
A Framework for Analyzing Monetary Cost
of Database Systems in the Cloud

Changbing Chen and Bingsheng He

School of Computer Engineering
Nanyang Technological University, Singapore

Abstract. In this paper, we propose to develop a framework to analyze the mon-
etary cost of running database systems in the public cloud. The framework of-
fers guidelines and methodologies in analyzing and estimating monetary cost
of database systems. It consists of multiple components including categorizing
database performance tuning knobs, benchmarking the price/performance of com-
putation resources offered by the cloud provider, and building a monetary cost
model. As a case study of our proposed framework, we conduct an in-depth study
on two popular open-source database systems with respect to two cloud providers.
We find that evaluating a query spans a wide range of monetary costs (with a dif-
ference up to 91%), and the experimental results demonstrate the accuracy of our
monetary cost estimation.

Keywords: Database Systems, Cloud Computing, Performance, Monetary Cost,
Framework.

1 Introduction

In the era of cloud computing, computation can be traded as a utility sold and bought
according to predefined price schemes. Under pay-as-you-go charging, the monetary
cost of running a database system in the cloud becomes an explicitly measurable metric.
The pay-as-you-go feature is a clear distinction from previous price-oriented studies, for
example, PennySort [3] and TPC-H including costs on hardware, software and shipping.
Like the performance (in terms of throughput or response time) that has long been the
core metric for system design and optimizations, the monetary cost has become an
important metric for system design and optimizations [13,8].

To understand and optimize the monetary cost of running database systems in the
cloud, we are particularly interested in the following questions:

– Where does the money go? We hope to identify the major cost component(s) in the
total monetary cost.

– What is the correlation between performance and monetary cost of running database
systems in the cloud?

– Current price schemes are mostly based on resource consumptions, with differ-
ential prices on virtual machine types. How do price schemes affect the system
optimizations for monetary cost in the future cloud environment?

– What are the opportunities to reduce the monetary cost given certain workloads?

J. Wang et al. (Eds.): WAIM 2013, LNCS 7923, pp. 118–129, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Framework for Analyzing Monetary Cost of Database Systems in the Cloud 119

It is a non-trivial task to answer the above questions. The monetary cost of running
database systems in the cloud involves various complicated and often intertwined fac-
tors involving cloud providers (including price definitions as well as the virtual machine
performance), and users (including how database systems are tuned and optimized). All
these factors are able to significantly affect the monetary cost. Specifically, providers
offer virtual machines with different capabilities at different prices. It is not clear about
the monetary cost of running the same system on these offerings. Moreover, there is
not yet a standard on the price scheme among different cloud providers. Clearly, differ-
ent price schemes directly result in different monetary costs, leading to the differences
in monetary cost. Even within a single price scheme, different virtual machines are
charged at different prices; resource components (such as I/O, CPU and memory) can
have different prices at different time periods (such as option pricing in Amazon). There
have been only a few preliminary studies in understanding and optimizing the monetary
cost of running database systems in the cloud [13,9]. Also, few studies systematically
explore the interplay among database systems, prices and cloud offerings.

In this paper, we develop a framework to guide the study on the interplay among per-
formance tunings, price structures and cloud offerings. In the framework, we develop
methodologies in the following components of analyzing the monetary cost: 1) defin-
ing the space of prices under study, 2) assembling (micro) benchmarks for assessing
the price and performance of resource components of virtual machines, 3) categorizing
the tuning knobs within database systems with respect to the relationship between per-
formance and monetary cost, and 4) developing a monetary cost model to estimate the
monetary cost of query processing. Those components are designed as guidelines for
analyzing the monetary cost of database systems in the cloud.

We evaluate our framework by running two popular open-source DBMSs (Post-
greSQL and MySQL) on two different cloud providers, Amazon and Rackspace.
Through the extensive study, we find that virtual machine selections and price-aware
optimizations are key factors for reducing the monetary cost. Additionally, the exper-
iments show that our monetary cost model accurately predicts the monetary cost with
different virtual machine offerings and prices. That demonstrates the effectiveness of
the proposed framework.

Organization. The remainder of this paper is organized as follows. We review the re-
lated work in Section 2. Section 3 presents the framework design, followed by the ex-
perimental results in Section 4. Finally, we conclude this paper in Section 5.

2 Related Work

There have been a few studies on evaluating and optimizing user expenses in the cloud.
Economics, particularly prices, have significant impact on cloud system designs [13,5].
Palankar et al. [9] studied the cost, availability and performance on Amazon S3 ser-
vices, in the context of data intensive scientific applications. Kossmann et al. [8] stud-
ied the performance and cost of transactional workloads for different cloud providers.
Tak et al. [11] studied different deployment choices for transactional workloads. Kllapi
et al. [7] proposed optimizations for virtual machine selections to minimize the mon-
etary cost of data flow programs. Assuncao et al. [2] evaluated the cost performance

120 C. Chen and B. He

of different scheduling strategies to combine a private (self-owned) cloud with pub-
lic clouds. Compared with existing work, this study focuses on the interplay among
database systems, prices and cloud offerings, and develops a monetary cost model for
monetary cost optimizations. A number of studies [13,10,4] have been conducted to
understand the performance variance on Amazon. We observed similar variance in the
monetary cost, and our study covers the offerings from different cloud providers, and
more virtual machine types on Amazon.

3 Framework Design

In order to analyze the monetary cost of database systems in the cloud, we develop a
framework to guide the analysis of different aspects related to monetary cost. Partic-
ularly, the framework consists of the following components: 1) defining the space of
prices, 2) assembling a series of micro benchmarks for assessing the price and per-
formance of resource components of virtual machines, 3) categorizing the tuning knobs
within database systems with respect to the relationship between performance and mon-
etary cost, and 4) developing a monetary cost model by extending the performance
model within database system. In the remainder of this section, we present the detailed
design of each component.

3.1 Space of Prices

We observe spatial and temporal features of price definitions in the cloud. The spa-
tial feature means different price definitions for different virtual machine instances and
different cloud providers. The temporal feature means the temporally varying prices
for the same virtual machine type, such as option pricing on Amazon. One example
of spatial features is differential pricing for virtual machines in different regions of the
world. Even for the same virtual machine, the reservation price is lower than that of
on-demand virtual machines. Option pricing in Amazon is a temporal pricing feature.
When the option price determined by supply/demand is lower than the user bid price,
the virtual machine is granted to the user at the option price.

For the fair comparison on different virtual machines, we consider the offerings with
the same operating system (Linux in our study). Moreover, the absolute prices are not
a direct motivation for investigating the monetary cost of system optimizations. The in-
terplay between the database system optimization and the price is on the relative prices
among different resource consumptions, the relative prices for the same resource within
the same provider or from different cloud providers and the relative prices on different
temporal periods. We intentionally vary the price structures for sensitivity evaluations
on the monetary cost.

3.2 Micro Benchmarks

We assemble the following micro benchmarks to measure the monetary cost of CPU
and memory systems. Particularly, we use the Unix Benchmark Utility (Ubench) [12]
to measure CPU capability and main memory performance. For I/O, we use the IOzone
benchmark [6] to measure the sequential and random read performance on the persistent
storage.

A Framework for Analyzing Monetary Cost of Database Systems in the Cloud 121

3.3 Categorizing Tuning Knobs

Many performance tuning knobs could have been added to DBMSs for performance
evaluation. They cover different aspects of data management tasks, from query plan-
ning and execution to system wide configurations. Our studies identify three categories
of tuning knobs, according to resource consumption based price schemes: (Category A)
the knobs directly reduce the consumption of a resource component without increasing
the consumption of other resource components (e.g., the buffer size of the DBMS),
and (Category B) the knobs have the tradeoff among multiple resource components:
reducing the consumption of a resource component but increasing the consumption of
the other resource components. Tuning knobs in Category B require careful investiga-
tions on existing tradeoffs, which exist in various query optimizations such as access
methods (e.g., sequential scans vs. index scans), and compression techniques. Beyond
the existing tuning knobs for a specific virtual machine, we have other tuning knobs in
the cloud, i.e., selecting different cloud providers and different virtual machine types
from a specific provider (Category C). In this study, we investigate some typical tuning
knobs that are common for PostgreSQL and MySQL, as shown in Table 1.

Table 1. Example tunings in each category

Category Tunings
A • tuning the buffer size;
B • database compressions;

• auxiliary structure (e.g., index and materialized view);
C • selections of different virtual machines from the same provider;

• selections of suitable cloud providers;

3.4 Monetary Cost Model

Since existing cost models in DBMSs are limited to query execution time, we develop
a monetary cost model to facilitate virtual machine selections and price-aware tuning
knobs. A natural direction is to adapt the existing cost model in DBMS with the aware-
ness of virtual machines and prices. We have implemented the monetary cost model
in both PostgreSQL and MySQL. Since their adaptation and experimental results are
similar, we present the adaptation in details with PostgreSQL as an example.

We develop the monetary cost model in two steps, introducing the awareness of
virtual machine performance differences and prices into the existing timing cost model
of the DBMS.

First, we introduce the awareness of the performance differences of virtual machine
offerings, and obtain an enhanced timing cost model. As demonstrated in Figure 2,
different virtual machine types have quite different CPU, memory and I/O performance.
The existing timing cost model of the DBMS uses some constants as the unit cost for
calculating the query execution time. Figure 1 shows a fraction of the source code for
the cost estimation of a sequential scan on a relation in PostgreSQL. Two constant
parameters, “spc seq page cost” and “cpu tuple cost”, are used to represent the I/O

122 C. Chen and B. He

and CPU unit costs per tuple in a sequential scan. We use some simple experiments to
calibrate those unit costs in the target virtual machine types. Next, the calibrated values
are plugged into the timing cost model. Thus, the timing cost model is able to predict
the timing cost on different virtual machine types.

00172 cost_seqscan(Path *path, PlannerInfo *root,
00173 RelOptInfo *baserel)
00174 {
… /*
00193 * disk costs
00194 */
00195 run_cost += spc_seq_page_cost * baserel->pages;
00196
00197 /* CPU costs */
00198 startup_cost += baserel->baserestrictcost.startup;
00199 cpu_per_tuple = cpu_tuple_cost + baserel->baserestrictcost.per_tuple;
00200 run_cost += cpu_per_tuple * baserel->tuples;
…
00203 path->total_cost = startup_cost + run_cost;
00204 }

Introduce virtual machine
awareness to unit costs

Cost components for
price awareness

//in costsize.c in the postgreSQL code base

Fig. 1. An illustration of building monetary cost estimation: estimations for a sequential scan on
a relation in PostgreSQL

Second, we introduce the awareness of price structures into the enhanced timing
cost model. The enhanced timing cost model is able to predict the query execution time
(denoted as T) on a certain virtual machine type. Moreover, from the timing cost esti-
mation, we can obtain the estimated number of I/O operations incurred during query ex-
ecution (denoted as #IO). Figure 1 illustrates that “baserel−>pages” and “total cost”
are used as estimations in PostgreSQL for #IO and T , respectively. Therefore, we
derive the monetary cost model in Eq. 1, by summing up the execution, storage and
I/O cost components. The price structure (pexecution, pstorage and pio) is defined as
the prices for virtual machine execution, storage and I/O operations, respectively. The
database storage size, S, is obtained from the database catalog.

MC = pexecution × T + pstorage × S × T + pio ×#IO (1)

4 Case Studies

In this section, we present case studies of the proposed framework by running Post-
greSQL and MySQL on Amazon and Rackspace.

4.1 Experimental Setup

SUT (System Under Test). The SUT (PostgreSQL or MySQL) runs on a virtual ma-
chine in a public cloud. The database data are stored in the persistent storage offered
in the cloud, e.g., EBS/RAID 0 in Amazon and the persistent storage of cloud server
in Rackspace. Therefore, database data is persistent, even after the virtual machine is
turned off.

A Framework for Analyzing Monetary Cost of Database Systems in the Cloud 123

Table 2. Instances on Amazon used in our experiments (Price: $ per hour, July 15, 2012, Linux,
US-N. Virginia)

Name Disk (GB) CPU (CU) IO RAM (GB) Price Option price
A1 0 ≤ 2 Low 0.6 0.02 0.008
A2 160 1× 1 Moderate 1.7 0.085 0.035
A3 350 2× 2.5 Moderate 1.7 0.17 0.06
A4 850 2× 2 Moderate 7.5 0.34 0.15
A5 1,690 8× 2 High 15 0.68 0.24

Table 3. Linux virtual machines on Rackspace used in our experiments (July 15, 2012)

Name Disk (GB) RAM (GB) Price ($ per hour)
R1 80 2 0.12
R2 160 4 0.24
R3 320 8 0.48
R4 620 15.5 0.96

TPC-H Setup. We chose TPC-H as the benchmark workloads, since these queries rep-
resent commonly used data warehousing workloads. Moreover, they vary in complexity,
which exercises different components including CPU and I/O in the virtual machine. We
evaluate TPC-H with different scale factors, one and ten. The default scale factor is 10.
In the experiment, we exclude TPC-H queries Q8, Q20 and Q21, since each of these
queries ran longer than 3 hours.

We run TPC-H benchmark queries on two popular open-source data management
systems, PostgreSQL 8.4 and MySQL 5.1. The page size of both systems is set to be
8KB. The buffer size is manually tuned for the best performance on different virtual
machines. We examine the monetary cost of evaluating individual queries as well as
multiple queries. In the evaluation of multiple queries, we evaluate 30 queries randomly
selected from the TPC-H benchmark. Since we mainly focus on the monetary cost
incurred by the resource consumption, we exclude installation costs on those systems.

Database Compressions. MySQL supports database compressions, and allows us to
investigate database compressions as a tuning of Category B. We use myisampack to
(de)compress the database. The total storage sizes of tables and their indexes with scale
factor of ten are 11.4GB and 17.4GB with and without database compressions, respec-
tively. With compression, the database storage size reduces 35%.

We conducted the experiments on virtual machines offered by Amazon and
Rackspace. The operating system is Ubuntu Linux 10.04. The file system is ext3. We
consider the five virtual machine types in Amazon with different CPU and I/O capa-
bilities. Table 2 summarizes their basic properties listed in Amazon web site [1]. Vir-
tual machine types A1–A5 correspond to t1.micro, m1.small, c1.medium, m1.large and
m1.xlarge in Amazon’s definition. The CPU capability is given in the form of (#core
×#CUPerCore).

We choose the virtual machine types R1–R4 on Rackspace, as shown in Table 3.
Rackspace provisions the storage almost proportional to the amount of RAM.

124 C. Chen and B. He

0

1000000

2000000

3000000

4000000

5000000

A1 A2 A3 A4 A5 R1 R2 R3 R4

U
be

nc
h

sc
or

e/
$

Virtual machine types

CPU/Price

(a)

0

1000000

2000000

3000000

4000000

5000000

A1 A2 A3 A4 A5 R1 R2 R3 R4

U
be

nc
h

sc
or

e/
$

Virtual machine types

RAM/Price

(b)

0

1000

2000

3000

4000

5000

6000

A1 A2 A3 A4 A5 R1 R2 R3 R4

Se
qu

en
tia

l b
lo

ck
 r

ea
ds

(M
B

/$
)

Virtual machine types

Sequential block reads

(c)

0
50
100
150
200
250
300
350
400

A1 A2 A3 A4 A5 R1 R2 R3 R4

R
an

do
m

 r
ea

ds
 (M

B
/$

)

Virtual machine types

Random seeks

(d)

Fig. 2. Monetary efficiency of CPU and memory systems in different virtual machines in Amazon
and Rackspace

While the result of a single run is not representative due to the cloud system dy-
namics, the results of many runs can capture the stability, i.e., forming a band in the
measurement [10]. Thus, the average value of multiple runs tends to represent the per-
formance in a long running scenario. In this study, we run each experiment on five virtual
machine instances with ten times each, and report the average for the measurements.

4.2 Micro Benchmarks

Figure 2 shows the monetary cost obtained from the micro benchmark results on dif-
ferent virtual machine instances. The block size of IOzone is set to the page size of
data management systems (8KB). Comparing the relative monetary cost of different
system components among the virtual machines, we find that the relative monetary cost
of the CPU is similar to that of RAM; the relative monetary cost of the sequential block
accesses is similar to that of random block accesses.

We observe significant differences among different virtual machines. On Rackspace,
R1 achieves the lowest monetary cost on all the four micro benchmarks. This results in
R1 being the most monetary efficient virtual machine on Rackspace, as we will see in
Figure 3. Nevertheless, R1 does not necessarily achieve the lowest monetary cost for all
workloads, due to its relatively small main memory capacity as well as storage capacity.
On Amazon, there is not a specific virtual machine types dominating the four measured
metrics.

4.3 Where Does the Money Go?

Overall, we observed similar monetary cost breakdowns on MySQL to those in Post-
greSQL.

Multiple Queries. Figure 3 shows the monetary cost breakdown for running 30 queries
in PostgreSQL and MySQL. Since Rackspace does not charge on I/O or storage, the
monetary cost includes the execution cost only. In contrast, we observed significant
differences in the breakdown among different virtual machines on Amazon. As the vir-
tual machine capability increases, the total execution time decreases, and the amortized
storage cost decreases. However, due to the increased price, the execution cost may in-
crease or decrease. As for the I/O cost, as the virtual machine capability increases, the
amount of main memory increases and the number of I/O accesses reduces, therefore
reducing the I/O access cost. For virtual machines A1–A5, the storage cost is insignif-
icant. The I/O cost and execution costs are two important components in the monetary

A Framework for Analyzing Monetary Cost of Database Systems in the Cloud 125

0

0.5

1

1.5

2

2.5

A1 A2 A3 A4 A5 R1 R2 R3 R4

M
on

et
ar

y
co

st
 ($

)

Virtual machine types

I/O

Storage

Execution

(a) PostgreSQL

0
0.5

1
1.5

2
2.5

3
3.5

4

A1 A2 A3 A4 A5 R1 R2 R3 R4

M
on

et
ar

y
co

st
 ($

)

Virtual machine types

I/O

Storage

Execution

(b) MySQL

Fig. 3. The monetary cost breakdown of running 30 queries of PostgreSQL and MySQL on Ama-
zon and Rackspace

cost of A1–A5. On the virtual machine with higher prices, the execution cost is more
significant and the I/O access cost is less significant.

The time breakdown clearly shows that I/O and execution costs are the most signifi-
cant components in the monetary cost. We could reduce I/O accesses and/or improve the
query processing performance to reduce the monetary cost. They are usually consistent
on data management systems, i.e., reducing I/O accesses usually results in performance
improvement.

Individual Queries. Figure 4(a) shows the breakdown on monetary cost of PostgreSQL
on running each query. Note, we restart the database system before measuring the cost
of each query. The monetary cost breakdown of individual queries is similar to those in
long-running scenario. The storage cost is insignificant, and the execution cost and the
I/O cost are two significant components. Between these two components, the execution
cost is the most significant component (more than 50% of the total monetary cost) on
Queries Q1, Q6–7, Q12–18 and Q22. The I/O cost is dominated in other queries. Com-
pared with the multi-query scenario, the I/O cost is more significant, because we flush
the buffer cache before running individual queries. For other virtual machine types, we
also observed similar results.

Different Scale Factors. Figure 4(b) shows the monetary cost breakdown of Post-
greSQL running 30 queries with the scale factor one. We observe similar trend as the
scale factor of ten. The execution cost is dominated in all virtual machine types, and the

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Q1 Q3 Q5 Q7 Q11 Q13 Q15 Q17 Q19

M
on

et
ar

y
co

st
 ($

)

TPC-H Queries

I/O

Storage

Execution

(a)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

A1 A2 A3 A4 A5 R1 R2 R3 R4

M
on

et
ar

y
co

st
 ($

)

Virtual machine types

I/O

Storage

Execution

(b)

Fig. 4. The monetary cost breakdown: (a) running individual queries on A3; (b) running 30
queries of PostgreSQL with scale factor of one

126 C. Chen and B. He

I/O cost is significant for A1–A3. Since the entire database fits into the main memory
of A4 and A5, the I/O access cost is small on those two virtual machine types.

4.4 Performance vs. Monetary Cost

Through a series of experiments on the three categories of tunings, we find that dif-
ferent categories of tuning have significant impact between performance and monetary
cost of query evaluations. Category A improves both performance and monetary cost.
Category B generally improves both performance and monetary cost with some excep-
tions, which require special care for the tradeoff between performance and monetary
cost. Lastly, Category C usually has conflicts in optimizing performance and optimiz-
ing monetary cost. From the micro benchmarks, we have observed that different virtual
machines from the same provider or from different cloud providers have different mon-
etary cost on CPU and memory systems. These differences result in the differences
in the monetary cost of running TPC-H workloads. Thus, we focus on the results for
Categories B and C only.

Tunings in Category B. Compressions. Figure 5 shows the performance and the mon-
etary cost for the simple selection query with sequential scans and TPC-H Q5 with and
without compressions on A3. Q5 is a complex five-way join query with sorting and
aggregation. Database compressions reduce the I/O cost for all queries. With compres-
sion, the execution cost of TPC-H Q5 reduces, and the execution cost for the selection
query increases, due to the decompression cost. Overall, database compressions im-
prove monetary efficiency for both queries, but degrade the performance of the selection
query.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

Execution Storage I/O Total

M
on

et
ar

y
co

st
 ($

)

w/o compression
w/ compression

(a) TPC-H Q5

0

0.005

0.01

0.015

0.02

0.025

Execution Storage I/O Total

M
on

et
ar

y
co

st
 ($

)

w/o compression
w/ compression

(b) Selection query without index

Fig. 5. Monetary costs of evaluating TPC-H Q5 and the selection query with and without com-
pression on A3

Tunings in Category C. Figure 6(a) shows the performance and monetary efficiency of
running 30 queries on PostgreSQL and MySQL. Data management systems have been
optimized for the performance with various tunings in Categories A and B. The per-
formance and monetary efficiency do not have a clear correlation between each other.
The best performing virtual machine type is not the one with the best monetary cost.
Moreover, the best performing type varies with different systems.

A Framework for Analyzing Monetary Cost of Database Systems in the Cloud 127

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
on

et
ar

y
C

os
t (

no
rm

al
iz

ed
)

Elapsed time (Normalized)

Amazon (PostgreSQL) Rackspace (PostgreSQL)
Amazon (MySQL) Rackspace (MySQL)

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
on

et
ar

y
Co

st
 (N

or
m

al
ize

d)

Elapsed time (Normalized)

Tuning A

Tuning B

Tuning C

Tuning C'

(b)

Fig. 6. Performance and monetary cost: (a) on different virtual machines in Amazon and
Rackspace, (b) by applying the three categories of tunings individually. Tunings A and B are
performed on A3 on Amazon.

Put It All Together. Figure 6(b) illustrates monetary cost and performance (i.e., the
elapsed time) for Q5 in TPC-H workload. We have observed similar results in other
TPC-H queries. Both monetary cost and elapsed time results are normalized to their
corresponding maximum value. Tunings A, B and C(C’) belong to Categories A, B and
C, respectively. Tuning A is to tune the buffer size within the same virtual machine
(i.e., with RAM of 1GB, 2GB, 4GB and 6GB). Tuning B performs Q5 with and with-
out database compressions. Tunings C and C’ are to run the query on different virtual
machine types offered by Amazon and Rackspace, respectively.

Overall, there is not a clear correlation between performance and monetary cost with
all the tunings considered. The point with best performance is not the point with the
highest monetary cost, and vice versa. Moreover, we have observed the three cases for
the correlation between performance and monetary cost. As a result, the monetary cost
varies significantly (the difference is as much as 91% for TPC-H Q5), even with similar
performance.

4.5 Impact of Price Structures

Different Charging Methods. Figure 7(a) re-plots the monetary cost of running 30
queries in Amazon with charging according to the RAM hour. We use Rackspace’s
price, $0.06 per GB per hour. Clearly, different charging methods affect the monetary
cost, since workloads have different consumptions on the resource. With charging on
the RAM hour, A3 achieves the best monetary cost. One possible reason is due to the
high monetary efficiency of RAM in A3, as shown in our micro benchmarks.

Different Prices among Virtual Machines. On Amazon, the price of execution on Ai
is twice as that of A(i − 1) (i ≥ 3). A similar tiering price ratio r exists in Rackspace.
Figure 7(b) re-plots of the monetary cost of running 30 queries on A2–A5 in Amazon,
varying the ratio, r, in the tiering price. We fixed the price of A5, and vary the ratio
of r. As the r increases, the price of A2 decreases. Thus, the monetary cost of A2–A4
increases, and A5 has the same monetary efficiency. The main observation is that the
comparison of monetary efficiency among A2–A4 varies with the ratio. For example,
A2 has the best monetary cost when r = 2, whereas A3 has the best monetary efficiency
when r = 1.5. Thus, the tiered prices affect the choice on the virtual machine with the
best monetary cost.

128 C. Chen and B. He

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A1 A2 A3 A4 A5

N
or

m
al

iz
ed

 M
on

et
ar

y
C

os
t Amazon

Amazon (RAM Hour)

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

r=1.25 r=1.5 r=1.75 r=2 r=2.25 r=2.5

N
or

m
al

iz
ed

 M
on

et
ar

y
C

os
t A2 A3

A4 A5

(b)

Fig. 7. Normalized monetary cost on A1–A5: (a) with different charging methods, (b) with dif-
ferent tiring price ratios

4.6 Cost Model Evaluations

We observed similar results on PostgreSQL and MySQL, and thus present results for
PostgreSQL only. Figure 8(a) shows the monetary cost prediction of PostgreSQL on
running each query on A3. The real and estimated monetary costs are normalized to
their corresponding maximum values. Our monetary cost model can accurately predict
the monetary cost of individual TPC-H queries. Thus, our monetary cost estimation is
applicable to different queries.

0

0.2

0.4

0.6

0.8

1

Q1 Q3 Q5 Q7 Q11 Q13 Q15 Q17 Q19

N
or

m
al

ize
d

m
on

et
ar

y
co

st Real
Estimated

(a)

0

0.2

0.4

0.6

0.8

1

A1 A2 A3 A4 A5 R1 R2 R3 R4

N
or

m
al

ize
d

m
on

et
ar

y
co

st Real Estimated

(b)

Fig. 8. Monetary cost measurement and estimation: (a) running individual TPC-H queries of Post-
greSQL on A3; (b) running TPC-H Q5 of PostgreSQL on Amazon and Rackspace

Figure 8(b) shows the monetary cost prediction of running TPC-H Q5 in PostgreSQL
on A1–A5 and R1–R4. Our monetary cost model is able to achieve a good prediction
on the trend of the real monetary cost, regardless of virtual machine types.

4.7 Summary

The evaluation of our framework reveals the correlation between performance and mon-
etary cost depends on workloads, price schemes and virtual machine types. We have the
following two implications on DBMSs.

First, on the same virtual machine type with fixed prices, the most monetary effi-
cient operating points are usually the best performing for different execution strategies.
Our studies confirm that the traditional performance-oriented optimizations continue to

A Framework for Analyzing Monetary Cost of Database Systems in the Cloud 129

be effective on the same virtual machine. We do see exceptions caused by tunings of
Category B on Amazon. One example exception is database compression.

Second, when different virtual machine types and different pricing features are
considered, the most monetary efficient operating points are usually not the best per-
forming. Our cost model can accurately predict the monetary cost comparison among
different virtual machine types.

5 Conclusions

This paper proposes a framework for analyzing the monetary cost of running database
systems in the cloud. We evaluate the effectiveness of the framework with database
warehousing workloads with two popular open-source DBMSs, PostgreSQL and
MySQL, on two cloud providers, Amazon and Rackspace. We find that monetary cost
of the same system varies significantly on different virtual machine types and different
price definitions. On a specific virtual machine type, the best performing configuration
is usually the most monetary efficient. We further develop a monetary cost model with
the awareness of virtual machine selections and prices. Our experiments demonstrate
that the monetary cost model accurately predicts the monetary cost of query evaluations
with different virtual machine offerings and prices.

References

1. http://aws.amazon.com/ec2/instance-types/
2. Assunção, M.D., di Costanzo, A., Buyya, R.: Evaluating the cost-benefit of using cloud com-

puting to extend the capacity of clusters. In: HPDC (2009)
3. Coates, J., Gray, J., Nyberg, C.: Performance/price soft and pennysort. Tech. Rep. MSR-TR-

98-45, Microsoft Research (1998)
4. Gong, Y., He, B., Zhong, J.: CMPI: Network performance aware MPI in the cloud. IEEE

TPDS (2013)
5. Ibrahim, S., He, B., Jin, H.: Towards pay-as-you-consume cloud computing. In: IEEE SCC

2011, pp. 370–377 (2011)
6. IOzone: http://www.iozone.org/
7. Kllapi, H., Sitaridi, E., Tsangaris, M.M., Ioannidis, Y.: Schedule optimization for data pro-

cessing flows on the cloud. In: SIGMOD (2011)
8. Kossmann, D., Kraska, T., Loesing, S.: An evaluation of alternative architectures for trans-

action processing in the cloud. In: SIGMOD (2010)
9. Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Amazon S3 for science grids: a

viable solution? In: DADC (2008)
10. Schad, J., Dittrich, J., Quiane-Ruiz, J.-A.: Runtime measurements in the cloud: Observing,

analyzing, and reducing variance. In: PVLDB (2010)
11. Tak, B.C., Urgaonkar, B., Sivasubramaniam, A.: To move or not to move: The economics of

cloud computing. In: HotCloud (2011)
12. Ubench: http://phystech.com/download/ubench.html
13. Wang, H., Jing, Q., Chen, R., He, B., Qian, Z., Zhou, L.: Distributed systems meet eco-

nomics: Pricing in the cloud. In: HotCloud (2010)

http://aws.amazon.com/ec2/instance-types/
http://www.iozone.org/
http://phystech.com/download/ubench.html

	A Framework for Analyzing Monetary Costof Database Systems in the Cloud
	1 Introduction
	2 Related Work
	3 Framework Design
	3.1 Space of Prices
	3.2 Micro Benchmarks
	3.3 Categorizing Tuning Knobs
	3.4 Monetary Cost Model

	4 Case Studies
	4.1 Experimental Setup
	4.2 Micro Benchmarks
	4.3 Where Does the Money Go?
	4.4 Performance vs. Monetary Cost
	4.5 Impact of Price Structures
	4.6 Cost Model Evaluations
	4.7 Summary

	5 Conclusions
	References

