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Abstract—To address the computing challenge of ’big data’, a number of data-intensive computing frameworks (e.g., MapReduce,
Dryad, Storm and Spark) have emerged and become popular. YARN is a de facto resource management platform that enables
these frameworks running together in a shared system. However, we observe that, in cloud computing environment, the fair resource
allocation policy implemented in YARN is not suitable because of its memoryless resource allocation fashion leading to violations of
a number of good properties in shared computing systems. This paper attempts to address these problems for YARN. Both single-
level and hierarchical resource allocations are considered. For single-level resource allocation, we propose a novel fair resource
allocation mechanism called Long-Term Resource Fairness (LTRF) for such computing. For hierarchical resource allocation, we
propose Hierarchical Long-Term Resource Fairness (H-LTRF) by extending LTRF. We show that both LTRF and H-LTRF can address
these fairness problems of current resource allocation policy and are thus suitable for cloud computing. Finally, we have developed
LTYARN by implementing LTRF and H-LTRF in YARN, and our experiments show that it leads to a better resource fairness than
existing fair schedulers of YARN.

�

1 INTRODUCTION

Nowadays, we have entered the era of ’big data’, where the

data is collected at unprecedented scale in many application

areas, including e-commerce [1], social network [18], and

computational biology [43]. Large-scale data processing is

thus needed in analyzing and mining of massive data. In

recent years, a number of large-scale data-intensive computing

frameworks (e.g., MapReduce [2], Spark [13], Dryad [6],

HIVE [25]) have been developed for different applications/data

(e.g., batch/iterative applications, graph/streaming data). Re-

cently, YARN [3] has emerged as a popular distributed re-

source management system that enables a number of these

data-intensive computing frameworks (e.g., MapReduce [2],

Spark [13], HIVE [25]) to efficiently share a cluster.

Moreover, cloud computing has emerged as a popular plat-

form for users to compute their large-scale data applications,

attracting from its merits such as flexibility, elasticity, and

cost efficiency. Resource utilization is a key design issue in

the cloud for both users and providers [47]. However, the

fact is that the resource utilization of current data-intensive

computing systems is far from ideal. Delimitrou et al. [48]

had an analysis of Twitter production cluster over one month.

However, they showed that the majority of servers (e.g., 80%
servers) are below 20% utilization.

Resource sharing is a classical and effective approach for

high resource utilization [23]. It is based on the observations

that 1). different users often have different resource demands;

2). even for an individual user, her demand is changing over

time. Resource sharing can thereby achieve a better utilization

than the non-sharing case by enabling overloaded users to

utilize unused resources from underloaded users. In the cloud

environment, we can establish a multi-tenant computing sys-

tem by importing all computing instances rented by each user.

The computing resources of the system can be managed and

shared between users in their analytical data computation with

existing resource management systems such as YARN [3].

Fairness is an important system issue in resource sharing.

Only when the fairness is guaranteed for users, the resource

sharing can be possible among different users. One of the

most popular fair allocation policy is (weighted) max-min
fairness [23], which maximizes the minimum resource al-

location obtained by a user in a shared computing system.

It has been used in YARN [3] as well as other popular

resource sharing systems such as Mesos [10]. Unfortunately,

we observe that the fair polices implemented in these systems

are memoryless, i.e., allocating resources fairly at instant
time without considering history information. We refer these

policies with MemoryLess Resource Fairness (MLRF). MLRF

is not suitable for cloud computing system due to the following

problems:

Cost-inefficient Workload Submission Problem. For

MLRF, there is an implicit assumption that all users are un-

selfish and honest towards their requested resource demands,

which is however often not true in practice. It can cause cost-

inefficient workload submission problem with MLRF in the

sharing environment. Consider two users A and B sharing

a system for example. Let DA and DB be the true workload

demand for A and B at time t0, respectively. Assume that DA

is less than its share1 while DB is larger than its share. When

it is in the exclusively non-sharing computing environment,

there is no incentive/benefit for user A to run dirty (i.e., cost-

inefficient) tasks for possessing all her unused resources since

there is no resource contention for her in this case at any time.

However, when it comes to the sharing case, if A yields her

unused resources to B at t0, next at time t1 when A has many

tasks to compute, it would make her be pending/waiting for

possessed resources to be released from B. Assuming A is

a selfish user, in order to avoid that in the sharing case, it

1. By default, we refer to the current share at the designated time (e.g., t0), rather
than the total share accumulated over time.
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is feasible for A to possess all of her unused resources by

submitting a number of small-size dirty (i.e., cost-inefficient)

tasks at t0 until the true resource demand of A become larger

than or equal to her share in next computation stages. If all

underloaded users in the sharing system behave like A, it then

causes the cost-inefficient problem for running workloads and

breaking the sharing incentive (See definition in Section 3)

property at the same time.

Strategy-Proofness Problem. In a fairly shared system,

it is important to ensure that no users can get any benefits

by lying (See Strategy-proofness in Section 3). We argue that

MLRF cannot satisfy this property. Consider a Hadoop system

consisting of three users A, B, and C. Assume A and C are

honest users while B not. It could happen at a time that both

the true map slots demands of A and B are less than their own

shares while C’s true map slots demand exceeds its share. In

that case, A yields her unused map slots to others honestly.

But B can cheat the Hadoop system by falsely reporting her

map slots demand (say, e.g., far larger than her share) and

put some computing load of her reduce tasks in the map

tasks, which can be achieved by modifying the application

code [23]. Then B can compete with C for unused map slots

from A, benefiting B for having more workloads computed

and hence violating strategy-proofness. Moreover, it will break

the sharing incentive property as well if all other users do the

same thing like her.

Resource-as-you-contributed Unfairness Problem. In the

shared cloud system, we should ensure that the total resources

received by each user are proportional to her resource contribu-

tion (See resource-as-you-contributed Fairness in Section 3).

Due to the varied resource demands (e.g., workflows) for a

user at different time, MLRF fails at this point. Consider two

users A and B. At time t0, it could happen that the demand

DA is less than its share and hence its extra unused resource

will be possessed by user B (i.e., lend to B) according to the

work conserving property of MLRF. Next at time t1, assume

that user A’s demand DA becomes larger than its share. With

MLRF, however, A can only use her current share (i.e., cannot

get lent resources at t0 back from B), if DB is larger than its

share, due to the memoryless feature. It is unfair for A to get

the amount of resources that she should have obtained from a

long-term view.

In this paper, we propose Long-Term Resource Fairness
(LTRF) and show that it can solve the aforementioned prob-

lems. We start with the single-level resource allocation, and

next extend it to hierarchical resource allocation [24]. For the

single-level resource allocation, we demonstrate that LRTF has

good properties that are important for fair resource allocation

on the shared cloud system. Five such properties are sharing

incentive, cost-efficient workload incentive, resource-as-you-

contributed fairness, strategy-proofness and Pareto Efficiency.

LTRF provides incentives for users to submit meaningful

workloads and share resources by ensuring that no user is

better off in the exclusively non-sharing computing system

than in the sharing case. Moreover, LTRF can guarantee

the amount of resources a user should receive in terms of

the amount of resources she contributed, in the case that

her resource demand varies over time. In addition, LTRF is

strategy-proof, as it can make sure that a user cannot get more

resources by lying about her resource demand.

We have extended LTRF to support hierarchical resource al-

location by considering the organizational priorities in resource

allocations. We show that the combination of hierarchical and

long-term resource allocation brings new challenges that do

not exist in the single-level long-term resource allocation.

A naive extension of LTRF can lead to the starvation. To

solve this problem, we propose a starvation-aware Hierarchical

LTRF (H-LTRF) based on the timeout technique.

We have implemented LTRF and H-LTRF in YARN [3],

by developing a long-term fair scheduler LTYARN. The ex-

periments show that, 1). LTRF can guarantee Service-Level

Agreement(SLA) via minimizing the sharing loss and bringing

much sharing benefit for each user (See Fairness definition in

Section 4.2), whereas MLRF not; 2). the shared methods using

either LTRF and MLRF can possibly get better performance

than non-shared one, or at least as fast in the shared system as

they do in the non-shared partitioning case. The performance

finding is consistent with previous work such as Mesos [10];

3). H-LTRF can address the possible starvation problem in

hierarchical resource allocation.

This paper is organized as follows. Section 2 gives the

background and motivation. Section 3 presents several cloud-

oriented resource allocation properties. Section 4 models the

problem for single-resource allocation and defines the notion

of fairness for cloud computing. Section 5 gives the design and

principle of fair policies. Section 6 presents the implementa-

tion details of LTYARN. Section 7 evaluates the fairness and

performance of LTYARN experimentally. Section 8 reviews

the related work. Finally, we conclude the paper in Section 9.

2 BACKGROUND AND MOTIVATION

In this section, we start with the background of data intensive

computing in the cloud and present our work settings. Next,

we give an introduction of resource allocation in YARN.

2.1 Data-Intensive Computation in the Cloud
To enable the query and analysis for such a large volume of

data, a number of large-scale data management and parallel

computing systems have been designed and built, including

Hadoop [15], Hive [25], Dryad [6], and Spark [13]. On the

other hand, there is a trend for users to take cloud computing

as a computing infrastructure for data-intensive computing due

to its capacity of elastic computing and storage resources [46],

and pay-as-you-go pattern for rented cloud resources.

Running in the cloud, applications need to have a high

utilization (and in turn the high cost efficiency) for rented

cloud resources. Otherwise, the cloud resources are idle,

resulting in a waste of money as well as resources [5]. In

practice, it is most likely that the resource demand of a single

user’s application is changing over time, implying that it is

hard to keep the high resource utilization all the time. More

effective resource sharing is critical for improving the resource

utilization in the cloud.

In this paper, let’s consider a cloud-based computing system

shared by n users, where user i has a resource contribution

of ki to the pool of cloud resources. To enable resource
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sharing sustainable between users in the long run, we should

guarantee the proportional relationship between the amount

of total resources a user used over a period of time and the

amount of resources contributed by the user to the shared cloud

(i.e., resource-as-you-contributed fairness). Our aim thus turns

to explore a fair resource allocation policy that can meet all

the aforementioned good properties listed in Section 3.

2.2 Resource Management in YARN
YARN, as the next generation of Hadoop (i.e., Hadoop MRv2),

has evolved to be a large-scale data operating platform and

cluster resource management system. There is a new archi-

tecture for YARN, which separates the resource management

from the computation model. Such a separation enables YARN

to support a number of diverse data-intensive computing

frameworks including Dryad [6], Giraph, Hoya, Spark [13],

Storm [12] and Tez. In YARN’s architecture, there is a global

master named ResourceManager(RM) and a set of per-node

slaves called NodeManagers(NM), which forms a generic

system for managing applications in a distributed manner.

The RM is responsible for tracking and arbitrating resources

among applications. In contrast, the NM has responsibility

for launching tasks and monitoring the resource usage per

slave node. Moreover, there is another component called

ApplicationMaster(AM), which is a framework-specific entity.

It is responsible for negotiating resources from the RM and

working with the NM to execute and monitor the progress of

tasks. Particularly, all resources of YARN are requested in the

form of ’container’, which is a logical bundle of resources

(e.g., ă1 CPUs, 2G memoryą).

As a multi-tenant platform, YARN organizes users’ sub-

mitted applications into queues and share resources between

these queues. Users can set their own queues in a config-

uration file provided by YARN. When all users’ queues are

configured at the same level, the cluster resources will then be

allocated at one level, which we call the single-level resource

allocation. Moreover, to reflect the hierarchical tree structure

for organizations of users in practice, YARN also supports

hierarchical queues of tree topology. Each queue can represent

an organization or a user. In the tree topology, there is a root

node called Root Queue. It distributes the resources of the

whole system to the intermediate nodes called Parent Queues.

Each parent queue further re-distributes resources into its sub-

queues (parent queues or leaf queues) recursively until to the

bottom nodes called Leaf Queues. Finally, users’ submitted

applications within the same leaf queue share the resources.

We call this allocation as hierarchical resource allocation.

There is a Fair Scheduler [22] inside YARN, which can

support both single-level and hierarchical resource allocations.

Moreover, both single-resource and multi-resource allocations

are also supported. For the single-resource allocation, current

version of YARN adopts the max-min fair policy and focuses

only on the memory resources. With regard to the multi-

resource allocation, it takes the Dominant Resource Fairness

(DRF) [23] and considers both CPU and memory resources.

In our paper, we focus on the single-resource allocation

for YARN by considering both single-level and hierarchical

resource allocation in cloud computing. We remain the con-

sideration for multi-resource allocation as future work.

3 CLOUD-ORIENTED RESOURCE ALLOCA-
TION PROPERTIES

We present a set of desirable properties for cloud computing.

Based on these properties, we design our fair allocation poli-

cies for YARN. We have found the following five important

properties:

‚ Sharing Incentive: Each user should be better off sharing

the resources with others, than exclusively using the

resources individually. Consider a cloud system equally

shared by n users over t period time. Then each user

should get at least t ¨ 1
n resources in the shared system.

‚ Cost-Efficient Workload Incentive: Resources in the cloud

are priced (i.e., not free). In a shared cloud system, we

should encourage users to submit workloads that generate

positive utility to them (i.e., cost-efficient workload) for

cost efficiency and avoid those spam workloads with

no positive utility (i.e., cost-inefficient workload). That

is, a user should be better off submitting cost-efficient

workload and yielding unused resources to others when

not needed. Otherwise, she may be selfish and possesses

all unneeded resources under her share by submitting

cost-inefficient tasks in a shared computing environment.

‚ Resource-as-you-contributed Fairness: In the cloud, as-

sume that each user contributes a certain number of

machines (resources) to its common pool of machines

(resources). Then, the accumulated resource that each

user used received over time should be in proportion to

her contribution in the shared environment. This property

is important as it is a Service-Level Agreement (SLA)

guarantee for users.

‚ Strategy-Proofness: Users should not be able to get bene-

fits by lying about their resource demands. This property

is compatible with sharing incentive and resource-as-

you-contributed fairness, since no user can obtain more

resources by lying.

‚ Pareto Efficiency: In a shared resource environment, it

is impossible for a user to get more resources without

decreasing the resource of at least one user. This property

can ensure the system resource utilization to be maxi-

mized.

Although this paper is focused on YARN, it is worth

mentioning that our methodology can be applied to other

resource management systems such as Mesos [10].

4 SYSTEM MODEL AND FAIRNESS DEFINITION

In this section, we first model the single-resource allocation for

YARN in cloud environment. Next, we give the definition of

fairness, which is used to assess fair policies in the following

sections.

4.1 System Model
This paper considers the single-resource allocation fairness

(e.g., memory) for YARN in the most commonly used ho-
mogeneous environment [3]. Let M “ t1...mu be the set

of machines (or instances) in the shared computing system.

For each machine, we assume the amount of resources (e.g.,

memory) is Ri. Thus, the total resource capacity R of the
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system is R “ řm
i“1 Ri. Let N “ t1...nu be the set

of users in the shared computing systems. Assume that the

resource contributions (i.e., shared weights) for n users are

W “ tw1...wnu. According to the practical needs of resource

allocation, these users can be grouped into multiple queues of

either single-level resource allocation structure or hierarchical

resource allocation structure in YARN.

Without loss of generality, for example, there is a cloud

system consisting of 100 instances of t2.medium type on the

cloud, contributed by four users A,B,C and D with diverse

data-intensive workloads (e.g., MapReduce, Tez, HIVE, and

Spark) equally. In that case, we can establish a shared comput-

ing system with YARN. According to practical needs, the four

users can be organized either into a single group for single-

level resource allocation (e.g., Figure 1(a)) or multiple groups

for hierarchical resource allocation (e.g., Figure 1(b)).

In our work below, we focus on the fairness for these two

types of resource allocation structures for n users, namely,

single-level resource allocation (Section 5.1) and hierarchical

resource allocation (Section 5.2).

4.2 Fairness Definition
We consider the fairness from the resource allocation perspec-

tive. In a shared cloud environment, ideally, every user wants

to get more resources or at least the same amount of resources

in a shared computing system than the ones of exclusively

using her partition of the system. We call it fair for a user (i.e.,

sharing benefit) when that can be achieved. In contrast, due to

the resource contention in the shared system, it is also possible

for the total resources a user received are less than that without

sharing, which we call unfair (i.e., sharing loss). To ensure

resource-as-you-contributed fairness and the maximization of

sharing incentive property in the shared system, it is important

to minimize sharing loss firstly and then maximize sharing
benefit.

In the remainder of this paper, we refer to the total resources

as accumulated resources along the time. Let giptq be the

currently allocated resources for the ith user at time t. Let

fiptq denote the accumulated resources for the ith user at time

t. Thus,
fiptq “

ż t

0

giptq dt. p1q

Let diptq and Siptq denote the current demand and current

resource share for the ith user at time t, respectively. Given

the total resource capacity R of the system and the shared

weight wi for the ith user, there is

Siptq “ R ¨ wi{
nÿ

k“1

wk. p2q

The fairness degree ρiptq for the ith user at time t is defined

as the normalization result of the amount of resources a user

obtained in a shared environment with respect to the non-

shared environment, i.e.,

ρiptq “ AllocationResultWithSharing

AllocationResultWithoutSharing
“

şt
0
giptq dtşt

0
min tdiptq, Siptqudt

.

p3q
ρiptq ě 1 implies the absolute resource fairness for the

ith user at time t. In contrast, ρiptq ă 1 indicates unfair.

We can easily see that for a user i in a non-shared partition

of the system, it always holds ρiptq “ 1, since it has

giptq “ min tdiptq, Siptqu at any time t in this scenario. To

measure how much better or worse for sharing with a fair

policy than without sharing (i.e., ρiptq ´ 1), we propose two

concepts sharing benefit degree and sharing loss degree to

quantify it, respectively. Let Ψptq be sharing benefit degree,

as a sum of all pρiptq ´ 1q subject to ρiptq ě 1, i.e.,

Ψptq “
nÿ

i“1

max tρiptq ´ 1, 0u. p4q

and let Ωptq denote sharing loss degree, as a sum of all pρiptq´
1q subject to ρiptq ă 1, i.e.,

Ωptq “
nÿ

i“1

min tρiptq ´ 1, 0u. p5q

Thereby, it always holds that Ψptq ě 0 ě Ωptq. Moreover,

we see that in a non-shared partition of the computing system,

it always holds Ψptq “ Ωptq “ 0, indicating that there are

neither sharing benefit nor sharing loss. In contrast, in a shared

cloud computing system, either of them could be nonzero. For

a good fair policy, it should be able to maximize Ωptq first

(e.g., Ωptq Ñ 0) and next try to maximize Ψptq as much as

possible. Finally, we can use this two metrics to compare the

fairness among different policies.

5 FAIR POLICY DESIGN AND PRINCIPLE FOR
YARN
In this section, we give our design and principle of fair policies

for YARN under cloud computing environment. Both single-

level resource allocation and hierarchical resource allocation

are considered.

5.1 Single-level Resource Allocation
For single-level resource allocation, we first give a motivation

example to show that MemoryLess Resource Fairness (MLRF)

is not suitable for cloud computing system. Then we propose

Long-Term Resource Fairness (LTRF), a cloud-oriented allo-

cation policy to address it and meet the desired properties in

the previous section.

User A User B
Demand Allocation

Preempt
Demand Allocation

Preempt
New Rem Total Current Total New Rem Total Current Total

t1 20 0 20 20 20 ´30 100 0 100 80 80 `30
t2 40 0 40 40 60 ´10 60 20 80 60 140 `10
t3 80 0 80 50 110 0 50 20 70 50 190 0
t4 60 30 90 50 160 0 50 20 70 50 240 0
(a) Allocation results based on MLRF. Total Demand refers to the sum of the new demand and
accumulated remaining (denoted by Rem) demand in previous time.

User A User B
Demand Allocation

Preempt
Demand Allocation

Preempt
New Rem Total Current Total New Rem Total Current Total

t1 20 0 20 20 20 ´30 100 0 100 80 80 `30
t2 40 0 40 40 60 ´10 60 20 80 60 140 `10
t3 80 0 80 80 140 `30 50 20 70 20 160 ´30
t4 60 0 60 60 200 `10 50 50 100 40 200 ´10

(b) Allocation results based on LTRF.

TABLE 1: A comparison example of MemoryLess Resource Fair-
ness (MLRF) and Long-Term Resource Fairness (LTRF) in a shared
computing system consisting of 100 computing resources for two
users A and B.

Motivation Example. Consider a shared computing system

consisting of 100 resources (e.g., 100GB RAM) and two
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users A and B with equal share of 50GB each. Without

loss of generality, let’s consider a simple case for the ease

of clarification by assuming that the resource demand and

execution time of all tasks are 1GB and 1 time unit (e.g., 1

min), respectively. But it is worthy mentioning that in our real

implementation of LTRF (Section 6.2), we do not have any

assumption about the execution time and submission time of

tasks. As illustrated in Table 1, assume that the new requested

demands at time t1, t2, t3, t4 for user A are 20, 40, 80, 60, and

for user B are 100, 60, 50, 50, respectively. With MLRF, we

see in Table 1(a) that, at t1, the total demand and allocation

for A are both 20. It lends 30 unused resources to B and thus

80 allocations for B. The scenario is similar at t2. Next at t3
and t4, the total demand for A becomes 80 and 90, bigger

than its share of 50. However, it can only get 50 allocations

based on MLRF, being unfair for A since it makes the total

allocations for A and B become 160p“ 20`40`50`50q and

240p“ 80 ` 60 ` 50 ` 50q at time t4, respectively. Instead, if

we adopt LTRF, as shown in Table 1(b), the total allocations

for A and B at t4 will finally be the same (e.g., 200), being

fair for A and B.

LTRF Scheduling Algorithm. Algorithm 1 shows pseudo-

code for LTRF scheduling. It considers the fairness of the total

amount of allocated resource consumed by each user, instead

of currently allocated resources. The core idea is based on

the ’loan(lending) agreement’ [7] with free interest. That is,

a user will yield her unused resources to others as a lend
manner at a time. When she needs at a later time, she should

get the resources back from others that she yielded before

(i.e., return manner). In our previous two-user example with

LTRF in Table 1(b), user A first lends her unused resources

of 30, 10 to user B at time t1 and t2, respectively. However,

at t3 and t4, she has a large demand and then collects all 40

extra resources back from B that she lent before, making fair
between A and B.

Algorithm 1 LTRF pseudo-code.

1: R: total resources available in the system.
2: :R “ p :R1, ..., :Rnq: currently allocated resources. :Ri denotes the currently

allocated resources for user i.
3: U “ pu1, ..., unq: total used resources, initially 0. ui denotes the total resource

consumed by user i.
4: W “ pw1, ..., wnq: weighted share. wi denotes the weight for user i.

5: while there are pending tasks do
6: Choose user i with the smallest total weighted resources of ui{wi.
7: di Ð the next task resource demand for user i.
8: if :R ` di ď R then
9: :Ri Ð :Ri ` di. Ź Update currently allocated resources.

10: Update the total resource usage ui for user i.
11: Allocate resource to user i.
12: else Ź The system is fully utilized.
13: Wait until there is a released resource ri from user i.
14: :Ri Ð :Ri ´ ri. Ź Update currently allocated resources

Finally, we make a property analysis in Appendix B of

the supplemental material, showing that LTRF satisfies all the

desired properties in Section 3.

5.2 Hierarchical Resource Allocation
In previous sections, we have considered the single-level

(i.e., user-level) resource allocation for LTRF. It allocates the

unused resources of a user always to the person with lowest

(a) single-level resource allocation. (b) multi-level resource allocation.

Fig. 1: A comparison example of the long-term resource fairness
between single-level and multi-level resource allocations for four
users A,B,C and D with equal share of the whole resource service,
where Gi denotes the ith group and G0 represents the total resource
service of the whole system.

total consumed resources among all users. For example, in

Figure 1(a), there are four users A,B,C and D with equal

shares (i.e., 25%) of the whole cluster under the single-level

resource allocation. When User A has unused resources, it

will always yield to the user with lowest total resources

among B,C and D. However, if A want to lend her unused

resources to B before considering C and D, and vice versa

(i.e., resource lending affinity2 between A and B), the single-

level resource allocation cannot help. Instead, the multi-level

resource allocation achieve the affinity requirement due to its

recursively collective resource allocation feature [24].

Assume that there are two resource lending affinities be-

tween A and B, C and D, respectively. To satisfy such

affinities, we create a hierarchy by grouping A and B, C and

D to form a tree structure, as illustrated in Figure 1(b), where

the internal nodes denote groups and the leaf nodes represent

individual users that are ultimately to be allocated resources.

5.2.1 A Naive Approach
The hierarchical multi-level resource allocation follows a up-

to-down collective resource allocation process [24]. We can

extend the long-term fairness to multi-level resource allocation

in the following way.

Given a set of users with demands and a set of resources,

we record the total amount of resources assigned to each leaf

node (user) in the hierarchy over time. Non-leaf nodes (i.e.,

groups) are simply assigned the sum of all total resources

assigned to their immediate children. Under these definitions,

the allocation starts at the root of the tree, and traverses down

by picking the demanding child (i.e., the node with pending

tasks) that has the lowest total amount of allocated resources,

and allocates resources to it. When there is a tie, we randomly

choose a node to allocate.

For example, the allocation for the hierarchy in Figure 1(b)

can be performed as follows. Whenever there are idle resources

for the root node G0, it will choose the node with the lowest

total amount of allocated resources among its children G1 and

G2. Assume that at the moment, total resources allocated for

users A,B,C and D are 200, 10, 50 and 60, respectively. Then

the total amount of allocated resources for G1 and G2 are 210
and 110, respectively. In that case, G2 is picked. Thereafter,

the allocation continues between the immediate children C
and D of G2. According to LTRF, the leaf-node C is finally

allocated and its total amount of allocated resources will be

added up accordingly.

2. Affinity users have higher priority to get unused resources than non-
affinity users.
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Fig. 2: The resource allocation results with the naive approach for
four users A,B,C and D in the hierarchy of Figure 1(b). At the
beginning, the resource demands for A,B,C and D are 200, 10, 50
and 60, respectively. Next, the new demands arrive at time 27th time
unit, that are 20, 60, 40 and 80 for A,B,C and D, respectively.

Starvation. We show that the naive approach can lead to

starvation problem for users with the lowest total amount of

allocated resource due to the collective resource allocation. Let

us consider an example with the hierarchy given in Figure 1(b).

Assume that there are 12 resource units for the system and four

demanding leaf nodes (users) A,B,C and D at the beginning

with the resource demands of 200, 10, 50 and 60, respectively.

For simplicity, let’s assume that each task consumes one

resource unit and lasts one time unit (e.g., 1 min).

As the allocation results illustrated in Figure 2, the algo-

rithm starts by allocating 3 resource units to each of A,B,C
and D until the 3rd time unit. At the 3th time unit, B
only needs 1 resource unit. A,C and D get 5, 3 and 3
resource units, respectively. From the 4th to 16th time unit,

the allocations occur among A,C and D with 6, 3 and 3,

respectively. At the 16th time unit, C needs only 2 resource

units and the allocation will be 6, 2 and 4 for A,C and D,

respectively. Thereafter, the allocation will happen between

A,D each with the allocated resources of 6 until D completes

all tasks. After that, there is only one demanding user A and

the whole resources will be given to A until the 27th time

unit. At the 27th time unit, all tasks have been allocated. The

total amount of allocated resources for users A,B,C and D
are 200, 10, 50 and 60, respectively. In that case, the total

amount of allocated resources for G1 and G2 are 210, 110,

respectively. At 28th time unit, let’s assume that there are new

resource demands of 20, 60, 40 and 80 for leaf nodes A,B,C
and D, respectively. Although leaf node B is the user with the

lowest total amount of allocated resource, it will be starved for

a long time (e.g., at least tp210´110q{12u “ 8 minutes) before

being allocated due to its sibling node A who has consumed

too many resources and in turn makes G1 much larger than

G2 (i.e., 210 ´ 110 “ 100 resource units).

5.2.2 Starvation-aware Hierarchical LTRF (H-LTRF)
We propose a starvation-aware Hierarchical LTRF algorithm,

namely H-LTRF. The basic idea is that, instead of strictly

following LTRF for internal nodes in each resource allocation

phase, we can relax such a constraint by allowing the internal

nodes on the path containing the starved user to have a

higher priority to get resource allocated. Such a modification

might make the resource allocation violate the LTRF among

some sibling internal nodes, possibly making the difference

of the total amount of allocated resources between sibling

internal nodes temporally become larger. However, since LTRF

considers the total amount of allocated resources over time,

the difference is recorded and LTRF can minimize such a

difference in later resource allocation according to its lending
agreement mentioned in Section 5.1.

For example, in Figure 1(b), when the leaf node B is

recognized to be a starvation user, the internal node G1 on its

path G0 Ñ G1 Ñ B will be given a higher priority in resource

allocation than G2, no matter the total amount of allocated

resources of G1 is larger than G2 or not. Such allocation

can address the starvation problem for B but enlarges the

difference of the total amount of allocated resources between

G1 (i.e., 211) and G2 (i.e., 110) at the moment. The difference

is recorded and in later allocation, LTRF will help minimize

it.
Algorithm 2 shows the pseudo-code for our starvation-

aware hierarchical LTRF resource allocation. It consists of two

phases, i.e., starvation detection phase and dynamic resource
allocation phase.

The starvation detection is based on a time-out technique.

We provide a waiting time threshold Twait. When a demanding

(i.e., with pending tasks) leaf node, 1). has the lowest total

amount of allocated resources among all demanding users;

2) has waited for a longer time than Twait without being

allocated since its last time allocation, it is assumed to be

a starvation node. In the dynamic resource allocation phase, if

the starvation node is detected, the resources will be allocated

to it. Otherwise, it keeps the same hierarchical collective

resource allocation approach as the naive approach.

Algorithm 2 H-LTRF pseudo-code.

1: G “ă G0, G1, ..., Gi, ... ą: Group node. Gi denotes the ith group. G0

represents the whole cluster.
2: SpGiq : the set of subgroups of Gi. NULL when Gi is a leaf group node (i.e.,

user node).
3: UpGiq : the total amount of used resources for Group Gi, initially 0.
4: �pGq : the set of leaf group nodes (i.e., user nodes).
5: Gi.wait : the waiting time for Group Gi, initially 0.
6: Twait : the maximum waiting time threshold.

7: while there are idle resources do
8: starvedNode = STARVATIONDETECTION(�pGq); Ź Starvation detection.
9: if starvedNode is not NULL then Ź Find starved node.

10: Allocate resources to the leaf node starvedNode.
11: else Ź No Starvation.
12: HIERARCHALLONGTERMALLOC(G0).

13: function STARVATIONDETECTION(GroupSet G
1
)

14: for Gi in G
1

do Ź Update waiting time.
15: if Gi has no pending tasks then
16: Gi.wait “ 0.

17: Gi “ demanding group with lowest total used resource in G
1
.

18: if Gi.wait ą Twait then Ź Twait: waiting time threshold.
19: Gi.wait “ 0.
20: return Gi.
21: else
22: return NULL.

23: function HIERARCHALLONGTERMALLOC(Group Gi)
24: if Gi is not a leaf group node (user) then
25: Gj “ group node with lowest total used resource in SpGiq and pending

tasks.
26: HIERARCHALLONGTERMALLOC(Gj ).
27: else Ź Gi is a leaf group node (user).
28: Allocate resources to the leaf node Gi and set Gi.wait “ 0

29: Update UpGiq and set Gi.wait “ 0.

By incorporating the timeout (i.e., Twait) technique, we pro-
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pose a starvation-aware H-LTRF that can address the starvation

problem of the naive approach. Interestingly, we observe that

the proposed starvation-aware H-LTRF is a generalization

of the single-level LTRF and the naive approach, given by

Theorem 1.

Theorem 1: When Twait “ 0, H-LTRF allocates resources

the same as the single-level LTRF. In contrast, when Twait “
`8, H-LTRF is the same as the naive approach.

The proof Theorem 1 is given in Appendix A of the supple-

mental material. It implies that there is a tradeoff between the

resource lending affinity and starvation minimization. That is,

when Twait is small, it favors the starvation minimization. In

contrast, when Twait is large, it is beneficial to the resource

lending affinity. The administrator can balance such a tradeoff

by configuring the Twait flexibly. Lastly, the guidance on how

to configure Twait is given in Section 7.6.

Fig. 3: The resource allocation results with the starvation-aware H-
LTRF for four users A,B,C and D in the hierarchy of Figure 1(b).
At the beginning, the resource demands for A,B,C and D are
200, 10, 50 and 60, respectively. Next, the new demands arrive at
time 27th time unit, that are 20, 60, 40 and 80 for A,B,C and D,
respectively. Suppose that Twait is set to 1 time unit.

Let’s revisit the previous example of Figure 2, which shows

that under the naive H-LTRF policy, B is starved for at least 8

time units (from 27th to 35th) since its sibling A consumes too

many resources in previous time. In contrast, with starvation-

aware H-LTRF, the resulting allocation is shown in Figure 3,

where Twait “ 1 time unit. From time 27 onwards, it enables

B (with the lowest total amount of allocated resources) not to

be starved by having one of its tasks scheduled by 1 time unit

since its last time allocation.

Moreover, we demonstrate that H-LTRF can meet all the

properties in Section 3. The detailed proofs are given in

Appendix C of the supplemental material. Finally, Table 2

summarizes the properties that are satisfied by MLRF, LTRF,

and H-LTRF, respectively. We can see that MLRF is not
suitable for cloud computing system due to its lack of support

for three important desired properties. In contrast, LTRF and

H-LTRF, are suitable for cloud computing system.

Property
Allocation Policy

MLRF LTRF H-LTRF

Sharing Incentive
? ? ?

Cost-Efficient Workload Incentive
? ?

resource-as-you-contributed Fairness
? ?

Strategy-Proofness
? ?

Pareto Efficiency
? ? ?

TABLE 2: List of properties for MLRF, LTRF and H-LTRF.

6 LTYARN: A LONG-TERM YARN FAIR
SCHEDULER

We have implemented the fair resource allocations in YARN

by proposing a new scheduler called LTYARN.

6.1 Long-Term Max-Min Fairness Model
This subsection proposes long-term max-min fairness model

for LTYARN. YARN is a hierarchical tree structure of multi-

level fairness. The following part considers the bottom-level

(i.e., application-level). The mechanism can be easily extended

to upper queue-level.

Let Λ “ tΛ1,Λ2,Λ3, ...u denote the set of submitted

applications, and rΛ be the set of its active applications (the

’active’ means there are pending or running tasks available).

Let np
i ptq denote the number of pending (i.e., runnable) tasks

for the application Λi at time t. Let ωi be the shared weight for

the ith application. Based on the weighted max-min fairness

strategy and Formula (1), the application Λi to be chosen at

time t for fair resource allocation should satisfy the following

condition,
fiptq
ωi

“ min
ΛkP rΛ

� fkptq
ωk

|np
i ptq ą 0

(
. p6q

6.2 Design and Implementation of LTYARN

Fig. 4: Overview of LTYARN.

Figure 4 overviews the design and implementation of LT-

YARN. It consists of three key components: Quantum Updater
(QU), Resource Controller (RC), and Resource Allocator (RA).
QU is responsible for updating the time quantum for each

queue dynamically, based on running and completed tasks,

to solve the unknown execution time issue. RC manages the

allocated resources for each application/queue and computes

the accumulated resources periodically. RA performs the re-

source allocation based on the accumulated resources of each

application/queue.

6.2.1 Quantum Updater (QU)
Our long-term max-min fairness policy of LTYARN is based

on the accumulated resources. When estimating the accumu-
lated amount of resource for a task, we need to know the

demand of its requested resources and the execution time it

takes.

The resource demand can be obtained from the user request

when the task is submitted to YARN. However, for online
applications, the task execution time is generally unknown

in advance. To address this problem, we propose a Time
Quantum-based Approach, which is an approximation method.

It gives a concept of assumed execution time denoted as
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Q, to represent the prior unknown real execution time. It is

initialized with a time quantum threshold and can be adjusted

dynamically to make it close to the real execution time based

on the completed tasks. Specifically, our approach works as

follows. We first initialize the assumed execution time to be

zero for any pending task. When a task starts running, we give

a time quantum threshold for its assumed execution time. For

each running task, when its running time exceeds the assumed
execution time, the assumed execution time is updated to the

running time. In contrast, for any finished task, its assumed
execution time is updated to its running time, no matter it is

larger or smaller than the time threshold.

However, in practice, different applications often have dif-

ferent task execution time. Thus, a single static value of Q
cannot meet the suitability requirements of multiple jobs (ap-

plications) at the same time. In addition, due to the possibility

of varied types of applications in different queues for YARN

in practice, ensuring that each queue owns a suitable Q for

its own applications is necessary so that they do not interfere

with each other.

With the above concerns, we propose an adaptive task quan-

tum policy, implemented in Quantum Updater. It is a multi-

level self-tunning approach based on the customized structure

of YARN’s resource organization, as shown in Figure 5. The

up-to-bottom data flow is a quantum value assignment process.

It works when a new element (e.g., queue or application) is

added. In contrast, the bottom-to-up data flow is a self-tunning

procedure, which refreshes periodically by a fixed time interval

(e.g, 1 second).

Initially, the system administrator provides a threshold value

for root-level quantum Q0. When a new application is submit-

ted to the system, it will perform up-to-bottom initialization

process. First, it will check whether its parent queue is new one

or not (Arrow (1) in Figure 5). If yes, it will assign its parent-

queue quantum with root-queue quantum, e.g., Q1,1 Ð Q0.

Next, it checks its sub-queues (e.g., leaf-queue) (Arrow (2)

in Figure 5). If it is a new one, it will assign its sub-queue

quantum with its parent-queue quantum, e.g., Q2,1 Ð Q1,1.

Lastly, it initializes its application quantum with its leaf-queue

quantum, e.g., Q3,1 Ð Q2,1 (Arrow (3) in Figure 5).

In our implementation, Quantum Updater checks the sys-

tem periodically for new finished tasks. When there is a

map/reduce task finished, the bottom-to-up self-adjustment

process begins to work automatically. First, it will update

its application quantum with its average task completion

time (Arrow (4) in Figure 5). Next, it updates its leaf-queue

quantum with its average application quantum (Arrow (5) in

Figure 5). Similarly, it updates its parent-queue quantum using

the average value of its leaf-queue quantum (Arrow (6) in

Figure 5). Finally, the root-queue quantum is updated with

the average value of parent-queue quantum (Arrow (7) in

Figure 5).

6.2.2 Resource Controller (RC)
Resource Controller (RC) is the main component of LTYARN.

Its principle responsibility is to manage and update the ac-

cumulated resources for each queue. It tracks the allocated

resource (e.g., container in YARN) and the execution time for

Fig. 5: The adaptive task quantum policy for YARN. The up-to-
bottom data flow is a task time quantum initialization process for new
applications. The bottom-to-up data flow is a quantum self-adjustment
process for existing applications/queues.

each task. Based on this information, it performs the resource

updating work periodically (e.g., 1 second).

Time Window-based Support. To make it flexible, instead of

keeping the long-term resource fairness all the time since the

system starts, our LTYARN supports the long-term fairness

within a period of time (e.g., 1 hour). That is, we divide the

whole time into a set of time windows and ensure the fairness

within the window (Intra-window allocation). When a new

window starts, the previous historical allocation information is

dropped and it performs the long-term fair resource allocation

from the beginning(Inter-window allocation). For simplicity,

we use round to denote time window below.

Resource Tracking and Estimation. It works based on the

long-term max-min fairness model in Section 6.1. Each time,

RC first estimates the assumed execution time for each run-

ning/completed task with the updated quantum value from QU.

Next, it computes and updates the accumulated resource for

each application/queue.

6.2.3 Resource Allocator (RA)
Resource Allocator (RA) locates at each queue of different

levels, as shown in Figure 5. It is triggered whenever there

are pending tasks and idle resources. RA can now support

FIFO, memoryless max-min fairness and long-term max-min

fairness for each queue. Users can choose either of them

accordingly. For long-term max-min fairness, it performs

fair resource allocation for each application/queue with the

provided resource information from RC, based on Formula

(6). We provide two important configuration arguments for

each queue, e.g., time quantum Q and round length L in

the default configuration file, to meet different requirements

for different queues. Moreover, we also support minimum

(maximum) resource share for queues under long-term max-

min fairness.

7 EVALUATION
We ran our experiments in a local cloud environment, which

is established in a cluster consisting of 10 compute nodes,

each with two Intel X5675 CPUs (6 CPU cores per CPU with

3.07 GHz), 24GB DDR3 memory. We emulate the t2.medium
instances of Amazon EC2 by configuring ă2 cores, 4 GBą



1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2531698, IEEE
Transactions on Services Computing

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR COMPUTER SOCIETY JOURNALS 9

per VM and thereby create 6 VMs per node. The Hadoop-

2.2.0 is chosen in our experiment. We configure 1 instance as

master, and the remaining 59 instances as slaves.

Our evaluation methodology is as follows. We first con-

struct a single-level hierarchy for LTYARN with the four

macro-workloads below. We compare LTYARN with the de-

fault Hadoop Fair Scheduler (HFS). Second, we construct a

two-level hierarchy for LTYARN by grouping four macro-

workloads into groups to assess our design on hierarchical

resource allocations.

7.1 Macro-benchmarks
To evaluate our long-term fair scheduler LTYARN for YARN,

we ran a macro-benchmark consisting of four different work-

loads:

‚ A MapReduce instance with a mix of small and large

jobs based on the workload at the Facebook.

‚ A MapReduce instance running a set of large-size batch

jobs generated with Purdue MapReduce Benchmarks

Suite [33].

‚ Hive [25] running a series of TPC-H queries.

‚ Spark [13] running a series of machine learning applica-

tions.

7.2 Macro-Workloads

Bin Job Type # Maps # Reduces # Jobs

1 rankings selection 1 NA 38
2 grep search 2 NA 18
3 uservisits aggregation 10 2 14
4 rankings selection 50 NA 10
5 uservisits aggregation 100 10 6
6 rankings selection 200 NA 6
7 grep search 400 NA 4
8 rankings-uservisits join 400 30 2
9 grep search 800 60 2

TABLE 3: Job types and sizes for each bin in our synthetic Facebook
workloads.

Synthetic Facebook Workload. We synthesize our Face-

book workload based on the distribution of jobs sizes and

inter-arrival time at Facebook in Oct. 2009 provided by

Zaharia et. al. [20]. The workload consists of 100 jobs.

We categorize them into 9 bins of job types and sizes, as

listed in Table 3. It is a mix of large number of small-

sized jobs (1 „ 15 tasks) and small number of large-sized

jobs (e.g., 800 tasks3). The job submission time is derived

from one of SWIM’s Facebook workload traces (e.g., FB-

2009 samples 24 times 1hr 1.tsv) [34]. The jobs are from

Hive benchmark [35], containing four types of applications,

i.e., rankings selection, grep search (selection), uservisits ag-

gregation and rankings-uservisits join.

Purdue Workload. We select five benchmarks (e.g., Word-

Count, TeraSort, Grep, InvertedIndex, HistogramMovices) ran-

domly from Purdue MapReduce Benchmarks Suite [33]. We

use 40G wikipedia data [36] for WordCount, InvertedIndex

and Grep, 40G generated data for TeraSort and Histogram-

Movices with their provided tools. To emulate a series of

3. We reduce the size of the largest jobs in [20] to have the workload fit our cluster
size.

regular job submissions in a data warehouse, we submit these

five jobs sequentially at a fixed interval of 3 mins to the

system.

TPC-H. To emulate continuous analytic query, such as

analysis of users’ behavior logs, we ran TPC-H benchmark

queries on hive [14]. 40GB data are generated with provided

data tools. Four representative queries Q1, Q9, Q12, Q17 are

chosen, each of which we create five instances. We write a

script to launch each one after the previous one finished in a

round robin fashion.

Spark. Latest version of Spark has supported its job to

run on the YARN system. We consider two CPU-intensive

machine learning algorithms, namely, kmeans and alternating

least squares (ALS) with provided example benchmarks. We

ran 10 instances of each algorithm, which are launched by a

script that waits 2 minutes after each job completed to submit

the next.

We configure a single-level hierarchy with the four work-

loads, as shown in Figure 6. Each leaf queue corresponding

to a workload. We use it for the following sections, i.e.,

Section 7.3, Section 7.4, Section 7.5, and Appendix D of the

supplemental material. Besides, the hierarchy of more levels

is given and used in Section 7.6.

Fig. 6: Single-level hierarchical for LTYARN. Four different leaf
queues are configured, i.e., Facebook, Purdue, Spark, TPC-H, corre-
sponding to each workload, respectively.

7.3 LTYARN Resource Allocation Flow

To understand the dynamic history-based resource allocation

mechanism of LTYARN, we sample the resource demands,

currently allocated resources and accumulated resources for

four workloads over a short period of 0 „ 260 seconds, as il-

lustrated in Figure 7. Figure 7(a) and 7(b) show the normalized

results of the current resource demand and currently allocated

resources for each workload with respect to its current share.

Figure 7(c) presents the normalized accumulated resources for

four workloads with respect to the system capacity.

Figure 7(a) shows that different workloads have different

resource demands over time. At beginning, Purdue, Spark

and TPC-H have an overloaded demand period (e.g., Purdue:

24´131, Spark: 28´118, TPC-H: 28´146). Figure 7(b) shows

the allocation details for each workload over time. We can see

that, during the common overloaded period of 28 ´ 118, the

curves for Purdue, Spark and TPC-H are fluctuated, indicating

that LTYARN is dynamically adjusting the amount of resource

allocation to each workload, instead of simply assigning each

workload the same amount of resources like MLRF. Through

dynamic adjusting, the accumulated resources for the three

workloads are balanced (i.e., the curve is close to each other)

during the period 80´118, as shown in Figure 7(c). However,

for Facebook workload, its overloaded period occurs from

204 ´ 260. During this period, the Purdue workload is also
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(a) Normalized current resource demand for
each queue, with respect to its current share.

(b) Normalized currently allocated resources
for each queue, with respect to its current
share.

(c) Normalized accumulated resources for each
queue, with respect to the system capacity.

Fig. 7: Overview of detailed fairness resource allocation flow for LTYARN.

overloaded, as shown in Figure 7(a). To achieve the accu-

mulated resource fairness, LTYARN allocated a large amount

of resource to it (e.g., 3.85{4.0 “ 96.25% at point 222)

shown in Figure 7(b), to make it catch up with others. We

can see the accumulated resource results in Figure 7(c) that,

during 204´260, there is a significant increment for Facebook

workload, whereas other workloads increase slightly.

7.4 Macrobenchmark Fairness Results
In Section 4.2, we have shown that a good sharing policy

should be able to satisfy two key points: 1). can minimize the

sharing loss (i.e., SLA guarantee) to make it close or equal to

zero; 2). can maximize the sharing benefit as much as possible

(i.e., Sharing incentive). This section makes a comparison

between HFS and LTYARN on these two points.
We show the compared fairness results between HFS and

LTYARN for four workloads over time in Figure 8. All results

are relative to the static partition case (without sharing) with

fairness degree of one and sharing benefit/loss degrees of

zero. Figure 8(a) and 8(c) present the sharing benefit/loss

degrees based on Formula (4) and (5), respectively, for HFS

and LTYARN. Figure 8(b) and 8(d) show the detailed fairness

degree for each queue (workload) over time. We have the

following observations:
First, the sharing policies of both HFS and LTYARN can

bring sharing benefits for queues (workloads). For example,

both Facebook and Purdue workloads, illustrated in Fig-

ure 8(b) and 8(d) obtain benefits under the shared scenario.

This is due to the sharing incentive property, i.e., each queue

has an opportunity to consume more resources than her share

at a time, better off running at most all of her shared partition

in a non-shared partition system.
Second, it can also have the sharing loss problem easily for

some queues if without a good sharing policy, i.e., whose total

resources are worse than that in the non-shared case. In the

shared computing system with SLA requirement, this is a very

serious problem and thereby we should minimize the sharing

loss as much as possible. The graph in Figure 8(a) and (c)

show that, LTYARN has a much better result than HFS. Specif-

ically, Figure 8(a) indicates that the sharing loss problem for

HFS is constantly available until all the workloads complete

(e.g., « ´0.5 on average), contributed primarily by Spark and

TPC-H workloads given by Figure 8(b). In contrast, there is no

more sharing loss problem after 650 seconds for LTYARN, i.e.,

all workloads get sharing benefits after that. The explanation

is that, for MLRF, it does not consider historical resource

allocation. Due to the varied demands for each workload over

time, it easily occurs two extreme cases: 1). some workloads

get much more resources over time (e.g., Facebook and Purdue

workloads in Figure 8(b)); 2). some workloads obtain much

less resources that without sharing over time (e.g., Spark

and TPC-H workloads in Figure 8(b)). In contrast, LTYARN

is a history-based fairness resource allocation policy. It can

dynamically adjust the allocation of resources to each queue

in terms of their historical consumption so that each queue

can obtain much close amount of total resources over time.

Its lending agreement can avoid two extreme cases existing in

HFS.

(a) Sharing benefit/loss degree with
HFS based on Formula (4) and (5).

(b) Detailed fairness degree for four
queues with HFS based on For-
mula (3).

(c) Sharing benefit/loss degree with
LTYARN based on Formula (4) and
(5).

(d) Detailed fairness degree for four
queues with LTYARN based on
Formula (3).

Fig. 8: Comparison of fairness results over time for each of work-
loads under HFS and LTYARN in YARN. All results are relative to
the static partition scenario (without sharing) whose fairness degree
is always one and sharing benefit/loss is zero. (a) and (c) show the
overall benefit/loss relative to the non-sharing scenario. (b) and (d)
present the detailed fairness degree for each queue: 1). A queue
gets sharing benefit when its fairness degree is larger than one; 2).
Otherwise, it arises sharing loss problem when a queue’s fairness
degree is below one.

Finally, regarding the sharing loss problem at the early stage

(e.g., 0 „ 650 seconds) of LTYARN in Figure 8(c), it is

mainly due to the unavoidable waiting allocation problem at
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starting stage: a first coming and running workload possess all

resources and leads late arriving workloads need to wait for

a while until some tasks complete and release resources (e.g.,

it is obvious in 0´ 226 seconds in Figure 8(c)). The problem

does also exist in HFS. But LTYARN can smooth this problem

until it disappear over time via lending agreement, while HFS

cannot.

7.5 Macrobenchmark Performance Results

Fig. 9: The normalized performance results (e.g., speedup)for Static
Partitioning, HFS and LTYARN, with respect to Static Partitioning.

Figure 9 presents the performance results (i.e., speedup) for

four workloads under Static Partitioning, HFS and LTYARN,

respectively. All results are normalized with respect to Static

Partitioning. We see that, 1). the shared cases (i.e., HFS and

LTYARN) can possibly achieve better performance than the

non-shared case (i.e., Static Partitioning), or at least as fast

in the shared system as they do in their static partitioning

system. For example, for Facebook and Purdue workloads,

both HFS and LTYARN have much better performance results

(e.g., 14% „ 19% improvement for HFS, and 10% „ 23%
for LTYARN) than exclusively using a static partitioning

system. The finding is consistent with previous works such

as Mesos [10]. The performance gain is mainly due to the

resource preemption of unneeded resources from other queues

in a shared system. The statement can be validated by review-

ing our fairness results in Figure 8(b) and 8(d) in Section 7.4.

We can note that, the fairness degrees for both Facebook and

Purdue workloads are above one (i.e., get sharing benefit)

during the most of time, except at the beginning stage. For

Spark and TPC-H workloads, HFS and LTYARN can be at

least as fast as static partitioning. 2). There is no conclusive

result regarding which one is absolutely better than the other

between HFS and LTYARN. For example, HFS is better than

LTYARN for Facebook by about 7% and Spark by about 2%.

However, LTYARN outperforms HFS for Purdue workload by

about 8% and TPC-H by about 10%.

7.6 Hierarchical Resource Allocation Evaluation
In this section, we evaluate the hierarchical resource allo-

cation primarily from two points. First, we show that the

naive approach can cause the starvation problem in resource

allocation. Second, we demonstrate that the starvation problem

can be addressed with proposed (starvation-aware) H-LTRF in

Section 5.2.2.
We start by establishing a multi-level queue structure with

the aforementioned four workloads in YARN, based on Fig-

ure 1(b) in Section 5.2. The resulting hierarchical structure

is illustrated in Figure 10. We create two queues, namely,

Group1 and Group2 with equal share of the whole system (i.e.,

Root node). For Group1, it has two children, i.e., Facebook
and TPC-H. In contrast, there are two sub-queues, namely,

Purdue and Spark under Group2. We assume that all leaf

nodes under the same parent are with equal share. Moreover, to

show the starvation phenomenon (e.g., for TPC-H workload)

in hierarchical resource allocation, we submit the Facebook

workload first, and after 15 minutes we then submit other three

workloads (i.e., Purdue, Spark, TPC-H) simultaneously.

Fig. 10: The hierarchical structure of multi-level resource allocation
for four workloads under two groups, i.e., Group1 and Group2, where
Facebook and TPC-H workloads are under Group1, Purdue and Spark
workloads are under Group2.

Figure 11(a) and 11(b) present the memory resource allo-

cation results for queues at different levels under the naive

approach. At the first time period of 900 seconds, only

Facebook workload is running, which contributes to Group1
of the accumulated resource. After 900th second, other three

workloads are submitted. Based on the naive approach, it

allocates all idle resources to Group2 so that the accumulated

resource of Group2 can catch up with that of Group1 quickly.

We can witness from Figure 11(a) that there is no resource

allocation for Group1 from the 900th second to 1580th second

(i.e., « 11 minutes). Figure 11(b) gives the detailed resource

allocation for four workloads over time. We can see that,

because of recursively collective resource allocation, TPC-H
workload has been starved for at least 11 minutes without

being allocated resources since its submission at the 900th

second. This is due to the accumulated resource consumption

of Group1 contributed by its sibling Facebook workload at the

starting period of 900 seconds.

Figure 11(c) presents the comparison results of resource al-

location for TPC-H under the naive approach and (starvation-

aware) H-LTRF of different timeout Twait. We have the

following observations:

First, our H-LTRF can alleviate the starvation problem

in recursively collective resource allocation significantly. In

comparison to the naive approach under which the TPC-H

workload is starved for at least 11 minutes without being

allocated resources since its submission, our proposed H-LTRF

can alleviate this problem by ensuring that TPC-H workload is

not starved for Twait period of time since its last time resource

allocation. For example, when Twait “ 10 seconds, we mean

that TPC-H workload will not be starved for 10 seconds since

its last time resource allocation.

Second, H-LTRF is able to allow users to balance the

tradeoff between the resource lending affinity and starvation

reduction in hierarchical resource allocation by setting the

argument Twait flexibly according to their needs. We can

observe in Figure 11(c) that the TPC-H workload is actively
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(a) The resource allocation for two groups over
time under the naive approach.

(b) The detailed resource allocation for four
workloads over time under the naive approach.

(c) The comparison results of resource alloca-
tion for the TPC-H workload under H-LTRF
of different timeout Twait.

Fig. 11: The comparison of hierarchical resource allocation under naive approach and (starvation-aware) H-LTRF subject to Figure 10. To
show the starvation problem (e.g., for TPC-H workload), we perform the experiment by submitting Facebook workload first. After 15 minutes,
we submit other three workloads (i.e., Purdue, Spark and TPC-H) simultaneously. Figure 11(a) and 11(b) shows that TPC-H workload (i.e.,
the sibling of Facebook workload) has been starved for at least 680 seconds (i.e., « 11 minutes) without being allocated resources since its
submission at the 900th second.

allocated resources since its submission at 900th second when

Twait “ 0 (i.e., no starvation problem here). When Twait “ 10
seconds, there are 2 „ 10 actively running tasks of TPC-H at

during its starvation period (from 900th to 1580th seconds). In

contrast, there are 1 „ 4 actively running tasks at that period

for large value of Twait “ 80.

By far, one remaining issue for H-LTRF is about Twait

configuration. We see in Figure 11(c) that its value can have a

significant impact on the average number of actively running

tasks for those starved workloads during their starvation peri-

ods. To understand it theoretically, for simplicity, consider a

workload whose tasks are of the same duration Ttask. During

the starvation period, H-LTRF will schedule its tasks every

Twait seconds, then it holds for the number of active running

tasks Ntask “ Ttask{Twait, assuming that there are enough

resources. In practice, users could configure Twait based on

the average task duration Tavg , i.e.,

Twait “ Tavg

Ntask

. p12q

Figure 12(a) presents the task execution time for 1000 tasks

of TPC-H workload, whose average execution time is 23.6
seconds. Figure 12(b) shows the corresponding number of

actively running tasks for different values of Twait over time.

Based on Formula (12), we see that there are 23.6
2 « 12

actively running tasks on average when Twait “ 2. Similarly,

when Twait “ 4 and 10, there are on average 23.6
4 « 6 and

23.6
10 « 3 actively running tasks, respectively.

(a) Task execution time for 1000
tasks of TPC-H workload, whose
average execution time is 23.6 sec-
onds.

(b) The number of running tasks
for TPC-H workload under differ-
ent timeout Twait over time of unit
time (i.e., Twait).

Fig. 12: The impact of Twait on the number of actively running
tasks for TPC-H workload.

8 RELATED WORK
We review the literature works that are close to us from the

following three perspectives:

‚ Data-Intensive Computing in the Cloud
The study on cloud-based data-intensive computing has

been a hot research area in recent years. There have been many

studies on the performance optimization for diverse workloads

and data (e.g., [19], [17], [18], [31], [49]) under various

data-intensive computing frameworks (e.g., MapReduce [2],

Spark [13], HIVE [25], Storm [12]). Considering that the

cloud resources are charged on the basis of pay-as-you-use

model, a number of studies become available on the monetary

cost minimization(e.g., [9], [4]). Moreover, there are some

other interesting works focusing on data privacy [39] and

reliability [11]. In contrast, this paper considers the fairness

resource allocation issue in the cloud, where YARN is specif-

ically considered. We show that there are three problems for

existing fair scheduler of YARN, making it not suitable for

cloud computing. To address it, we have proposed a new

scheduler called LTYARN.

‚ Fairness Definitions, Policies and Algorithms
Fairness has been studied extensively with various

ways [26], [27], [29], [30], [32]. The fairness they defined

are mainly based on the ”performance” metrics such as start

time, response time, wait time and slowdown. For example,

Zhao et al. [30] and Arabnejad et al. [32] consider the fairness

for multiple workflows. They define fairness on the basis of

slowdown that each workflow would experience, where the

slowdown refers to the difference in the expected execution

time for the same workflow between when scheduled together

with other workflows and when scheduled alone. However,

we show that they are no longer suitable for cloud computing

systems due to the different concerns and meanings of fairness

preferred in cloud computing systems as follows:

First, the cloud computing system is a service-oriented plat-

form with resource guarantee. That is, from service providers’

perspective (e.g., Amazon, supercomputer operator), they only

need to guarantee the amount of resources allocated to each

user over a period of time. In comparison, the performance

metrics for user’s applications are not the main concerns for

providers. Our proposed LTRF and its extension H-LTRF are
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based on this point. They attempt to make sure that the total

amount of resources that each user obtained in the shared cloud

system is larger than or at least the same as that in an non-

shared partitioning system, according to the users’ resource

contributions.

Second, the traditional fair policies and algorithms (e.g.,

round-robin, proportional resource sharing [37], and weighted

fair queueing [38]) on resource allocation are memoryless, i.e.,

instant fairness of one dimension. Our LTRF is designed to

be a two-dimension fair policy with the historical information

considered.

‚ Max-Min Fairness and Supporting Systems
In the literature, there are many work that apply max-

min fairness to a variety of single-typed resources, including

CPU [21], [37], memory [16], [37], network bandwidth [42],

[44], and storage [45]. For cloud computing, the max-min

fairness has been widely used by many data-intensive systems,

such as Hadoop [15], YARN [3], Mesos [10], Choosy [8], and

Pisces [45].

Besides, there are lots of work extending the max-min

fairness for multi-resource allocation. Dominant Resource

Fairness (DRF) [23] is the first work in the literature for multi-

resource allocation. It achieves the fairness by equalizing the

dominant shares (i.e., the highest share of any typed resource

allocated) across all users. DRF has been implemented in

many current datacenter frameworks such as YARN [3] and

Mesos [10]. After that, there have been lots of extension and

generalization for DRF, including [41], [28], [50].

Despite the various efforts, all of these fair policies and

their implementation on existing systems above are indeed

memoryless (i.e., allocating resources fairly at instant time),

belonging to MLRF. We show that there are three problems for

cloud computing system regarding MLRF, i.e., cost-inefficient

workload submission problem, strategy-proofness problem and

resource-as-you-contributed unfairness problem. This paper

goes beyond our previous work [40], [51] in the following as-

pects: (I). We provide more details of LTRF for single-resource

allocation; (II). We extend LTRF for hierarchical resource

allocation. (III). We perform more extensive experiments in

our evaluation.

9 CONCLUSION

This paper studies the resource allocation fairness for YARN

in cloud environment. We find that, the existing max-min

fair policy used in YARN, is not suitable in cloud comput-

ing system. We show that this is because of its memory-
less resource allocation manner that can cause three serious

problems, i.e., cost-inefficient workload submission problem,

strategy-proofness problem and resource-as-you-contributed

unfairness problem. To address these problems for YARN,

we propose LTRF and H-LTRF for single-level and hierar-

chical resource allocation, respectively. We demonstrate that

they are suitable for cloud computing system. Finally, we

developed LTYARN, a long-term YARN fair scheduler for

YARN and our experimental results validate the effectiveness

of our solutions. We have made LTYARN open source at

http://sourceforge.net/projects/ltyarn/.
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