather 

To quantify the performance of the scatter and gather operations, 

we define the effective bandwidth for the sequential access (resp. 

the random access) to be the ratio of the amount of the data array 

tuples accessed by the sequential access (resp. the random access) 

in the scatter and gather operations to the elapsed time. This 

measure indicates how much bandwidth is utilized to access the 

target (effective) data. That means, we define two kinds of 

effective bandwidth, sequential and random bandwidths, to 

distinguish the sequential and the random access patterns, 

respectively. Since the sequential access has a better locality than 

the random access, the sequential bandwidth is usually higher 

than the random bandwidth.  



(a) Scatter (b) Gather

R1 R2 R3 R4 R5 R6Rin

1 4 2 5 3 6L

R1 R3 R5 R2 R4 R6Rout

1 4 2 5 3 6L

R1 R2 R3 R4 R5 R6Rin

R1 R4 R2 R5 R3 R6Rout

  

Figure 4.  Examples of scatter and gather. 

3.3 Modeling the effective bandwidth 
In this subsection, we present our probabilistic model on 

estimating the sequential bandwidth and the random bandwidth 

(denoted as Bseq and Brand).  Since the estimation and optimization 

techniques are similar on the scatter and the gather operations, we 

describe the techniques for the scatter in detail, and present those 

for the gather in brief.  

3.3.1 Modeling the sequential bandwidth 
A sequential access fetches each memory block exactly once. A 

memory block causes a cache miss at the first access, and the later 

accesses to this memory block are cache hits. Thus, the sequential 

access achieves a high effective bandwidth.  

We estimate the sequential bandwidth using our measured 

effective bandwidth. To obtain the measured bandwidth, we 

perform a set of calibration measurements with input data arrays 

of different sizes. Given the capacity of the device memory, Dm 

MB, we measure the execution time for the sequential scan when 

the input array size is 2i MB, i=1, 2, …, m
D

2
log

. Let the 

execution time for the input array of 2i MB be ti. We compute the 

sequential bandwidth to be the weighted bandwidth of all 

calibrations as Eq. 1, where n= m
D

2
log

. Compared with the 

estimation using the average value, the weighted sum gives more 

weight to the bandwidth of the larger sizes, which fully utilize the 

bus bandwidth of the GPU.  
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3.3.2 Modeling the random bandwidth 
Compared with the sequential access, the random access has a low 

cache locality. Some accesses are cache hits, and many others are 

misses. Given the cache hit rate, h, the expected time for accessing 

a data array is defined as t, given in Eq. 2.  
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In this equation, n is the number of data array tuples; z is the size 

of each tuple (bytes); l and l’ are the memory block size and the 

transfer unit between the cache and the GPU (bytes); Bseq is the 

estimated sequential bandwidth;  is the time for fetching a 

cache line from the cache to the GPU. In this equation, the 

amortized cost for a cache hit is   '/ lz . The data transfer 

between the device memory and the GPU for a cache miss 

is   llz / . Since Bseq measures the data transfer between the 

device memory and the GPU as well as the accesses to the GPU 

cache, we estimate the total cost for a cache miss to be
 

seqB

llz /
.  

We define the random bandwidth as follows.  
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Given a fixed input, we maximize the cache hit rate in order to 

maximize the random bandwidth.  

We develop a probabilistic model to estimate the cache hit rate. 

Specifically, we estimate the cache hit rate in two cases. One is 

that the access locations are totally random, and the other is with 

the knowledge of the number of partitions in the input data. The 

number of partitions is usually a priori knowledge for various 

applications such as radix sort and hash partitioning. For instance, 

given the number of bits used in the radix sort, Bits, the number of 

partitions for the input data is 2Bits. With the knowledge of the 

number of partitions, we have a more accurate estimation on the 

cache hit rate. When there is no knowledge of the number of 

partitions, we assume the access locations are random and use the 

first case to estimate the cache hit rate. 

Case I: totally random accesses.  We first estimate the expected 

number of distinct memory blocks, E, accessed by n random 

accesses.  Suppose the total number of memory blocks for storing 

the input data array is k.  Let Ej be the number of cases accessing 

exactly j (1<=j<=n) distinct memory blocks. We estimate Ej as 

follows. 

!),(),( jjnSjkCE j   (4) 

In this equation, C(k, j) is the number of cases of choosing j 

memory blocks from the available k memory blocks; S(n,j) is the 

Stirling number of the second kind [9] that equals the number of 

cases of partitioning n accesses into j memory blocks; j! is the 

number of cases in the permutation of the j memory blocks. Since 

the total number of cases in accessing the k memory blocks is kn, 

we estimate the expected number of distinct memory blocks by 

these n accesses in Eq. 5.  
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Based on E and the number of cache lines in the GPU cache, N, 

we estimate the cache miss rate, m, in Eq. 6.  
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When E>N, we model cache misses in two categories -- the 

compulsory misses of loading E memory blocks, and the capacity 

misses, 
E)(n)

E

N
( 1

.  Intuitively, given a fixed input, the larger the 

cache size, the smaller the cache miss rate. 



Finally, we compute the cache hit rate of Case I to be, h=(1-m).   

Case II: Given the number of partitions, p. In this case, if the 

write locations of a thread warp belong to the same partition, they 

are consecutive. The writes to consecutive locations are 

sequential, and have a good cache locality.  

Suppose a warp consists of w threads. Each thread accesses one 

tuple at one time. The number of tuples accessed by the warp is w. 

To estimate the number of cache misses, we estimate the expected 

number of distinct partitions, D, accessed by the warp.  Let Dj be 

the number of cases containing exactly j distinct partitions, 

1<=j<=min(w, p). We estimate Dj to be Dj=C(p,j)*S(w,j)*j!. The 

estimation is similar to that on the number of distinct memory 

blocks accessed in Case I.  Since the total number of cases is 
wp

, we estimate D in Eq. 7.  

w

wp

j j

p

jD
D
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The average number of tuples belonging to each of these D 

partitions is 
D

w
. The number of memory blocks for each partition 

is 
 lD

zw





. Therefore, the cache miss rate within a thread warp is 

estimated in Eq. 8.  
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The cache hit rate within a thread warp to be (1-m).   

Finally, we compute the cache hit rate of Case II to be the sum of 

the intra- and inter-warp cache hit rates. The inter-warp cache hit 

rate is estimated as in Case I, totally random accesses. Note, even 

with the knowledge of the number of partitions, the accesses of 

warps on different multiprocessors are random due to the 

unknown execution order among warps.  

3.4 Improving the memory performance 
A basic implementation of the scatter is to sequentially scan L and 

Rin once, and output all Rin tuples to Rout during the scan. 

Similarly, the basic implementation of the gather is to scan L 

once, read the Rin tuples according to L, and write the tuples to 

Rout sequentially. Given Bseq and Brand, the total execution time of 

the scatter and the gather is estimated in Eq. 9 and 10, 

respectively. Given an array, X, we denote the number of tuples in 

X and the size of X (bytes) to be |X| and ||X||, respectively.  

rand

out

seqseq

in
scatter

B

R

B

L

B

R
T

||||||||||||


 

(9) 

seq

out

seqrand

in
gather

B

R

B

L

B

R
T

||||||||||||


 

(10) 

This basic implementation is simple. However, if L is random, the 

scatter and the gather suffer from the random access, which has 

low cache locality and results in a low bandwidth utilization.  

Since Brand is usually much lower than Bseq, we consider a multi-

pass optimization scheme to improve the cache locality. We apply 

the optimization technique to both the scatter and gather 

operations, and illustrate the optimization technique using the 

scatter as an example.   

Suppose we perform the scatter in nChunk passes. In each pass, 

we output only those Rin tuples that belong to a certain region of 

Rout.  That is, the algorithm first divides Rout into nChunk chunks, 

and then performs the scatter in nChunk passes. In the ith pass 

(1<=i<=nChunk), it scans L once, and outputs the Rin tuples 

belonging to the ith chuck of Rout (i.e., the write locations are 

between nChunk

|
out

R|
1)(i 

 and nChunk

|
out

R|
i 

). Since each chunk is much 

smaller than |Rout|, our multi-pass scatter has a better cache locality 

than the single-pass one.  

(a) Single-pass scatter (b) Multi-pass scatter

R1 R2 R3 R4 R5 R6Rin

1 4 2 5 3 6L

R1 R3 R5 R2 R4 R6Rout

R1 R2 R3 R4 R5 R6Rin

1 4 2 5 3 6L

R1 R3 R5 - - -Rout

R1 R2 R3 R4 R5 R6Rin

R1 R3 R5 R2 R4 R6Rout

Pass 1

Pass 2

miss hit

Figure 5. Single-pass vs. multi-pass scatter: the multi-pass 

scatter has a better cache locality than the single-pass one. 

Let us illustrate our multi-pass scheme using an example, as 

shown in Figure 5. For simplicity, we assume that the GPU cache 

can hold only one memory block and a block can hold three 

tuples. Under this assumption, each write in the single-pass 

scheme in Figure 5 (a) results in a miss. Consequently, the single-

pass scheme has a low cache locality. In comparison, the multi-

pass scheme divides Rout into two chunks, and writes one chunk in 

each pass. It achieves an average hit rate of 2/3. 

We estimate the total execution time of the multi-pass scatter as 

scanning Rin and L for nChunk times and outputting the data. 

Given the nChunk value, we estimate the cache hit rate in a 

similar way to the single-pass scheme. The major difference is that 

in the estimation of the random bandwidth, the number of data 

accesses considered in each pass is n/nChunk, where n is the total 

number of data accesses in the scatter. When nChunks>1, 

n/nChunks is smaller than n, the multi-pass scheme has a higher 

cache hit rate than the single-pass scheme. 

Given the estimated random bandwidth for the multi-pass scheme 

when the number of passes is nChunk, Brand, we estimate the 

execution time of the multi-pass scatter, T’scatter, in Eq. 11.  We 

choose the nChunk value so that T’scatter is minimized.  

rand

out

seq

in

scatter B

R

B

nChunkLR
T

||||||)||||(||' 
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3.5 Evaluation 
We evaluated our model and optimization techniques with 

different data sizes and data distributions. We increase the data 

size to be sufficiently large to show the performance trend. The 

default tuple size is 8 bytes, and the default size of the input data 

array is 128MB (i.e., the input data array consists of 16 million 

tuples).  The default data distribution is random. 

We have implemented and tested our algorithms on a PC with an 

NVidia G80 GPU. The PC runs Windows XP on an Intel Core2 



Quad CPU. We also run our CPU-based algorithms on a 

Windows Server 2003 server machine with two AMD Opteron 

280 dual-core processors. The hardware configuration of the PC 

and the server is shown in Table 1. The cache configuration of the 

GPU is obtained based on the GPU memory model proposed by 

Govindaraju et al.  [21].  The cache latency information of the 

CPU are obtained using a cache calibrator [1], and those of the 

GPU are obtained from the hardware specification [6]. We 

estimate the transfer unit between the cache and the GPU to be the 

memory interface, i.e., 384 bits, since we do not have any details 

on this value.  

We compute the theoretical memory bandwidth to be the bus 

width multiplying the memory clock rate. Thus, the GPU, Intel 

and AMD have a theoretical bandwidth of 86.4 GB/s, 10.4 GB/s 

and 8.0 GB/sec, respectively. Based on our measurements on 

sequentially scanning a large array, the G80 achieves a peak 

memory bandwidth of around 69.2 GB/s whereas the Intel and the 

AMD 5.6 GB/s and 5.3 GB/s, respectively.  

To evaluate our model, we define the accuracy of our model to be 

(1- v

|v'v| 

), where v and v’ are the measured and estimated values, 

respectively. We run each experiment five times and report the 

average value.  Since we aim at validating our cache model and 

evaluating the scatter and the gather on the GPU, the results for 

the GPU-based algorithms in this section do not include the data 

transfer time between the CPU and the GPU.  

Table 1. Hardware configuration 

 GPU(G80) CPU(Intel) CPU(AMD) 

Processors 1350MHz  8 

16 

2.4 GHz  4 

(Quad-core) 

2.4GHz  2  2 

(two dual-core) 

Cache size  392 KB L1: 32KB  4, 

L2: 8MB 

L1: 64KB  2  2, 

L2: 1MB  2  2 

Cache block 

size (bytes) 

256 L1: 64, L2: 128 L1: 128, L2: 

128 

Cache access 

time (cycle) 

10 L1: 3, L2: 11 L1: 3, L2: 9 

DRAM (MB) 768 1024 16384 

DRAM latency 

(cycle) 

200 138 138 

Bus width (bit) 384 64 64 

Memory clock 

(GHz) 

1.8 1.3 1.0 

Validating the performance model. Figure 6 demonstrates the 

measured and estimated performance of sequential scatter and 

gather operations on the GPU. The gather and the scatter have a 

very similar performance trend as the data size increases. The 

sequential bandwidth is estimated to be 63.9 GB/s. The figure also 

indicates that our estimation achieves an accuracy of over 87% for 

the gather and the scatter. The range of the accuracy is 80%~97%, 

i.e., min=70%, max=99%.  

Figure 7 shows the measured and estimated performance with the 

data size varied when the read/write locations are totally random.  

Our model has a high accuracy on predicting the performance of 

the gather and the scatter. The average accuracy of our model on 

the gather and the scatter is over 90% (min: 62%, max: 98%). 

Again, the gather and the scatter have a very similar performance 

trend as the data size increases. In the following, we report the 

results for the scatter only, because the results of the gather are 

similar to those of the gather.  
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Figure 6. The measured and estimated performance of the 

sequential single-pass scatter (top) and gather (bottom) on the 

GPU.  
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Figure 7. The measured and estimated performance of the 

single-pass scatter (top) and gather (bottom) on the GPU with 

random locations. 

Figure 8 shows the measured and estimated performance with the 

number of partitions in the input data varied. The data size is 



128MB. Given the number of partitions, the partition ID of each 

tuple is randomly assigned. When the number of partitions is 

larger than 32 (i.e., the warp size on the G80), the measured time 

increases dramatically due to the reduced cache reuse within a 

warp. We also observe this performance increase in our estimated 

time. These figures indicate that our estimation is accurate on 

different data sizes and different numbers of partitions in the input 

data. The average accuracy in Figure 8 is over 82% (min: 70%, 

max: 99%).  
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Figure 8. The measured and estimated single-pass scatter 

performance on the GPU: (top) the effective bandwidth of the 

random access; (bottom) the execution time.  
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Figure 9. The measured and estimated performance of the 

multi-pass scatter on GPU with the number of passes varied. 

Finally, we validate our performance model on the multi-pass 

scheme. Figure 9 shows the measured and estimated performance 

of the multi-pass scatter with the number of passes varied. The 

suitable value for the number of passes is 16. When the number of 

passes is smaller than the suitable value, the scatter performance 

improves because the cache locality of the scatter is improved. 

When the number of passes is larger than the suitable value, the 

overhead of extra scans in the multi-pass scheme becomes 

significant. The average accuracy of our model in Figure 9 is 86% 

(min: 70%, max: 99%), and our estimations for different data 

sizes and different number of partitions are also highly accurate.  

Evaluating the multi-pass scheme.  We first consider whether we 

can improve the performance through dividing the input array into 

multiple segments. We apply our multi-pass scheme to each 

segment. Since the segment can fit into the cache, the cost of the 

multiple scans is minimized. Figure 10 shows the scatter 

performance when the number of segments, #bin, increases. The 

input array is 128 MB. When #bin is 512, the segment size is 

256KB, which is smaller than the GPU cache size. When the #bin 

value increases, the scatter time increases as well. This is because 

the cache locality between the scatters on different segments gets 

worse.  

We next evaluate our multi-pass scheme with the number of 

partitions, p, varied.  The result is shown in Figure 11. When 

p<=8, the suitable number of passes in our multi-pass scheme is 

one, and the multi-pass scatter reduces to the single-pass one. As 

p increases from 8, our multi-pass scheme outperforms the single-

pass scheme. Regardless of the number of partitions in the input 

relation, our model correctly predicts a suitable value for the 

number of passes, and our multi-pass optimization technique 

improves the scatter performance up to three times.  
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Figure 10. The scatter performance with the number of 

segments varied. 
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Figure 11. The performance of the multi-pass scatter on the 

GPU with the number of partitions, p, varied. 

Finally, we compare the performance of scatter on the GPU and 

the CPU when the write locations are random. We obtain similar 

performance results as the number of partitions varied, and omit 

the results. Figure 12 shows the scatter performance with the tuple 

size varied and with the number of tuples fixed to be 16 million.  

The maximum tuple size is 16 due to the limited size of the device 

memory. Figure 13 shows the elapsed time with the number of 

tuples varied and the tuple size fixed to be 8 bytes.  



On the CPU, we consider whether our multi-pass scheme and the 

multithreading technique can improve the performance of the 

scatter. We find that the multi-pass scheme has little performance 

improvement on both Intel and AMD. This is due to the 

difference of memory architectures of the GPU and the CPU. We 

apply the single-pass scheme to the gather and the scatter on the 

CPU. The multithreading technique improves the performance of 

the scatter by 1-2X and 2-4X on Intel and AMD, respectively.   

On the GPU, the effective bandwidth of the random access 

increases as the tuple size increases. When the tuple size is fixed, 

the effective bandwidth is stable as the data size increases. 

Regardless of the tuple size and the data size, the GPU-based 

scatter has a much better performance than the optimized CPU-

based one. The speedup is 7-13X and 2-4X on Intel and AMD, 

respectively. On both the GPU and CPUs, the effective bandwidth 

is much lower than the peak bandwidth. This indicates the random 

access pattern has low locality and yield low bus utilization. 

Nevertheless, our multi-pass scheme improves the effective 

bandwidth of the GPU-based scatter by 2-4X. 
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Figure 12. The scatter performance on the CPU and the GPU 

with tuple size varied.  
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Figure 13. The scatter time on the CPU and the GPU with 

data size varied. 

4. APPLICATION AND ANALYSIS 
Scatter and gather are two fundamental data-parallel operations 

for many parallel algorithms [29]. In this section, we use scatter 

and gather to implement three memory intensive algorithms on 

GPUs, including the radix sort, the hash search and the sparse-

matrix vector multiplication. Specifically, we use our improved 

scatter to implement the radix sort and our improved gather for 

the hash search and the sparse-matrix vector multiplication. We 

also compare the end-to-end performance of the three applications 

on the GPU and the CPU. Our total execution time for the GPU-

based algorithms includes the data transfer time between the CPU 

and the GPU. 

4.1 Radix sort 

Radix sort is one of the highly parallel sorting algorithms [34]. It 

has a linear-time computational complexity. In this study, we 

implement the most significant digit (MSD) radix sort. The 

algorithm first performs P-phase partitioning on the input data, 

and then sorts the partitions in parallel.  In each phase, we divide 

the input data into multiple partitions using Bits bits. In the ith 

(0<=i<=P) phase of the radix sort, we use the (i*Bits)th to 

((i+1)*Bits)th bits from the most significant bit. After partitioning, 

we use the bitonic sort [20] to sort each partition. The bitonic sort 

can exploit the fast shared memory on G80 [6], where the shared 

memory of each multiprocessor is 16KB. Different from the 

cache, the shared memory is programmer-manipulated. 

Additionally, it is shared by threads on the same multiprocessor. 

When the partition size is smaller than the shared memory size, 

the bitonic sort works entirely on the data in the shared memory, 

and causes no further cache misses. We determine the suitable P 

value so that the resulting size of each partition is smaller than the 

shared memory size, i.e., P=logf(n/S), where f is the number of 

partitions generated in each phase, i.e., 2Bits; n, the size of the 

input array (bytes); S, the shared memory size of each 

multiprocessor (bytes).  

1

0

3

2

2

3

0

1

Data

0

0

1

1

1

1

0

0

PID

1

0

5

4

7

6

3

2

Loc

1

0

0

1

3

2

2

3

Output Data

1

0

0

1

1

0

0

1

PID

2

0

1

3

6

4

5

7

Loc

0

0

1

1

2

2

3

3

Output

Phase 1: 

the first bit from the left

Phase 2: 

the second bit from the left

1

0

0

1

3

2

2

3

 

Figure 14. An example of radix sort. 

We implement the partitioning scheme using the scatter. Given an 

input array of data tuples, dataArray, the partitioning process is 

performed in three steps. The algorithm first computes the 

partition ID for each tuple and stores all partition IDs into an 

array, pidArray, in the same order as dataArray.  Next, it 

computes the write location for each tuple based on pidArray, and 

stores the write locations into the third array, locArray. Finally, it 

applies our multi-pass scatter to output dataArray according to 

locArray. An example of the radix sort on eight tuples is 

illustrated in Figure 14. The first step is fast, because it is a 

sequential scatter and a scan. We consider optimizations on the 

second and third steps.  

For the second step, we use histograms to compute the write 

location for each tuple. Our histograms are similar to those in the 



parallel radix sort proposed by Zagha [34]. The main difference is 

that we fully consider the hardware features of the GPU to design 

our histograms. Specifically, in our partitioning algorithm, each 

thread is responsible for a portion of the input array. Because the 

histogram for each thread is accessed randomly, we store the 

histograms into the shared memory to reduce the latency of these 

random accesses.  

In our implementation, each histogram element is encoded in one 

byte. The size of each histogram is 2Bits bytes. Since each thread 

has one histogram, the Bits value must satisfy the following 

constraint due to the limited size of the shared memory: 

T*2Bits<=S, where T is the number of concurrent threads sharing 

the shared memory and S is the size of the shared memory.  

For the third step, we determine the suitable number of passes to 

minimize the execution time of the radix sort. The number of 

phases, i.e., the number of scatter operations, in the radix sort is 

P. We estimate the execution time of each scatter as in Case II 

with the number of partitions, 2Bits. The total execution time of 

these P scatter operations is C=P*T’scatter. Considering the 

constraint in the second step, we choose the suitable Bits value to 

minimize the C value.  

We have implemented the radix sort on the GPU and the CPU. 

Figure 15 shows the performance impact of our optimization 

techniques on the GPU and the CPU. Each array element is an 8-

byte record, including a four-byte key value and a four-byte 

record identifier.  The key values are randomly distributed.  

For the CPU implementation, we consider both multithreading 

and cache-optimization techniques. Suppose the CPU has Cp 

cores. We first divide the input array into Cp partitions, and sort 

these partitions in parallel. Each partition is sorted by a thread 

running an optimized CPU-based radix sort, which is a multi-pass 

algorithm [13]. It determines the number of bits used in each pass 

according to the cache parameters of the CPU, e.g., the number of 

cache lines in the L1 and the L2 caches and the number of entries 

in the data TLB (Translation Lookaside Buffer). According to the 

existing cost model [13], the number of bits in each pass is set to 

be six on both Intel and AMD so that the cache stalls are 

minimized. The number of partitions generated in one pass is 

26=64. Finally, we merge the Cp sorted partitions into one. The 

performance comparison for the CPU-based radix sort with and 

without optimizations is shown on the top of Figure 15. Our 

optimization techniques greatly improve the radix sort by 85% on 

AMD and slightly improve the radix sort on Intel.  

On the GPU, the number of bits used in each phase of the radix 

sort, Bits, is five. That is, in each phase, an array is divided into 

32 sub-arrays. Our test data takes three phases of partitioning in 

total. The suitable number of passes in our optimized scatter is 

four according to our performance model. As shown in Figure 15, 

our multi-pass scheme improves the GPU-based radix sort by over 

30%. Note, the data transfer time between the GPU and the CPU 

is 10-30% of the total execution time of the GPU-based radix sort. 

Figure 16 highlights the performance of the GPU-based radix sort, 

the GPU-based bitonic sort [20] and the CPU-based radix sort 

[13].  The GPU-based radix sort is twice faster than the GPU-

based bitonic sort. Moreover, our GPU-based algorithm is over 

2X faster than the best optimized CPU-based radix sort.  

Finally, we perform back-of-envelope calculation on the system 

bandwidth. We estimate the data transfer of the GPU-based radix 

sort through considering the cache misses estimated by our model 

and the internal data structures in the radix sort. The CPU-based 

radix sort is estimated using the existing cost model [13]. The 

estimated bandwidth of the radix sort is on average 21.4 GB/s, 1.2 

GB/s, and 2.1 GB/s on the GPU, Intel and AMD, respectively.  
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 Figure 15. The performance impact of optimizations on the 

CPU and the GPU. 
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Figure 16. The execution time of sorting algorithms on the 

GPU and the CPU. 

4.2 Hash search 

A hash table is commonly used to speed up equality search on a 

set of records. Applications using hash tables include the hash 

join and hash partitioning in databases [13]. A hash table consists 

of multiple hash headers, each of which maintains a pointer to its 

corresponding bucket. Each bucket stores the key values of the 

records that have the same hash value, and the pointers to the 

records. An example of the hash table is illustrated in Figure 17 



(a). Since dynamic allocation and deallocation of the device 

memory is not supported on current GPUs, we use an array to 

store the buckets, and each header maintains the start position of 

its corresponding bucket in the array.  

The hash search takes as input a number of search keys, performs 

probes on a hash table with these keys, and outputs the matching 

records to a result buffer in the device memory. In our 

implementation, each thread is responsible for one search key. To 

avoid the conflict when multiple threads are writing results to the 

shared result buffer concurrently, we implement the hash search in 

four steps. First, for each search key, we use the hash function to 

compute its corresponding bucket ID and determine the (start, 

end) pair indicating the start and end locations for the bucket. 

Second, we scan the bucket and determine the number of 

matching results. Third, based on the number of results for each 

key, we compute a prefix sum on these numbers to determine the 

start location at which the results of each search key are written, 

and output the record IDs of the matching tuples to an array, L. 

Fourth, we perform a gather according to L to fetch the actual 

result records. Due to the random nature of the hash search, we 

estimate the execution time of the gather in Case I.  Figure 17 (b) 

illustrates the four steps of searching two keys.  
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Figure 17. An example of hash search. 

Figure 18 shows the execution time of the hash search on the 

GPU and the CPU. Note that the data transfer time is 40-60% of 

the total execution time of the hash search. The values of the 

search keys and the keys in the hash table are all 32-bit random 

integers.  The record size is 8 bytes. We fixed the number of 

search keys to be 4 million and varied the total number of records 

in the hash table. The load factor of the hash table is around 99%.  

Similar to the CPU-based radix sort, we consider multithreading 

and cache optimization techniques for the CPU-based hash 

search. Suppose the CPU has Cp cores. We first divide the search 

keys into Cp partitions, and probe the hash table using the search 

keys of each partition in parallel. In our implementation, we used 

Cp threads and each thread is in charge of one partition. Each 

thread runs the cache-efficient hash searches using a multi-pass 

scheme similar to that on the GPU. The difference is that the 

chunk size is set to be the L2 data cache size. Similar to the CPU-

based radix sort, the performance improvement of our 

optimization on AMD is significant and that on Intel is moderate.  

Based on our performance model, the suitable number of passes 

for the GPU-based multi-pass scatter is 16. We observe that the 

optimized GPU-based hash search is 7.2X and 3.5X faster than its 

optimized CPU-based counterpart on Intel and AMD, 

respectively. Additionally, the hash search optimized with our 

multi-pass scheme is on average 50% faster than the single-pass 

scheme. We also varied the number of search keys and the number 

of records in the hash table, and obtained similar performance 

results.  Through back-of-envelope calculation, the estimated 

bandwidth of the hash search is on average 13.0 GB/s, 0.56 GB/s, 

and 1.0 GB/s on the GPU, Intel and AMD, respectively. 
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Figure 18. Hash search on the GPU and the CPU. 

4.3 Sparse-matrix vector multiplication (SpMV) 

Sparse-matrix vector multiplication (SpMV) is widely used in 

many linear solvers [15].  SpMV stores the sparse matrix in a 

compressed format and performs the multiplication on the 

compressed matrix.  We adopt the compressed format (CSR) from 

the Intel MKL library [3] to represent the sparse matrix: for each 

row, only the non-zero elements are stored. In row i, if column j is 

not zero, we represent this cell as a tuple (j, v), where v is the 

value of the cell (i, j). This compressed format stores the matrix 

into four arrays: values, columns, pointerB and pointerE. Array 

values stores all the values of non-zero cells in the order of their 

row and column indexes. Array columns stores all the column 

indexes for the non-zero cells in the row order, i.e., columns[i] 

stores the column index of the corresponding cell of values[i].  

Arrays pointerB and pointerE store the start and end positions of 

each row in the values array, respectively. That is, the positions of 

the non-zero cells of the ith row are between pointerB[i] and 

(pointerE[i]-1). 

Given a sparse matrix M and a dense vector V, we store M in the 

compressed format and compute the multiplication W=M*V. Our 

algorithm computes W in two steps. First, we scan values and 



columns once, and compute the partial multiplication results on 

values and V into an array, R, where R[i]= 

(values[i]*V[columns[i]]). This multiplication is done through a 

gather to fetch the values from the vector V at read locations given 

in the array columns.  Second, based on R, we sum up the partial 

results into W: 
 


1-]pointerE[i

]pointerB[ij
R[j]W[i]

. 

When the matrix is large, SpMV is both data- and computation-

intensive. We use our multi-pass scheme to reduce the random 

accesses to the vector. Applying our performance model to 

SpMV, we estimate the execution time of the gather in Case I.  
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Figure 19. Conjugate gradient benchmark on the GPU and the 

CPU.  
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Figure 20. Conjugate gradient benchmark with real-world 

matrices on the GPU and the CPU.  

Figure 19 plots the performance in GFLOPS (Giga Floating Point 

Operations per Second) of SpMV on the GPU and the CPU. We 

applied our SpMV algorithm to the conjugate gradient benchmark 

[5], where SpMV is a core component in the sparse linear solver. 

The benchmark solves a linear system through calling the 

conjugate gradient (CG) method niter multiple times. Each 

execution of CG has 25 iterations. Each iteration consists of a 

SpMV on the matrix and a dense vector, in addition to some 

vector manipulation. In our experiments, the total execution time 

of SpMV is over 90% of the total execution time of the CG 

benchmark on both the GPU and the CPU. There are two classes 

in the benchmark, classes A and B. The vector sizes are 14 and 75 

thousand (i.e., 56KB and 300KB, respectively) for classes A and 

B, respectively.  The niter value is 15 and 75 for classes A and B, 

respectively.  The CPU-based SpMV uses the Intel MKL routines, 

mkl_dcsrmv [3].  The MKL routine does not utilize all the cores 

on the CPU. We further consider multithreading techniques on the 

CPU. Suppose the CPU has Cp cores. We horizontally divide the 

matrix into Cp sub-matrices. Next, each thread performs the 

multiplication on a sub-matrix and the vector using the 

mkl_dcsrmv routine. The multithreading technique improves the 

benchmark around 2X on both AMD and Intel.  

Since the vector size is smaller than the cache size on G80, the 

vector fits into the cache. As a result of this small vector size, the 

performance of the GPU-based algorithm with optimization is 

similar to that without. Note that the GPU-based SpMV uses the 

single precision, whereas the MKL routine uses the double 

precision. The single-precision computation may have up to 2X 

performance advantage over the double-precision computation.      

Nevertheless, the GPU-based algorithm is more than six times 

faster than the CPU-based algorithm.  

We further evaluated our SpMV algorithms using the CG 

benchmark with real-world matrices. We used the real-world 

matrices downloaded from the Sparse Matrix Collection [7]. We 

follow Gahvari’s categorization on these matrices [18]: the matrix 

size is small, medium or large, and the number of non-zero 

elements per row is low, medium or high. Figure 20 shows the 

performance comparison for four large real-world matrices, 

namely pkustk08, pkust14, Stanford_Berkeley and nd24k. These 

matrices have a similar size, and their non-zero elements per row 

increase from 11, 98, and 145 to 399. The benchmark 

configuration is the same as class B. The optimized SpMV with 

our multi-pass scheme is moderately faster than the one with the 

single-pass scheme. Moreover, the GPU-based algorithm is over 

six times faster than the CPU-based algorithm. We also evaluated 

our algorithms with matrices of different sizes and obtained 

similar performance results.  

 

5. CONCLUSION AND FUTURE WORK 
We presented a probabilistic model to estimate the memory 

performance of scatter and gather operations. Moreover, we 

proposed optimization techniques to improve the bandwidth 

utilization of these two operations by improving the memory 

locality in data accesses. We have applied our techniques to three 

scientific applications and have compared their performance 

against prior GPU-based algorithms and optimized CPU-based 

algorithms. Our results show a significant performance 

improvement on the NVIDIA 8800 GPU.    

There are several avenues for future work. We are interested in 

applying our scatter and gather operations to other scientific 

applications. We are also interested in developing efficient scatter 

and gather operations on other architectures such as the IBM Cell 

processor and AMD Fusion. Finally, it is an interesting future 

direction to extend our algorithms to multiple hosts, e.g., clusters 

or MPPs without shared memory. 
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