
Willow: Saving Data Center Network Energy
for Network-Limited Flows

Dan Li, Yirong Yu, Wu He, Kai Zheng, Senior Member, IEEE, and Bingsheng He

Abstract—Today’s giant data centers are power hungry. Data center energy saving not only helps control the operational cost, but also

benefits the sustainable growth of cloud services. Due to the adoption of much more switches in modern data centers as well as the

mature server-side power management techniques, energy saving for the data center network is becoming increasingly important.

Most previous works on saving data center network energy focus on aggregating flows to as few switches as possible. However, in this

paper we argue that this method may not work for network-limited flows, the throughputs of which are elastic based on the competing

flows. To save the network energy consumed by this kind of elastic flows, we propose a flow scheduling approach calledWillow, which

takes both the number of switches involved and their active working durations into consideration. We formulate this problem by

programming and design a greedy approximate algorithm to schedule flows in an online manner. Simulations based on MapReduce

traces show that Willow can save up to 60 percent network energy compared with ECMP scheduling in typical settings, and

outperforms other classical heuristic algorithms such as simulated annealing and particle swarm optimization. Testbed Experiments

demonstrate that this kind of dynamic energy-efficient flow scheduling causes negligible impact on upper-layer applications.

Index Terms—Data center network, energy efficiency, flow scheduling

Ç

1 INTRODUCTION

DATA centers are built around the world to run large-
scale distributed computations, such as scientific calcu-

lation, batch processing and cloud based service. Modern
data centers are quite power hungry [1]. As an important
citizen for the operating cost of data centers, energy con-
sumption is even demonstrated to surpass the equipment
cost [2], [3]. Hence, energy cost now becomes a headache
for many data center owners. Energy saving in data centers
is important not only for economical and environmental
reasons, but also for the sustainable growth of cloud com-
puting, due to the challenges imposed by power delivery to
and heat removal from giant data centers.

Energy consumption in data centers goes to cooling,
power distribution, IT equipments, etc. Usually, power
usage effectiveness, or PUE, is used to measure the effi-
ciency of the data center power distribution. PUE is defined
as the total facility power over the IT equipment power [15].
The lower the PUE is, the more power is delivered to IT
equipments. In the past years, researchers and engineers are
struggling to reduce the PUE of data centers. In April 2011,
the Open Compute Project of Facebook announced a PUE of
1.07 [4]. It indicates that 93.5 percent of the data center facil-
ity power can be delivered to the IT equipments. Hence, for

energy saving in modern and future data centers, it is more
important to reduce the energy consumption of IT equip-
ments, than that of cooling or power distribution parts.

As for power management on IT equipments, past efforts
have been primarily spent on the server side. However, the
networking side also occupies 10�23 percent of the total
data center power consumption [6], [34], [35], which cannot
be neglected. If the mature power saving techniques on the
servers are employed [5], the proportion of network power
can even be up to 50 percent [33]. Moreover, the technical
trend of data center design is to use much more switches to
provide high bisection bandwidth [9], [16], [28], which will
further increase the network energy. In order to reduce the
energy consumption of data center network, previous
works studied how to use aggregate flows into a minimal
number of switches, while letting the other switches “sleep
on idle” [6], [29], [33].

However, in this paper, we challenge that although the
widely-used flow aggregation method works for saving
energy of application-limited flows, it does not work for net-
work-limited flows. For a network-limited flow [8], the
application generates traffic at a very fast speed and the
throughput of the flow depends on the network capacity of
the routing path as well as the number of competing flows
in the bottleneck link of the path. As a result, although flow
aggregation reduces the number of switches involved, it on
the other side leads to lower throughputs for the flows and
thus increases the active running duration of the switches.
Therefore, saving the network energy of network-limited
flows cannot be simply translated as minimizing the num-
ber of involved switches or maximizing the flows’ through-
puts. Instead, there should be a balancing point in choosing
the routing paths of the flows, so as to minimize the overall
network energy footprint.

We design Willow, which schedules network-limited
flows for energy saving by leveraging the controlled

� D. Li, Y. Yu, and W. He are with the Computer Science Department,
Tsinghua University, Beijing 100084, China.
E-mail: tolidan@tsinghua.edu.cn, {yyr2046, hewu34}@126.com.

� K. Zheng is with the IBM China Research Lab, Beijing 100094, China.
E-mail: zhengkai@cnibm.com.

� B. He is with the School of Computer Science and Engineering, Nanyang
Technological University, Nanyang Ave, Singapore.
E-mail: bshe@ntu.edu.sg.

Manuscript received 9 Apr. 2014; revised 18 July 2014; accepted 14 Aug.
2014. Date of publication 21 Aug. 2014; date of current version 7 Aug. 2015.
Recommended for acceptance by K. Wu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2350990

2610 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2015

1045-9219� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

environment of data centers and the emerging software
defined network (SDN) technique. The SDN controller col-
lects the flows’ size and deadline information to determine
the best routing paths for the flows in terms of energy sav-
ing, and periodically updates the routes to accommodate
flow dynamics, topology dynamics as well as inaccurate
estimation. We modelize the scheduling problem in a multi-
path data center network (e.g., Fat-Tree, BCube) and formu-
late it by programming, with consideration of the flow
deadline constraints. In order to schedule flows in an online
manner, we design a greedy approximation algorithm and
optimize it in Fat-Tree network. The computation complex-
ity of the algorithm in Fat-Tree network is Oðx �mÞ, where
x is the number of elephant flows to schedule, and m is the
number of core switches in Fat-Tree.

Based on the realworld MapReduce workloads, we con-
duct simulations to evaluate Willow. Simulation results
show that the online greedy approximation algorithm in
Willow can save up to 60 percent network energy compared
with traditional ECMP scheduling, in a container-sized Fat-
Tree data center network running tens of thousands of ele-
phant flows. The time required by the greedy approximate
scheduling is less than 1 second on a commodity server,
and it generally outperforms the other two heuristic
algorithms in terms of network energy saving. In order to
study the impact of dynamic flow scheduling on the
application’s performance, we implement Willow on SDN
controller and run experiments in a small test bed. The
results show that this kind of flow scheduling algorithm
acts so quickly that the dynamic forwarding entry updates
causes negligible impact on upper-layer applications.

The rest of this paper is organized as follows. Section 2
states the problem. Section 3 describes the algorithm
design. Sections 4 and 5 evaluate our flow scheduling
algorithm by simulations and experiments, respectively.
Section 6 discusses the related work. Finally, Section 7
concludes the paper.

2 NETWORK ENERGY OF NETWORK-LIMITED

FLOWS IN DATA CENTERS

In this section we first introduce the background of power
management of data center switches and data center net-
work topology, and then state the problem of saving network
energy consumed by network-limited flows in data centers.

2.1 Power Management of Data Center Switches

Generally speaking, the power consumption of a switch in
data center can be expressed as Pidle þ fðbÞ, where Pidle is
the power consumed at the idle state, and fðbÞ is the power
consumed when traffic rate is at b. Measurements have
shown that Pidle is the dominant contributor [17]. Though
rate adaptation, i.e., changing the operating rate of the
switch ports according to the traffic load, can save energy,
its saving is moderate compared to putting the entire switch
into sleep. Besides, existing hardware lacks support for
smooth rate adaptation on-the-fly and port-level sleeping
[18]. Hence in this paper we assume that the switch power
consumption is almost constant during its active working
period, and focus on saving energy by putting the whole
switches into sleeping mode when none of its ports carry

any traffic. Note that the energy consumed in sleeping state
is almost negligible.

We assume that a switch can go to sleepwhen idle by cen-
tralized configuration or sleep-on-idle (SoI) technique, and a
sleeping switch can be waken up when used for forwarding
packets, either by centralized management or wake-on-
arrival (WoA). Both the sleeping process andwaking process
take some time to transit. Usually a switch can go to sleep
very quickly, but waking up may take a relatively longer
time, depending on the type of the forwarding card and the
amount of forwarding information needed to load. Modern
hardware is capable of supporting SoI andWoA [27], but not
implemented in switches, partly due to the lack of an effec-
tive power-aware management system in the network.
Throughout this paper, we just assume that switches can go
to sleep or wake up based on the local traffic states, and do
not take the transition time into account in evaluation.

2.2 Data Center Network Topology

In recent years many advanced data center network archi-
tectures are proposed to increase the network capacity.
These architectures can be divided into two categories,
namely, switch-centric and server-centric. The former puts
the interconnection and routing intelligence on switches,
while the latter brings data center servers into the network-
ing part and gets them involved in packet forwarding.

The switch-centric architecture proposals either use a
totally new switch infrastructure to replace the tree structure,
or make enhancements upon the tree to improve the bisec-
tion bandwidth. Fat-Tree [9] and VL2 [10] both use low-end,
commodity switches to form a three-layer Clos network.
Each server still uses one NIC port to connect an edge-level
switch. Both the two architectures can provide an oversub-
scription ratio of 1:1 to all the servers in the network. The dif-
ference of VL2 from Fat-Tree is that higher-speed switches,
e.g., those with 10GE ports, are used in higher levels of the
Clos network to reduce thewiring complexity.

In server-centric data center architectures, each server
uses multiple NIC ports to join the network infrastructure
and participate in packet forwarding. In FiConn [16], a
recursive, level-based structure is designed to connect serv-
ers via mini-switches and dual server NIC ports. FiConn
not only eliminates the necessity to add server NIC ports
during data center expansion, but also reduces the wiring
cost. BCube [11] targets at building a data center container,
typically with 1k�4k servers. BCube is also a recursive
structure. Each server uses multiple ports to connect differ-
ent levels of switches. The link resource in BCube is so rich
that 1:1 oversubscription ratio is guaranteed.

2.3 Network Energy Consumed by Network-Limited
Flows

In this work we focus on the network energy consumed by
network-limited flows in data centers. For this kind of flows,
the application generates traffic at a very fast speed. The
throughput a flow gets depends on the routing path it choo-
ses and the number of competing flows in the bottleneck
link. Therefore, path selection for network-limited flows will
affect both the number of active switches involved and the
working duration of the switches. Assume the set of switches

LI ET AL.: WILLOW: SAVING DATA CENTER NETWORK ENERGY FOR NETWORK-LIMITED FLOWS 2611

in the network is S, the power of an active switch s is Ps

(s 2 S), and the active working duration for a switch s is ts
(s 2 S), the overall energy consumption of the network is

E ¼
X

s2S
Ps � ts: (1)

If the data center network is built from homogeneous
switches, i.e., the power consumption of each switch is the
same, say, P , Eq. (1) can further be simplified as

E ¼ P �
X

s2S
ts: (2)

We call
P

s2S ts from Eq. (2) the aggregate working duration
of the network.

We further assume the flow deadline, Df , and the flow
size, Zf , can be obtained before choosing the routing path for
a flow f . Flow deadline is assigned by application, e.g., the
time required to return the result for an online search query.
When selecting the routing path, we need to guarantee that
the flow can meet its deadline, otherwise the transmission of
the flow is useless [37]. The flow sizes can also be initiated in
advance by many applications, e.g., the reading or writing of
data chunks in distributed file systems [38], or data shuffling
in MapReduce computations [13], [14]. Even if the flow size
cannot be precisely determined, applications can usually
provide a good estimate of it before the running time [37].
Based on the flow size and the expected throughput a flow
can get, we can roughly estimate the task finish time of a
flow before running it. Specifically, assume the set of flows is
F , and the throughput of f is hf , we should guarantee

Zf

hf
� Df; 8f 2 F: (3)

Although many existing energy-efficient flow scheduling
schemes in data center networks focus on minimizing the
number of switches involved or maximizing the network
throughput, we will show that they do not work for net-
work-limited flows by the following examples.

Fig. 1 shows the scenario in part of a multi-rooted tree
network. There are two flows, i.e., flow f1 from server 1 to
server 3, and flow f2 from server 2 to server 4. Assume the
sizes of the two flows are both Z, the bandwidth capacity of
each link is B, the power consumption of each switch is P ,

and the deadlines for the two flows are both 2 �Z
B . For the

example in Fig. 1a, the scheduling algorithm, which maxi-
mizes the network throughput, generates the routing paths
in the left figure i.e., f1 taking the path of h ! e ! i while
f2 taking the path of h ! g ! i. Four switches are used and

their active working durations are Z
B. Hence, the total net-

work energy consumption is 4 �Z �P
B . Meanwhile, the right

figure shows the routing paths generated by the scheduling
algorithm minimizing the number of used switches, both f1
and f2 taking the path of h ! g ! i. Three switches are
involved; but the two flows share the same path, and the

active working duration becomes 2 �Z
B . As a result, the over-

all network energy consumption is 6 �Z �P
B . Note that both

the scheduling methods meet the flow deadlines, but the
scheduling algorithm which maximizes the network
throughput is more energy efficient in this example.

Then we check another example in Fig. 1b. The network
topology is similar as example (a), except there is link fail-
ure in h� g and e� i. The left figure shows the flow sched-
uling maximizing the network throughput, i.e., f1 taking
the path of h ! e ! b ! a ! d ! g ! i while f2 taking the

path of h ! f ! i. It gets the active working duration of Z
B,

but eight switches are used. So the network energy con-

sumption is 8 �Z �P
B . The flow scheduling algorithm minimiz-

ing the number of switches shown in the right figure, in
which both the flows take the path of h ! f ! i, results in
three involved switches and an active working duration of
2 �Z
B . Hence, the overall network energy consumption is

6 �Z �P
B . In this case, we find that the flow scheduling which

minimizes the number of switches consumes less network
energy than the one maximizing the throughput.

From the two examples, we conclude that existing
flow scheduling algorithms may not work well for mini-
mizing the network energy of network-limited flows.
Instead, to save network energy of this kind of elastic
flows, we need to take both the number of switches
involved and the active working durations of switches
into account.

3 WILLOW DESIGN

In this section we design Willow, an energy-efficient flow
scheduling approach for network-limited flows in data cen-
ter networks.

Fig. 1. Flow f1 is from server 1 to server 3, and flow f2 is from server 2 to
server 4. (1) Two flows take different paths to maximize the network
throughput. (2) Two flows take the same path to minimize the number of
switches used. In example (a), (1) is more network energy efficient; while
in example (b), (2) is more network energy efficient.

2612 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2015

3.1 Basic Idea

SDN based flow scheduling. Willow leverages the SDN frame-
work and works in a centralized fashion. The SDN control-
ler collects the flow information including the flow
deadlines and sizes, maintains the data center network
topology (including switch/link failures), computes the
routing path for each flow, and configures the forwarding
entries on switches. In order to accommodate flow dynam-
ics, topology dynamics as well as inaccurate estimations,
the controller re-schedules flows periodically.

Routing path selection. The design of Willow does not
depend on the topology of the data center network. Usually,
a richly-connected data center network has multiple equal-
cost paths between any pair of servers, which leaves high
flexibility to the routing path selection algorithm for opti-
mizing a certain metric. For instance, in Fat-Tree there are k2

4
equal-cost paths between two servers in different pods,
where k is the number of switch ports in the network. In
BCube, there are k disjoint paths between any two servers,
where k is the number of ports in a server. If considering
paths with overlapping nodes, there are even more candi-
dates to choose.

Differentiation between elephant flows and mice flows. For
network-limited flows, both elephant flows and mice flows
exist. Except for the data-intensive flows which exchange
large volumes of data, there are also background flows with
light traffic to transmit, e.g., the MapReduce protocol mes-
sages between masters and workers. It has been shown that
the small number of elephant flows dominate the traffic in
data center networks [8], [10]. Therefore, to control the
scheduling complexity, we focus on scheduling the elephant
flows with relatively large amount of data to transmit. For
mice flows, we just randomly reuse the paths assigned to
elephant flows. In what follows we discuss how Willow
schedules elephant flows on the SDN controller for network
energy saving.

3.2 Programming Solution

We formulate the problem of energy-efficient scheduling of
network-limited flows by programming. The constants, pro-
gramming variables, intermediate variables, constraints and
targets are shown as follows.

Constants:

S: set of switches.
P : set of all the possible paths.
L: set of links in the topology.
F : set of flows to assign.
Bl: bandwidth of link l 2 L
Zf : traffic size of flow f 2 F .
Df : deadline of flow f 2 F .
asl: is 1 when a link l is connected to switch s, 0 otherwise
blp: is 1 when a link l is in path p, 0 otherwise

Programming Variables:

yfp: is 1 if f 2 F assigned to path p, 0 otherwise

Intermediate Variables:

ts: time of a switch s 2 S to run
g l: time of link l 2 L to run
nl: number of flows in a link l 2 L

Constraints:

8f 2 F :
P

p yfp ¼ 1 (1)
8s 2 S; l 2 L : ts � asl � gl (2)

8l 2 L : g l �Bl �
X

p

X

f

Zf � yfp � blp (3)

8l 2 L : nl ¼
X

p

X

f

yfp � blp (4)

8f 2 F; l 2 L : Df � bl
nl
�

X

p

blp � yfp � Zf (5)

Target:

Min(
P

s ts)

Constraint (1) ensures that each flow f 2 F is assigned to
exactly one path, so as to keep ordered delivery for the
same flow. Constraint (2) ensures that each switch is
actively running if any of its links is running. Constraint (3)
ensures that each link is running before all the flows
assigned to it finish transmission. Constraint (4) and (5) sat-
isfy the flow deadline requirements.

Since the formulation covers all the possible flow sched-
uling solutions, the programming output is considered to
be optimal, and plays as a benchmark for any flow schedul-
ing algorithm in terms of network energy saving. However,
it is a mixed integer programming, and we prove it is NP-
hard as follows.

Proof. Finding the flow routes in an irregular network while
not exceeding the capacity of each link is called the multi-
commodity flow (MCF) problem, which is NP-complete
for integer flows [24]. To prove the scheduling problem
for network-limited flows in our model to be NP-hard,
we construct a sequence of sub-problems, and show that
they can be reduced to the famous MCF problem.

Let P0ðF;D;Z;GÞ denotes the original problem, where
F is the set of network-limited flows, D is the set of flow
deadlines, Z is the set of flow size and G is the input
topology. First, we reduce P0 to a sub-problem

P1ðF;D;Z;GÞ by adding a constrain that each host holds
no more than one flow, i.e., a host can be the source of at
most one flow. Second, we assume the deadlines and
flow sizes of all flows to be exactly the same. Thus, we

have a sub-problem P2ðF; fdg; fzg; GÞ. Let r ¼ z
d
. In this

sub-problem, the average rate for each flow should not
be lower than r to meet the deadline. Third, we constrain
all the edge links connected to the hosts to be the same

capacity of r. Here, we have P3ðF; fdg; fzg; GÞ, which
limits the maximum rate of each flow. In P3, the flow rate
of each flow is forced to be exactly r and remains
unchanged until it finishes. A feasible solution for P3

should also be feasible for the MCF ðF; frg; GÞ problem
and vice versa. That is to say, both problems are equiva-
lent. As a result, the original scheduling problem of net-
work-limited flows P0 is proved to be NP-complete.
Since P0 is not a NP problem, then we find that it is
NP-Hard. tu
In our experiment, it takes a few minutes for the pro-

gramming to get the optimal solution for hundreds of flows.
Obviously, the cost of programming is too high for an ideal
online flow scheduling approach, which handles tens of
thousands of flows within seconds. Hence, we turn to some

LI ET AL.: WILLOW: SAVING DATA CENTER NETWORK ENERGY FOR NETWORK-LIMITED FLOWS 2613

heuristic methods for a more practical and efficient schedul-
ing algorithms.

3.3 Classical Heuristic Schedulings

We first consider using classical heuristic algorithms to
online schedule flows in Willow, such as genetic algorithm
[23], simulated annealing [21] and particle swarm optimiza-
tion [22]. The key idea of these algorithms is to heuristically
search from the global solution space and step-by-step
improve the result. The performance of the search depends
on the time consumed. We apply all the three algorithms
into our problem, but find that the genetic algorithm takes
extremely long time to get a reasonable result. Hence we
focus on the simulated annealing and particle swarm opti-
mization algorithms.

The simulated annealing [21] is inspired by annealing in
metallurgy. In our problem, the flow scheduling solution can
be regarded as a molecule in metal, whose kinetic energy is
related to the temperature of the metal. There is an initial
solution and its energy consumption. Then simulated
annealing repeatedly changes a flow’s routing path to gener-
ate the neighboring solution, with flow-deadline guarantee.
If the neighboring solution is better in energy saving, it is
accepted; otherwise, it is acceptedwith a low probability.

The particle swarm optimization [22] is inspired by preda-
tion of birds. In our case, eachparticle represents a flow sched-
uling solution and the algorithm will maintain the amount of
particles (generally 30 particles) to find the optimal solution.
At the beginning, each particle randomly searches the solu-
tion space. During the searching process, every particle
records its best previous location with flow-deadline guaran-
tee, and all particles record a global best location. Eachparticle
uses a specified formula to determine its searching direction,
velocity and location. Note that in both simulated annealing
and particle swarm optimization, a solution is skipped if it
violates the deadline requirements of the flows.

However, our study shows that both simulated anneal-
ing and particle swarm optimization algorithms are sub-
jected to the scale of search space, and the quality of the
solution is non-deterministic. It is also time consuming for
the algorithms to get satisfactory energy saving ratio (refer
to Section 4), which cannot meet the online requirement for
flow scheduling. We thus turn to a more efficient approxi-
mation algorithm.

3.4 Willow Scheduling Algorithm

A major challenge for the heuristic solutions above is the
selection of the initial solution. To make it worse, all the
flows in our model are TCP flows, i.e., the traffic rate of a
flow is subjected to the bottleneck link and thus depends
heavily on the other flows. Because of the vast solution
space and the complicated correlation among different
flows, there’s no way to find a good initial state within rea-
sonable time. In fact, a randomly chosen initial solution is
likely to be far from the optimal point. Also, heuristic meth-
ods may be captured in local optimal solutions.

We then turn to a greedy approximation approach in
Willow scheduling. The key insight is to make full utiliza-
tion of the abundance of ports in each switch, and thus,
aggregating all the flows onto a subset of the given topology

with as few switches as possible, without increasing the net-
work running duration. To achieve high multiplexing of the
switches, we take an incremental approach to generate a
solution, i.e., scheduling all the flows one after another. For
each flow, we examine all the candidate paths and choose
one that minimizes the increment in the total working time
of all switches. This practice is far more efficient than the
heuristic approaches, because it starts with an ideal initial
state, i.e., no switches in use, and chooses the best paths at
each step, which keeps it close to the optimal solution.
What’s more, our approach doesn’t have to calculate the
cost of the overall network at each step. We just need to
compute the increment after one flow is scheduled, which
makes this greedy approach outperforms the other heuris-
tics in terms of computation overhead.

Fig. 2 shows the pseudocode of the Willow framework.
First, we sort all the flows in an ascending order in terms of
the flow deadlines (line 1), since the flows with short dead-
lines have lower flexibility in selecting the routing paths. If
an assignment violates the deadlines of affected flows (the
flows sharing links with the concerned flow), the candidate
path is skipped (line 6-7). From all the candidate paths that
can satisfy the flow deadlines, we choose the one which
minimizes the increment in aggregate working duration of
the current switches, DT (line 11-13, line 18). For accelera-
tion, we terminate the search for this flow if finding a candi-
date path which does not increase any duration compared
with the previous round (line 9-10). If no candidate path
can meet the deadline requirement of a flow, the algorithm
will not schedule the flow (passigned ¼ f).

We use Fig. 3 as an example to demonstrate the working
process and effectiveness ofWillow scheduling. In the exam-
ple network, there are 16 servers and 4 flows to schedule in a
Fat-Tree network. Flow f1 is from server v0 to v8, flow f2 is
from server v2 to v10, flow f3 is from server v4 to v12, and
flow f4 is from server v6 to v14. The network capacity of
every link is 1 Gbps. Each flow has the equal size of 1 GB and
the deadline of 8 seconds. Note that in a Fat-Tree topology,

Fig. 2. The framework of Willow scheduling algorithm.

2614 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2015

the path between hosts of different pods is decided by the
core-level switch selection. If we use traditional ECMP
scheduling for Fig. 3, it is highly probable that every flow is
assigned with a different core-level switch, which is shown
in Fig. 3a. Hence, all the 20 switches will be used to carry the
flows, and every switch will run 8 seconds. The aggregate
working duration of the switches is 160 seconds.

However, if we run Willow scheduling in Fig. 2, the pro-
cess is as follows. For each flow, four candidate paths with
different core-level switches are available. First, for flow f1,
the path with the first core-level switch w16 is assigned.
Then we consider flow f2. If the core-level switch w16 is
assigned to f2, the two flows will have to share the links
ðw8; w16Þ, ðw16; w12Þ, and the deadline requirements are
violated. As a result, the core-level switch w17 is chosen for
f2. As for flow f3, all the four core-level switches can meet
the flow deadlines, but w16 results in the least aggregate
working duration, because it multiplexes the links in w16.
Similarly, flow f4 is assigned with core-level switch w17. By
the energy efficient flow scheduling, we finally use only
two core-level switches and four aggregation-level switches,
with each switch running 8 seconds as well. The total num-
ber of switches involved is thus 14 and the aggregate work-
ing duration of the switches is 112 seconds. Therefore, our
approach can save 30 percent network energy compared
with ECMP scheduling(160 seconds) in this example.

3.5 Optimizing Willow in Specific Data Center
Network

As is shown in Fig. 2, Willow scheduling can be applied to
any generic topology, only if the candidate paths for each
flow are given. Considering the diversity of data center
topologies and the various routing mechanism, in this
work, we focus on one of the most important kinds of
data center structure, namely, Fat-Tree. We will study the

performance of our approximation on the Fat-tree topol-
ogy, including the blocking Fat-Tree. To take advantage
of the regular characteristic of Fat-Tree, we make some
improvement based on the pseudocode in Fig. 2, which
significantly reduces the computation time.

First, to reduce the time of path testing, we classify the can-
didate paths into different equivalent classes, and test only
one path of each class. For example, in the case of Fig. 3, when
scheduling flow f1 from v0 to v8, the path
v0� w0� w8� w16� w12� w4� v8 (the yellow path) is
equivalent to v0� w0� w8� w17� w12� w4� v8, since
they only differ in the core-level switches and both of these
two switches are the same in working time. The cost of select-
ing both paths are the equal. Thus, testing one path of the
equivalent class is enough. Second, to reduce the computation
time for the incremental network energy, we record the states
of each switch and each flow, including the current working
duration, the number of flows going through each port, the
number of competitors on bottleneck links for each flow, etc.
In thisway,we only have to check the impacted switches, sav-
ing the useless checkout on other irrelevant switches. Third,
we use early termination strategy, i.e., if the intermediate sum
of incremental cost of impacted switches already exceeds the
ever recorded minimum increment, we terminate this test
instantly and turn to the next candidate path. All these opti-
mization efforts lead to a speed-up by over 100X and our
approach can thus be able to handle an input of 20k flows
within 1 second in Fat-Tree network (refer to Section 4).

4 SIMULATION

In this section we carry out simulations to evaluate the effec-
tiveness of Willow in saving network energy for network-
limited flows.

4.1 Simulation Setup

Network topology. We use both Fat-Tree and blocking Fat-
Tree as the representative network topology. The capacity
of each link is 1 Gbps. For blocking Fat-Tree, we propor-
tionally remove some core-level switches from the corre-
spondent Fat-Tree structure. For instance, a blocking Fat-
Tree with oversubscription ratio of 2:1 uses only half of
the core-level switches than a correspondent Fat-Tree, as
shown in Fig. 4.

Workload traces. We collect the MapReduce computa-
tion trace from a testbed data center, which has 50 map-
pers and 20 reducers. In order to measure the
performance under more general cases, we use the flow
size distribution of the real trace to synthesize other Map-
Reduce patterns, given that the MapReduce computation
model is highly structured.

Fig. 3. ECMP flow scheduling (a) and energy efficient flow scheduling
(b). The link capacity is 1 Gbps and the flow size is 1 GB. The aggregate
working durations of switches are 160 and 112 seconds for the two algo-
rithms, respectively.

Fig. 4. A blocking Fat-Tree architecture with oversubscription ratio of 2:1.

LI ET AL.: WILLOW: SAVING DATA CENTER NETWORK ENERGY FOR NETWORK-LIMITED FLOWS 2615

Evaluation metrics. We run the greedy approximated flow
scheduling used in Willow as well as the two heuristic
scheduling algorithms, i.e., simulated annealing and parti-
cle swarm optimization. To accelerate these two heuristics,
we bundle those flows, which share the same source and
destination edge switches, for path selection. For compari-
son, we also run ECMP scheduling which enables sleep-on-
idle. We define network energy ratio of an energy-aware flow
scheduling algorithm as the total network energy consumed
by the scheduling algorithm over that of default routing
without SoI. We further compare the network energy saving
by Willow with that of offline programming solution.

Running time. We run all the flow scheduling algorithms
on a server installed with AMD Opteron (tm) Processor
4176 HE 2.4G CPU*12 and 32 GB DRAM. Since it takes 1 sec-
ond to complete the flow scheduling for the largest set of
flows we test (20,000 flows) by Willow, we run simulated
annealing and particle swarm optimization for 1 second,
too. We know that these two heuristic algorithms perform
better when searching more from the solution space. But by
running the two algorithms for longer time, we find that the
improvement is marginal and longer search time does not
fit the online scheduling requirement.

4.2 MapReduce Pattern

We use a Fat-Tree network composed of 16-port switches,
which has 1,024 servers and fits the size of a containerized
data center. We then vary the MapReduce patterns to evalu-
ate the impact of both the number of flows and the skew-
ness between mappers and reducers. More specifically, we
set the number of mappers and reducers in each application
as 1,000*20, 800*25, 1,000*10, 500*20, 500*10, respectively.
The total number of (elephant) flows thus varies from
20,000, 10,000 to 5,000. We evenly place the mappers and
reducers onto all the physical servers. Then we run the four
flow scheduling algorithms and calculate their network
energy saving ratios as shown in Fig. 5.

From the figure we find that Willow scheduling, simu-
lated annealing and particle swarm optimization can all
save network energy compared with ECMP, in particular
the Willow scheduling algorithm. Generally when there are
less flows in the network, the network energy ratio is lower,
because more switches have opportunities to sleep. Simu-
lated annealing and particle swarm optimization work par-
ticularly well with less flows, because they also have more

chances to search for a better solution from the smaller solu-
tion space. In the 1000*20 and 1000*10 patterns, ECMP
scheduling uses almost all the switches and barely saves
any network energy. In the 500*10 pattern, the greedy
approximation in Willow can even save more than 60 per-
cent network energy compared with ECMP.

4.3 Percentage of Servers to Place Flows

Then we use the 1,000*20 MapReduce pattern, and choose
different numbers of physical servers to place the mappers
and reducers. The Fat-Tree network is also constructed by
16-port switches. We vary the percentage of physical servers
used over the total number of physical servers from 20 to
100 percent. Mappers and reducers are evenly placed onto
physical servers available. Fig. 6 shows the network energy
ratios of the four flow scheduling algorithms.

Generally speaking, the network energy ratios of all the
four flow scheduling algorithms increase with more servers
used to transmit flows. Greedy approximation in Willow
enjoys the least network energy ratio while ECMP schedul-
ing has the highest. When the percentage of servers used is
20 and 100 percent, Willow greedy approximation can save
about 50 and 40 percent network energy compared with
ECMP scheduling, respectively.

4.4 Data Center Size

We then test the impact of data center size on the network
energy ratio. We use the Fat-Tree topology composed by 8-
port, 16-port, 24-port, 32-port, and 40-port switches, respec-
tively. Hence, the number of servers in the data center is
128, 1,024, 3,456, 8,192 and 16,000, respectively. We run the
MapReduce task with 2,000*10 pattern, and the mappers
and reducers are evenly placed onto all the physical servers.
The network energy ratios of the four scheduling algorithms
are shown in Fig. 7.

We can observe that the network energy ratio in each
algorithm decreases in larger networks, because more
switches will have opportunities to sleep given the same
workload. Consistent with the previous simulations, the
greedy approximation in Willow exposes the lowest net-
work energy ratio among the four, while ECMP scheduling
has the highest. In small-sized network such as eight-port
and 16-port networks, ECMP scheduling almost uses all the
switches all the time, and no network energy can be saved.

Fig. 5. Network energy ratios of the four flow scheduling algorithms
against the MapReduce pattern.

Fig. 6. Network energy ratios of the four flow scheduling algorithms
against the percentage of physical servers used for MapReduce
computation.

2616 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2015

4.5 Blocking Fat-Tree

Though data center network architectures with non-block-
ing network capacity such as Fat-Tree are more and more
widely applied in data centers, there are still many data cen-
ter networks with oversubscriptions. We proportionally
remove the core-level switches in a Fat-Tree network with
16-port switches to build blocking Fat-Trees, as shown in
Fig. 4. We then run MapReduce task with 1,000*20 pattern
in blocking Fat-Tree networks with oversubscription ratios
from 2:1 to 8:1, respectively. Fig. 8 shows the result.

We get the following observations from the simulation.
First, compared with ECMP scheduling, the other three
algorithms can save much more network energy in net-
works with higher oversubscription ratios, among which
Willow performs the best. Second, in some cases (oversub-
scription ratio of 2:1), the network energy ratios of simu-
lated annealing and particle swarm optimization are even
higher than that of ECMP scheduling, which is an indication
that these two heuristic algorithms may be unstable some-
times, because of undetermined searches from the global
solution space within the limited time. Third, in Willow, the
network energy ratio first decreases from 2:1 to 4:1, then
increases from 4:1 to 5:1, and decreases again with even
higher oversubscription ratios. The reason is as follows.
With the increase of the oversubscription ratio, the absolute
network energy consumed by the default routing increases
due to more traffic congestion and thus more active work-
ing duration. When the oversubscription ratio changes from

2:1 to 4:1, there is no traffic congestion in Willow, and thus
the network energy ratio decreases. But when the oversub-
scription ratio becomes 5:1, Willow also experiences traffic
congestion, which results in much higher absolute network
energy and also higher network energy ratio relative to the
default routing. But if the oversubscription ratio gets even
higher, Willow scheduling can save more network energy.

4.6 Comparison with Offline Optimization

Our offline optimal solution by programming in Section 3.2
plays as a benchmark to evaluate the heuristic algorithms.
Since it takes too long time to get the solution by CPlex, we
can only test small-scale networks with a small number of
flows. We use the Fat-Tree network composed of 8-port
switches (128 servers in total), and run MapReduce tasks
with patterns of 40*20, 100*8, 200*4, and 400*2, respectively.
Fig. 9 shows the proportion of the energy consumption by
offline optimization over that of Willow scheduling. In all
the cases we test, the proportion is higher than 90 percent.
For the 40*20 pattern, it is about 95 percent. It implies that
the online greedy approximated flow scheduling used in
Willow can achieve high approximation to the offline opti-
mization in practice.

5 TESTBED EXPERIMENTS

Energy-efficient flow scheduling requires dynamically
updating the forwarding entries in switches. In order to
measure the impact of online forwarding table update on
the upper applications, we implement the Willow schedul-
ing on the SDN controller and conduct experiments in a
Fat-Tree test bed composed of 16 servers. The flow size and
flow deadline are obtained from application controllers,
e.g., MapReduce Master. The network topology is the same
as Fig. 3. Due to the lack of SDN/OpenFlow switches, we
use regular layer-2 switches conducting destination MAC
based forwarding. But the forwarding tables of the switches
are configured by the controller as the Willow scheduling
algorithm requires. All the servers are Desktops with AMD
Athlon(tm) II X2 245 2.91G CPU and 2 GB DRAM. The link
speeds in all switches are 1 Gbps. To decouple the network
performance from disk, we use iperf to generate 4 flows as
in Fig. 3. The SDN controller first uses ECMP algorithm to
schedule the 4 flows for 10 seconds, and then switches to
Willow scheduling. The routing paths selected by the two

Fig. 8. Network energy ratios of the four flow scheduling algorithms
against the oversubscription ratio of the Fat-Tree network.

Fig. 7. Network energy ratios of the four flow scheduling algorithms
against the data center size.

Fig. 9. Comparison of the network energy ratios of Willow greedy
approximation and optimal solution.

LI ET AL.: WILLOW: SAVING DATA CENTER NETWORK ENERGY FOR NETWORK-LIMITED FLOWS 2617

scheduling approaches are exactly the same as Figs. 3a and
3b, respectively. We evaluate the aggregate throughput of
the network during the whole process, and the result is
shown in Fig. 10.

The figure tells that although Willow uses less core-level
switches to carry the flows, the aggregate throughput is not
less than ECMP scheduling. Therefore, Willow saves net-
work energy without performance compromise. When Wil-
low switches the routing paths at t ¼ 10 s, there is slight
throughput degradation. This is because in our experiment
setting, the switch does not support direct update of the for-
warding table. We have to first delete the old forwarding
entry and then add the new ones. During the interval, pack-
ets are forwarded by flooding and the aggregate throughput
is thus affected. If employing OpenFlow switches, the path
switching process is expected to be more smooth.

6 RELATED WORK

In this section we discuss the related work, including the
flow scheduling algorithms for data center networks, green-
ing of the Internet, as well as greening of data centers.

6.1 Flow Scheduling Algorithms for Data Center
Networks

Many flow scheduling algorithms are proposed in data cen-
ter networks, with different optimization goals.

Maximizing network throughput. In Fat-Tree network [9], a
centralized flow scheduling approach is mentioned to mini-
mize the overlap of large flows. In Hedera [8], a scalable,
dynamic flow scheduling system is developed to adaptively
schedule the flows in Fat-Tree network in order to effi-
ciently utilize the aggregate network resources.

Minimizing the number of switches. In Elastic Tree [6], a
limited number of core-level switches in Fat-Tree network
are dynamically used to accommodate the network traffic
rates, so as to save network energy. Both greedy bin-pack-
ing algorithm and topology-aware algorithm are developed
for the optimization. Shang et al. propose an energy-aware
flow scheduling algorithm in data center networks [29], to
minimize the number of switches used to carry the flows,
with performance guarantee.

The flow scheduling in Hedera [8] is not for energy sav-
ing. Elastic tree [6] targets at application-constrained flows,

the traffic rates of which are fixed. But our flow scheduling
algorithm deals with saving network energy of network-
limited flows, which considers both the number of used
switches and the active working durations of the switches.

6.2 Greening of the Internet

Gupta and Singh first argue that it is necessary to suitably
put network interfaces, routers and switches to sleep for
energy saving along with the trends of technology and
energy development [25]. After that, many works emerge
for saving energy in the Internet. Nedevschi et al. suggest
reducing network energy consumption via putting network
components into sleep or adjusting the link rates to accom-
modate the traffic status [26]. Cianfrani et al. modify the
OSPF protocol for saving network energy in intra-domain
networks [30]. The basic idea is to coordinate the shortest-
path tree built on the routers, in order to use less links to
carry traffic. Zhang et al. put forward power-aware traffic
engineering mechanism. The problem is abstracted as a
mixed integer programming problem, and heuristic algo-
rithms are developed [31]. Vasic et al. propose identifying
energy-critical paths in the Internet based on the historical
traffic, and use other links in an on-demand manner [39].

Our work optimizes the energy consumption of data cen-
ter networks. One fundamental difference of data center
networks from the Internet is that the network environment
is controlled. We can depend on centralized SDN frame-
work and application inputs to design smarter energy effi-
cient solutions.

6.3 Greening of Data Centers

The energy consumption of data centers in recent years is
so high that researchers are actively designing power-
aware mechanisms. The consistent theme is to let the
power consumption of data centers be proportional to the
computation/traffic load. Lin et al. propose an online lazy
capacity provisioning algorithm to dynamically adjust the
number of active servers in data centers for a certain
load, which shows great promise in energy saving by real
workloads [32]. Fan et al. investigate the energy con-
sumption of Google data centers, and suggest saving
energy by both CPU voltage/frequency scaling and
improving the non-peak power efficiency [3]. Abts et al.
design low-power, highly-scalable data center topologies,
and exploit the link’s dynamic range for energy saving
[33]. There are also proposals for greening the data center
networks by flow scheduling, as presented in Section 6.1.

In our work, we make a special focus on the networks, by
identifying the trend that the energy consumption ratio of
the networking part in data centers is increasing. We do not
depend on any hardware based energy saving techniques.
Instead, we use software based flow scheduling to save the
network energy. We design the algorithm for representative
topologies in modern data centers, without introducing any
new data center architectures.

7 CONCLUSION

In this paper, we design a flow scheduling algorithm for
saving the network energy of network-limited flows in
data centers. The key contribution is to consider both the

Fig. 10. Aggregate throughput of the network in the whole process.
Before t ¼ 10 s, the SDN controller uses ECMP scheduling. From
t ¼ 10 s on, the SDN controller switches to Willow scheduling. There is
no obvious throughput degradation during the switching.

2618 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2015

number of used switches and the active running duration
of the switches for network energy saving, and uses on
an SDN based approach to schedule the flows. We formu-
late the problem by programming, and bring forward an
online approximate algorithm to solve it. Simulation
results show that our online approximate algorithm saves
up to 60 percent network energy compared with ECMP
scheduling, performing close to the offline optimization.
Testbed experiment also demonstrates that the dynamic
flow entry update causes negligible impact on upper-
layer applications.

ACKNOWLEDGMENTS

The work was supported by the National Key Basic
Research Program of China (973 program) under Grant
2014CB347800 and 2012CB315800, the National Natural Sci-
ence Foundation of China under Grant No. 61170291,
No. 61133006, No. 61161140454, and the National High-tech
R&D Program of China (863 program) under Grant
2013AA013303.

REFERENCES

[1] U. S. Environmental Protection Agency. Data Center Report to
Congress [Online]. Available: http://www.energystar.gov, 2007.

[2] J. Hamilton, “Cooperative expendable micro-slice servers (CEMS):
Low cost, low power servers for internet-scale services,” in Proc.
4th Biennial Conf. Innovative Data Syst. Res., 2009, pp. 1–8.

[3] X. Fan, W. Weber, and L. Barroso, “Power provisioning for a
warehouse-sized computer,” in Proc. 34th Annu. Int. Symp. Com-
put. Archit., 2007, pp. 13–23.

[4] Open Computer Project [Online]. Available: http://perspectives.
mvdirona.com/2011/04/07/OpenComputeProject.aspx, 2011.

[5] L. Ye, G. Lu, S. Kumar, C. Gniady, and J. H. Hartman, “Energy-
efficient storage in virtual machine environments,” in Proc. 6th
ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environ., 2010,
pp. 75–84

[6] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis,
P. Sharma, S. Banerjee, and N. McKeown, “ElasticTree: Saving
energy in data center networks,” in Proc. 7th USENIX Conf. Netw.
Syst. Des. Implementation, 2010, p. 17.

[7] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC
2992, IETF, 2000.

[8] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic flow scheduling for data center
networks,” in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementa-
tion, 2010, p. 19.

[9] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” in Proc. ACM SIGCOMM
Conf. Data Commun., 2008, pp. 63–74.

[10] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexi-
ble data center network,” in Proc. ACM SIGCOMM Conf. Data
Commun., 2009, pp. 51–62.

[11] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “BCube: A high performance, server-centric network
architecture for modular data centers,” in Proc. ACM SIGCOMM
Conf. Data Commun., 2009, pp. 63–74.

[12] T. Hoff. (2007, Jul.). Google architecture [Online]. Available:
http://highscalability.com/google-architecture

[13] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Proc. 6th Conf. Symp. Oper. Syst. Des.
Implementation, 2004, p. 10.

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed data-parallel programs from sequential building blocks,”
in Proc. 2nd ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst., 2007,
pp. 59–72.

[15] PUE and Total Power Usage Efficiency (tPUE). James Hamilton’s
Blog [Online]. Available: http://perspectives.mvdirona.com/
2009/06/15/PUEAndTotalPowerUsageEfficiencyTPUE.aspx,
2009.

[16] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, S. Lu, and J. Wu, “Scalable
and cost-effective interconnection of data-center servers using
dual server ports,” IEEE/ACM Trans. Netw., vol. 19, no. 1, pp. 102–
114, Feb. 2011.

[17] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “A
power benchmarking framework for network devices,” in Proc.
8th Int. IFIP-TC 6 Netw. Conf., 2009, pp. 795–808,.

[18] G. Ananthanarayanan and R. Katz, “Greening the switch,” in Proc.
Conf. Power Aware Comput. Syst., 2008, p. 7.

[19] R. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S.
Radhakrishnan, V. Subramanya, and A. Vahdat, “PortLand: A
scalable fault-tolerant layer 2 data center network fabric,”
in Proc. ACM SIGCOMM Conf. Data Commun., Aug. 2009,
pp. 39–50.

[20] Jeff Dean on Google Infrastructure. James Hamilton’s Blog. [Online].
Available: http://perspectives.mvdirona.com/2008/06/11/Jeff-
DeanOnGoogleInfrastructure.aspx, 2008.

[21] M. Fleischer, “Simulated annealing: Past, present, and future,” in
Proc. IEEE 27th Conf. Winter Simul., 1995, pp. 155–161.

[22] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proc. IEEE Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[23] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elit-
ist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[24] S. Even, A. Itai, and A. Shamir, “On the complexity of time table
and multi-commodity flow problems,” in Proc. 16th Annu. Symp.
Comput. Sci., 1975, pp. 184–193.

[25] M. Gupta and S. Singh, “Greening of the Internet,” in Proc. Conf.
Appl., Technol., Archit., Protocols Comput. Commun., 2003, pp. 19–26.

[26] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and
D. Wetherall, “Reducing network energy consumption via sleep-
ing and rate-adaptation,” in Proc. 5th USENIX Symp. Netw. Syst.
Des. Implementation, 2008, pp. 323–336.

[27] R. Hays. (2008). Active/Idle Toggling with Low-Power Idle
[Online]. Available: http://www.ieee802.org/3/az/public/
jan08/hays_01_0108.pdf

[28] Y. Gong, B. He, and D. Li, “Finding constant from change: Revisit-
ing network performance aware optimizations on iaas clouds,” in
Proc. Int. Conf. High Performance Comput., Netw., Storage Anal.,
2014.

[29] Y. Shang, D. Li, and M. Xu, “Energy-aware routing in data center
networks,” in Proc. 1st ACM SIGCOMM Workshop Green Netw,
2010, pp. 1–8.

[30] A. Cianfrani, V. Eramo, M. Listanti, M. Marazza, and E. Vittorini,
“An energy saving routing algorithm for a green OSPF protocol,”
in Proc. IEEE Conf. Comput. Commun., 2010, pp. 1–5.

[31] M. Zhang, C. Yi, B. Liu, and B. Zhang, “GreenTE: Power-aware
traffic engineering,” in Proc. IEEE Int. Conf. Netw. Protocols, 2010,
pp. 21–30.

[32] M. Lin, A. Wierman, L. Andrew, and E. Thereska, “Dynamic
right-sizing for power-proportional data centers,” in Proc. IEEE
Conf. Comput. Commun., 2011, pp. 1098–1106.

[33] D. Abts, M. Marty, P. Wells, P. Klausler, and H. Liu, “Energy pro-
portional datacenter networks,” in Proc. 37th Annu. Int. Symp.
Comput. Archit., 2010, pp. 338–347.

[34] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 39, pp. 68–73, Jan. 2009.

[35] Where Does Power Go?. (2008, Jan.) [Online]. Available: http://
www.greendataproject.org/

[36] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of datacenter traffic: Measurements and analysis,” in
Proc. ACM SIGCOMM Conf. Internet Meas. Conf., Nov. 2009,
pp. 202–208.

[37] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better
never than late: Meeting deadlines in datacenter networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, pp. 50–61, 2011.

[38] S. Ghemawat, H. Gobio, and S. Leungm, “The google file system,”
in Proc. 19th ACM Symp. Oper. Syst. Principles, 2003, pp. 29–43.

[39] N. Vasi�c, P. Bhurat, D. Novakovic, M. Canini, S. Shekhar, and D.
Kosti�c, “Identifying and using energy-critical paths,” in Proc. 7th
Conf. Emerging Netw. Exp. Technol., 2011, p. 18.

LI ET AL.: WILLOW: SAVING DATA CENTER NETWORK ENERGY FOR NETWORK-LIMITED FLOWS 2619

Dan Li received the PhD degree in computer
science from Tsinghua University in 2007. He
is currently an associate professor in the Com-
puter Science Department of Tsinghua Univer-
sity, Beijing, China. His research interest
includes future internet architecture and data
center networking.

Yirong Yu received the BS degree from the
Beijing University of Post and Telecommunica-
tion in 2008. He is currently working toward the
master’s degree in the Computer Science
Department of Tsinghua University, China. His
main research interest include computer net-
works, especially energy-aware networking and
software defined networking.

Wu He received the BS degree from the Depart-
ment of Computer Science and Technology, Bei-
jing Normal University in 2012. Currently, he is a
graduate student in Beijing Normal University
and a visiting graduate student in Tsinghua Uni-
versity. His research interests include data center
network and network virtualization.

Kai Zheng received the BA degree in electronic
engineering from the Beijing University of Posts
and Telecommunications, China, in 2001 and the
MS and PhD degrees in computer science from
Tsinghua University, China, in 2003 and 2006,
respectively. He joined IBM Research in July
2006, as a research staff. His current research
interests include software defined networking,
cloud networking, and network security. He is a
senior member of the IEEE.

Bingsheng He received the bachelor’s degree
from Shanghai Jiao Tong University and the PhD
degree from the Hong Kong University of Science
and Technology, both in computer science, in
2003 and 2008, respectively. He is currently an
assistant professor in the Division of Networks
and Distributed Systems, School of Computer
Engineering of Nanyang Technological Univer-
sity, Singapore. His research interests include
high-performance computing, distributed and
parallel systems, and database systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2620 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

