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A Survey of Resource Management in
Multi-Tier Web Applications

Dong Huang, Bingsheng He, and Chunyan Miao

Abstract—Web applications are mostly designed with multiple
tiers for flexibility and software reusability. It is difficult to model
the behavior of multi-tier Web applications due to the fact that
the workload is dynamic and unpredictable and the resource
demand in each tier is different. Those features also cause
the task of resource allocation for multi-tier Web applications
very challenging. In order to meet service level agreements
(SLAs) with minimal resource costs, Web service providers
should dynamically allocate appropriate resources to each tier.
This is particularly important to minimize the monetary cost
in the pay-as-you-go cloud computing environments. Recently,
a number of rule and model based approaches have been
proposed for resource provisioning in cloud computing. In this
survey, we identify challenges of the resource allocation problem
and conduct a comparative review on those rule and model
based approaches for resource allocation in multi-tier Web sites.
Given the analysis on their advantages and limitations, we
outline research directions to further improve the effectiveness
of resource management in multi-tier Web applications.

Index Terms—Web service, resource allocation, multi-tier ar-
chitecture, learning, control theory.

I. INTRODUCTION

W ITH the advancement of Web technologies, the Inter-
net is shaping our future by providing versatile Web

services, such as online trading and entertainment. Among
various Web services, E-commerce is a very important type
of Web service. It is viewed as a key business model of the
future due to ease of transaction, quick response time and less
overhead. Today, it has become a business with huge sales
and revenue. The retail E-commerce sales in US for the third
quarter of 2011 have reached to $48.2 billion [1]. In addition,
J.P. Morgan forecasts that online retail commerce in the U.S.
alone will grow 13.2 percent to $187 billion and global E-
commerce revenue will hit a whopping $963 billion by 2013
[2]. The strong growth of Web services requires scaling and
flexible design of the underlying system infrastructure for Web
applications.

Web applications are enriched with different components
including web interfaces, logics and databases. Currently,
most Web applications are designed as multi-tier systems
due to flexibility and software reusability [3]. In such an
architecture, each tier has different functionality. For example,
the 3-tier Web application architecture, which consists of
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presentation, application and data tiers, has been widely used
[4], [5], [6], [7]. Due to different functionalities, tiers have
significantly different requirements of computing resources
such as CPU, main memory and disks. There is a tradeoff
between the quality of service (QoS) and resource cost for
the resource management in multi-tier Web applications. The
service providers usually provide a certain number of QoS
requirements (e.g., response time and throughput) to users,
which are generally defined through service level agreements
(SLAs) between a Web service provider and its users. When
the QoS provided by a Web service provider satisfies the given
SLA, the service provider earns revenue. Otherwise, it has
to pay a penalty back to the users. Therefore, given QoS
requirements, the objective of resource management in multi-
tier Web applications is to allocate appropriate resources (e.g.,
CPU, main memory and disk bandwidth) to each tier such that
the total resource cost is minimized.

Capacity planning is a classic method to determine the
quantity of resources for the given QoS requirement [8].
However, capacity planning is basically a long term and
almost static decision, and the resources are determined by
the maximum Web application request rate in the target period
to avoid excessive penalty. The maximum application request
rate can be estimated according to a prediction model or
historical data [9]. However, very short bursts in request rate
are common in many applications [9]. The highest resource
consumption at the peak load is relatively rare. For example,
Fig. 1 shows the CPU and disk utilization of a production SAP
application for a 24-hour period [10]. We can observe signif-
icant fluctuation in utilization caused by dynamic workloads.
Moreover, the CPU utilization and the disk utilization do not
demonstrated a clear strong correlation. The CPU utilization
is below 50% most of the time while the disk utilization is
below 20% around 70% of the time. Most of the resources are
wasted in a long duration. Therefore, the static schemes such
as capacity planning are extremely inefficient and wasteful
when the workload fluctuates.

Thanks to the virtualization technologies and the wide
adoption of cloud computing system infrastructures, dynamic
resource allocation according to the fluctuations in request rate
becomes feasible in the cloud (both public and private ones).
The relationship between the computing resources and the
cost has been widely investigated [11], [12], [13], [14], [15].
Particularly, as the cloud computing paradigm is emerging,
pay-as-you-go price schemes associate resource consumption
with the monetary cost [16]. For example, Amazon charges
users less than $0.1 per virtual machine hour on its small
instance (or virtual machine). By using hypervisor technolo-
gies such as Xen [17] and VMware [18], the resources (e.g.,
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Fig. 1. Average CPU utilization and peak disk utilization in a production SAP
application server for a 24-hour period [10]. We can observe highly dynamic
resource utilization caused by workload dynamics.

CPU, main memory and bandwidth) can be dynamically
allocated to virtual machines (VMs). In the cloud environment,
the computing resources can be dynamically scaled over the
Internet on demand. In Amazon, we can use virtual machines
with different capabilities and/or use different number of
virtual machines. Web service providers can further decrease
their cost expenditure by dynamically allocating the resources
among applications. Furthermore, resource management is
also important for other structured or unstructured data pro-
cessing systems [19], [20].

Challenges come with opportunities. There are a number of
challenges on the effectiveness of resource allocation in multi-
tier Web applications in the virtualized cloud environments.

• The first challenge is that different classes of resources
have different impact on the QoS. For example, CPU
share has larger impact on the QoS than other resources
for computing intensive applications. Memory and disk
can have larger impact on other cases. However, the
relationship between the QoS and those resources is
highly nonlinear and quite difficult to derive [21], [22].

• Second, compared with a single-tier application, the
resource allocation for multi-tier applications is more
difficult due to the fact that the resource demand at
each tier is different. Different tiers may interact with
each other, leading to different impact on the QoS.
Therefore, it is difficult to determine when and how much
to provision.

• Third, a coarse-grained and inappropriate approaches
may cause performance degradation or low resource uti-
lization, and finally causing penalty. Most existing works
approximate the relationship based on some statistical
properties of historical measurements [23], [24], [25].
Though these methods can help to increase the efficiency
of resource allocation, the application performance is
still not be controllable. For example, [24] approximated
the relationship between the mean response time and
throughput by conducting a number of simulations. How-
ever, experiment results also show that the mean response
time perceived by the users can be very different for the
same parameter settings.

• Fourth, cloud providers do not offer any performance
guarantees with regard to the application level perfor-
mance. Also, the I/O bandwidth including disk and

network is usually dynamic and unpredictable [26], [27].
Different pricing or economic strategies can have huge
impact on multi-tier resource management. The relation-
ship between distributed systems and economics in cloud
computing is studied in [26] and [27] used SVM to
predict the interference score for different I/O workloads
in order to offer better fairness for users.

We examine whether current resource allocation algorithms
can address all above-mentioned challenges. Recently, a num-
ber of algorithms for the resource allocation in multi-tier Web
applications have been proposed [23], [28], [29], [30], [31],
[32], [33], [34], [35]. Those algorithms can be roughly divided
into two categories: rule and model based approaches. Rule
based approaches are mainly used for action selection. The
rule based methods are basically in reinforcement learning
(RL) [31], [34], [36], statistical machine learning (SML) [35],
[37], and fuzzy control [38], [39], [40], [41], [42], [43],
[44], [45]. Specifically, [31] studied the application of RL
and ANN for multicore resource allocation. [32] formulated
the virtual machine packing problem as a multi-objective
optimization problem and employed a genetic algorithm (GA)
to allocate the resources. Different from reinforcement learn-
ing and statistic machine learning, fuzzy control is easy to
implement and efficient to handle uncertainty for the resource
management in multi-tier Web sites. However, appropriate
fuzzification setting is the key for a fuzzy control system.
In this case, it is not easy to derive appropriate rules for the
resource management. How to model the complex multi-tier
Web sites accurately based on fuzzy logic is an important chal-
lenge. The major advantage of those algorithms is that they can
approximate the resource demand by learning historical data
without explicit model knowledge. Due to unpredictable work-
load and the nonlinear property of multi-tier Web application
architecture, however, these algorithms cannot guarantee given
QoS requirements or provide theoretical system performance
analysis.

Model based approaches on the other hand, not only provide
QoS guarantees, but also provide more insights into the
dynamics of the multi-tier system. This will help users get
understanding on how the system evolves. Currently, most
model based approaches are based on control theory since it
has been identified as a powerful mechanism for dealing with
the uncertainty and disturbance of a system by using feedback
control [46], [47]. For instance, [23] considered the problem of
resource allocation on shared data centers, where they modeled
a server resource as a generalized process sharing server and
used a time-domain description of the server to model transient
system states. [24], [28] studied the utilization of CPU in terms
of mean response time based on control theory. [48] used the
exponentially weighted moving average (EWMA) model to
predict the demand for the number of servers. [49] developed
a novel self-adaptive neural fuzzy control based server provi-
sioning approach to provide specified delay guarantee, where
the approach combined the strength of both machine learning
and control-theoretic techniques. Most existing studies correct
the errors based on feedback control. A distinct advantage of
control theory for the system is that it can provide rigorous
methodology for modeling, analysis, design and evaluation
of the control system [50]. For example, stability is a very
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important performance metric for control systems. Lacking
of stability analysis may cause large oscillation response in
the control system, sometimes even causes the system to be
unstable. In practice, control theory provides guidelines for
choosing appropriate control parameters to ensure stability
and good performance of the closed-loop system. Due to
the distinct characteristics of feedback control, algorithms
based on control theory have become popular for the resource
allocation in multi-tier Web applications. Furthermore, they
have demonstrated their effectiveness in resource management
[4], [5], [21], [30], [51], [52].

In multi-tier systems, the resource management is conducted
in a virtual computing environment. The resource management
we consider in this article is to decide whether to accept
a request or scale the computing resources at each tier in
order to meet the given QoS requirement. To the best of
our knowledge, this is the first survey on the resource man-
agement in multi-tier systems. Though some survey papers
on resource management in computing systems have been
published recently [53], [54], [55], the system model they
mainly focused on is quite different from the multi-tier sys-
tems we consider in this article. For instance, [53] focused
on how to achieve a balance between resource providers and
consumers in grid systems based on the bargaining model
when consumers compete to acquire resources. [54] reviewed
the approaches in the implementation of resource management
in existing grid systems. [55] surveyed various task scheduling
algorithms and classified them based on various parameters,
such as distributed, hierarchical and response time. Therefore,
these existing survey papers do not explore the issues and
approaches for the resource management in multi-tier Web
sites. Still, our focus is on rule and model based resource
management specifically for multi-tier Web applications. We
believe that this survey is attractive to web researchers on
resource management, and also to resource management re-
searchers on the challenges from multi-tier design of web
applications.

In order to provide a full understanding of existing works on
resource management for the research community, we review
rule and model based approaches for the resource allocation
problem for multi-tier Web sites in this survey. The underlying
system infrastructure hosting the Web site has the capability
of dynamic resource allocation and deallocation, particularly
for virtualized cloud environments. This survey is to serve
those purposes: (1) providing an overview of existing works
on resource allocation for multi-tier Web applications; (2)
analyzing the advantages and limitations of rule and model
based approaches for the problem; (3) identifying the open
problems in resource management of next-generation multi-
tier Web applications. The directions are mostly focused on
model based approaches, since we believe they are the most
promising resource management mechanism under different
contexts.

The paper is organized as follows. Section II describes the
multi-tier Web application architecture, and defines the re-
source management problem. The survey of machine learning
algorithms and fuzzy control for the resource management is
presented in Section III. Section IV first gives a survey of
existing works on feedback control based approaches for the

Fig. 2. A 3-Tiered Web application architecture.

resource management in multi-tier Web sites, then discusses
the challenges for the resource management. Finally, Sec-
tion V identifies the open problems for resource management
in multi-tier web sites and provides suggestions on how to
improve the performance of existing works, followed by the
concluding remarks in Section VI.

II. RESOURCE MANAGEMENT FOR MULTI-TIER WEB
APPLICATIONS

In this section, we first describe the multi-tier Web appli-
cation architecture, and then define the resource management
problem.

A. Multi-Tier Web Application Architecture

Though a single-tier architecture has relatively simple struc-
ture and is easy to setup, most modern Web sites use a
multi-tier architecture. This architecture partitions the appli-
cation process into multiple tiers. Each tier provides a certain
functionality. The benefit of such an architecture is that it
can provide a high level of scalability and reliability [3].
Furthermore, it is also useful for monetary cost optimizations
for workflows [56]. However, the resource allocation among
these tiers will be more difficult due to the interdependency
between the tiers. A multi-tier Web application may span
multiple nodes. Specifically, most multi-tier Web applications
use a 3-tier architecture, as shown in Fig. 2. The three
tiers include presentation tier, application tier and data tier,
implemented as web server, application server and database
server, respectively.

The first tier named presentation tier consists of Web
servers. It displays what is presented to the user on the
client side within their Web browsers. For the Web server
tier, it mainly has three functions [5]: (1) admiting/denying
requests from the clients and services static Web requests;
(2) passing requests to the Application server; (3) receiving
response from Application server and sends them back to the
clients. Examples of web servers include Apache Server and
Microsoft Internet Information Server (IIS).

The second tier named application tier consists of Applica-
tion servers. Business logic processing is performed at this tier.
There also are three functions at the Application server tier,
which include: (1) receiving requests from the Web server;
(2) looking up information in the database and processes the
information; (3) passing the processed information back to the
Web server. Application servers mainly use Apache Tomcat
and Sun Java System Application Server.

The last tier named data tier consists of database servers.
It handles database processing and data accessing. Database
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Fig. 3. Request process model for multi-tier Web applications.

server tier is used to store and retrieve a Web site’s information
(e.g., user accounts, catalogs to reports and customer orders).

Today, most Web applications have strict performance and
QoS requirements, which are represented as SLAs. The QoS
requirements can be mapped to certain computing resources.
Suppose a request is proceeded under such an architecture
structure. Then the resource demand in each tier will be
different and cannot be characterized accurately in practice.
Moreover, the three tiers have different optimizations. For
example, web page caching is an effective technique to reduce
the computational and memory pressures on web servers. That
causes different system behavior whether the request page is
in the web page cache or not. Those features cause the task
of QoS guarantees not to be trivial.

B. Problem Definition

The target of resource management in multi-tier Web ap-
plications is to allocate the computing resources to meet
the resource demand with minimal resource cost. Therefore,
resource management not only helps to improve the efficiency
of resource utilization, but also satisfies the QoS requirements
of different types of requests.

A general request processing model for multi-tier Web ap-
plications is illustrated in Fig. 3. The resource management in-
cludes two modules (i.e., admission control and VM scaling).
Time is divided into a series of intervals. The intervals can
be adjusted to balance the overhead of resource management
and the gain from resource management. At the beginning
of every interval, the admission control module is used to
determine whether a request is admitted for service, while the
VM scaling module is used to adjust resource usage in terms
of the VM size (for VM vertical scaling) or the number of
VM instances (for VM horizontal scaling).

The major functionality of the admission control module is
to prevent sudden overload, which causes significant perfor-
mance degradation. When providing service to clients, Web
service providers need to allocate enough resources to meet
the demand in order to satisfy the given QoS requirements.

However, it is difficult to maintain these performance guaran-
tees due to the fact that the workload is unpredictable.

In principle, when the workload is in heavy state, the admit-
ted request rate should be decreased and thus the performance
can be maintained. Otherwise, the requests experience long
response time. An example is the “Slashdot effect” [57],
which means the traffic of a Web site experiences a sudden,
relatively temporary surge. However, an appropriate policy for
admission control is not easy to derive. The resources (e.g.,
CPU and bandwidth) required by requests are different. It is
difficult to model the relationship between resource demand
and workloads. How to achieve a good trade-off between
request dropping and request admission is a challenge for
admission control. A conservative policy causes revenue loss.
On the other hand, an aggressive policy causes performance
degradation.

Dynamic resource provisioning is necessary, because the
resource demand changes in the multiple tiers of web sites
along with the workload. In the virtualized environment, VM
scaling helps to improve the efficiency of resource utilization
by dynamically changing the size of computing resources.
Currently, VM scaling includes two types of methods. The
first type is vertical scaling (i.e., scale up and down), where
resources (e.g., CPU and memory) can be dynamically allo-
cated to the same VM instance [58]. Most cloud providers in-
cluding Amazon and Microsoft have offered virtual machines
of different CPU capabilities and main memory capacities.
Rackspace offers the functionality of runtime resizing the vir-
tual machine [59]. This means that the resource in a single VM
can change with the workloads. In this case, vertical scaling
can provide fine-grained resource allocation. The second type
is horizontal scaling (i.e., scale out and back), where the
size of a VM is fixed. One can change the number of VM
instances according to the workloads. For example, dozens of
types of on demand standard VM instances varying computing
capabilities and locations are available for horizontal scaling
in AWS EC2 [16]. Thus, horizontal scaling provides coarse-
grained resource allocation. Horizontal and vertical scaling
are complementary with each other, and can be combined
for resource management. Compared with traditional static
method (i.e., capacity planing), the elasticity brought by VM
scaling helps Web service providers to further reduce the
resource cost.

Admission control and resource allocations in multiple tiers
are the key issues in resource management of multi-tier web
sites. We review two major kinds of resource management
mechanisms namely learning and control theory in Sections III
and IV, respectively.

III. RULE BASED APPROACHES FOR RESOURCE
MANAGEMENT

Rule based approaches have been widely in complex sys-
tems for decision making. They can help to make appropriate
decisions under uncertainty. In this section, we divide rule
based approaches for the resource management in multi-tier
Web applications into two classes: machine learning (ML)
algorithms and fuzzy control.
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A. Machine Learning Algorithms

In order to conduct the resource management efficiently, we
need to derive appropriate policies for both admission control
and VM scaling. Machine learning algorithms can improve
an initial policy by learning from historical data. For the
problem of allocating resources to multi-tier Web systems,
a series of machine learning (ML) algorithms to improve the
efficiency of resource management in each tier by learning
from historical resource utilization and performance metrics
have been investigated. In this subsection, we review works
on ML algorithms for the resource management.

Specifically, because reinforcement learning offers the po-
tential to develop optimal allocation policies without explicit
model knowledge by learning from the consequences of each
action, existing works on ML algorithms mainly focus on
reinforcement learning [34], [60], [61], [36]. They require
neither an explicit system model nor an explicit traffic model
to learn.

RL refers to a learning process, where a learning agent
can learn to make appropriate decisions through interactions
with an external environment [62]. Specifically, beyond the
learning agent and the environment, a reinforcement learning
system consists of a policy, a reward function and a value
function. Let S be the set of environment states and A
be the set of actions, respectively. A policy determines the
learning agent’s behavior. It maps the states of the environment
to the probabilities of selecting a possible action from the
set of actions and is denoted by πt(s, a), where s and a
can be expressed a vector with s = [s1, s2, . . . , sn] and
a = [a1, a2, . . . , am], respectively. Currently, a policy to
choose an action at a state is mainly based on ε-greedy
method, which chooses an action to maximize immediate
reward with probability (1−ε), while an action randomly with
probability ε. This class of method is used to balance the trade-
off between exploitation and exploration. A reward function
defines the objective in a reinforcement learning problem in an
immediate sense. While a value function defines the objective
in a reinforcement learning problem in the long term. Let R
be the return of the value function. There are two classes of
value functions. One is with finite time step, R =

∑N−1
t=0 rt+1,

where rt+1 denotes the immediate reward at time step t. The
other one is with infinite time step, R =

∑∞
t=0 γ

trt+1, where
γ ∈ [0, 1] is the discount factor. Accordingly, the value
function estimation is expressed as a Q-function

Q(st, at) = Q(st, at) + αt · [rt+1 −Q(st, at)] (1)

for the case of finite time step and

Q(st, at) =Q(st, at) + αt · [rt+1

+ γ ·max
at+1

Q(st+1, at+1)) −Q(st, at)] (2)

for the case of infinite time step, respectively. Where αt ∈
(0, 1] is the learning rate. The objective of the learning agent
is to develop appropriate policies to maximize the long term
reward based on iterative trial-and-error interactions [61].
Theoretically, RL can potentially learn optimal policies in
dynamic environments due to the fact that the learning process
is typically formulated as a finite Markov Decision Process
(MDP).

Another popular machine learning algorithm is the support
vector machine (SVM). It has been widely applied for different
areas such as pattern recognition, classification and data min-
ing. However, SVMs are not preferred in on-line applications
since the training and testing complexity of standard SVM
are O(nm + m3) and (m) respectively, where n is the data
size and m denotes the number of support vectors. On the
other hand, some approximated methods have been proposed
to reduce the complexity [63], [64], [65]. For example, [63]
reduces the complexity to O(nd2max), where dmax is the
number of basis functions selected. However, the mechanism
of these revised versions of SVMs is based on approximation,
which sacrifices the accuracy. This may be acceptable for
many classification applications but unacceptable in resource
management of multi-tier Web applications due to the strict
response time requirement.

Recently, a few of works on machine learning algorithms
have been proposed for the resource management problem
[33], [34], [60], [66], [61], [67], [68], [36], [37], [69], [70],
[71]. For admission control, [66] derived a complex rule set
that can be used to identify the optimal configuration for
unobserved workload based on machine learning algorithms.
[61] applied RL to configure parameters automatically in
multi-tier Web systems, where eight parameters at web tier
and application tier are selected to consist of the state space.
For each parameter, there are three possible actions: increase,
decrease and keep. The policy is based on the ε-greedy
method. In order to suppress the poor performance due to
bad initialization, they proposed an algorithm to construct
different initialization policies for different scenarios. For VM
scaling, [33] proposed an iterative model training technique
based on artificial neural network (ANN) to predict computing
resource demand in virtual environments. [34] applied RL to
train nonlinear approximators (e.g., multi-layer perceptrons)
instead of the lookup table for VM horizontal scaling, where
the state is defined as the request arrival rate and the action is
to determine the number of servers allocated. Since the state
space grows exponentially with the number of parameters in
practice, the authors applied a nonlinear function approximator
as an external policy to avoid poor performance that would be
expected during online learning. This method also helps to
scale to larger state spaces. [36] presented a unified reinforce-
ment learning methodology (URL) for autoconfiguration of
VMs, which focused on the resources of CPU and memory.
[60] proposed a decomposition formulation of RL for VM hor-
izontal scaling in order to reduce the curse of dimensionality
problem. [67], [68] configured resources for VM scaling via
support vector machines (SVMs), which help to build model
knowledge. [37] used a discrete-time Markov chain to capture
the short term patterns in resource demand for VM scaling,
where the resources prediction models are repeatedly updated
when resource consumption patterns change. [69] modeled
the virtualized storage systems by using statistical techniques.
Specifically, a general heuristic search algorithm was proposed
first to optimize the parameters of regression techniques, then
the optimization approach is applied to create performance
rules by using four regression techniques. [70] investigated the
application of three machine learning techniques: SVM, ANN
and LR for the modeling of a two tier TPC-W web application
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Fig. 4. A fuzzy system.

and showed that SVM provided the best prediction model.
[71] proposed a multi-step-ahead load forcasting method to
investigate the CPU allocation problem based on statistical
learning techniques, it integrates an improved support vector
regression algorithm and Kalman smoother.

However, there are several distinct limitations when apply-
ing ML algorithms for the resource management in multi-
tier Web applications [68]. First, the high computational
complexity in the training process cannot be ignored. For
example, when RL is used, the state and action spaces scale
exponentially in the number of applications, and significantly
increase the overhead of trial-and-error [60]. Specifically, [61]
selected eight parameters to construct the state space. Each
parameter has different range and the cardinality of the state
space is larger than 108. In practice, there are more than one
hundred configuration parameters in a multi-tier Web system.
In order to reduce the search space when applying RL, we
need to find an alternative technique to make the policy more
efficient. The complexity reduction of RL has been widely
studied [72], [73], [74]. However, these revised versions are
mainly based on approximation, which sacrifice the accuracy.
This is unacceptable for multi-tier Web applications.

Second, the learning speed may be unacceptable low due
to strict QoS requirements in multi-tier systems and some
properties in ML algorithms. Most of existing ML algorithms
require a long training process in order to learn the given
model accurately. For example, the performance of SVM
mainly relies on the quality of the training data, while initial
policy has important impact on the performance of RL. [34],
[61] have demonstrated the problem of initial poor perfor-
mance due to poor initial policies. Though RL theoretically
obtain the optimal allocation policies, it may not converge to
stationary optimal value functions within acceptable duration.
Thus, given strict QoS requirements may not be satisfied.

In a word, ML algorithms can develop policies for the
problem of resource allocation in multi-tier Web sites. The
main advantage of ML algorithms is that it does not require
much domain knowledge. However, the aforementioned dis-
advantages may cause the performance to be unacceptable.
It is necessary to develop novel techniques to improve the
performance when applying ML algorithms.

B. Fuzzy Control Approaches

Fuzzy control is guided by a set of predefined rules. It seems
to be a good candidate for the resource management in multi-
tier systems due to easy implementation and handle. In this

Fig. 5. Fuzzy set illustration.

subsection, we review related works on fuzzy control for the
resource management.

In fuzzy control systems, the decision making consists of
three stages: fuzzification, inference mechanism and defuzzi-
fication. A framework of a fuzzy logic system is illustrated in
Fig. 4.

It can be seen that numerical variables can not be used
directly in fuzzy systems. Therefore, the first stage is to fuzzify
the scalar inputs. The goal of fuzzification is to convert the
numeric variables into linguistic values of linguistic variables
represented by fuzzy sets. Given a variable space X , a fuzzy
set s = (X, f) is denoted by a membership function f
defined on X . The membership function maps X onto the
interval [0, 1], i.e., f : X → [0, 1]. Generally, most
membership functions are triangular or trapezoidal for easy
implementation. Fig. 5 shows a fuzzy system, which includes
five fuzzy sets: NL (negative large), NS (negative small), Z
(zero), PS (positive small) and PL (positive large). When
x = 6, it is considered as “positive small” with a degree of
1 and other fuzzy sets with a degree of 0. When x = 2, it is
considered as “zero” with a degree of 0.5 and “positive small”
with a degree of 0.5. After fuzzification, the fuzzy controller
derive appropriate output in terms of linguistic variables by
evaluating the fuzzy rules in the rule set. This is conducted
at the Inference stage. In order to build appropriate rules to
achieve ideal system performance, we need to specify the
rules.

In general, the actions of a fuzzy controller depend on the
predefined rules that are stored in a rulebase. These rules and
actions are defined as

IF condition, THENaction. (3)

For example, the admission control is conducted by tun-
ing the system parameter MaxClients in [38]. A fuzzy rule
is expressed as “IF change-in-MaxClients is neglarge and
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Fig. 6. Membership function for defuzzification.

change-in-response-time is neglarge, THEN next-change-in-
MaxClients is neglarge.” The terms change-in-MaxClients
and change-in-response-time are linguistic variables. They are
mapped from the numeric variables du and dt, respectively,
where du denotes the change of MaxClients value and dt is
the change of the response time. neglarge is a linguistic value
and means for negative large in size.

Finally, the output linguistic variable is converted to a
numeric variable for action executing. From Fig. 4, the output
at the Inference stage is fuzzy set (fuzzy rules) and can
not be executed directly. In order to enable the action to be
performed, these fuzzy outputs need to be converted into scalar
values. Generally, the process of converting the fuzzy set is
called defuzzification in fuzzy systems. There are five com-
monly used types of defuzzification methods: Center of area
(CoA), Bisector of area (BoA), Mean of maximum (MoM),
Smallest of maximum (SoM) and Largest of maximum (LoM).
Suppose μ(z) is the aggregated membership function shown
in Fig. 6 and z is the output variable. Let z∗ be the defuzzified
output. CoA is also known as center of gravity. In this method,
z∗ is expressed as

z∗ =

∫
z
μ(z)z dz∫

z μ(z) dz
. (4)

For the method of BoA, z∗ divides the region A into two
sub-regions with equal area. Therefore, z∗ can be derived by
solving the equation∫ z

z1

μ(z) dz =

∫ z4

z

μ(z) dz. (5)

While for the method of MoM, z∗ is expressed as

z∗ =

∫
z′ z dz∫
z′ dz

, (6)

where z′ = {z|μ(z) = μ∗}. For the methods of
SoM and LoM, z∗ = min(argz maxμ(z)) and z∗ =
max(argz maxμ(z)), respectively. Especially, in Fig. 6, z∗ =
z2 for SoM and z∗ = z3 for LoM. Thus, they are a natural
way to handle uncertainties created by the stochastics present
in most computer systems. More details about general fuzzy
control can be found in [75], [76].

An example of fuzzy control effect is illustrated in Fig. 7.
It can be seen that when the measured delay deviate too far
away from the desired delay, a fuzzy rule will cause it back
to the desired delay. For example, when the measured delay
is larger than the desired delay to some degree, a fuzzy rule,
which causes the measured delay to decrease, will be executed.

Fig. 7. Fuzzy control effect [39].

On the contrary, when the measured delay is smaller enough,
a corresponding fuzzy rule will cause it to increase. Therefore,
fuzzy control can ensure performance guarantees.

Recently, a few of works on fuzzy control for the resource
management have been proposed in [44], [29], [38], [39],
[40], [77], [78]. In [38], the admission control is conducted by
fuzzy control in order to manage the QoS, where the turning
parameter Maxclients in each interval is controlled by the
fuzzy controller. For VM scaling, [29] attempted to capture
the non-linear behaviors in VM resource usages by designing
a fuzzy model estimator. The approache is divided into two
steps. First, a fuzzy logic based modeling method is used learn
the system behaviors without requiring any priori knowledge.
Then a predictive controller predicts the resource demand of
all VMs and takes actions based on this model. [39] proposed
a neural fuzzy controller for percentile-based end-to-end delay
guarantee through a virtualized multi-tier server cluster, where
Gaussian membership functions are first used to fuzzify the
average service time, si, and the variance of service time, σ2

i ,
distribution of requests at tier i, respectively. Then a fuzzy
neural network is applied for online learning at the Inference
stage. In addition, an output scaling factor is introduced to
further enhance the performance. It is model-independent and
capable of adapting control parameters through fast online
learning. Compared with other supervised machine learning
techniques, it does not require off-line training.

[40] proposed a two-level selftuning fuzzy controller
(STFC) for client-perceived end-to-end QoS guarantees. On
the first level, a fuzzy controller is used to address the issue
of lacking accurate server model due to the dynamics and
unpredictability of pageview request traffic at the Web tier.
On the second level, a scaling-factor controller is applied
to compensate the effect of the process delay by adjusting
the resource controller’s output scaling factor according to
transient server behaviors. [41] extend the work in [40]
by introducing an extra self-tuning output amplification and
flexible rule selection mechanism. [42] attempted to determine
the number of servers to be allocated to each tier by designing
a self-tuning fuzzy controller.

However, there are some issues in applying fuzzy control
for the resource management. Generally, fuzzy control based
approaches are model-independent and they use a set of pre-
defined rules to allocate resource in multi-tier systems. There
is a lack of theoretical guideline for determining appropriate
values for the parameters (e.g., rule set and membership func-
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tions). In practice, it is required to conduct more simulation
before designing a fuzzy system in order to achieve ideal
performance. Traditional methods are based on trial and error.
This strategy is effective only when the system considered
is very simple. For example, [39] designed a novel method
consisting of two parts (The first part is to adapt the parameters
dynamically and the other part is to introduce a scaling factor
to impact the rules.) to adapt parameters for the fuzzy control
systems to improve the performance of resource management
in multi-tier Web systems, where only the relationship between
the number of servers and the response time in each tier is
considered. Limiting the model for each tier, the problem
becomes very simple. Obviously, this method fails to model
multiple tiers as a whole and results in sub-optimal resource
management. For the fuzzy controller design, how to choose
appropriate values for these parameters such that the resource
management is more effective is an important issue.

In summary, rule based approaches require less domain
knowledge in solving the resource allocation problem in multi-
tier Web sites. These approaches learn from historical data.
On the other hand, they require a great deal of simulation to
design appropriate rules or parameters in order to handle the
resource allocation problem effectively for different scenarios.
This is an important issue since there are a lot of configuration
parameters in practice. In addition, there is a lack of guideline
for QoS guarantees in designing rules or parameters. It causes
a challenge in applying them to solve the resource allocation
problem.

IV. MODEL BASED APPROACHES FOR RESOURCE
MANAGEMENT

Compared with rule based approaches, model based ap-
proaches require more domain knowledge. It may be very
difficult to model a complex system based on mathematical
models. However, they provide more insight into the original
system and help people to understand the dynamics of the
system. Currently, most model based approaches are based
on control theory and queueing theory. Therefore, we fur-
ther divide the model based approaches into two categories:
control theory based approaches and queueing model based
approaches.

In general, The system modeling is conducted based on the
measurement of control inputs and control outputs. For control
theory based approaches, most existing works use linear
regression to model the system as a black-box problem, while
the system is first simplified first and then is formulated as a
queueing model in queueing theory based approaches. Com-
pared with rule based approaches, model based approaches
require more domain knowledge. For instance, when designing
a feedback controller for a control system, we need to identify
the system first from the viewpoint of control theory. Thus,
we should identify the processing model of multi-tier Web
sites first when applying feedback control for the resource
management. Due to the high nonlinearity of the multi-tier
Web sits, it is difficult to characterize the relationship between
the workload and resource demand. For example, [79] has
studied the long-term relationship between CPU utilization
and entitlement and mean response time (MRT) under different
workload intensities, where the request rate varies from 200

Fig. 8. Resource allocation architecture for Web service.

to 1000 requests/second. The results show that for the same
CPU entitlement, the CPU utilization varies over different
workloads. At the same time, the measured MRT also varies
drastically when the workload changes. In order to provide
performance guarantees for the clients with minimal resource
cost, it is required to model the system accurately for resource
allocation.

Note that there are errors between the approximated model
and the original system no matter which model is used. In
order to ensure the measured output is as close as possible to
the desired output with minimal resource cost, an appropriate
approach for correcting the errors due to approximation or
unpredictable workload is needed. When feedback control
is used to correct the errors, a modified model of resource
allocation for multi-tier Web applications is illustrated in
Fig. 8. The resource allocation includes three modules: mon-
itor, admission control and VM scaling. The monitor is
used to identify the relationship between control inputs and
control outputs. The module consists of a workload predic-
tion component. The performance of system identification
in the monitor module is the key for allocating appropriate
resources to multi-tier Web applications. Two approaches have
been proposed: (1) linear regression model based approaches
[80], [81], [82]. Under this model, they treat the problem
as a black-box problem. Since multiple classes of resources
affect a performance metric, the system is modeled as a
multiple-input and multiple-output (MIMO) control system.
Let u(t) = [u1(t), u2(t), . . . , un(t)]

T be the input vector and
y(t) = [y1(t), y2(t), . . . , ym(t)]T be the output vector. Then
a linear regression model is selected to model the relationship
between u(t) and y(t). (2) Queueing model based approaches
[4], [23], [25], [58]. By simplifying the problem, we can
model the problem based on queuing theory. For example,
an M/GI/1 (where the arrival process is memoryless, the
service times of successive customers are independent, and
there is a single server) Processor Sharing queue is applied to
model the abstraction for the multi-tier Web application [4],
[5].

According to the request process model for multi-tier Web
applications described in Fig. 3, the resource management
consists of two modules: admission control and VM scaling.
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Fig. 9. Admission control model for Web service based on feedback control.

We separately survey existing works related to these two
modules as follows.

A. Admission Control

Note that the relationship between the request rate and the
resource demand is nonlinear. Most existing works model the
system based on queueing theory and linear regression. Due
to complexity, most existing works only focus on admission
control at the Web server tier [4], [5], [83], [84], [85], [86],
where [4], [5], [85], [86] applied queuing theory to model the
relationship between the mean response time and the request
arrival rate and then conducted admission control at the Web
tier. On the other side, [83], [84] conducted admission control
based on linear regression. In addition, [25], [87] considered
admission control at each tier by modeling the multi-tier Web
applications as a closed queuing network.

1) Queueing Theoretic Approaches:: When system iden-
tification is based on queuing theory, the multi-tier Web
applications is modeled as a M/GI/1 Processor Sharing
queue [4], [5], [88]. Let pa(t) be the admission probability
for requests at tth interval. Let λ(t) be the request rate. Then
the effective arrival rate to the Web site is λa(t) = λ(t)pa(t).
The mean response time TPS(t) is given by

TPS =
E[X ]

1− pa(t)λ(t) E[X ]
, (7)

where E[X ] is the mean job size. Based on Eq. (7), pa(t) can
be obtained by setting TPS = Tref , where Tref denotes the
desired response time. However, the model still cannot fully
capture the behavior of the multi-tier Web applications. The
observed TPS is not equal to Tref in practice. In order to cor-
rect the errors ΔT = |TPS−Tref | effectively, [4] developed a
self-tuning proportional integral (PI) controller, which updates
pa(t) by pa(t + 1) = αppreda (t + 1) + (1 − α)pa(t), where
α > 0 is constant and ppreda (t) is the prediction of pa(t).
While [5] introduced an adaptive controller in response to
the errors, ΔT , where the model parameter for characterizing
the relationship between ΔT and the adjustment of admitting
probability ΔPa(t) is updated dynamically in order to ensure
that the approximation error is minimized. The closed control
system is illustrated in Fig. 9, where the controller is used to
correct the error ΔT such that TPS approaches Tref .

Fig. 10. Basic processing model of a multi-tier application. [25].

Note that the resource demand for a request in each tier is
different. Only focus on admission control at the Web server
tier cannot capture the behavior at other tiers.

[25] developed a more complex queueing model for admis-
sion control, where admission control is considered at each
tier. The request process is modeled as a closed-queueing
network. The workload is assumed to be session-based, where
a session issues multiple requests during its lifetime. Specifi-
cally, for an application with M tiers denoted by T1, . . . , TM .
Assume no tier is replicated (e.g., each tier runs on exactly
one server). Then the process of an application is modeled as
a network of M queues, Q1, . . . ,QM . A processor sharing
discipline is applied to each tier. When no admission control
is considered, the request processing model is illustrated in
Fig. 10. For a given session, when the process of a request
completes at tier Ti, it either returns to queue Qi−1 at tier
Ti−1 with probability pi or proceeds to next queue Qi+1 at
tier Ti+1 with probability 1 − pi. In the last queue QM at
tier TM , all requests return to previous queue with pM = 1.
When the process of a request completes, it returns to a server
in Q0. After some think time, the session issues a new request
for process. Thus, the model can capture the behavior of the
process of a request at each tier. Under this model, the mean
response time for a given number of concurrent sessions N can
be computed by the Mean-Value Analysis (MVA) algorithm
[89], which is used for computing expected queue lengths in
closed-queueing networks.
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Fig. 11. Enhanced processing model of a multi-tier application. [25].

When admission control is considered at each tier, the
model becomes more complex. Note that the request process
capacity in each tier is different. Let Ki be the concurrency
limit at Qi and Vi be the visit ratio for Tier Ti. Admission
control at tier Ti is triggered only when the number of requests
exceeds its concurrency limit. Thus, an additional transition is
added to each tier. At the entrance of queue Qi, an infinite
server queuing subsystem Qdrop

i is added. Let pdropi be the
probability of a request transiting from Qi−1 to Qdrop

i . Then
the new request processing model is illustrated in Fig. 11. In
this case, the abstraction for the multi-tier Web application
is assumed to be a closed-queuing network. In this queuing
network, it is required to determine the drop probability pdropi

at each tier. The estimation of pdropi at tier Ti consists of two
steps: (1) If there were no concurrency limits, set pdropi = 0;
(2) Treat Qi as an open, finite-buffer M/M/1/Ki queue with
arrival rate λVi. Then pdropi can be estimated as the probability
of buffer overflow in the M/M/1/Ki queue [90].

2) Control Theoretic Approaches:: When linear regression
model is considered for system identification, most existing
works focus on the admission control at Web server tier [81],
[82], [91], [92], [93], [94]. Generally, a function is chosen for
characterizing the relationship between the observed output
and the control inputs based on a set of experiment results.
Then the control parameters for the feedback control can be
determined based on the derived function. Specifically, auto-
regressive moving-average (ARMA) model has been applied
to model the system widely. Where the relationship of the
observed output y(k) and the control input vector u(k) is
expressed as

y(k) =
m∑
i=1

ai(k)y(k − i) +
n∑

j=0

bT
j (k)u(k − j), (8)

where ai(k) and bj(k) are constants for estimation. In order
to estimate parameters ai(k) and bj(k), least-squares based
methods [95] in the Matlab System ID Toolbox [96] are used
to fit the input-output data collected from existing results.
For example, in [91], the observed output is defined as CPU
utilization, which is denoted by y(k). The control input is
defined as the maximum number of connections that the server

permits, which is represented by u(k). The objective is to
maintain the system performance by controlling u(k).

In summary, when applying control theory to handle the
admission control problem, we can use both queueing theory
and linear regression to model the system. It is important to
note that much domain knowledge is required when queueing
theory chosen. For linear regression approaches, how to define
the relationship among the control variables is a challenge in
order to achieve effective performance. In this case, we need to
investigate the relationship among the control variables before
applying linear regression.

B. VM Scaling

VM scaling is a concept of dynamically allocating the com-
puting resource for virtual machines. Some cloud providers
already support VM scaling. For example, Rackspace allows
users to increase the memory capacity of their VMs dy-
namically. In general, the goal is to minimize the resource
cost, while its constraints include system capacity and QoS
requirement. Due to the reduction in operation cost, a lot
of VM scaling technologies have been developed [17], [18],
[97]. VM scaling consists of two methods: vertical scaling
and horizontal scaling according the discussion in Section II.
Vertical scaling is a fine-granularity control. It is conducted by
changing the size of a VM instance; while horizontal scaling
is a coarse-granularity control. It is conducted to meet the
demand by launching more VM instances. We survey related
works as follows.

1) Vertical Scaling: For vertical scaling, the key is to
determine appropriate resources in each VM instance in
order to meet the clients’ QoS requirements. Most existing
works focus on two types of methods (i.e., linear regression
and queuing theory) for modeling the relationship between
the workload and resource demand. Compared with queuing
model, linear regression model is easier to derive due to less
domain knowledge required. Thus, most of existing works
focus on linear regression. Specifically, the CPU demand has
been investigated based on linear regression in [6], [79], [80],
[98], [99], [100], [101], [102], [103] and based on queuing
theory in [7], [58], [104], respectively. For example, based
on the ARMA model shown as Eq. (8), [79] investigated the
relationship between CPU entitlement and the inverse of MRT
for vertical scaling. The vertical scaling at the bottleneck tier
is shown to be more effective in [7] based on queuing theory.
In addition, [10], [91], [100] have presented the analysis of
multiple types of resources allocation for vertical scaling. For
example, [10] investigated the combination of CPU and disk
scaling based on linear regression. When linear regression
model is considered, most existing works apply the ARMA
model to approximate the original systems due to easy imple-
mentation [105]. Since the ARMA does not require explicit
domain knowledge, the modeling errors may be large and
cause performance degradation. This is an important issue for
the performance improvement.
a.) Queueing Theoretic Approaches:

When queuing model is considered for system identifica-
tion, the request process for the multi-tier Web applications
can be modeled as an M/GI/1 Processor Sharing queue
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(M/GI/1/PS) [7]. Due to intensive domain knowledge re-
quired, few works focuses on queuing model for VM vertical
scaling. Recently, [58] developed a simplified model, where
the request process is modeled as a M/G/1/PS queuing net-
work. In the queuing model, consider a multi-tier application
consisting of N tiers. Assume there are Ω transaction types of
the workload. Let λω be the arrival rate of the workload for the
transaction type ω. Then the aggregate rate of the transaction
as λ =

∑Ω
i=1 λω . Let un and cn be the CPU entitlement

and CPU usage at tier n, respectively. The resident time (wait
time + service time) on each tier is composed of two parts,
the resident time on CPU resources and that on non-CPU
resources. Let Tcpu be the total resident time on CPU across
all the tiers. Note that the CPU resident time in the n−th tier
is represented by Tn = rn

λ(1−rn)
, where rn = cn

un
is the CPU

utilization of tier n. Then the total resident time on CPU is

Tcpu =

N∑
n=1

Tn =

N∑
n=1

rn
λ(1 − rn)

=

N∑
n=1

cn
λ(un − cn)

. (9)

The mean resident time on non-CPU resources is approxi-
mated by

Tothers =
Ω∑

ω=1

αω
λω

λ
, (10)

where αω denotes service times of transaction type ω on all
non-CPU resources of all tiers on the execution path of that
transaction type. If we denote Tothers = β as a constant, then
we have

RTT = Tcpu + Tothers =
1

λ

N∑
n=1

cn
un − cn

+ β. (11)

Thus, we can approximate the relationship between un and the
given RTT target from Eq. (11). According to this equation,
we can further design a feedback controller to enhance the
system performance.
b.) Control Theoretic Approaches:

When the multi-tier system is modeled as a MIMO control
system, it can be characterized as a MIMO model similar
to the control system in Eq. (8). Specifically, the inputs to
the system are the computing resources allocated to each
tier. The outputs are the measured performance metrics. For
such a MIMO control system, the first step is to identify
the control parameters. Then the controller design is derived
based on specific objective. Clearly, the first step is the key of
the vertical scaling problem. Most of existing works applied
machine learning techniques on this step. For example, [79],
[80] estimated the parameters by using least-squares based
methods. [101] applied SVM to update the parameters. While
[103] employed fuzzy rules to characterize the control model.

2) Horizontal Scaling: For horizontal scaling, the resource
allocation means VM instance allocation. Compared with
vertical scaling, the performance of horizontal scaling is more
difficult to control than that in vertical scaling. In practice, it
takes several minutes to start up or shut down a VM instance
[106]. Inappropriate control policy may cause oscillation re-
sponse in the system. In addition, there are many different
VM instances for scaling [16]. In each control interval, it

is required to choose appropriate type of VM instances with
appropriate amount for scaling.

Horizontal scaling is suitable for distributed Web sites. For
example, the database layers can run on multiple machines.
The horizontal scaling usually does not affect the service. In
contrast, the server resources (e.g., CPU and disk) are required
to be located at the same physical machine when vertical
scaling is conducted.

There are two issues in horizontal scaling. First, how many
VM instances should be selected for scaling when horizontal
scaling is triggered? Second, how to determine the appropriate
threshold in order to ensure the performance satisfy the given
requirement? Recently, there are some studies on horizontal
scaling based on auto-scaling methods. Let’s discuss these two
issues in details.

Determining the number of VMs: Most related works
used a set of rules to solve the problem [107], [108],
where a threshold is defined for triggering to add or delete
servers in order to maintain the performance guarantees. These
threshold-based algorithms are simple and easy to implement.
For example, one can set a threshold to add new Amazon EC2
instances in increments of 3 instances to the Auto Scaling
Group when the average CPU utilization goes above 70%
[107]. However, the task of choosing appropriate threshold
values for these algorithms is not trivial. The scaling perfor-
mance is an important issue for these algorithms. For example,
a cluster with small size can increase its capacity drastically
even when a VM instance is added. However, for a cluster
with large size, there is not obvious change of capacity even
when ten VM instances are added [109].

In order to determine the number of VM instance for
scaling, the relationship between the workload and the VM
instance demand is developed based on queuing theory in
[110]. For a multi-tier application consisting of k tiers. Let R
be the desired end-to-end response time. Assume it is broken
down into per-tier response times, denoted by d1, d2, . . . , dk,
such that

∑k
i=1 di = R. Let si and λi be the average

service time for a request and the request arrival rate at tier i,
respectively. Each tier is modeled as a G/G/1 system. Then
the behavior of a G/G/1 system can be captured by

λi ≥
[
si +

σ2
a + σ2

b

2 · (di − si)

]−1

, (12)

where σ2
a and σ2

b are the variance of inter-arrival time and
the variance of service time, respectively. Eq. (12) provides a
lower bound on the request arrival rate λi that can be serviced
by a single server. Assume an average regression session think-
time is Z . Then a session issues requests at a rate of 1

Z .
Assume the session arrival rate is λ and the session duration
is τ . Then the request arrival rate is λτ

Z . Let ηi be the number
of servers needed at tier i. Once the capacity of a single server
λi has been computed, ηi can be estimated by

ηi =

⌈
βiλτ

λiZ

⌉
, (13)

where βi is a tier-specific constant. Thus, Eq. (13) gives the
estimation of number of servers needed at each tier, which
responds to the request arrival rate, λ. While the relationship
between the number of VM instances and the response time is
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modeled as a M/M/m queueing system in [111]. On the other
hand, a variant of exponentially weighted moving average
(EWMA) load predictor is used in [112]. The load predictor
formula is expressed as

E(t) = α ·E(t− 1) + (1− α) ·O(t), 0 ≤ α ≤ 1 (14)

where E(t) and O(t) represent the estimated and observed
number of required VMs at time t. α is a parameter for the
tradeoff between stability and responsiveness.

Determining the threshold: In [110], let λpred(t) and
λobs(t) be the predicted arrival rate and the actual arrival
rate during tth interval. Then the VM horizontal scaling is
triggered if λobs(t)

λpred(t)
> τh or λobs(t)

λpred(t)
< τl, where τh and

τl are application-defined thresholds. However, the rule for
threshold selection has not been investigated in these previous
works yet. In practice, inappropriate threshold settings may
cause oscillation response in the system [109]. For example,
due to inappropriate threshold setting, a controller may launch
a new VM instance in current interval due to heavy workload
predicted. Later it may shut down an existing VM instance
before the new VM instance is ready to use due to light
workload predicted. It wastes the money as well as the non-
ignorable VM acquisition.

In order to maintain the scaling performance and suppress
the oscillation, a novel feedback controller based on propor-
tional thresholding is proposed to achieve stable VM scaling in
[109], where the rule for threshold selection is investigated.
Let uk+1 be the new actuator value and uk be the current
actuator value. Let yref and yk be the desired output and the
observed output, respectively. Ideally, if the startup time of
launching a VM instance is negligible, an integral controller

uk+1 = uk +Ki · (yref − yk) (15)

can ensure that yk is as close as possible to the desired yref .
However, the startup and shut down time of a VM instance
are not negligible and have significant impact on the scaling
performance. Though a VM instance can be scaled out at any
time, it is not ready to use immediately. Note that it takes
several minutes to start up or shut down a VM instance. The
controller in (15) cannot be directly applied for VM horizontal
scaling. In order to ensure the system is stable and the desired
performance is achieved, an integral controller is defined as

uk+1 =

⎧⎪⎨
⎪⎩
uk +Ki · (yh − yk) if yh < yk

uk +Ki · (yl − yk) if yl > yk

uk otherwise
(16)

where yh and yl are high and low target sensor measurement.
The controller will not change the control input until the sensor
measurement is outside the target range. Specifically, the value
of the control input increases only when the observed output
is above the high target and decreases when it is below the
low target. [113] developed similar policies to achieve elastic
control of the storage tier. The above mentioned works are
compiled into a survey table illustrated in Table I. Compared
with queuing model, linear regression model is easier to
implement and less domain knowledge required. It can be seen
that most of existing works apply linear regression methods
to model the system.

Compared with rule based algorithms, model based ap-
proaches not only can provide performance guarantees, but
also ensure the closed-loop control system is controllable by
tuning appropriate control parameters. The summary compar-
ison is illustrated in Table II. It can be seen that control
theoretic approaches are more appropriate for the QoS per-
formance control in multi-tier systems.

In addition, a comparison of fuzzy control and control
theoretic approaches for the resource management in multi-
tier systems is also illustrated in Table II. Note that the system
is very complex with high uncertainty. RL can learn the
system through error and trial and thus adapts to environment.
However, the learning process of RL requires a long duration
in order to approximate it with high accuracy. Moreover, as
aforementioned, the algorithm complexity of RL is very high.
This is unacceptable for multi-tier Web applications due to
the strict QoS requirement. Fuzzy control based approaches,
on the other hand, learn from historical data to derive rules for
the resource management problem and update rules according
to change of the system. Compared with RL, they require less
learning complexity and provide QoS requirement. However,
the rule design is very challenge. Simple rules are easy to
derive, but they may not allocate the resource efficiently.
Complex rules on the other hand, may cause the system
to oscillate, which leads the system to be unstable. Control
theoretic approaches develop controllers from the viewpoint
of control theory. Such models not only provide guideline for
parameter design for given QoS requirement, but also ensure
the system is stable. These advantages make control theoretic
approaches more appropriate for the resource management in
multi-tier Web applications.

In summary, designing an appropriate scheme for the re-
source management in multi-tier Web systems is an important
issue in practice. Many existing works have demonstrated the
effectiveness and efficiency of model based approaches in
addressing the issue. They can overcome the drawbacks of
other existing works. Moreover, they not only provide QoS
guarantees, but also ensure system stability. Due to these
distinct advantages, model based approaches are becoming
more popular for the resource management in multi-tier Web
systems.

V. OPEN PROBLEMS AND SUGGESTIONS

We have theoretically analyzed how the approaches work
and discussed their respective advantages and disadvantages.
Many computing resource allocation models have been in-
vestigated under different virtualized environments. Most of
the surveyed models and techniques not only applicable to
multi-tier applications, but also other applications involving
provisioning on multiple tiers such as eScience and big data
applications. The performance of these approaches has been
evaluated in respective papers. On the other hand, we acknowl-
edge that current related methods are from academia. It is
unclear whether and how industry companies can adopt those
methods to improve the effectiveness of resource provisioning.
Thus, more benchmark studies and application development
experiences will be valuable for this research field.

Having reviewed the existing studies, we have identified
a number of important open problems. We divide them into
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TABLE I
CATEGORIZATION OF MENTIONED WORK.

Resource Control Monitor Multiple Tiers
Queueing Theory Linear Regression One Tier Every Tier

Admission Control [4], [5], [25], [87], [88] [83], [81], [82], [91], [92],
[93], [94]

[4], [5], [83], [81], [82],
[88], [91], [92], [93], [94]

[25], [87]

Vertical Scaling [7], [58] [6], [10], [98], [100],
[102]

[100] [7], [58], [6], [10], [98],
[102]

Horizontal Scaling [110] [109], [113] [113] [109], [110]

TABLE II
PROPERTY COMPARISON OF RL, FUZZY CONTROL AND CONTROL THEORETIC APPROACHES (�: YES �: NO).

Approaches RL Fuzzy control Control theoretic
Provide QoS guarantees � � �
Provide guideline for parameter design � � �
Less learning complexity � � �
Adapt to the environment � � �
System stability � � �

two categories. The first category is on the open issues in
improving current model based approaches, and the second
category is on the new developing trends from cloud comput-
ing, web applications and control theory. Then we provide
some suggestions in this section on how to improve the
performance of existing works.

A. Open Problems in Model Based Approaches

Despite many existing studies that we have reviewed in the
previous sections, there are still some important open issues
for resource allocations for multi-tier web sites hosted in the
cloud environment.

We have identified the following challenges on developing
model based approach for resource allocations.

First, when system identification is conducted at the monitor
module, which model is appropriate to use? Though different
types of models (e.g., queuing model, linear regression model
and machine learning model) have been proposed, there is a
lack of theoretic analysis on the advantages and limitations
of these models. There is not a clear guidance on choosing
the appropriate model given certain web workloads and cloud
environment specifications.

Second, how to choose the set of appropriate control inputs
given certain target metrics (output)? In practice, the relation-
ship between performance metrics (e.g., mean response time
and throughput) and control inputs (e.g., CPU, memory and
bandwidth) can vary under different workload regions. Thus,
the relationship is difficult to identify due to high complexity
of the computing system and dynamic workloads. For a control
output, a control input may affect it significantly under some
workload regions, but has little impact on the output under
other workload regions. For example, there exists a linear
mapping from the CPU entitlement to 1/MRT within the
overload region, while the MRT becomes independent of the
CPU entitlement setting when the system is underloaded [79].
The MRT is uncontrollable when only using CPU entitlement
in this region. A lack of analysis of the impact of control
inputs on the control output under different workload regions
may cause a resource allocation scheme to be ineffective under
some workload regions.

Third, how to determine the feasibility of control inputs?
When control theory is applied to computing systems, control
variables must be defined in a meaningful way [82]. Under
a given control system, for an output reference value, the
corresponding control inputs may be unfeasible in computing
systems. For example, under some resource allocation rules,
the derived value of a control input is negative, indicating the
unfeasible input.

Finally, how to ensure the controller is robust to the
changing of the workload [79]? A controller with robustness
ensures the control system is stable and works well under
different workload regions. Most existing works on feedback
control for the resource management only focus on the chosen
system identification model and ignore the error introduced by
the system identification model. In practice, the error also has
significant impact on the system performance. In the worst
case, the error may be quite large and causes the control
system to be unstable. Therefore, this issue is very important
for performance guarantees.

B. New Trends

There are a few new trends that impact the current research
of the resource allocation problem in multi-tier web applica-
tions.

Non-linear control. Many of the reviewed studies are based
on linear control methods, which rely on the key assumption
of small range operation for the linear model to be valid.
However, we have observed that the QoS target settings
usually have an non-linear relationship with the control inputs.
It is rather questionable how existing studies perform in the
real setting of dynamic workloads.

There have been extensive research efforts in nonlinear con-
trol [114], [115]. Compared with linear control, nonlinear con-
trol has several advantages, such as simpler implementation,
faster response and less controlling cost. Advances have been
made in the areas for non-linear control including feedback
linearization, sliding control, and nonlinear adaptation tech-
niques. Those techniques should be revisited under the context
of resource allocation for multi-tier web. Compared with linear
control based approaches, non-linear control based approaches
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can model the system more accurate due to the high non-
linearity of it. In this case, they can achieve the same QoS
requirement with a smaller amount of resources. However, the
major disadvantage of nonlinear control is nonlinear control
requires rigorous mathematical analysis for the controller
design. Researchers should address those disadvantage for
applying nonlinear control. With the advance of nonlinear
control, the controller design based on nonlinear control will
help to improve the performance of resource management for
multi-tier Web applications.

The evolution of cloud computing. Traditionally, service
providers are required to statically buy enough computing
hardware in order to meet the peak load. However, the uti-
lization can be low due to the workload fluctuation. Recently,
cloud computing becomes a new and attractive paradigm
for hosting multi-tier Web applications, because of its pay-
as-you-go price schemes. When multi-tier applications run
in the cloud environment, the computing resource can be
dynamically scaled according to the demand (i.e., elasticity).

Cloud computing has evolved into a main-stream informa-
tion technology infrastructures for many applications. Driven
by the wide adoption, developers and researchers have devel-
oped many useful tools for resource management in the cloud,
for example, Amazon auto-scaling [107] and domain specific
auto-scaling [116]. We expect that more tools and systems
with advanced techniques will improve the effectiveness of
resource management. Since those tools and systems may
not be specially designed for multi-tier web applications, we
need to examine how those techniques can be adapted to the
scenario of multiple tiers.

Virtualization is the core technique for cloud computing.
Though virtualization technologies have been shown to be
effective tools for the resource management in multi-tier Web
sites, resource allocation in multi-tier Web applications is not
a straightforward job due to high complexity in computing
systems and different CPUs/disks virtualization interference
due to resource sharing among multiple virtual machines. The
key of effective resource management is to identify the rela-
tionship between the resource demand and the performance
metrics under different workloads accurately.

Beyond technological innovations, the cloud itself is evolv-
ing. One particular change is the price structure of the cloud.
For example, recently Amazon EC2 has adopted spot price.
The price of a certain VM type is determined by the runtime
dynamics of demand and supply. That means, not every unit
of resource consumption has the same price, depending on
the time that we use the spot instance. When the price is very
high, the system should reject more requests. Otherwise, it
should admit more request when the price is very low. The
resource management problem becomes more complicated,
which becomes a multi-objective optimization problem. More-
over, the distinct feature of spot instances is their out-of-bid
feature, when the bidding price is lower than the spot price, the
allocated VM is terminated. This poses significant challenges
in achieve SLA of web applications.

The evolution of Web service. The popularity of new
web services like social networks and search engines already
shift the mostly static pages into rich Internet application
(RIA) technologies such as Adobe Flash. One of the major

technologies is HTML5. The core aims of HTML5 are to
improve the language with support for the latest multimedia
while keeping it easily readable by humans and consistently
understood by computers and devices. As 30 September 2011,
34 of the world’s top 100 Web sites were using HTML5 - the
adoption led by search engines and social networks.

In general, the resources of Web browsers include CPU,
memory, or network bandwidth for web applications and
devices such as GPS, cameras and microphones. The resource
management includes resource access control and resource
sharing. It has significant impact on the performance of multi-
tier Web applications. Though today’s web browsers have
evolved into multi-principal operating environments, no ef-
fective method for the resource management of Web browsers
has been developed [117], which leads them to be less robust
than other desktop applications. Now the evolution of Web
service, especially the HTML5, causes the resource demand
to become diversified. This makes the resource management in
Web service more complicated and challenging. In this case,
a novel resource allocation scheme with the ability adapt to
such a complicated environment is required. The responsive
control systems become very attractive in this scenario.

In summary, the above trends bring a new dimension of
resource management in multi-tier Web applications, they also
cause the resource management problem more complicate.
Therefore, on one hand, a further study on the problem
based on existing works will continuously improve both the
effectiveness and efficiency of current systems. On the other
hand, the resource demand model in multi-tier systems keeps
evolving, which requires us to make a revision of existing
works before applying them.

C. Suggestions for Performance Improvement

The two classes of approaches have been applied for the
resource allocation problems in multi-tier systems. The effec-
tiveness of them has been evaluated under specified models.
As aforementioned discussion, there are still many challenges
in the application of these approaches in multi-tier systems. In
this subsection, we give some suggestions on how to improve
the performance of existing works.

Note that both rule based approaches and model based
approaches cannot accurately model the multi-tier systems due
to the high complexity and the dynamics in the systems. One
needs to set some parameters such that they are conservative
in order to satisfy the strict QoS requirements. Clearly, if
an approach is aggressive, it will not meet the specified
QoS requirements. Thus, the difference among these existing
works is the degree of conservatism. It is important to note
that the objective of applying these approaches is to meet
the given QoS requirement with minimum resource cost. A
feasible way to improve the performance of existing works
is to model the system more accurately. In order to do that,
we need to identify which classes of parameters cause the
given approach to be conservative or aggressive. Once the
measured metrics show the current setting is too conservative,
we should make some changes to these parameters such that
the given approach becomes less conservative. Otherwise, we
should make it becomes more conservative. Under such a
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policy, we can continue to improve the modeling accuracy
and thus reduce more resource cost while satisfy the specified
QoS requirements.

VI. CONCLUDING REMARKS

Performance guarantee is an important issue for multi-tier
Web applications. In the paper, we survey the resource alloca-
tion mechanisms including rule and model based approaches
for the resource allocation in multi-tier Web applications.
Rule based approaches require less domain knowledge and
mathematical foundations. These approaches derive rules from
historical data. They require a great deal of simulations and
training data to derive appropriate rules or parameters in order
to handle the resource management problem effectively for
different scenarios. In comparison, model based approaches
attempt to model the original system with mathematical
models. This requires much domain knowledge to model the
system. However, they provide more insights into the system
and achieve better trade-off between QoS requirement and
resources. We identify challenges of the resource allocation
problem and theoretically illustrate why control theory is
appropriate for the problem. Existing works have shown
that feedback control based approaches are effective for the
resource management in multi-tier Web applications in that
control theory provides rigorous methodology for modeling,
analysis, design and evaluation of the control system. Com-
pared with the learning approaches, fuzzy control and control
theoretic have the advantages of providing QoS guarantees
and less leaning complexity. Compared with fuzzy control,
the control theoretic approach has the further advantage of
system stability and offering the guideline for parameter
design. Finally, we have identified the open problems in next-
generation multi-tier web site in the cloud environment, which
calls for action from the community of web, control and cloud
systems.
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