
GPGPU for Real-Time Data Analytics

Bingsheng He1 Huynh Phung Huynh2, Rick Goh Siow Mong2

1Nanyang Technological University, Singapore
2A*STAR Institute of High Performance Computing, Singapore

The demand for real-time data analytics (RTDA) has been

on the rise in the past decades and is ever-growing with

the proliferation of different data collection devices (like

various sensors, camera and mobiles) and our application

requirements (such as monitoring, visualization and interactive

explorations). This field has been identified as one of the most

exciting and promising areas for both academia and industry.

In this field, we are facing the challenges at all levels ranging

from sophisticated algorithms and procedures to mine the

gold from massive data to high-performance computing (HPC)

techniques and systems to get the useful data in time. The

high-performance requirements come from the ever growing

data and time-consuming analytics processes. There has been

a tremendous amount of research work on data mining and

processing algorithms. Instead, this tutorial focuses on the

research on HPC techniques and systems.

GPGPU (General-Purpose computation on Graphics Pro-

cessing Units) is an emerging research area in HPC. With

the massive computation power and high memory bandwidth,

GPUs have become a sharp weapon to address the performance

requirement of RTDA. Designed as co-processors, GPUs pose

a number of technical challenges for RTDA in terms of

efficiency and programmability. On the one hand, while new-

generation GPUs can have over an order of magnitude higher

memory bandwidth and higher computation power (in terms of

GFLOPS) than CPUs, novel GPGPU algorithmic design and

implementation are a must to unleash the hardware power. On

the other hand, writing a correct and efficient GPU program is

still challenging in general, and even more difficult for RTDA

with streaming updates and real-time multi-tasking.

In response to this situation, a number of GPGPU systems

and tools (e.g., [4], [6], [5], [9], [10], [2], [12]) have been

developed recently by leveraging GPGPU for (real-time) data

analytics. Some studies have developed a full-fledged system

for a particular RTDA application, e.g., PacketShader [4]

is a high-performance PC-based software router platform

that accelerates the core packet processing in Internet. In

relational databases, online transactions and analytics have

been accelerated with GPUs [6], [7], [8]. There have been

some tools to ease the programmability of data analytics. For

example, the presenters have developed GPGPU systems and

tools including (1) Mars [5], [1], a MapReduce framework,

(2) Medusa [11], a graph processing programming framework,

and (3) automatic mapping stream programs to the GPU [9],

[3]. Those systems and tools have greatly improved the

programmability of GPGPU for data analytics. Users can

focus on their application logic, and the details on GPGPU

implementations and optimizations are hidden from users. Due

to the advancement of RTDA, more GPGPU systems and tools

are likely to be (re-)invented.

In this tutorial, we will discuss the open problems and

challenging issues in RTDA, and urge the design and

development of common systems and tools optimized for

GPUs. Next, we will have an extensive review and comparative

study on representative GPGPU systems and tools in detail.

Still, the major focus of this tutorial is not just about

introducing a wide range of systems and techniques to our

audience. Rather, we endeavor to offer perspectives from a

variety of different angles of looking at the common patterns

in improving the efficiency and programmability of RTDA

systems on GPUs. We will also demonstrate our homegrown

tools on how they can support RTDA applications.

The goal of this tutorial is to provide a comprehensive

introduction to current GPGPU research for RTDA to an

audience with GPU computing background, interested in

participating in research and/or applications of GPGPU to

RTDA. We believe that this tutorial will stimulate the

discussions from audience and call for further actions to

address the open problems.

More details about this tutorial can be found at

http://www3.ntu.edu.sg/home/bshe/GPGPUTut.html.

REFERENCES

[1] W. Fang, B. He, Q. Luo, and N. K. Govindaraju. Mars: Accelerating
mapreduce with graphics processors. IEEE Trans. Parallel Distrib. Syst.,
22(4):608–620, Apr. 2011.

[2] A. Gharaibeh, S. Al-Kiswany, S. Gopalakrishnan, and M. Ripeanu.
A gpu accelerated storage system. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing,
HPDC ’10, pages 167–178, New York, NY, USA, 2010. ACM.

[3] A. Hagiescu, H. P. Huynh, W.-F. Wong, and R. S. M. Goh. Automated
architecture-aware mapping of streaming applications onto gpus. In
IPDPS’11, pages 467–478, 2011.

[4] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: a gpu-accelerated
software router. In Proceedings of the ACM SIGCOMM 2010 conference,
SIGCOMM ’10, pages 195–206, New York, NY, USA, 2010. ACM.

[5] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: a
mapreduce framework on graphics processors. In Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, PACT ’08, pages 260–269, New York, NY, USA, 2008.
ACM.

[6] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V.
Sander. Relational query coprocessing on graphics processors. ACM
Trans. Database Syst., 34(4):21:1–21:39, Dec. 2009.

[7] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander.
Relational joins on graphics processors. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, SIGMOD
’08, pages 511–524, New York, NY, USA, 2008. ACM.

[8] B. He and J. X. Yu. High-throughput transaction executions on graphics
processors. Proc. VLDB Endow., 4(5):314–325, Feb. 2011.

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.156

945

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.156

945

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.156

945

[9] H. P. Huynh, A. Hagiescu, W.-F. Wong, and R. S. M. Goh. Scalable
framework for mapping streaming applications onto multi-gpu systems.
In Proceedings of the 17th ACM SIGPLAN symposium on Principles
and Practice of Parallel Programming, PPoPP ’12, pages 1–10, New
York, NY, USA, 2012. ACM.

[10] G. Vasiliadis, M. Polychronakis, and S. Ioannidis. Midea: a multi-
parallel intrusion detection architecture. In Proceedings of the 18th ACM
conference on Computer and communications security, CCS ’11, pages
297–308, New York, NY, USA, 2011. ACM.

[11] J. Zhong and B. He. An overview of medusa: simplified graph processing
on gpus. In Proceedings of the 17th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming, PPoPP ’12, pages
283–284, New York, NY, USA, 2012. ACM.

[12] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, and Q. Dong.
Gpu-based nfa implementation for memory efficient high speed regular
expression matching. In Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, PPoPP
’12, pages 129–140, New York, NY, USA, 2012. ACM.

946946946

